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ABSTRACT

This thesis addresses questions about early lexical acquisition. Four case
studies provide concrete examples of how Bayesian computational mod-
eling can be used to study assumptions about inductive biases, proper-
ties of the input data and possible limitations on the learning algorithm.
The first study describes an incremental particle filter algorithm for a

non-parametric word segmentation models and compares its behavior to
Markov Chain Monte Carlo methods that operate in an offline fashion.
Depending on the setting, particle filters may be outperformed by or
outperform offline batch algorithms. It is argued that the results ought
to be viewed as raising questions about the segmentation model rather
than providing evidence for any specific algorithm.
The second study explores how modeling assumptions interact with

the amount of input processed by a model. The experiments indicate
that non-parametric word segmentation models exhibit an overlearning
effect where more input results in worse segmentation performance. It
is shown that adding the ability to learn entire sequences of words in
addition to individual words addresses this problem on a large corpus
if linguistically plausible assumptions about possible words are made.
The third study explores the role of stress cues in word segmentation

through Bayesian modeling. In line with developmental evidence, the
results indicate that stress cues aid segmentation and interact with
phonotactic cues; and that substantive constraints such as a Unique
Stress Constraint can be inferred from the linguistic input and need
not be built into the model.
The fourth study shows how variable phonological processes such

as segmental deletion can be modeled jointly with word segmentation
by a two-level architecture that uses generative beta-binomial model
map underlying to surface forms. Experimental evaluation for the phe-
nomenon of word-final /t/-deletion shows the importance of context in
determining whether or not a variable rule applies in context and that
naturalistic data contains subtle complexities that may not be captured
by summary statistics of the input, illustrating the need to not only pay
close attention to the assumptions built into the model but also to those
that went into preparing the input.
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1
INTRODUCTION

Except for pathological cases, human infants acquire their native lan-
guage(s) with remarkable ease and speed, growing from pre-verbal in-
fants to competent speakers of whatever language is spoken in their
surrounding environment over the course of just a few years. There is a
heated debate about the relative importance in language acquisition of
prior biases or innate knowledge on the one hand and linguistic input
or experience on the other. Thus, it is common to contrast ‘rational’
and ‘empiricist’ views of language acquisition. The former emphasize
the role played by innate knowledge which, using a term of Chomsky
(), is commonly called Universal Grammar; the latter emphasize
the role played by linguistic input and experience more generally (for a
recent example of the controversy, see Christiansen and Chater, ;
Pinker and Jackendoff, ).

I share, however, Clark ()’s assessment that the implied dichotomy
between ‘empiricist’ and ‘nativist’ approaches is a false one – the scien-
tific question is “what [infants] are born with that is required for this
task” (p. ), and little is gained by giving labels to competing hypotheses.
In this thesis, I use computational modeling to address some of these
questions as they apply to word segmentation, the problem of “breaking
up of the essentially continuous stream of speech into morphemes and
words” (Brown, , p. ).

This introductory chapter introduces the idea of computational mod-
eling and how it can contribute to our understanding of language ac-
quisition. After a brief general motivation for modeling, I outline the
Bayesian approach taken in this thesis and illustrate how it can con-
tribute to our understanding of word segmentation by giving an overview
of the individual chapters of the thesis.

. computational modeling of language acquisition

In the context of language acquisition, a computational model is a par-
ticular instance of a more general theory (Harley, , p. ). Theories
of language acquisition provide high-level explanations of particular phe-
nomena, they tend to rely on the implicit understanding of the reader.
In particular, ‘verbal-conceptual’ theories such as Tomasello ()’s
usage-based theory or the parameter setting theory of language acquisi-
tion (Yang, ) are presented in mostly informal language that suffices
to convey the core idea of an explanation but leave a great many details
unspecified. Consequently, determining the actual implications of such





 introduction

a theory has to rely on both intuitions and informal reasoning, making
it hard to arrive at an objective evaluation of a proposal.
A computational model, in contrast, has to be formally specified and

allows for mathematical analysis or the actual implementation as a
computer program. This makes it possible to derive the implications of
different proposals in a principled way and, in many cases, to perform
large scale evaluations of proposals on actual data.

.. Computational models as testing proposals

Thus, the main difference between computational models of and lin-
guistic or psycholinguistic theories about language acquisition is explic-
itness (Alishahi, ; Sun, b). As an example, consider the idea
of Parameter Setting as introduced in Chomsky () which, arguably,
is the most popular ‘rationalist’ theory of language acquisition.

Briefly, it suggests that there is a set of universally shared ‘parameters’
which account for syntactic differences between languages. And that,
consequently, language acquisition amounts to learning which parame-
ter setting corresponds to the language spoken in one’s environment –
“experience is necessary to fix the parameters of core grammar” (p. );
the parameters themselves, however, need not be acquired. This is a
compelling proposal that, to this date, fuels research into language ac-
quisition (for a recent book-length treatment, see Guasti, ). Yet, as
Chomsky himself points out, left at this level of detail “[t]here are [...]
many unspecified details. [...] How many parameters are there? How
much exposure to a language and what kind of evidence do children
need to set each parameter[?]”.
Often, filling in these details in a fully satisfactory way may not be

possible and one may refuse to be more specific on the grounds that
not all parameters may have been discovered, as well as admitting that
the precise way of setting parameters may have yet to be determined.
Clearly, intuitive models can be very useful in stimulating research and,
in a sense, are required to ever arrive at more fleshed out proposals.
Yet, one needs to be cautious that “without detailed theories, most of
the details of an intuitive (or verbal-conceptual) theory are left out of
consideration, and the intuitive theory may thus be somehow vacuous
or internally inconsistent, or otherwise invalid. These problems of an
intuitive theory may not be discovered until a detailed model is devel-
oped” (Sun, b, p. ).
A perfect example of this kind of problem is Gibson and Wexler

()’s discussion of the trigger learning algorithm which constituted
the first fully specified computational model of Chomsky’s parameter

 I do not draw a distinction between mathematical and computational models (as
e.g. Sun, b). Arguably, Bayesian models would qualify as mathematical models
under this terminology.

 An accessible introduction is Yang (). Interestingly, Chomsky himself seems to
no longer promote this idea in his current Minimalist Program (Chomsky, ).
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setting idea. A trigger is a particular kind of sentence (or, more generally,
syntactic construction) which allows a learner to uniquely determine the
value a particular parameter has to take to fit the language in its en-
vironment. The idea that triggers provide a solution to the parameter
setting problem is intuitive and was, indeed, widely accepted; Gibson
and Wexler () show, however, that a straight-forward way of actu-
ally implementing this idea does not work. Not only is their algorithm
unable to identify the correct parameter setting in all circumstances, it
can even end up with a wrong grammar.
Obviously, their conclusion that triggering does not work depends on

the specific assumptions which they made about how triggers are used
in acquisition. A proponent of triggering can always dispute that their
computational model faithfully represents the intended interpretation
of triggering, and indeed, it is still considered as a strategy for language
acquisition (for a recent proposal, see Sakas and Fodor, ).

Hence, “[e]ven the most successful computational model can hardly
prove that humans exploit a certain strategy or technique when learning
a language” (Alishahi, , p. ). At most, they can “show what type
of linguistic knowledge is learnable from what input data” and “give us
insights about which representations and processes are more plausible in
light of the experimental findings on child language acquisition”. This
‘limitation’, however, is not special to computational modeling. Any
scientific result can be rejected on the grounds of rejecting one of the
assumptions on which it depends (Quine, ; Popper, ).

In this respect, then, computational modeling is not fundamentally
different from psycholinguistic or, indeed, any kind of empirical exper-
imentation. Conclusions drawn from psycholinguistic experiments also
depend on the acceptance of a host of assumptions that connect what
is actually measured (reading times, well-formedness judgments, ...) to
what is (supposed to be) the underlying psychological process (lexical
retrieval, syntactic parsing, ...). Considering this, the fact that a compu-
tational model has to make explicit its assumptions ought to be counted
as a benefit rather than a limitation.

.. Bayesian computational models

I have argued that computational models provide a means of testing spe-
cific proposals about language acquisition. I will now spell out in more
detail the particular approach taken in this thesis, namely Bayesian
computational modeling.

A Bayesian computational model embodies a particular set of assump-
tions about the inductive biases of a learner (the prior), the nature of
the input available to the learner (the data) and the relationship be-
tween any of the possible hypotheses a learner can consider and the
input (the likelihood). Given such a model, it allows us to answer the



 introduction

question what the assumptions built into the model imply given any
particular set of observations by performing Bayesian inference.
This idea is formally explained in Chapter . Here, I discuss the

conceptual importance of Bayesian inference in the study of language
acquisition. I critically discuss the popular idea that Bayesian infer-
ence is the ‘rational’ or ‘optimal’ way of learning from experience and
that Bayesian modeling allows for ‘rational analysis’ of language acqui-
sition (e.g. Pearl and Goldwater, in press; Griffiths et al., ); and
introduce my alternative view that emphasizes the idea of logical prob-
ability and views Bayesian modeling as a principled means of drawing
out the logical implications of a specific proposal (this also seems to be
the view of Dunbar, ).

... Bayesian Inference and Rationality

At the heart of the Bayesian approach is the idea that “Probability is de-
gree of belief” (Hájek, , p. ). Thus, for a Bayesian the expression
“The probability that this coin will land heads is 99%” means that the
speaker is 99% certain that this coin will land heads on the next toss. In
contrast, for a frequentist this statement would mean that the fraction
of heads in a long sequence of coin tosses will be 99%. This difference
between a subjective Bayesian and a Frequentist or objective view of
probability is a topic of heated debate with which we will not concern
ourselves here – the interested reader is referred to Gillies () for an
excellent philosophical discussion of these different views on the nature
of probability.

Treating probability as degree of belief also provides a way of for-
malizing talk about belief: to represent that somebody is 99% certain
that some proposition H is true, write P(H) = 0.99. At first blush, this
seems to be little more than a convenient shorthand. However, the idea
that degrees of belief are represented as probabilities puts substantive
constraints on what qualifies as a set of coherent or rational beliefs.

dutch book arguments and rationality Thus, a family
of arguments going back to Ramsey () proves that, unless one’s
total set of beliefs satisfies the axioms of probability, one is susceptible
to a ‘Dutch book’ – a (possibly rather complex) bet in which one is
guaranteed to lose money.

The arguments are involved and I do not want to discuss them in
detail – Hacking (, chapter ) provides a very readable exposition.
To provide a rough idea, though, consider why being 60% certain that

 It is worth noting, however, that Chomsky ()’s influential criticism against the
use of probabilities in the study of language – “the notion ‘probability of a sentence’
is an is an entirely useless one, under any known interpretation of this term” –
presupposes a frequentist interpretation. A Bayesian interpretation, in contrast, fits
nicely with the idea that linguistics is about the beliefs speakers have rather than
some ‘objective’ linguistic reality.
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it will rain tomorrow and 60% certain that it will not rain tomorrow is
problematic. Holding both beliefs is inconsistent or irrational in that
it violates the requirement that the total probability of any event must
not exceed 1 as writing A∨¬A for “it will rain tomorrow or it will not
rain tomorrow”, P(A∨¬A) = 0.6+ 0.6 = 1.2.
The argument starts from the assumption that being 60% certain

about something is equivalent to being willing to bet at rate 0.6 on the
truth of this. Being 60% certain that it will rain tomorrow is equivalent
to being willing to accepting a bet in which one wins 40 dollars if it
rains tomorrow and loses 60 dollars if it doesn’t. Analogously, being
60% certain that it will not rain tomorrow is equivalent to being willing
to accept a bet in which one wins 40 dollars if it does not rain tomorrow
and loses 60 dollars if it does.
Then, a problem arises as follows: being 60% certain that it will rain

tomorrow and 60% certain that it will not rain tomorrow means that
one will accept bets such that – irrespective of the weather on the next
day – one is guaranteed to lose 20 dollars: if it does rain, one wins 40
dollars in the first bet but loses 60 in the second; if it does not, one wins
40 dollars in the second bet but loses 60 in the first . A combination of
bets which incurs a sure loss is called a “Dutch book”, giving the name
to the general form of argument.
As alluded to above, what is wrong with being 60% certain about

something and its negation is that these certainties sum to 120%, rather
than 100%, violating one of the axioms of probability. Through dis-
cussing many more cases much more formally, Ramsey () and
de Finetti () showed that unless one’s beliefs – the totality of prob-
abilities (reflecting one’s degree of certainty) one assigns to statements –
satisfies the axioms of probability, one is subject to a Dutch book and, in
this sense, guaranteed to lose money, a result known as the Ramsey-De
Finetti Theorem.

As accepting bets that ensure one loses money no matter what is
hardly rational, only beliefs that satisfy the axioms of probability can be
considered ‘rational’ or, to use the more technical term, coherent (Gillies,
, p. ff). Note my use of scare quotes around ‘rational’ – I will not
further discuss in what sense our ordinary usage of ‘rational’ coincides
with the technically precise but obviously rather limited idea of ‘not
susceptible to a Dutch book’ but it is important to keep in mind that,
in this context, ‘rational’ has a precisely specified meaning.

... Bayesian updating

The Ramsey-De Finetti theorem also puts a constraint on how beliefs
ought to be updated. In particular, the only way to guarantee that a
coherent set of beliefs remains coherent after having been ‘updated’ on

 This connection between betting and degree of belief is at the heart of Bayesian
decision theory. There are good grounds for contesting its adequacy which I will not
discuss here – see (Gillies, , p. ff) for discussion.
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the basis of some observation is to use Bayesian updating. Informally,
one has to update ones prior belief about H which one held before
making observation E into the posterior belief about H given E using
Bayes’ Theorem:

P(H | E) ∝ P(H)P(E | H)

The expression P(E | H) is called the likelihood of H and it quantifies
how expected the observation one actually made would be if H were
true. In models of language acquisition, it reflects how a learner relates
the input E to the possible hypotheses it can consider. P(H) is called
the prior and reflects which hypotheses are favored by the learner ‘a
priori’. Bayes’ theorem is often stated informally as

posterior ∝ prior × likelihood

Dutch book arguments prove that Bayesian updating is the only ‘ra-
tional’ way of learning from experience.

... Bayesian Inference and evidential relations

Another closely related interesting view interprets the posterior proba-
bility P(H | E) as “the degree of support or confirmation that a piece
of evidence E confers upon a given hypothesis H” (Hájek, , p. ).
Particularly popular in the philosophy of science (see Earman, ),
following Dunbar () I think that this ‘Logic Bayesian’ idea can ex-
plain very well what kind of contributions Bayesian models make to the
study of language acquisition.

Under the ‘Logic Bayesian’ approach, Bayesian modeling allows us to
draw out the ‘logical conclusions’ of specific assumptions about learners
and the input by performing posterior inference, i.e. determining P(H |

E) which, to repeat, quantifies how strongly the observation supports
any particular hypothesis. Again, Bayes’ Theorem plays a central role
as it is the means by which one can calculate P(H | E) for specific cases.
A formal justification for treating posterior probabilities in this way

has been given by Cox () who argues that Bayesian updating is
the natural extension of deductive (logical) reasoning to situations in
which uncertainty is involved. At a very high level, A implies B can
be formalized as P(B | A) = 1.0 – assuming the truth of A, one is
100% certain of the truth of B; cases where A bears on the truth of B

 I omit the denominator, see chapter .. for a proper mathematical discussion of
Bayes’ Theorem.

 Strictly speaking, what is required for ‘rational’ learning is not use of Bayes’ Theorem
but that one’s updated belief be derived by conditionalization. The importance of
Bayes’ Theorem stems from the fact that for many cases, it is what makes possible
to perform this conditionalization, although there are alternative ways to calculate
the required conditional probability P(H | E) on the basis of available probabilities
P(E | H) and P(E). I gloss over this detail here, see Talbott () and Joyce ()
for extensive discussion.



. computational modeling of language acquisition 

without fully determining it can be handled by assigning probabilities
of less than 1.0, and the probability calculus takes on the role played by
rules of inference in logic. I refer the reader to the discussion of Cox’s
argument by Jaynes (, chapter ) and Dunbar (, chapter ).

The difference between motivating Bayesian modeling through Dutch
book arguments that show the ‘optimality’ of Bayesian inference and
the Logic Bayesian emphasis on the degree of support that evidence
confers on particular hypotheses is subtle and, as is usually the case for
conceptual issues like these, does not affect the practical steps involved
in Bayesian modeling. Indeed, the two views are not mutually exclu-
sive but can be viewed as supplementing each other. For example, in
addition to Cox’s argument Logic Bayesians might point towards the
Ramsey-De Finetti theorem to provide further support to their choice
of using Bayesian inference to draw out the logical conclusions of a set
of hypotheses.
It is important, however, to be explicit about how experimental find-

ings of Bayesian modeling ought to be interpreted. I view Bayesian
modeling as a tool to address the question what – as a matter of prin-
ciple – can be learned from particular observations given particular
assumptions. In logical notions, this is the question of to what extent
particular observations support different hypotheses, making it natu-
ral to emphasize the Logic Bayesian view. In the context of language
acquisition, this is precisely the question that ‘Poverty of Stimulus ar-
guments’ (Chomsky, ) are intended to address. I will elaborate this
point in the following section.

bayesian models and learnability ‘Poverty of the Stimu-
lus arguments’, popularized by Noam Chomsky (Chomsky, ), are
arguments that, in their general form, derive the necessity of postulat-
ing some piece of (linguistic) knowledge as innate on the basis of the
observation that a learner would be unable to acquire it from the evi-
dence it has access to. Arguably the most famous example concerns the
sensitivity of linguistic rules to hierarchical rather than linear notions:
how can infants determine whether the rules of their language should
make reference to hierarchical notions such as ‘sibling in a tree’ rather
than linear notions such as ‘second word in a sequence’?
An explicit formulation of this argument is given by Perfors et al.

(), an article that exemplifies to a high degree the approach I ar-
gue for. Without going into the specific details, the authors rephrase
the informal argument outlined by Chomsky as a specific probabilistic
model.
This allows them to use Bayesian inference to directly quantify how

strongly a small corpus of transcribed child directed speech supports
different hypotheses. Surprisingly, they find that – pace Chomsky’s in-
formal argument to the contrary – the ‘stimulus is rich enough’. The
data supports the hypothesis that there are hierarchical structures much



 introduction

more strongly than that there are linear structures. Crucially, Perfors
et al. ()’s result is arrived at not by intuitive reasoning but by draw-
ing out the conclusions of a specific proposal in a principled way, namely
Bayesian Inference.
Of course, by spelling out the argument in much more detail their

work is easily criticized as simply not having made the right assump-
tions. Indeed, Dunbar () discusses at length the many ways in which
these assumptions are lacking. In a sense, this is the general ‘problem’
of computational models to which I alluded above – the requirement of
being explicit may force one to make questionable assumptions which
makes it easy to contest the importance of any findings based on the
model. Yet it is important to realize that in the absence of explicit
assumptions, there is no real argument to begin with. In the slightly
modified words of Partha Niyogi, “for [computational] models the as-
sumptions are more questionable but the conclusions are more reliable
– for [intuitive] models, the assumptions are more believable but the
conclusions more suspect” (Niyogi, , p. ).
If Perfors et al. () way of filling in the details is not the one

intended by Chomsky and colleagues, the proper reply is not to dismiss
Bayesian modeling. Rather, the argument should be made sufficiently
precise to be given a proper evaluation.
An alternative way of criticizing this work is to argue that, even if

Bayesian inference may be able to draw the right conclusions from the
input, humans are incapable of performing this kind of reasoning. While
this may be the case, in the absence of concrete evidence that humans
are, in principle, incapable of this kind of reasoning, it is not a partic-
ularly convincing move. In fact, recent work such as Phillips and Pearl
(in press) and the work presented in chapter  of this thesis demon-
strate that incremental Bayesian inference is possible, indicating that
work in Bayesian modeling can also speak on questions of learnability
by comparing the performance of different algorithms. A detailed and
critical discussion of possible interpretations along those lines is pro-
vided in chapter . However, in so far as Poverty of Stimulus arguments
are supposed to speak on the logical question of language acquisition,
i.e. what is learnable as a matter of principle rather than actual fact,
the question whether or not humans are capable of performing Bayesian
inference is irrelevant.
To summarize, I take Bayesian modeling to offer a principled frame-

work to address learnability issues, answering questions of the form
“what kinds of conclusions can be drawn from what kinds of input”.

This highlights an important point of difference between Bayesian
computational models and other computational models. Bayesian mod-
els are not intended as claims about the actual mechanisms employed by
human infants. In the terminology going back to Marr (), Bayesian
models are at the computational rather than the algorithmic level of
description. No assumption about humans actually being Bayesian rea-
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soner’s are required for these kinds of analyses, as they concern the
logical question of what provides evidence for what, given specific as-
sumptions, rather than the psychological question of how infants actu-
ally acquire their language. Another way of putting this is that I view
our computational models as tools to study how specific assumptions
learners can make interact with specific kinds of inputs available to
them; not as scientific hypotheses about what human learners actually
do.
Yet, it is wrong to conclude from this that Bayesian modeling is com-

pletely disconnected from and irrelevant to concrete questions about
human learning. Both successes and failures of specific models can be
taken as evidence for and against the assumptions built into these mod-
els. If something cannot be learned from the input given particular
assumptions but we have evidence to believe that it is learned, some-
thing about the assumptions or the specification of the input is wrong
as a matter of logic. On the other hand, if something can be learned
from the input given particular assumption, this demonstrates that, as
a matter logic, the assumptions suffice to acquire this kind of knowledge.
This is precisely the logic of Poverty of Stimulus arguments, and one
could even argue that – assuming Bayesian inference is the proper ex-
tension of logical inference to reasoning under uncertainty (as suggested
by Cox’s argument) – Bayesian modeling is the framework which has
to be used to properly evaluate these arguments. Personally, I advocate
the weaker position that Bayesian modeling is one framework which can
be used to properly evaluate these kinds of arguments.

. computational models of word segmentation

I now turn to a discussion of the particular problem discussed in this the-
sis, word segmentation. First, I define the problem and then illustrate
how computational modeling can contribute to understanding how in-
fants solve it. To this end, I briefly review prior work and then give a
brief summary of the research undertaken for this thesis, providing a
high-level overview of its contributions.

.. The Word Segmentation problem

Word segmentation is the problem of ‘breaking up [...] the essentially
continuous stream of speech into morphemes and words” (Brown, ,
p. ). This is among one of the earliest problems human language
learners have to address as most aspects of their language such as the
morphology, syntax, or semantics presuppose word- or morpheme-like
units.
Language acquisition research has made several findings that are

highly suggestive of what kind of strategies infants may use to solve
the segmentation problem. For example, Saffran et al. () demon-
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strated that at the very young age of  months infants are sensitive
to the transition probabilities between syllables and use these statistics
to segment words in artificial language experiments, suggesting that
distributional learning plays an important role.
Relatedly, Jusczyk et al. () showed that stressed syllables are

treated by English learning infants as cues for the beginnings of words
and Mattys et al. () provided evidence that infants are sensitive
to the correlation of particular consonant sequences with word begin-
nings and ends, suggesting that particular kinds of cues are exploited
by infants to perform segmentation.

As argued above, the contribution of computational modeling consists
in providing a testing ground for proposals made by psycho-linguists by
first making a proposal explicit enough to be implemented and then
evaluating these models, thus providing evidence in favor or against
particular proposals. This idea is quite general to computational mod-
eling, and I review some of the results of prior work before discussing
the particular questions addressed in this thesis.

.. The computational Word Segmentation problem

Whereas human infants have to segment actual speech, following previ-
ous work (Brent and Cartwright, ; Brent, ; Goldwater, ;
Goldwater et al., ) I make the simplifying assumption that what is
being segmented is a discrete sequence of phonemes. For example, I will
represent an utterance such as “you want to see the book” as a phoneme
sequence

yMuMwMaMnMtMtMuMsMiMDM@MbMUMk

where each triangle indicates a possible boundary position. The goal
of word segmentation is to decide which of the possible word boundaries
are real word boundaries. The ‘correct’ solution is

yMuNwMaMnMtNtMuNsMiNDM@NbMUMk

where each black triangle indicates a word boundary. This way of
formulating the segmentation problem abstracts away from particular
issues such as the acquisition of the phonemic inventory which, to some
degree, happens jointly with early segmentation (Clark, , pp. –
). Consequently, recent work such as Phillips and Pearl (in press)
argues for representing the input to word segmentation in terms of syl-
lables rather than phonemes. This point will be discussed in some detail
in chapter  on page . A criticism that can be raised against both
choices, however, is the idealization that the infant’s perception of the
input is infallible and the pronunciation of a word (whether represented
as a sequence of phonemes or atomic syllables) does not depend on the
context.
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While some work has tried to address some of these simplifying as-
sumptions, the results suggest that at the current stage, making these
idealizations is the only way forward. For example, Jansen et al. ()
found that current unsupervised speech technologies yield very noisy
‘categorical percepts’ of spoken speech in which no word is ever tran-
scribed twice in the same way. Thus, there literally are no distributional
cues about words in these transcripts, and applying segmentation mod-
els to this output yields essentially chance performance.
On the other hand, recent work tries to address the issue of pronunci-

ation variation, see Elsner et al. (), Elsner et al. () and Chapter
 of this thesis. While this kind of work is important in providing a way
how, in theory, variation can be handled in segmentation models, there
is a host of unresolved questions as to how well infants do treat different
kinds of variation, raising the question how the results of these models
ought to be interpreted. We will return to this particular point at the
end of Chapter .
In summary, then, I believe that at the moment the idealized formula-

tion of the segmentation problem as adopted in virtually all work (Brent
and Cartwright, ; Brent, ; Venkataraman, ; Yang, ;
Goldwater, ) provides the most productive setting in which com-
putational models of word segmentation can be studied.

. prior work and modeling results

I summarized some core findings about word segmentation as performed
by human infants above. Computational modeling has made a host of
contributions that relate to different of these proposals. For an excellent
review of prior work, I point the reader to Daland (, chapter ).
Here, I briefly summarize some results which I take to illustrate nicely
the kinds of contributions that can be expected from computational
modeling.

.. Local statistics

Saffran et al. () provided experimental support for the idea that
young infants are sensitive to local statistics such as the transition prob-
ability between syllables and seem to segment units from speech accord-
ing to these statistics. Briefly, the idea is that for syllables which form
a word, the conditional probability of the second syllable given the first
tends to be much higher than for syllables which do not form part of a
word.

This suggests that simple statistics defined over adjacent segments
in the input may form the basis for word segmentation. In addition
to (or instead of) the probability of the following syllable given the
previous one, one could also imagine statistics such as tho pointwise
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mutual information between adjacent syllables to work well (Swingley,
).

Computational models make it possible to evaluate a wide range of
different proposals of this kind on actual child directed speech. To give
one example, Yang () implemented a learner that relies on transi-
tional probability as proposed by Saffran et al. () and evaluated
it on a huge corpus of child directed speech, comprising 226, 178 syl-
labified words. This evaluation showed that, when applied to actual
child directed speech rather than the artificial languages used in Saf-
fran et al. ()’s experiments, the segmentation results of the simple
transitional probability learner are surprisingly low – only 42% of the
words it posited were actual words, and it only identified 23% of the
actual words of its input. Of course, this finding does not invalidate
the experimental result of Saffran et al. () that infants are sensi-
tive to transitional probabilities. But it suggests, as Yang () argues,
that for successful word segmentation of real language more than mere
sensitivity to transitional probability is needed.
A different class of local statistics models was motivated by the find-

ing of, e.g., Mattys et al. () that infants are sensitive to phonotactic
properties of their language. One way to implement a model that ex-
ploits phonotactic regularities is by identifying sequences of phonemes
– diphones – which occur never or with very low probability inside of
any word. To illustrate, Daland and Pierrehumbert () contrast the
diphone /p d/ with the diphone /b a/; the latter occurs very frequently
inside words whereas the former does not. Word segmentation amounts
to identifying diphones which almost never occur inside of words and
posit boundaries between them – this is, at a high-level, the idea of
their Diphone-Based Segmentation model. On the basis of this concrete
implementation, Daland and Pierrehumbert () demonstrate that
a phonotactic segmentation strategy is effective for English. Moreover,
their model shows that the relevant phonotactic knowledge of which
diphones tend to occur at word junctures and which don’t can be ac-
quired jointly with segmenting the input – in particular, knowledge of
utterance boundaries is sufficient to determine some phonotactic expec-
tations which allow first boundaries to be identified, resulting in an
incremental refinement of the phonotactic knowledge.
Interestingly, Daland and Zuraw () found that the same model

does not perform well on Korean data, raising the important question
what kinds of phonotactics a language needs to exhibit to be useful for
segmentation; or, turning the question on its head, which other ways
of implementing a model that exploits phonotactic regularities there
are, and whether these strategies would perform on both English and
Korean (and, of course, any other language).
With this brief review of local statistics learners, I move towards

lexical models which are also considered in this thesis.
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.. Lexical models

Unlike the models just discussed, lexical models do not simply try to
identify word boundaries – they also attempt to explicitly build a lexi-
con, that is, a list of words of the language.

In these kinds of models, utterances are segmented by trying to match
words already in the lexicon against the unsegmented input, thus provid-
ing a segmentation in terms of known and novel words – the novel words
simply are those parts of the utterance which could not be matched. To
illustrate, imagine you already know that “dog” is a word. Then you can
‘segment’ the utterance “thedogbarks” by spotting “dog” which yields
“the dog barks”. In the process, you have learned two novel words, “the”
and “barks”, which will be added to the lexicon and can be used to
segment novel utterances.
This seems to raise a chicken-and-egg problem as, initially, one can-

not assume knowledge of any words. Yet, the ‘Recession segmentation’
algorithm proposed by Yang () and further refined by Lignos ()
demonstrates that a simple strategy can solve this problem in practice.
When incrementally processing the input their algorithm initially treats
every utterance as a word. At some point, it will observe a short utter-
ance which will occur again as part of a longer utterance; for example,
a single word utterance such as “doggie!” or a short phrase such as “stop
it!”. At this point, the larger utterance will be broken into smaller units
which, themselves, can be used to analyze more novel utterances and
identify more short units.
By implementing this algorithm and applying it to huge corpora of

child directed speech, Yang () and Lignos () were able to
demonstrate that this simple strategy performs segmentation surpris-
ingly well.
An alternative line of work treats lexicon identification and segmen-

tation as a joint inference problem in a probabilistic setting. This ap-
proach originated in Brent () and, in the Bayesian formulation of
Goldwater (), is the approach taken in this thesis. The specifics
of these kinds of models will be discussed in Chapter , here I merely
point out some of the interesting findings made in this approach.
A core finding of Goldwater () which will be discussed in more

depth again in Chapter  is that unless dependencies that exist between
the actual words in an utterance are taken into account, a segmentation
model will tend to undersegment the input. To illustrate, in an utterance
such as “the doggie barks” the words are not independent – intuitively,
the probability of “doggie” following “the” is much higher than that of
“the” following “doggie”, as is evident from noting that “doggie the barks”
is not an English sentence.
What Goldwater () demonstrated is that if a model embodies

the assumption that words are independent, then it will prefer segmen-
tations in which sequences of words which exhibit strong dependencies
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will be analyzed as single words. In the example, the model is likely
to segment “thedoggie barks” rather than “the doggie barks”. Moreover,
Goldwater () showed that a model that explicitly tries to not only
learn a lexicon and infer segmentations but also tries to learn the proba-
bilities with which each word follows each other word (Bigram probabil-
ities) is less prone to undersegmentation. This illustrates how modeling
results can establish a relationship between an error pattern attested in
infant segmentations such as undersegmentation (Brown, ; Peters,
) and independence assumptions about words, a particular kind of
assumptions a learner can make. This does not commit us to the idea
that infants actually perform Bayesian inference – rather, we use the
Bayesian model to determine what ‘follows’ in a logical sense from par-
ticular assumptions given data.

Another interesting result is that of Fourtassi and Dupoux ()
which directly addresses the question why the performance of a segmen-
tation model might differ between languages. They find that Japanese
exhibits a high degree of ‘segmentation ambiguity’: many of the ‘gold’
words in the Japanese input can occur as parts of other words. Conse-
quently, even considering only segmentations in which actual Japanese
words occur there are thousands of possible segmentations for utter-
ances of medium length, a striking contrast to English. Consistent with
this observation, they show that a successful Japanese segmentation
model requires the ability to handle subtle word-to-word dependencies
to distinguish ‘correct’ from ‘incorrect’ segmentations. In addition, they
suggest that additional cues such as prosodic breaks may play a more
important role in languages such as Japanese than for languages like
English, again raising a concrete question that can empirically be tested
through psycholinguistic experimentation.

What is common to all findings reported is that they raise questions
for and bear on findings of psycholinguistic experiments. Yang ()
demonstrated that, by themselves, transitional probabilities do not per-
form well on real language, highlighting the importance of additional
cues; Daland and Pierrehumbert () and Daland and Zuraw ()
raise the question which strategies of exploiting phonotactic regularities
may be viable cross-linguistically; Goldwater et al. () illustrates
the importance of taking into account word-to-word dependencies in
segmentation, raising the question what kind of assumptions (if any)
infants are making; and Fourtassi and Dupoux () suggest that seg-
mentation ambiguity of a language is a good indicator for how well a
lexical segmentation strategy performs on it, raising the question what
additional cues are used by infants to solve the ambiguity problem.
With this discussion, I conclude my introductory brief review of prior

work and conclude the chapter by providing an outline of the remaining
chapters, giving a high-level overview of the contributions of the thesis.



. outline of the thesis and contributions 

. outline of the thesis and contributions

The thesis comprises by and large the papers on word segmentation
which I published as a first author during my candidature. The pa-
pers have been edited to form a single narrative that addresses a set
of related questions about word segmentation and Bayesian computa-
tional models of word segmentation; thus, cross-references to different
chapters have been added and at several points, additional discussion
and explanation has been included. To enable independent reading of
the content chapters, I have kept high-level introductory exposition con-
tained in each paper; rather than providing more detailed explanation of
this material in each individual chapter, I include a detailed discussion
of the mathematical and formal background in Chapter .

Chapter  is not based on a previously published paper, and it pro-
vides an extensive and in depth review of the Unigram model and Bi-
gram model of Goldwater et al. (), as well as an introduction to the
Adaptor Grammar framework used in this thesis that emphasizes their
connection to models defined without using any kind of formal gram-
mar. While largely reviewing and presenting prior work, this chapter
makes several novel contributions.
Thus, the presentation of the models emphasizes the difference be-

tween the collapsed representation used for inference and the model
which is defined in terms of (draws from) Dirichlet Process, providing
a clearer understanding of non-parametric word segmentation models.
Also, I provide a more detailed discussion of the popular Gibbs sam-
pling algorithm of Goldwater et al. () than currently exists in the
literature and extend the models by adding a possible word constraint
and discuss hyper parameter inference. These extensions allow me to
demonstrate that, pace Goldwater et al. (), the choice of the ‘lex-
ical model’ which encodes prior expectations about words has a huge
impact on segmentation performance if hyper parameters are inferred
rather than manually set.
Chapter  proposes two incremental Particle Filter inference algo-

rithms for the Unigram and the Bigram model of Goldwater et al. ().
I demonstrate that and explain why incremental inference for word seg-
mentation models is challenging and that, in general, performance of
incremental and batch algorithms differs. Thus, the possible word con-
straint discussed in Chapter  proves to be more important in incremen-
tal than batch inference; and particle filters that are allowed to ‘revise’
earlier analyses do not only perform better than particle filters that do
not; in some circumstances they identify more accurate segmentations
than the batch algorithms.

 I do not include discussion of my work on semantic parsing (Börschinger et al.,
) and joint work on word segmentation to which I contributed as second or
third author (Fourtassi et al., ; Jansen et al., ; Synnave et al., ).
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A critical discussion of my findings cautions against a currently pop-
ular “less is more” (Newport, ) reading of these kinds of results (e.g.
Pearl et al., ; Phillips and Pearl, in press). I propose a different
interpretation in line with the Bayesian approach outlined in the intro-
duction and show how they raise questions about models rather than
provide answers about mechanisms, leading to the questions addressed
in chapter .
Chapter  examines the relationship between input size and perfor-

mance of a variety of models on a large amount of longitudinal data.
It performs a large scale evaluation of a variety of models that make
different assumptions about the relations between words in an utter-
ance and the internal structure of words. The experiments identify a
previously unnoticed ‘overlearning’ property of Bayesian word segmen-
tation models: counter-intuitively, having access to more input results
in a degradation of segmentation quality due to undersegmentation. I
discuss which aspects of the input and the model are responsible for
this phenomenon which, to some extent, also explains chapter ’s find-
ing that certain incremental algorithms perform better segmentation
than batch algorithms. I show that Johnson (b)’s idea of colloca-
tions virtually solves the overlearning problem for a large corpus of
roughly 25, 000 utterances and that, in line with the findings of chapter
, stronger constraints on possible words are important for models that
capture word-to-word dependencies to perform well.
Chapter  explores how stress cues which have been argued to play

an important role in infant segmentation of English can be added to
Bayesian word segmentation models. In line with developmental evi-
dence, the results indicate that stress cues aid segmentation. Going
beyond previous modeling work in this direction, it demonstrates that
phonotactic and stress cues as well as overall amount of input interact.
The results also show that a substantive constraint on possible words
previously argued to explain the usefulness of stress cues Yang ()
can be acquired jointly with performing segmentation rather than hav-
ing to be built in; and that the models I discuss correctly identify the
dominant stress pattern from the data.
Chapter  suggests a way of adding phonological rules to Bayesian

word segmentation models. In particular, it studies the phenomenon
of /t/-deletion and presents a two-level model that infers underlying
and surface forms of segmented words. Experimental evaluation shows
the importance of context in determining whether or not a variable
rule applies in context, in line with linguistic work on the phenomenon;
and that naturalistic data contains subtle complexities that may not be
captured by summary statistics of the input. This illustrates the need
to not only pay close attention to the assumptions built into the model
but also to those that went into preparing the input on which models
are evaluated.
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The final chapter concludes and suggests several directions along
which the research presented in the thesis can be extended.
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BACKGROUND

This background chapter provides a detailed review of the mathematics
for the kind of models explored in this thesis. To this end, I briefly review
core ideas from probability theory and define the notation used in this
thesis. I will then introduce generative probabilistic models, leading up
to a detailed recapitulation of the Unigram model and Bigram model
for word segmentation (Goldwater, ; Goldwater et al., ).

The presentation of these models also discuses the relationship be-
tween the collapsed representation under which inference is performed
and the generative model in terms of the Dirichlet Process. In addi-
tion to explaining the standard Gibbs sampling algorithm originally
introduced by Goldwater () in detail, I show how hyper parameter
inference can be performed jointly with segmentation. This leads to a
novel finding about the role of the base distribution which encodes prior
assumptions about possible words: contrary to previous experimental
results by Goldwater et al. (), the base distribution does make a
marked difference on segmentation performance when the hyper param-
eters are inferred rather than manually set.
Finally, I present the Adaptor Grammar framework (Johnson, )

which is used in Chapters  and . Adaptor grammars allow for the easy
specification of a huge class of Bayesian non-parametric probabilistic
models through (probabilistic) context-free grammars.

. basic review of probability theory

A random variable X is a variable that takes on values on some set X ,
called the range of the random variable. I write P(X = x) for the proba-
bility with which X takes on value x ∈X and P(X) for the distribution
function of X. If the context makes clear the random variable, I simply
write P(x) instead of P(X = x). If the range of a random variable X is
finite or countably infinite, it is called a discrete random variable. In
this case, the distribution function P(X) has to satisfy

0 6 P(X = x) 6 1∑
x∈X

P(X = x) = 1

 This brief review closely follows that of Murphy (, chapter .).


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If the range of a random variable Θ is uncountably infinite, we call it
a continuous random variable and require of P(Θ) that

0 6P(Θ = θ)∫
P(Θ = θ)dθ = 1

where the integral is over the range of Θ.
I use capital letters X, Y, . . . for discrete random variables, capital

greek letters Θ,Φ, . . . for continuous random variables, and small letters
x,y, θ,φ, . . . for the concrete values a random variable can take.
I write X ∼ F to indicate that a random variable X is distributed

according to some F. For example, from

X ∼ Bern(0.3)

it follows that

P(X = x1) = 0.3

P(X = x2) = 0.7

where x1, x2 are the two different values X can take. The ‘∼’ abbre-
viates “is distributed according to”, thus the entire expression X ∼ F
can be read as “X is distributed according to F”. An overview of sev-
eral standard distributions which will be used throughout this thesis
are given in Table . which also provides some more examples for the
“distributed-according-to” notation.

.. Marginal, joint and conditional distributions

A distribution over a single random variable is called its marginal dis-
tribution. A distribution over multiple random variables is called their
joint distribution. For discrete random variables X, Y, their joint distri-
bution has to satisfy

1 6 P(X = x, Y = y) 6 1∑
x∈X ,y∈Y

P(X = x, Y = y) = 1

and for continuous random variables Θ,Φ

0 6P(Θ = θ,Φ = φ)∫ ∫
P(Θ = θ,Φ = φ)dθdφ = 1

This extends in the obvious way to distributions over more than two
random variables. Joint distributions over both discrete and continuous
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random variables can also be defined. To illustrate, a distribution over
discrete X, Y and continuous Θ has to satisfy

0 6P(X = x, Y = y,Θ = θ)∫ ∑
x∈X ,y∈Y

P(X = x, Y = y,Θ = θ)dθ = 1

Given any joint distribution P(X, Y), the marginal distribution of any
of the random variables can be derived through marginalization:

P(Y = y) =


∑
x∈X P(X = x, Y = y) if X is discrete∫
P(X = x, Y = y)dx if X is continuous

The conditional distribution of X given Y is defined as

P(X = x | Y = y) =
P(X = x, Y = y)

P(Y = y)

One can decompose any joint distribution P(X1, . . . ,Xn) into a prod-
uct of a marginal and several conditional distributions using the chain
rule:

P(X1, . . . ,Xn) = P(X1)
n∏
i=2

P(Xi | X1:i−1)

where I write Xj:k to abbreviate a sequence of random variables
Xj,Xj+1, . . . ,Xk and use boldface to indicate sequences.

.. Bayes’ Theorem

Using the ideas introduced so far, the following equality can be derived:

P(H = h | D = d) =
P(H = h,D = d)

P(D = d)

=
P(H = h)P(D = d | H = h)∑

h ′∈H P(H = h ′)P(D = d | H = h ′)

This is known as Bayes’ Theorem and is central to this thesis because
it relates Data and H ypotheses. Its importance stems from the fact
that it allows us to express P(H | D), called the posterior probability
distribution over H given D, in terms of P(H), the marginal or prior
distribution of H, and P(D | H), the conditional probability of the data
given the hypothesis also called the likelihood of H.

 For joint distributions over more than two random variables, marginalization also
allows one to derive the joint distribution of any subset of the variables.

 For simplicity, I only consider the case of discrete random variables.
 It is common to refer to P(D | H) as the likelihood of the data. However, we fol-

low MacKay’s recommendation to “[n]ever say ‘the likelihood of the data’. Always
say ‘the likelihood of the [hypothesis]’. The likelihood function is not a probability
distribution” (MacKay, , p. ).
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. generative probabilistic models 

The denominator P(D = d) is the marginal probability of d, also
called the evidence. We can calculate it using marginalization although,
in most cases, performing the required sums or, for continuous random
variables, integrals is infeasible. Luckily, P(D = d) is independent of h
as it marginalizes over all possible values for H and we can ignore it if
we are only interested in the posterior distribution up to proportionality.
Thus, one often sees Bayes’ Theorem abbreviated as

Posterior ∝ Prior× Likelihood

.. Dependencies between random variables

Two random variables X and Y are said to be independent if and only
if

P(X, Y) = P(X)P(Y)

A joint distribution over independent random variables can be de-
fined through their marginal distributions. This simplifies the defini-
tion as, rather than specifying |X |× |Y | probabilities for all possible
assignments of values to X and Y, we only have to define |X | + |Y |

probabilities.
A weaker version of independence is that of conditional independence.

X and Y are said to be conditionally independent given Z if and only if

P(X, Y | Z) = P(X | Z)P(Y | Z)

Again, such an assumption allows us to specify a conditional joint dis-
tribution over two variables using fewer parameters. Thus, conditional
independence and independence assumptions allow us to define joint
distributions in terms of “small pieces” (Murphy, , p. ), i.e. sev-
eral distributions over (possibly singleton) subsets of all variables. This
forms the basis of generative probabilistic models.

. generative probabilistic models

A generative probabilistic model (Koller and Friedman, ) defines
a joint distribution over a set of random variables by specifying a gen-
erative process through which an assignment of values to all random
variables can be generated. Intuitively, a generative process is an algo-
rithm that gives rise to some data by randomly determining the value of
the random variables in a way that reflects a specific set of conditional
independence assumptions.
Concretely, let us imagine that we want to generate a sequence of

words coming from some finite alphabet W . We view this as determining
the value of a sequence random variableW =W1, . . . ,Wn and assume
the following generative process. First, sample parameters Θ to get a
specific categorical distribution over W . Then, sample the length of
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Θ

Wi

N

N

Θ ∼ Dir(α) (.)

N ∼ Geom(0.5) (.)

Wi | N ∼ Cat(θ) for 1 6 i 6 N (.)

Figure .: A probabilistic model for a sequence of words over some finite
vocabulary. N is the number of words in the sequence, Θ a con-
crete distribution over words, and each Wi on of the words in the
sequence.

the sequence N that is being generated. Finally, generate the value for
the sequence random variable by generating the value for each of its
elements Wi by making an independent draw from Cat(Θ). Using my
notation, this generative process can be expressed by equations . to
. in Figure ..

A visual representation of the steps in a generative process is given
by a directed graphical model (Koller and Friedman, ). The directed
graphical model corresponding to equations . to . is also given in
Figure .. It has a node corresponding to each of the random variables,
and an arrow going from a node labeled X to a node labelled Y if and
only if, according to the generative process, we sample the value of Y
conditional on a specific value of X. Thus, there are arrows going from
Θ to Wi and, in so far as the number of Wi depends on the value of N,
from N to Wi. I am using plate notation (Koller and Friedman, ,
p. ff) to compactly represent all the W1, . . . ,WN that make up the
sequence random variable W. Briefly, a plate is box with subscript n
in the lower right corner which indicates that there are n copies of the
nodes inside the box.
The directed graphical model represents the steps in the generative

process in the sense that we can determine values for all nodes by be-
ginning ‘at the top’, sampling values for the nodes that have no parents,
and move our way down to the nodes that have no children, at each
step sampling values for all the nodes whose parents’ values have already
been determined. Thus, we can read off the graphical model that we
first generate N and Θ before generating each Wi conditional on Θ.
Coming back to the goal of defining a joint distribution, the gener-

ative process provides a way of breaking up the joint probability dis-

 This is also known as ancestral sampling.
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tribution over all the variables N, Θ and W = W1, . . . ,WN using the
distributions that define the generative process. Here,

P(Θ = θ,W = w) = P(Θ = θ)P(N = |w|)

|w|∏
i=1

P(wi | θ) (.)

=
Γ(
∑|α|
i=1 αi)∏|α|

i=1 Γ(αi)
(

|α|∏
i=1

θαi−1i )0.52|w|

|w|∏
i=1

θwi

I call an assignment of values to all random variables of a model a
model state. The state space of a model is the set of all possible states.
From the joint distribution over all random variables defined by a

model, one can derive “the posterior probability of some variables given
evidence on others” (Koller and Friedman, , p. ). This is called
performing posterior inference and, essentially, corresponds to learning
about plausible values for some variables from the evidence.
To illustrate, we treat W as observed and compute P(Θ |W) which

is the posterior distribution of Θ givenW. To explicitly indicate which
variables one wants to infer posterior distributions for and which vari-
ables one considers as observed, the nodes corresponding to the observed
variables are shaded in a graphical model as is done for Wi and N in
Figure .. I call the shaded random variables observed and the un-
shaded latent variables. Generally speaking, then, Bayesian inference
is the task of inferring the posterior distribution over latent variables
given values for the observed ones.

.. Inference under a model

We illustrate the concrete inference task of determining P(Θ | W =

w1:n), the posterior distribution over Θ given a specific sequence of
observed words w1:n. Unlike the joint distribution, we cannot directly
read off this posterior distribution from the model definition but we can
derive it using Bayes’ Theorem:

P(Θ = θ |W = w1:n) ∝ P(w1:n | θ)P(θ)

= (

n∏
i=1

P(wi | θ))P(θ)

∝ (
∏
w ′∈W

θ
c(w ′,w)
w ′ )(

∏
w ′∈W

θ
αw ′−1
w ′ )

= (
∏
w ′∈W

θ
c(w ′,w)+αw ′−1
w ′ )

∝ Dir(α+ c(w))

where I write c(x,w) for the number of times with which the specific
value x occurs in a sequence of values w. c(w) is short for an entire

 As N has to be identical to the length of W, I do not explicitly mention it on the
left-hand side.
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vector of counts that for every w ′ ∈ W gives the number of times with
which w ′ occurs in w.

The first line is an application of Bayes’ Theorem and every following
line uses the independence assumptions of the model, the definition of
the resulting distributions (see Table .) and algebraic manipulation
to simplify the expression. The end result is, up to proportionality, a
Dirichlet distribution with parameters α+ c(w). This is because this
is a conjugate model which “informally [means] that the prior [...] has
the same form as the likelihood” (Murphy, , p. ).
Concretely, the Dirichlet distribution over Θ and the categorical like-

lihood have the same form; hence, the posterior distribution will also
have the same form and, just like the prior, is a Dirichlet distribution.
This can be written as

Θ | w ∼ Dir(α+ c(w))

which states that, conditional on w, Θ is distributed to a Dirichlet
distribution whose parameters are α+ c(w, i.e. the sum of the prior
parameters and the count vector for the observed data. One also says
that the count vector is a sufficient statistics for the data: if one knows
the count vector corresponding to a sequence of observations, that com-
pletely sums up all the information contained in these observations.
For a rigorous but accessible discussion of conjugacy, see Murphy

(, chapter ).

... Point estimates and posterior predictive distribution

The posterior distribution sums up everything that, under the particular
assumptions built into a model, can be learned about Θ from any given
sequence of words w. Yet, it is often useful to summarize a posterior
distribution by a single representative value. Two point estimates which
are commonly used for this.
The single most probable value according to the posterior distribution

is called the maximum a posteriori or MAP hypothesis and, staying with
our current example, is defined as

θ̂ = arg max
θ
P(θ | w)

While the MAP estimate has an intuitive interpretation as the most
probable value for a random variable according to its posterior distribu-
tion, it also has shortcomings. For one thing, some distributions do not
have a mode in which case the MAP is undefined. Secondly, the MAP
may be uncharacteristic of the full posterior distribution if most of the
probability mass is spread over a very large range of plausible values (see
Murphy, , p. ). For most cases, these problems are addressed
by considering the expected value of a random variable according to its
posterior distribution, the posterior mean which is defined as

θ̃ =

∫
∆

θP(θ | w)dθ



. generative probabilistic models 

This is, essentially, a weighted sum in which each particular value is
considered according to its posterior probability. The big advantage of
the posterior mean is that it averages over the posterior and, in cases
where the posterior is very flat, provides a more representative estimate
of what a ‘typical’ value looks like.
Even though identifying the MAP and mean of a posterior distribu-

tion generally involves solving non-trivial maximization or integration
problems, in cases where the posterior distribution has a known an-
alytical form such as the Dirichlet we can often calculate these values
analytically, see Table .. In particular, for a Dirichlet distribution with
parameters α, the single most probable value θ̂x for the probability of
outcome x and its expected value θ̃x are

θ̂x =
αx − 1∑
x ′(αx ′ − 1)

θ̃x =
αx∑
x ′ αx ′

The expected value arises naturally in the posterior predictive distri-
bution which is used to predict the probability of the (n+ 1)th obser-
vation on the basis of the n previously made observations:

P(Wn+1 = w | w1:n) =

∫
∆

P(w | θ)P(θ | w1:n)dθ

=
c(w,w1:n) +αw∑

w ′(c(w ′,w1:n) +αw ′)
(.)

Using the posterior predictive distribution corresponds to first de-
termining the posterior distribution of the parameter that governs the
sequence, here, P(Θ | w1:n); and then using the expected value of this
posterior distribution as the basis of your next prediction.

.. Integrating out a random variable

The posterior predictive distribution also arises when a random variable
is integrated out or collapsed from a model (Liu, ). An obvious
reason for doing this is if some variables are not of direct interest and
are only required for the definition of the model. Thus, we may be
interested in the model only in so far as it generates word sequences –
that is, rather than the full joint distribution P(Θ,W) we may primarily

 In statistics, these kinds of variables are known as ‘nuisance’ variables: “In many
problems there is no interest in making inferences about many of the unknown
parameters, although they are required in order to construct a realistic model. Pa-
rameters of this kind are often called nuisance parameters” (Gelman et al., ,
p. ).
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be interested in a marginal distribution P(W). Recall that one can
derive this from equation . by marginalization:

P(w1:n) = P(N = n)

∫
∆

n∏
i=1

P(wi | θ)P(θ | w1:i−1)dθ (.)

In this case, the integral has a closed form solution which can be
derived by decomposing the left hand side using the chain rule and
repeatedly applying the posterior predictive distribution (Murphy, ,
p.):

P(w1:n) = P(w1)

n∏
i=2

P(wi | w1:i−1)

=
Γ(
∑
x∈W αx)

Γ(
∑
x∈W c(x,w1:n) +αx)

∏
x∈W

Γ(c(x,w1:n) +αx)
Γ(αx)

(.)

where Γ is the Gamma-function, the real valued extension of the
factorial function n! =

∏n
i=1 i.

As we no longer can factor P(w1:n) =
∏n
i=1 P(wi) but have to use,

instead, equation ., integrating out Θ has introduced dependencies be-
tween the Wi variables – this reflects the fact that the Wi were only
conditionally independent given Θ. However, equation . also shows
that despite these dependencies, the entire sequence of words is ex-
changeable – every possible permutation of words will be assigned the
same probability. I return to this point in section ...

.. Collapsed and uncollapsed model

Equation . shows how one can express equation . without explicitly
mentioning Θ at all. Hence, one can consider . as corresponding to a
model whose state space only consists of all possible sequences of words,
i.e. which does not include a random variable Θ to begin with. In this
sense, integrating out Θ from the model in Figure . gives rise to a
‘collapsed model’ whose state-space is strictly smaller than that of the
‘uncollapsed model’.

Every state of the collapsed model corresponds to a set of states under
the uncollapsed model. Here, a particular sequence of words w which
is a single state for the collapsed model corresponds to the set of states
{〈w,θ〉} where θ ranges over all possible values of Θ.
While this is a rather conceptual point, it will be useful in understand-

ing the relation between the non-parametric word segmentation models
that I now introduce and the Chinese Restaurant representation under
which the inference algorithms for these models operate, and I come
back to it in section ...

 We use ∆ as shorthand for the set of all probability vectors that the variable we
integrate over, here Θ, can take on.
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. word segmentation models

Word segmentation is the task of identifying a latent sequence of words
w = w1, . . . ,wm, wi ∈ Σ+ that can account for an observed sequence
of segments s = s1, . . . , sn, si ∈ Σ.
For example, letting s = 〈t,h, e,d,o,g〉 we want identify sequences of

words such as w1 = the,w2 = dog which, when concatenated, yield the
observed sequence. This can be cast as a probabilistic inference task
by defining a probabilistic model that generates sequences of words
and calculate the posterior distribution over these sequences given the
observed sequence of unsegmented segments.
If we assumed the words come from some finite vocabulary, the model

we just defined could be applied to this task: it defines a probabil-
ity distribution over all possible sequences of words over some finite
vocabulary, and consequently it assigns a probability to every possible
sequence of words that yields the observed sequence when concatenated.
The problem we are interested in, however, does not assume that we
know the lexicon beforehand, mimicking the kind of problem human
infants have to tackle when they acquire their first language: solving
the problem of identifying the words which make up the lexicon of a
language jointly with identifying the “correct” segmentations of the un-
segmented input.
One possibility is to assume a very large but still finite vocabulary

W , for example all elements of Σ+ up to a certain length. Then, we can
try to infer a joint posterior over word sequences and the probability
distribution over these words, hoping that most of these ‘words’ will
be assigned probabilities close to 0 by all θs that have high posterior
probability.

A more elegant (and ultimately more efficient) approach is to account
for the infinity of the space of possible words and use a non-parametric
model, that is, a model that is defined by an infinite number of pa-
rameters. Goldwater () proposed models based on the Dirichlet
Process (Ferguson, ), a generalization of the Dirichlet distribution
that can act as a prior on distributions with countably infinite support
in the following sense: every draw from a Dirichlet Process (DP) is a
distribution over a (possibly infinite) discrete set.

.. The Dirichlet Process

A DP is defined by a base distribution H which defines the possible
support for draws from the DP and a concentration parameter α that

 Essentially, this is the approach taken by Goldwater (, chapter ) where the dis-
tribution over possible morphological stems and suffixes is modeled as categorical
distributions over the 22, 396 unique prefix and 21, 544 unique suffix strings deter-
mined that occur in the data set she considers. This is also the strategy underlying
variational inference for non-parametric models as in Cohen ().
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controls how many distinct outcomes will be assigned non-negligible
probability by a draw from a DP. I write

G ∼ DP(α, H)

Xi | G ∼ G

to indicate that G is drawn from a DP and that several Xi variables
are distributed according to G. If H is a distribution with support H ,
G is a distribution whose support is a (possibly infinite) discrete set
G ⊆H .

A constructive way of characterizing G is through the stick-breaking
construction (Sethuraman, ). First, generate an infinite sequence
of probabilities θ1:∞ ∼ GEM(α). The GEM distribution is defined over
infinite probability vectors and favors vectors in which all but the first
few k components of θ are so close to 0 as to be negligible. The definition
of the GEM distribution makes use of the idea of unit stick from which
smaller and smaller pieces are broken off, giving the construction its
name (Buntine and Hutter, ).
Then, draw an infinite number of atoms ψ1:∞ from H, yielding the

possibly infinite but discrete set G which is the support of G. Then, the
distribution P(X) for any X ∼ G is

P(X = x) =

∞∑
i=1

θi1[ψi = x] (.)

where 1[x = y] is 1 iff x = y and 0 otherwise. This is similar to
a categorical distribution except that we have to consider an infinite
number of possible outcomes and account for the possibility that multi-
ple atoms correspond to the same outcome. In this sense, the DP(α,H)
can be thought of as a generalization of the Dirichlet prior for infinite
distributions.
This constructive definition shows that G is characterized in terms

of an infinite number of parameters θ1:∞,ψ1:∞, raising the question
how to handle we can practically represent any individual G. One
idea is to truncate the infinite vectors θ and ψ as is done, for example,
in variational approaches such as Cohen (, Chapter ) and is very
similar to the idea of using a categorical distribution with a very large
but finite support which I briefly discussed above. I follow Goldwater
() and Johnson et al. (b) and use an alternative solution that
integrates out G and uses the Chinese Restaurant representation.

 Equality holds in cases where H is finite or countably infinite. If H is finite, the
model can equivalently be defined in terms of a Dirichlet distribution.

 Incidentally, note that the stick breaking construction is not a constructive charac-
terization of the DP itself but only for draws from a DP.
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.. The Chinese Restaurant Process

Consider the model defined by

G ∼ DP(α, H) (.)

Xi | G ∼ G (.)

that defines the joint distribution

P(G,X1:n) = P(G)
n∏
i

(P(Xi | G)) (.)

This is similar to equation .. However, in this case we cannot di-
rectly work with this joint distribution because G is an infinite object.
Thus, we integrate out G from equation ., just as we integrated out
Θ in equation . to induce a distribution over only the Xi:

P(X1, . . . ,Xn) =
∫
∆

P(G)

n∏
i=1

P(Xi | G)dG

As before, this can be simplified through successive application of
the posterior predictive distribution of Xi given X1:i−1 which takes the
following form:

P(Xi = x | x1:i−1) =

=
c(x, x1:i−1) +αH(x)

α+ i− 1
(.)

The generative process induced by sequentially generating values ac-
cording to equation . is called the Chinese Restaurant Process (CRP)
and is commonly defined using the following metaphor: consider the
Xi as customers waiting in line for a Chinese Restaurant with an infi-
nite number of tables. The assignment of each customer Xi to a table
is recorded by a random variable Zi and associated with each table j is
a dish or label Lj.

The values for the sequences of random variables X,Z,L are deter-
mined by this algorithm:

• for each customer Xi
. if

a) i = 1, Zi = 1, that is, the first customer sits at the first
empty table;

b) else, sample a value for Zi from

P(Zi = k | z1:i−1) =


n
z1:i−1
k

α+i−1 if k 6 K(z)

α
α+i−1 if k = K(z) + 1

(.)

 We are using the labeled Chinese Restaurant Process exclusively here. The original
CRP directly takes the number of a table as its label, generating distributions over
the natural numbers rather than arbitrary discrete sets.
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where K(z1:i−1) = max(z1:i−1), i.e. the number of ta-
bles occupied by the first i − 1 customers; and nzk =

|{j | zj = k}|, i.e. the number of customers already sit-
ting at the kth table according to the assignments in z.
Thus, Xi sits at an already occupied table with proba-
bility proportional to the number of customers sitting at
this table, and at the next empty table with probability
proportional to α;

. if Xi sits at empty table j, sample a value for Lj from H;

. set the value of Xi to the value of LZi , that is, the dish served
at the table at which Xi was seated. Hence all customers
sitting at a table have the same value.

The sequential sampling scheme induces a rich-get-richer dynamic for
table occupations: tables which already have many customers sitting at
them will more strongly attract new customers than tables with fewer
customers. α controls the overall number of tables that will be occupied,
with large values favoring many and small values favoring few occupied
tables.
A detailed illustration is given in Figure .. In addition to the gen-

erated values x, it shows the table indicators z and the table labels l
(drawn directly into the respective table). The probability of each seat-
ing choice is given below each generated value, and the probability of
the entire seating arrangement is the product of the individual seating
probabilities.
Note that the CRP does not define a distribution directly on se-

quences of values x; rather, it defines a joint distribution over the table
indicator variables Z and the table label variables L, and each assign-
ment z, l uniquely determines a sequence of values x.

The mapping from z, l is generally many-to-one: to illustrate, in ad-
dition to the specific seating arrangement in Figure . the customers
corresponding to X1 and X3 could have sat at their own tables or the cus-
tomer corresponding to X4 could have joined the other two customers.
All of these different seating arrangements correspond to the same obser-
vation sequence x. To my knowledge, there is no closed form expression
for the probability of an observed sequence of values x that sums over all

 For models in which the base distribution of the Dirichlet Process is fixed, the Z and
L can be ignored and everything can be described only in terms of the X (see Goldwa-
ter, )). As this does only hold for one particular kind of model, I limit discussion
to the more general if slightly more complicated case. In particular, note that even
a Unigram model in which inference for the parameters of the base distribution is
performed needs to be described in terms of Z and L, see section ....
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X3

X1 X4X2

dog dog dogcat

. . .

H(dog)

x =

1 2 1 3

αH(dog)
3+α

z =

1
2+αP(x, z) = αH(cat)

1+α

L2 = catL1 = dog L3 = dog

Figure .: Illustration of a Chinese Restaurant Process (CRP). There is an
infinite number of tables but only a finite number of them is oc-
cupied at any point in time. Every table ‘serves’ a possible value
sampled from H, and all customers (black dots, corresponding to
random variables) sitting at a table take on the same value. The
first customer who sits at a table ‘orders’ by sampling from the
base distribution H, every consecutive customer does not need to
order again. x is the sequence of generated values, and z captures
the ‘seating-arrangement’, that is, it records for every random vari-
able at which table it was seated. Note that the CRP defines a joint
distribution over values and seating arrangements, not just over
sequences and values.

possible seating arrangements, but the joint distribution of any seating
arrangement can be analytically calculated as

P(Z = z,L = l) =
Γ(α)

Γ(|z|+α)

K(z)∏
k=1

(
αH(lk)(nk − 1)!)

)
(.)

This shows that the z, l and, consequently, the x are exchangeable –
no matter how we permute the sequence of generated values, the prob-
ability assigned to the entire sequence is unaffected.

.. Relationship between the CRP, the DP, and De Finetti’s theorem

The CRP arises because rather than actually representing the distri-
bution G ∼ DP, we choose to work with a collapsed model in which
Xi ∼ G are not independent but exchangeable. We saw that this intro-
duces additional random variables Zi and Lj which represent a seating

 Teh (a) does, however, derive a closed form expression for the marginal proba-
bility of a restaurant with c customers and t tables, summing over all possible ways
of distributing customers across tables.
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arrangement in place of the collapsed G. Thus, it is important to keep
in mind that one can study this model without using the CRP at all,
for example by using a truncated stick-breaking representation (Gelman
et al., , p. f).
To conclude this discussion, it is worth briefly mentioning De Finetti’s

theorem (de Finetti, ) which provides an additional view on the re-
lationship between the CRP and the DP. The mathematical details of
this theorem go well beyond the scope of this thesis but, at a very high
level, De Finetti’s theorem “establishes that any collection of exchange-
able random variables has a representation as a mixture distribution –
in general an infinite mixture” (Blei et al., , p. ).

Here, the sequence of exchangeable random variables are the Xi vari-
ables, and the (in fact infinite) mixture distribution is G as defined in
equation ..
In some more detail, de Finetti’s theorem states that for every ex-

changeable sequence of random variables X1, . . . ,Xn there exists a (pos-
sibly infinite) mixture distribution G such that, conditional on G, the
X1 are independent and such that(see Bernardo, )

P(X1, . . . ,Xn) =
∫ n∏
i=1

P(Xi | G)P(G)dG

The left-hand side corresponds to the joint distribution over X1, . . . ,Xn
according to the CRP; the right hand side explicitly mentions the draw
from the DP which, however, is integrated out.
Note that de Finetti’s theorem also applies to the discussion of col-

lapsing in the simple model in Figure .. In this case, equation . is
the result of integrating over the distribution Θ which is distributed
according to a Dirichlet distribution.

.. The Unigram model

The Unigram model (Goldwater, ) assumes that a sequence of Wi
variables is generated from a probability distribution over Σ+ (a prob-
abilistic lexicon G) that is drawn from a Dirichlet Process. The model
is defined in Figure ., and the base distribution Plex is defined in
Figure . and discussed below.

Associated with each word Wi is a variable Fi which is drawn from a
Bernoulli distribution over {s, c} and which indicates whetherWi termi-
nates an utterance (stop) or is non-final (continue). This is equivalent
to assuming a geometric distribution over utterance lengths with pa-
rameter Φ as in Figure ..

Integrating out G induces a CRP. This introduces additional random
variables Zi which indicate at which table the ith word sits and Lj

 Using a sequence of Bernouli-distributed indicator variables rather than explicitly
drawing the length of each utterance from a geometric distribution makes derivation
of the required sampling equations easier.
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C

FiWi

G Φ

PlexΦ Θ

n

Θ ∼ Dir(α)

Φ ∼ Beta(a,a)

G ∼ DP(α0,Plex)

R ∼ Beta(a0,a0)

Wi | G ∼ G

Fi | Φ ∼ Bern(Φ)

C |W, F = Concat(W, F)

Figure .: Description of the Unigram model for word segmentation. All la-
tent random variables except forWi and Fi will be integrated out,
resulting in a Chinese Restaurant Process representation of the
model. Fi indicates whether or not Wi is utterance-final. C is the
actually observed sequence of unsegmented utterances which are
the output of simply concatenating all words without spaces and,
at the end of utterances, indicating the presence of a boundary.

which indicate the type of all words that sit at the jth table. As was
pointed out by Teh (a), for inference purposes one does not need
to keep track of the actual table to which any individual customer was
assigned because “given the dish a customer eats, the actual identity of
the table at which the customer sits has no effect on the likelihood of
the data” (p. f). This is easy to see from equation . which only
depends on the number of customers sitting at each table.
Hence, I follow Teh (a) and define the probabilities required for

the inference algorithm in terms of the counts given in Table . instead
of explicit values for the Zi and Li variables. I write h as shorthand for
all sufficient statistics for the conditional distribution in the Unigram
model under its CRP representation.
I now provide the conditional distributions that define the generative

process in terms of these counts.

P(Wi = x,Zi = k | h) =


nhx,k

α0+i−1
if k 6 Kh

α0Plex(x)
α0+i−1

if k = Kh + 1
(.)

As explained by Table ., nhx,k is the number of customers of type
x sitting at table k, and Kh is the total number of currently occupied
tables. Marginalizing over Zi in this equation, we can directly derive
the predictive probability for the ith word which is just equation .
using the slightly different notation:

P(Wi = x | h) =
nhx,· +α0Plex(x)

α0 + i− 1
(.)
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Kh max(z) number of occupied tables in h

nhw,k

|{i | zi = k}| if lk = w

0 if lk 6= w
w-customers sitting at table k

nh·,k |{i | zi = k}| =
∑
w n

h
w,k customers sitting at table k

nhw,·
Kh∑
i=1

nhw,i total number of w-customers

nh·,·
Kh∑
i=1

nh·,i total number of customers

nh# c(s, f) number of utterance boundaries

Table .: Counts used to represent seating arrangements, and their relation
to table indicators z and table labels l. Note that we can completely
characterize a seating arrangement in terms of Kh, the number of
tables, and nhw,k, the number of word customers sitting at each
table, as all other counts we require can be defined in terms of
these two counts. Also note that, for simplicity, we consider the
counts of word-boundaries to be part of h even though, strictly
speaking, in the Unigram model these counts do not correspond to
customers.

Finally, the predictive probability for the utterance boundary indica-
tor is

P(Fi = s | h) =
nh# + a0
|f|+ 2a0

(.)

P(Fi = c | h) = 1− P(Fi = s | h) (.)

By sequentially sampling values for Wi and Fi using these equations
we can generate a sequence of utterances. Finally the observed sequence
of segments C1:m (which also includes observed utterance boundaries)
is generated by concatenating all words without spaces. This is achieved
by a deterministic function of the Wi and Fi random variables which I
abbreviate with Concat.

... A base distribution over words

To complete the definition of the model, we need to specify the base dis-
tribution Plex over Σ+. I use a slight extension of Goldwater ()’s Un-
igram phoneme distribution that makes it possible to perform inference
for phoneme probabilities, rather than assuming a uniform distribution
over phonemes.
Figure . shows a Probabilistic Finite State Automaton for this dis-

tribution which is defined in terms of a distribution over segments Pseg

(corresponding to state 0 in Figure .) and a distribution Pstop over
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0start 1 2

s : θs

ε : 1−φ

ε : φ

Θ ∼ Dir(α)

Ψ ∼ Beta(a,b)

Pseg = Cat(Θ)

Pstop = Bern(Φ)

Figure .: Unigram phoneme distribution as Probabilistic Finite State Au-
tomaton. State 0 generates a phoneme s according to a categorical
distribution Cat(θ). State 1 decides whether to generate the end
of the word with probability φ or whether to generate another
segment with probability 1−φ.

{s, c} that determines the length of words (corresponding to state 1).

The base distribution used in Goldwater () and Goldwater et al.
() is a special case of this base distribution where, rather than in-
ferring Pseg and Pstop uniform distributions are used.

We collapse the random variables Φ and Θ, conditioning on the previ-
ously generated segments and words instead. Writing s for all previously
generated segments and nw for the previously generated total number
of words, the predictive versions of Pseg and Pstop are:

Pseg(s | s) =
c(s, s) +αs

|s|+
∑
s ′∈Σ αs ′

(.)

Pstop(s | s,nw) =
nw + a

|s|+ a+ b
(.)

Pstop(c | s,nw) =
|s|−nw + b

|s|+ a+ b
(.)

Both s and nw can be derived directly from h – they only depend on
l, the table labels which are generated by the base distribution. This
is an instance of a hierarchical model in which the base distribution
probabilities are estimated not directly from the generated word tokens
Wi but through ‘interpolating’ type and token frequencies Goldwater
et al. ().

... A linguistically informed base distribution

While Goldwater et al. () argue that the choice of the base distri-
bution only has a minor impact on segmentation performance, a gen-
eral recommendation for Dirichlet Process models is to “construc[t] an
informative [base distribution] placing high probability on introducing
cluster near the support of the data” (Gelman et al., , p. ). Even
though word segmentation differs from typical applications of Dirichlet
Process models in that the relevant data – the words that make up a

 As is common, we describe Probabilistic Finite State Automata as Mealey Machines.
If the probability of transitioning from state t to t ′ while emitting symbols s is p,
the arc going from t to t ′ will be labeled with s : p.
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segmentation – is latent, previous work in both psycholinguistics (Nor-
ris et al., ) and computational modeling (Blanchard et al., )
has argued for a simple yet substantive possible word constraint to aid
word segmentation. Indeed I will show that Goldwater et al. ()’s
observation needs to be qualified with respect to the Bigram model
below.
The simple constraint requires a possible word to contain at least

a single syllabic element (commonly a vowel, although in some lan-
guages, consonants may function as syllabic elements), thus excluding
many possible segmentations that contain ‘impossible’ words from the
models state space. Adding this constraint in a principled way is sur-
prisingly subtle. For example, the strategy of Blanchard et al. () to
simply assign probability 0 to sequences that lack a syllabic element will
result in an improper probability distribution. Performing the required
re-normalization is trivial if the phoneme and stopping probabilities are
considered to be fixed but one no longer can integrate over these param-
eters nor analytically determine their posterior distributions, making
inference for them more complicated.
As a mathematically well-defined model that is convenient to work

with, I use the distribution defined in Figure . which has the same
number of parameters as the base distribution in Figure .. Basically,
the automaton defining the distribution cannot transition into the end
state before at least a single syllabic element has been generated. There
are other ways of implementing this kind of constraint but I chose this
particular formulation because it introduces no additional parameters
to the simpler base distribution and still allows for analytic collapsing
of the parameters of Pseg and Pstop.

.. Inference for the Unigram model

The goal of posterior inference is to identify the marginal posterior
over segmentations, that is, sequences of words that yield the observed
sequence of segments when Concat is applied to them.

P(w | C = c) ∝ P(c | w)P(w) (.)

I briefly discuss why a Dirichlet Process model encourages linguis-
tically meaningful segmentations before discussing in more detail how
inference for the marginal posterior can be performed.

segmentation intuition The Dirichlet Process prior encour-
ages distributions in which a few outcomes account for most of the

 Stronger constraints, for example requiring a syllabic parse, have been used in adap-
tor grammar based models (Johnson, b; Johnson and Goldwater, ). For the
Unigram and Bigram model, however, I will rely on this simpler constraint which
lends itself to an easy implementation that does not require the use of a parser at
any point.
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c : θc

s : θs

ε : 1−φ
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x : θx

Figure .: Base distribution with a possible word constraint. The
parametrization is identical to that of the distribution in Fig-
ure ., the sole difference being that transitioning from state 0 to
1 requires generation of a syllabic segment (abbreviated as s) in-
stead of a non-syllabic segment (abbreviated as c). Once a syllabic
segment has been generated, the generative process is identical to
that of Figure ..

probability mass. In terms of the stick-breaking construction, for most
draws from a DP all but the first few elements of θ1:∞ will be no-
ticeably different from 0. Thinking about this in terms of sequences of
words generated by the Chinese Restaurant Process, sequences which
comprise small number of types that are used frequently are preferred
although, as is common for probabilistic generative processes, sequences
with overall fewer tokens are preferred to those with more tokens.

Taken together, this leads to a trade-off between the number of tokens
in an analysis and the number of types in an analysis. A segmentation
in which every utterance is treated as a single long ‘word’ uses too
many types and a solution that treats every phoneme as a word too
many tokens to attain a high probability by a Bayesian segmentation
model. Segmentations that properly balance types and tokens, on the
other hand, tend to be both linguistically meaningful and preferred by
these models.

monte carlo inference Calculating the posterior by exhaus-
tive enumeration is infeasible for all but toy examples as the number
of possible segmentations grows exponentially with the length of the
input. To combat this problem, Monte Carlo algorithms (Metropolis
and Ulam, ) are commonly used to perform (approximate) infer-
ence instead. The key insight of Monte Carlo inference is that one can
approximate any distribution P by a a set of samples from this distri-
bution {si}

n
i=1, si ∼ P and treat the relative frequency with which each

 And there is the added complexity of summing over possible seating arrangements.
See Figure . for an illustration of exhaustive enumeration.
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value occurred in this sample as its approximate probability according
to the distribution:

P̂(x) =
1

n

n∑
i=1

1[si = x] (.)

This intuitively makes sense, and there is indeed a mathematical
guarantee by way of the central-limit theorem that the accuracy of
these relative frequency approximations increases with the number of
samples (Murphy, , p.f). To generate these samples, we will use
Markov Chain Monte Carlo (or MCMC) methods.

For an explanation the relevant Markov Chain theory on which MCMC
builds, see the excellent discussion of Markov Chains in Murphy (,
p. –); for accessible discussions of MCMC methods see Murphy
(, chapter ), MacKay (, chapter ) and Gelman et al. (,
chapter ). Here, I restrict myself to reviewing the specific Gibbs sam-
plers of Goldwater ().

.. Gibbs sampling

Gibbs sampling Geman and Geman () is an algorithm that gener-
ates samples from some distribution by making small random changes
to a randomly chosen initial sample. Here, our goal is to generate sam-
ples from the posterior over segmentations and seating arrangements
given unsegmented utterances. We explain this idea in more detail by
considering the concrete case of segmenting the single utterance abab
using the Unigram model.

... State space of the collapsed model

Each state of the collapsed Unigram model is a specific seating arrange-
ment h which corresponds to a segmentation w. Conditional on the
observed sequence c = abab, the state space consists of all seating ar-
rangements such that concatenating the words in their associated w
yields abab. It is important to realize that even though there are only 8
possible segmentations abab, ab ab, a b a b, ab a b, a b ab, a ba b, aba
b, a bab, the state space is larger because some of these segmentations
correspond to multiple seating arrangements. For example, ab ab can
arise form a seating arrangement with either a single table that has two
customers or two tables with one customer each.
Rather than thinking about states directly in terms of a seating ar-

rangement, we will think of them in terms of a fixed-length binary
vector that indicates for every possible position whether or not a word
boundary occurs at this position. Concretely, for our example we have

 In Chapter , I discuss an alternative inference algorithm based on a Sequential
Monte Carlo Method called Particle Filter.
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Figure .: Relationship between the fixed number of boundary indicator ran-
dom variables (Sampled variables), the observed variables Ci, the
variables Wi which define the segmentation, and the underlying
Chinese Restaurant Process state h in terms of the counts defined
in Table ..

three boundary variables B1,B2,B3 that indicate whether or not there
is a boundary between the first occurrence of ab, between ba and be-
tween the second occurrence of ab, respectively. Figure . illustrates
the relationship between this binary vector representation over which
we perform sampling, the latent segmentation w and the seating ar-
rangement introduced by the CRP as a result of collapsing out G. Con-
sidering states as sequences of boundary indicators B has the advantage
of providing a fixed number of random variables whereas different seg-
mentations may contain different numbers of words.
As discussed above, there is usually a one-to-many relationship be-

tween sequences of words and seating arrangements h; Figure . il-
lustrates two possible underlying CRP states defined in terms of the
counts of Table .. Seating arrangements are handled implicitly in
the sampler through the addCustomer and removeCustomer func-
tions discussed below, following the idea of Teh et al. ().

relation between collapsed and uncollapsed model
Before I discuss the Gibbs sampler in detail, let us briefly consider
how the collapsed representation under which we sample relates to the
original model. Recall that even though the state space considered by
the sampler does not include a distribution over words such as G as part
of its states, the word segmentation model is defined in terms of a draw
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from a Dirichlet Process G; and that de Finetti’s theorem establishes
the equivalence between the CRP and the DP model.
We can recover the joint posterior distribution over W and G from

the marginal posterior distribution over segmentations from which the
Gibbs sampler produces sampler, and doing this provides a deeper un-
derstanding of relationship between the collapsed and the uncollapsed
model.
Note that given a particular sequence of observed words w1:n which

were sampled i.i.d. from G ∼ DP(α,Plex), the posterior distribution for
G is (Gelman et al., , p. )

G | w1, . . . ,wn ∼ DP(α+n,
Plex +

∑n
i=1 δwi

α+n
) (.)

where δx is the Dirac measure which assigns all mass to x, i.e. δx(y) =
1 if and only if y = x. In other words, if we know the segmentations
we can analytically derive the posterior distribution over G. This is, in
essence, identical to how we could analytically calculate the posterior
of Θ for the model in Figure . by simply adding the hyper parameters
of the prior and the count vector of the observations.
With this, we can derive the joint posterior distribution over segmen-

tations and G from P(W | C), the marginal posterior over segmenta-
tions:

P(G,W | C) = P(G |W,C)P(W | C) = P(G |W)P(W | C)

where P(W | C) is the posterior distribution over segmentations
we approximate by sampling under the collapsed representation, and
P(G | W) will be another Dirichlet Process. Taking this one step fur-
ther, we can derive the marginal posterior distribution over G through
marginalization and get

P(G | C) =
∑
w

P(G | w)P(w | C)

where we sum over all possible segmentations of C. This shows that
the posterior distribution over G will be amixture of Dirichlet Processes,
with one mixture component per latent segmentation. The weight of
each mixture component is the marginal posterior probability of the cor-
responding latent segmentation conditional on just the observed data
which, up to proportionality, can be calculated analytically using equa-
tion .. Thus, we can write the posterior distribution in the following
explicit form:

G | C ∼
∑
w

DP

(
α+ |w|,

∑|w|
i=1 δwi +αPlex

α+ |w|

)
(.)

Of course, this result cannot be used for inference as the set of pos-
sible segmentations over which the sum would need to be evaluated
is infeasibly large and grows exponentially with the size of the corpus.
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Figure .: Illustration of the local changes involved in resampling the value
for a single boundary variable.

Incidentally, this also shows that in the posterior distributions grow
more ‘complex’ as a function of the size of the corpus as the number of
mixture components just is the number of possible segmentations. This
highlights the non-parametric character of the model.
The point of this brief discussion is to highlight that, even though

all inference algorithms considered in this thesis (and the literature on
Bayesian word segmentation at large) operate in collapsed representa-
tions which integrate out the actual distributions in terms of which the
model is defined, it is always possible to recover a posterior distribution
over these distributions from the marginal posterior distribution over
latent structures.

... Gibbs sampling for the Unigram model

A single iteration of Gibbs sampling resamples the value for every
boundary variable once, thus generating a new sample (a predicted
segmentation w plus an underlying seating arrangement h). To ensure
that these samples will be distributed according to the posterior over
segmentations, we have to resample Bi according to the conditional
distribution given the current values for all variables but Bi.

Consider how changing a single boundary variable affects the over-
all segmentation. Figure . illustrates the two different segmentations
that can arise in our specific example when we go on to resample B1.
The value of this boundary variable only affects the span of the input
that reaches from the first boundary to the left of B1 to the first bound-
ary to its right, here ab. If a boundary is posited, this stretch will be
analyzed as a sequence of words w1 = a,w2 = b, if no boundary is
posited it will be analyzed as a single long word w1.2 = ab. Crucially,
the value of B1 does not affect the identity of any other words in the
previous segmentations. The last word in the segmentation will be ab,
irrespective of what value will be sampled for B1.
Because the overall sequence of random variables is exchangeable, we

can ‘move’ all the words on which the two hypotheses agree (i.e., ev-
erything except for the small affected part of the input) to the front of
the sequence, treating the stretch that is affected by the variable un-
der consideration as if it were the last part of the observed sequence of
segments that was generated. Then, we can use the predictive probabil-
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ities defined in equations . and .. This is done by the algorithm
in Figure ..
The first step is to determine the affected span and its current anal-

ysis. If Bi = 1, we need to remove both a w1 and a w2 customer from
h, otherwise we remove a single w1.2 customer. In the example in Fig-
ure ., w1 = a,w2 = b and w1.2 = ab.
For these removal operations we use the add/remove-customer func-

tions of Teh (b) which are defined in Figure .. addCustomer(h,w)
randomly samples the table k at which a novel w customer sits in seat-
ing arrangement h according to equation .. removeCustomer(w)
removes a customer from a randomly sampled table k that is labeled
w with probability proportional to nhw,k. In Chapter , these functions
are also used and the probabilities of sitting or removing a customer
are required. For the Gibbs sampler described here, the return values
of the functions can be ignored.
We then calculate the probability of the two possible values Bi can

take. Bi = 1 corresponds to positing a boundary and its probability is
thus proportional to P(w1 | h)P(w2 | h,w1), i.e. generating the two
words w1 and w2 from seating arrangement h. Bi = 0 corresponds
to generating only a single word w1.2 and its probability is thus pro-
portional to P(w1.2 | h). These probabilities can be calculated using
formula . but there is a minor complication for Bi = 1.
This complication is that P(w2 | h,w1) is the probability of generat-

ing w2 from h after w1 has been generated. In Goldwater ()’s and
Goldwater et al. ()’s presentation of the sampling algorithm

P(w2 | w1,h) =
nhw2,· + 1[w1 = w2] +αPlex(w2)

nh·,· + 1+α

This formula holds because having generated w1 increases the num-
ber of total customers in h by 1, captured by the additional +1 in the
denominator. And if w1 = w2, nhw2 will also have increased, hence the
conditional +1 in the numerator. This holds, however, only if the base
distribution is fixed as in Goldwater () and Goldwater et al. ().
If Plex is estimated from the words that have been generated – as in the
base distribution in Figure . – having generated w1 can also affect
the probability of w2 through Plex and the update formula does not
hold.
Instead, we calculate P(w2 | h,w1) by performing a ‘temporary

update’ of h. We call addCustomer(w1,h) and then just calculate
P(w2 | h), calling removeCustomer(w1,h) after the calculation to
undo the change to h. The probability of Bi = 0 is proportional
P(w1.2 | h).

 A subtle detail is the fact that we treat the table label indicators as latent rather
than explicitly tracking them, following the idea described in Teh (b). Thus,
we cannot guarantee that the intermediate update step will be exactly undone by
calling removeCustomer as the identity of the table from which a customer will be
removed is determined randomly. Similarly, our update operation will only consider
one of the potentially many possible ways in which w1 might have been added to h.
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procedure sampleBoundary(i,h)
determine affected span w1.2 and w1,w2
if Bi = 1 then

removeCustomer(w1,h)
removeCustomer(w2,h)

else
removeCustomer(w1.2,h)

end if
pb = P(w1 | h)P(c | h)

addCustomer(w1,h) . temporary update

pb = pbP(w2 | h)

P(s | h) if w2 is utterance final

P(c | h) if w2 else
removeCustomer(w1,h) . Undo temporary update

p¬b = P(w1.2 | h)

P(s | h) if w2 is utterance final

P(c | h) if w2 else
if nextDouble× (pb + p¬b) 6 pb then . put boundary
Bi = 1

addCustomer(w1,h)
addCustomer(w2,h)

else . don’t put boundary
Bi = 0

addCustomer(w1.2,h)
end if

end procedure

Figure .: Algorithm to resample word-boundary Bi given a current seat-
ing arrangement h. Whether or not any word is utterance-final is
known as utterance-boundaries are considered to be observed.

Another detail is that we need to account for the probability of gen-
erating another word (P(c | h)) or generating an utterance boundary
(P(s | h)), respectively, using equations . and ..

After having calculated both probabilities, we sample the value of Bi
according to them and update h accordingly: if Bi = 1, we add w1
and w2 using addCustomer. Otherwise, we only add w1.2. Note that
addCustomer and removeCustomer automatically take care of the
book-keeping involved required to track the CRP seating arrangement.
To ensure that a Gibbs sampler has converged on the target poste-

rior, it is common to ignore the initial iterations (called burn-in period).
Also, one usually only records every xth sample of a run to address the
correlation of successive samples. Assessing whether or not a simula-
tion was run long enough to have generated samples from the target
posterior is a non-trivial problem. For an extended discussion see Gel-
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function addCustomer(w,h)

sample k ∝

nhw,k 1 6 k 6 Kh

αPlex(w) k = Kh + 1

if k = Kh + 1 then . open new table
res =

αPlex(w)
nh·,·+α

Kh = Kh + 1 . increment table count
nhw,k = 1 . set customer count for table k to 1

else . sit at old table
res =

nhw,k
nh·,·+α

nhw,k = nhw,k + 1 . increment customer count for table k
end if
return res . return probability of seating choice

end function
function removeCustomer(w,h)

sample k ∝ nhw,k
nhw,k = nhw,k − 1

if nhw,k = 0 then . Table became empty
Kh = Kh − 1 . decrement table count
return αPlex(w)

α+nh·,·
. return probability of re-opening table

else
return

nhw,k
α+nh·,·

. return probability of re-seating customer
end if

end function

Figure .: Functions to add customers to and remove them from a given
seating arrangement h. h is a collection of variables which contains
all the variables which are super-scripted with h.

man et al. (, chapter .) (Chapter .). I follow previous work
such as Goldwater () and Johnson and Goldwater () and rely
on visual inspection of trace plots of several independent runs to check
whether the Gibbs sampling has converged.

simulated annealing A short-coming of Gibbs sampling is that
successive samples can be highly correlated as variables are updated one
at a time, conditional on the values of all other variables. This can also
lead to the sampler getting trapped in local modes. Goldwater ()
proposed to use simulated annealing to combat this, and I follow her in
this.

 It is interesting to note that for adaptor grammars (see below), Johnson and Goldwa-
ter () found no improvement by annealing over and above using hyper parameter
sampling. I suspect this finding to depend on properties of the model and, to some
part, on the fact that unlike this Gibbs sampler, the adaptor grammar sampler sam-
ples entire utterances. In contrast, for both the Bigram and Unigram model, I find
hyper parameter sampling with annealing to result in better inference than hyper
parameter inference without annealing.



. word segmentation models 

Briefly, simulated annealing introduces a temperature T which allows
the sampler to explore the state space more freely. Updates are per-
formed by sampling from P(Bi | h

−)
1
T rather than P(Bi | h−).

For high temperatures T , raising the probabilities to 1T leads to almost
uniform distributions and allows the sampler to explore assignments
which, according to the true conditional distributions, may be very un-
likely to ever be considered; but which may be required to ultimately
reach an overall good segmentation. Thus,by starting the sampler in a
high temperature and slowly decreasing T to 1, one facilitates conver-
gence to the target posterior by alleviating the problem of local modes.
Once the temperature has reached 1, the sampler will produce samples
from the target posterior distribution.
The cooling schedule used in annealing is important, and I found Gold-

water ()’s schedule to yield good results. It splits the total number
of N annealing iterations into 10 equal sized bins and, assuming start-
temperature Tstart and stop-temperature Tstop, defines the temperature
at iteration i as

temperature(i) =

Tstop if i > N
10

b 9iN c−1
Tstart−Tstop

9 + Tstop else

.. The Bigram model

Goldwater () argued that the independence assumption inherent in
the Unigram model is unsatisfactory as in real language, adjacent words
are not independent of each other. Indeed the Unigram model tends
to undersegment, an issue also discussed in chapter  and chapter .
Goldwater’s proposal to address this was to model Bigram dependencies,
as depicted in the graphical model in Figure .. I review the reference
description of the Bigram model in Goldwater et al. () which differs
slightly from that in Goldwater ().

Conceptually, the major difference to the Unigram model is the use of
an infinite number of ‘lexicon’ distributions Hw, one for every possible
word in Σ+. Each Hw determines the distribution of words following a
token of w. The different Hw are drawn from a single shared Dirichlet
Process whose base distribution is a global lexicon G0 which correspond
to the single lexicon G of the Unigram model. Thus, the entire model
is a hierarchical Dirichlet Process model (Teh et al., )
Utterance boundaries are treated as special ‘words’ of type $, $ 6∈ Σ

so that they can serve as context for other words. This requires a slightly
changed base distribution Plex’ which allows for the generation of these
boundary words with probability p$ (Goldwater et al., ). This is
achieved by changing the base distributions for the Unigram model by
adding two additional states as in Figure .. The first state either

 I use h− as shorthand to indicate that the seating arrangement according to which
Bi is resampled excludes customers associated with Bi, as discussed above.
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Ci

Wi,jWi,j−1 Wi,j+1. . . . . .Wi,0

Gw

G0

Plex’Φ Θ

N

∞

G0 ∼ DP(α0,Plex’)

Gw | G0 ∼ DP(α1,G0)

Wi,0 = $

Wi,j |Wi,j−1,H ∼ HWi,j−1

Ci = Concat(Wi)

Figure .: Description of the Bigram model for word segmentation. All
latent variables except for Wi will be integrated out, result-
ing in a Chinese Restaurant Franchise representation of the
model (see Figure .). Ci is the observed sequence of segments
for utterance i which is the result of concatenating all words
Wi = Wi,0, . . . ,Wi,m. The first ‘word’ for each utterance is ob-
served as it is a special boundary symbol $ that is not part of
Σ+. Also, in addition to the global lexicon G0 there is an infinite
number of distributions Gw, one for each w ∈ Σ+.

0 ′start

1 ′

Plex

$ : p$

ε : 1− p$

Plex’(x) =

p$ if x = $

(1− p$)Plex(x) else

Figure .: Base distribution for the Bigram model. In terms of a proba-
bilistic finite state automaton, we change the automata in Fig-
ure . or . by changing the start state to the new state 0 ′

from which we transition either into the initial state of the old
automaton with probability 1− p$ or generate a boundary word
$ with probability p$ to transition into the new final state 1 ′.

generates an utterance boundary and terminates, or it transitions into
the automata of Figure . or Figure ..
The generative process for a single utterance is as follows. The first

word of each utteranceWi,0 = $. The first ‘real word’ for each utterance
is drawn from H$, the lexicon for utterance-initial words. An utterance
terminates as soon as another instance of $ is generated.

Integrating out the random variables Hw and G0 induces a Chinese
Restaurant Franchise representation (Teh et al., ). Rather than
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a single seating arrangement as in the Unigram model, for the Bigram
model there is a restaurant for every word type w that has been posited
in a segmentation, corresponding to Hw, plus a ‘global’ restaurant cor-
responding to G0 in which each customer corresponds to a table in a
word-specific restaurant. This ‘Chinese Restaurant Franchise’ idea and
the dependencies between word-specific and the global restaurant is
illustrated in Figure . which is the Bigram model’s analog to Fig-
ure ..
For notational simplicity, I now take h to be a collection of individual

hw (the seating arrangement corresponding to Hw) and a single h0
corresponding to the seating arrangement for G0. Thus, in Figure .
nhab

$,· = 1, as there is one $ customer in seating arrangement hab; and
nh0ab,· = 2, as there are two ab customers in seating arrangement h0.

With this, the predictive probability of a word w following a word
w ′, conditional on the current seating arrangement h is

P(Wi = w |Wi−1 = w0,h) =
n
hw0
w,· +α1P(w | h0)

α1 +n
hw0·,·

(.)

P(Wi = w | h0) =
nh0w,· +α0Plex’(w)

α0 +n
h0·,·

(.)

Due to the coupling between the global and the word-specific restau-
rants, nh0x,· is equal to the number of tables labeled x across all hw
restaurants. This can be easily enforced by defining the additional ad-
dCustomer and removeCustomer methods in Figure . which
will be used to add customers to the word-specific restaurants. w0 is
the word preceding the word w which is added or removed.

In essence, these functions are identical to those in Figure . but
enforce the coupling across the individual seating arrangements hw for
each individual word and the global seating arrangement h0 as depicted
in Figure .. If a new table is opened, the original addCustomer
method from Figure . is called to add a w customer to h0, the seating
arrangement corresponding to G0. Similarly, in removeCustomer a
customer is removed from h0 if a table becomes empty in the process of
removing a customer. Again, these functions take care of all the book-
keeping that is required, facilitating implementation considerably.
With this, the Gibbs sampler for the Bigram model can be derived

directly from the sampler for the Unigram model, requiring only minor
modification to account for the dependencies between adjacent words
and the different handing of utterance boundaries.
Denote by wl the word preceding the span of text affected by chang-

ing boundary variable Bi and by wr the word following this span, and
as before by w1.2 the entire sequence (corresponding to Bi = 0) and by
w1,w2 the two-word sequence that results if Bi = 1. For the example
in Figure . wl = $,w1 = a,w2 = b,w1.2 = ab, and wr = ab. With
this, a single boundary can be resampled using the algorithm defined
in Figure ..
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hab

W2 = ab W3 = $W1 = abW0 = $

B =

C =Observed variables

Sampled variables

h0

h$

CRP franchise h

Latent segmentation

b a ba

0 1 0

ab $ab

ab $

Figure .: Illustration of the relation between random variables for the Bi-
gram model. Rather than a single CRP seating arrangement, the
Bigram model yields an underlying CRP franchise, a collection of
word-specific seating arrangements (hab and h$) and a global one
(h0). Note that every Wi variable corresponds to a customer in
a word-specific restaurant, and that every table in such a restau-
rant corresponds to a customer in the global restaurant. Only one
of the many possible CRP franchise seating arrangements for the
given values of the other random variables is shown.

Again, the first step is to remove the affected customers from the
seating arrangement. Note that for the Bigram model, the word follow-
ing the affected region wr needs to be removed as well as the identity
of its predecessor is unknown and we do not know to which seating
arrangement wr contributes a customer.
The required probabilities can be calculated using equations . and

.. As for the Unigram model, calculating the exact conditional proba-
bilities requires intermediate changes to the seating arrangement, indeed
more updates than before because of the Bigram dependencies.

.. Hyper parameter inference

A topic that has received relatively little attention in recent applica-
tions of the Unigram and Bigram model is the role played by the hyper
parameters. Goldwater () and Goldwater et al. () investigated

 This can induce noticeable overhead and I found, for any but the tiniest corpora
that consist of one or two short utterances, no noticeable difference between samplers
that implemented the intermediate update and those that didn’t. Thus, if speed is
a bottleneck ignoring the calls to addCustomer and removeCustomer during
calculating the probabilities of the hypothesis is a possible optimization.
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function addCustomer(w0,w,h)

sample k ∝

n
hw0
w,k if 1 6 k 6 Khw0

α1P(w | h0) if k = Khw0 + 1

if k = Kh + 1 then . open new table
res =

α1addCustomer(w,h0)

n
hw0·,· +α1

Khw0 = Khw0 − 1

n
hw0
w,k = 1

else . added to old table
res = k

n
hw0·,· +α1

n
hw0
w,k = n

hw0
w,k + 1

end if
return res

end function
function removeCustomer(w0,w,h)

sample k ∝ nhw0w,k
nh

w0

w,k = nh
w0

w,k − 1

if n
hw0
w,k = 0 then . Table became empty
Khw0 = Khw0 − 1

return α1removeCustomer(w,h0)
nh

w0
·,· +α1

else

return
n
hw0
w,k

n
hw0·,· +α1

end if
end function

Figure .: addCustomer and removeCustomer functions for the Chi-
nese Restaurant Franchise of the Bigram model.

how the precise values of the concentration parameters affect segmenta-
tion performance through evaluating a range of manually chosen hyper
parameter values. While the Unigram model was found to be rather ro-
bust across a wide range of hyper parameter values, the Bigram model
turned out to depend considerably on the precise value of the α1 pa-
rameter (Goldwater et al., , Fig. ).
Goldwater et al. () manually picked the set of hyper parameter

values that yields the best performance. While this idea of ‘parame-
ter tuning’ is common in Computational Linguistics and, for practical
applications, can be viewed as part of applying a statistical model to
a particular data set, from a scientific (as opposed to an engineering)
point of view this raises the question whether the hyper parameters
have to be ‘built into’ the model or whether they can be inferred in an
unsupervised fashion as well. In particular, manually determining an op-
timal set of hyper parameter values for different inputs is not practical
for evaluating a model on a wide variety of corpora and, more impor-
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procedure sampleBoundary(i,h)
determine affected span wl,w1.2,w1,w2, and wr
if Bi = 1 then

removeCustomer(wl,w1,h)
removeCustomer(w1,w2,h)

else
removeCustomer(wl,w1.2,h)

end if
pb = P(w1 | wl,h)
addCustomer(wl,w1,h) . temporary update
pb = pb × P(w2 | w1,h)
addCustomer(w1,w2,h) . temporary update
pb = pb × P(w2,wr | h)
removeCustomer(wl,w1,h) . Undo temporary updates

removeCustomer(w1,w2,h)
p¬b = P(w1.2 | wl,h)
addCustomer(wl,w1.2,h) . temporary update
p¬b = p¬b × P(wr | w1.2,h)
removeCustomer(wl,w1.2,h) . Undo temporary update

if nextDouble× (pb + p¬b) 6 pb then . put boundary
Bi = 1

addCustomer(wl,w1,h)
addCustomer(w1,w2,h)
addCustomer(w2,wr,h)

else . don’t put boundary
Bi = 0

addCustomer(wl,w1.2,h)
addCustomer(w1.2,wr,h)

end if

end procedure

Figure .: Algorithm to resample word-boundary Bi in the Bigram model
given a current CRP Franchise h.

tantly, unattractive for an unsupervised model of language acquisition.
Following Johnson and Goldwater () discussion of hyper parame-
ter sampling for their adaptor grammar framework, we implement hyper
parameter inference for the Unigram and Bigram model.
We treat the hyper parameters as random variables and, following

Teh et al. () and Johnson and Goldwater (), put ‘vague’ Gamma
priors on them, adding

α0 ∼ Gamma(0.001, 0.001)

α1 ∼ Gamma(0.001, 0.001)
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to the definition of the word segmentation models. These Gamma
distributions are parametrized in terms of a shape α and an inverse
scale (also called rate) β, the most common parametrization within
Bayesian statistics (Gelman et al., , p. , also see Table .). In
this context, ‘vague’ means that the prior distribution has very high
variance – in particular, choosing α = β = 0.001 results in a variance
of α
β2

= 1000. This shows that this prior corresponds to a very weakly
held belief and will be easily overwhelmed by even a single observation,
making it a useful uninformative prior. For additional discussion of
Gamma priors, see MacKay () and Gelman et al. ().

The likelihood for the concentration parameter α is equation .
taken as a function of α where can omit the part depending on L as the
probability of the table labels does not depend on α:

P(h0 | α0) ∝
Γ(α0)

Γ(nh0·,· )

Kh0∏
k=1

αΓ(nh0·,k) (.)

P(hw, . . . , | α1) ∝
∑
w ′

Γ(αw ′)

Γ(n
hw ′·,· )

K
h
w ′∏

k=1

(αΓ(n
hw ′
·,k ) (.)

For α1, the likelihood sums over all word-specific seating arrange-
ments hw as all correspondingGw are drawn from the same DP(α1,G0).

This allows calculation of the posterior distribution

P(α | h) ∝ P(h | α)P(α) (.)

which can be used in several ways to choose hyper parameters. In
general, equation . will be easy to optimize which suggests working
with the MAP estimate, an idea that is known as MAP-II as we only
use the MAP estimate for the hyper parameter, performing full poste-
rior inference for the remaining random variables (Murphy, , p.)

Alternatively, one can resample values for the hyper parameters from
the respective posteriors at each iteration, as suggested by Johnson and
Goldwater (). For this, a wide variety of samplers can be used, and
I follow their suggestion of using a Slice sampler (Neal, ).
It is worth pointing out, however, that the posterior distribution of

the concentration parameter tends to be sufficiently peaked so that sam-
pling and directly using the MAP estimate obtained by optimization
made no discernible difference in any of the experiments we performed.
As MAP-II only involves solving a one-dimensional optimization pro-
cedure rather than performing several iterations of an MCMC method
such as Slice sampling, it may be preferred in practice.

 One can also imagine using a separate hyper parameter αw for each Gw although in
preliminary experiments, I found this to work worse, presumably due to the scarcity
of observations for most of the word types.

 If we assume uniform priors on the hyper parameters (meaning that we directly
maximize the likelihood, rather than the posterior), this would be the ML-II or
Empirical Bayes estimate of the hyper parameters.
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. applying the models to data

I briefly illustrate how the models just described can be applied to
concrete corpora. In addition to providing a concrete illustration of
the idea of Monte Carlo approximations, I also point out a hitherto
unreported issue of the Bigram model when its hyper parameters are
inferred, rather than manually set.

As data, I use the ‘Alice’ subsection of the commonly used Brent-
Bernstein-Ratner corpus Brent (); Bernstein-Ratner (). For
both the Unigram and the Bigram model, I consider the special cases
in which the hyper parameters of the Dirichlet Processes are set to the
best-performing values reported in Goldwater et al. () (fix hyper
parameters) and a model in which the hyper parameters are treated
as random variables and their values are also inferred (inferred hyper
parameters). For the base distribution, I consider both the distribution
of Figure . (no constraint) and Figure . (syllabic constraint). Com-
bining all possibilities, this yields four variants of the Unigram and the
Bigram model, respectively. I refer to the Unigram model with fixed pa-
rameters and a constrained base distribution as uni-fh-sc and to the
Bigram model with inferred hyper parameters and an unconstrained
base distribution as bi-ih-nc.
To generate samples from the posterior over segmentations, I run four

chains of the Gibbs sampler for each of the models. Running multiple
chains makes possible cross-chain comparisons that can highlight con-
vergence problems (see the discussion in Gelman et al., , chapter
.). Each chain is run for 20000 iterations, and simulated annealing
from temperature 10 to 1 is used for the first 10000 iterations to facili-
tate convergence. During the last 10000 iterations, every 10th samples
is collected, generating a total of 1000 samples per chain or 4000 per
model.

.. Using posterior samples

Each of the individual samples is a segmentation of the entire observed
data. Thus, the posterior approximation is built on the basis of 4000
individual segmentations, and, using equation ., we can calculate
the posterior probability of a particular segmentation by calculating
the relative frequency of this segmentation among the set of samples
we collected. The number of possible segmentations of any given text
is exponential in the length of the text (as between any two adjacent
phonemes, there either could or could not be a boundary), and for all
but tiny corpora there is little hope generating the exact same segmen-
tation – matching on all of the O(2n) possible boundaries – more than a
few times. To address this, one can use the samples to approximate the
marginal posterior over segmentations for each individual utterance.
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P̂(seg) segmentation token f-score

0.45 juwAnt tu si D@bUk 0.40

0.41 ju wAnttu si D@bUk 0.40

0.09 ju wAnttu si D@ bUk 0.73

0.04 juwAnt tu si D@ bUk 0.73

< 0.01 ju wAnt tu si D@bUk 0.73

< 0.005 juwAnt tusi D@bUk 0.00

Table .: Approximate marginal posterior over segmentations for the utter-
ance “you want to see the book” according to the uni-fh-nc model,
calculated from 4000 samples. We also indicate the token f-score of
each individual segmentation, showing that high posterior probabil-
ity and high token f-score need not coincide. The posterior reflects
that the model actually prefers analyzing the initial part of the ut-
terance as ju wAnttu (with 50% probability in total), even though
the single most probable segmentation segments this part as juwAnt
tu.

To illustrate this idea, Table . gives the approximation to the
marginal posterior for the first utterance of the data, “you want to see
the book” or, in phonemic notation, “ju wAnt tu si D@ bUk”, according
to the uni-fh-nc model. There are two segmentations that together
account for roughly 86% of the posterior belief but there is no single
segmentation that has more than or at least 50% posterior probabil-
ity. We also see that the model is uncertain about how the initial part
of the utterance ought to be segmented: either as “youwant to” or as
“you wantto” which are, incidentally, both not quite right but, from a
linguistic perspective, make sense as undersegmentations. However, all
segmentations agree that the word “see” ought to be segmented out,
showing that a model can have different certainty with respect to differ-
ent parts within an utterance. To my knowledge, this kind of qualitative
examination of marginal utterance posteriors is not common in current
work, arguably because it is often impractical to generate several thou-
sands of samples for large corpora and, in addition, it is infeasible to
qualitatively evaluate tenths of thousands of utterances in close detail.
Yet, I think it is worth pointing out that the framework of Bayesian
modeling offers the possibility of performing this kind of qualitative
evaluation, and I will suggest some more ways of examining posterior
distributions to quantify uncertainty in the final chapter of this thesis
as suggestions for further work.
An idea introduced to word segmentation by Johnson and Goldwater

() is using the marginal posterior distributions to create a ‘max-
imum marginal segmentation’ that will be evaluated. The idea is to
combine the information present in the full posterior into a single seg-
mentation of the entire corpus that can be evaluated as follows: for
each individual utterance, determine the marginal MAP segmentation,
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i.e. that segmentation of the individual utterance which, across all sam-
pled segmentations for the entire corpus, occurs the most frequently.
This may (and, very likely, will) result in a segmentation for the entire
corpus that was never generated but, in a clear sense, synthesizes the
information present in the full posterior by ‘averaging’ across different
segmentations.

.. Evaluation metrics

The quality of a segmentation according to a given gold standard is
commonly quantified through precision, recall and the harmonic mean
of the two (f-score) for tokens, boundaries and word types (Brent, ).
To illustrate, consider the most probable segmentation in Table .,
“youwant to see thebook”. This segmentation posits 3 boundaries which
all co-incide with boundaries of the gold segmentation “you want to
see the book”. Hence, boundary precision is bp = # predicted

# correct = 3
3 =

100%. On the other hand, recall is only br = # predicted
# gold = 3

5 = 60%,
and boundary f-score is 2∗bp∗br

bp+br = 75%. On a word token level, the
segmentation fares considerably worse. It posited 4 words, only 2 of
which are correct (“to” and “see”), and it only identified 2 of the 6 words
in the gold segmentation, yielding tp = 50%, tr = 1

3 and tf = 40%. In
this example, the lexicon scores co-incide as each token occurs exactly
once.
The major benefit of these metrics is that they provide an easy and

convenient way to evaluate the quality of a segmentation although, obvi-
ously, a lot of the information contained in the posterior is not reflected
in these numbers, even if they are calculated on the maximum marginal
segmentation. They are, however, the best way currently known to com-
pare a large number of models, and we give the scores for the maximum
marginal segmentations of the corpus for the different models in Ta-
bles . and .. We also report the mean score calculated over all
individual samples (that is, the posterior expectation of each evalua-
tion score), corroborating Goldwater et al. ()’s observation that
using the maximum marginal segmentation leads to more accurate seg-
mentation. Also, we find – in line with their exploration of the role of
the base distribution – that the Unigram model’s performance is quite
robust to whether or not a constrained base distribution is used. The
scores for all settings are virtually identical (with maximum marginal
expectation scores tending to be slightly better than the expected scores
of the individual samples), even though the manually chosen hyper
paramter α0 = 20.0 is considerably different from the inferred value
of α0 ≈ 150.

 Not surprisingly, this value yields an expected number of tables for the Chinese
Restaurant Process of ≈ 480 which is close to the true number of types in the data
(442).
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model method bp br bf tp tr tf lp lr lf

uni-fh-nc
mms . . . . . . . . .
exp . . . . . . . . .

uni-fh-sc
mms . . . . . . . . .
exp . . . . . . . . .

uni-ih-nc
mms . . . . . . . . .
exp . . . . . . . . .

uni-ih-sc
mms . . . . . . . . .
exp . . . . . . . . .

Table .: Scores for the different Unigram models on the Alice corpus, with
overall best f-scores in bold face. ‘mms’ is the score calculated on
the maximum marginal segmentation and ‘exp’ the expected score
calculated by averaging the scores over the individual samples. By
and large, the scores for all the models are virtually identical, in-
dicating the typical under-segmentation behavior of the Unigram
model. This is despite the fact that the inferred α0 is considerably
larger than the manually chosen value of 20, indicating that the
Unigram model is robust to both choice of base distribution and
hyper parameter.

model method bp br bf tp tr tf lp lr lf

bi-fh-nc
mms . . . . . . . . .
exp . . . . . . . . .

bi-fh-sc
mms . . . . . . . . .
exp . . . . . . . . .

bi-ih-nc
mms . . . . . . . . .
exp . . . . . . . . .

bi-ih-sc
mms . . . . . . . . .
exp . . . . . . . . .

Table .: Scores for the different Bigram models on the Alice corpus, with
overall best f-scores in bold face. ‘mms’ is the score calculated on
the maximum marginal segmentation and ‘exp’ the expected score
calculated by averaging the scores over the individual samples. Un-
like for the Unigram model, we see more noticeable impacts of
hyper parameters and base distribution – in particular, note the
dramatic performance drop (and reversal to over segmentation be-
havior) when hyper parameters are inferred with an unconstrained
base distribution. Also, the expected scores differ more noticeably
from the mms scores than for the Unigram model, indicating that
overall, the posterior over segmentations is less concentrated
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For the Bigram model, there is a more interesting picture. bi-ih-nc
performs considerably worse than bi-fh-nc and even worse than uni-
fh-nc. In fact, this model is over segmenting, breaking common short
words such as “you” into phoneme-bigrmas as in the MAP segmentation
for the first utterance y u want tu s i D@ bUk. This contrasts markedly
from the performance of bi-fh-nc which outperforms the Unigram mod-
els by a fair margin, in line with the generally held view that a Bigram
model is preferable to a Unigram model (Goldwater et al., ). While
it was known that the Bigram model depends heavily on the values of
the concentration parameters (Goldwater, ; Goldwater et al., ),
the fact that hyper parameter inference leads to worse performance indi-
cates that the parameter values supported by the data lead to bad per-
formance. Indeed, the inferred posterior means α0 ≈ 300 and α1 ≈ 7 are
rather different from the manually chosen values α0 = 3000,α1 = 100.
Interestingly, however, adding the possible word constraint to the

Bigram model boosts performance the performance of bi-ih-sc beyond
that of the Bigram model with manually specified parameters and leads
to the best performing model overall. This suggests, then, that the Bi-
gram model is indeed preferable to the Unigram model but either needs
to use manually specified hyper parameters or needs to employ a more
substantive base distribution. From a modeling point of view, I prefer
the latter choice as it does not require manual ‘parameter tuning’. It
might also be preferable from a psychological point of view as it at-
tributes less ‘a priori knowledge’ to the learner. Also, the use of hyper
parameter sampling can lead to a better understanding of the models
that are studied; concretely, here I found that unless sufficiently con-
strained, the Bigram model prefers to under- rather than oversegment
and can yield rather bad segmentations.

This concludes the introductory review of the Unigram and Bigram
model as originally introduced by Goldwater () and Goldwater et al.
(). Chapter  presents an alternative inference algorithm for these
models and they form, in a sense, the basis of the explorations performed
in this thesis. I close this chapter with a brief review of the related but
slightly different Adaptor Grammar framework that I will use for the
experiments in Chapter  and .

. adaptor grammars

Adaptor Grammars (Johnson et al., b) make it possible to define
certain non-parametric Bayesian models through specifying a context
free grammar. It is worth pointing out that the models explored in this
thesis could all be expressed in terms of finite states methods such as
infinite Hidden Markov Models (Beal et al., ). That is, the Adaptor
Grammars we write are – in terms of generative capacity – regular

 A similar finding has been made by Frank () for Goldwater et al. ()’s
Bayesian model of morphological segmentation.
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languages. However, formulating these models as context free grammars
is both helpful for reasoning about them and, more importantly, allows
us to use Johnson et al. (b)’s general purpose inference algorithm
for a wide variety of different models.
I define Adaptor Grammars formally, following closely the original

description of Johnson et al. (b). After this, we will show how an
Adaptor Grammar model can be expressed without the use of context
free grammar rules.

.. Formal definition of Adaptor Grammars

An adaptor grammar (AG) is an extension of a probabilistic context-free
grammar (PCFG). A PCFG is an extension of a context-free grammar
(CFG) which defines a probability distribution over the trees generated
by a CFG.
A CFG is a -tuple 〈N , W , R, S 〉, where N is a finite set of non-

terminal symbols, W is a finite set of terminal symbols that is disjoint
from N , R is a finite set of context-free rules of the form X → α,α ∈
(N ∪W )+ and S ∈ N is a start symbol. I use RA to refer to all
rules in R that have the non-terminal symbol A on their left-hand side.
The set of trees T S that are generated by a CFG can be defined

recursively, using Tx to stand for the set of all trees rooted in x. For
every terminal symbol a, Ta is the set containing only a single tree
with a single node labeled a. For every non-terminal X ,

TX =
⋃

X→A1 ,..., An∈R

TreeX (TA1 , . . . , TAn)

Here, TreeX (TA1 , . . . , TAn) refers to the set of all trees rooted in X
that have n immediate children such that the ith child tree is an element
of TA i

. The definition of Ta for all terminal symbols a provides the
base case for this recursive definition.
A CFG can be used to derive strings in W + as follows. Starting with

the start symbol S , perform a sequence of rewrite steps until no non-
terminal symbols are left. In each rewrite step, a single non-terminal X
is replaced by the right-hand side of any rule in RX . For example, if
the rule S → NP VP is in R S , we can rewrite S as NP VP . We then
choose rules to rewrite NP and VP until only terminal symbols are
left. A derivation can also be expressed as a labeled tree which is rooted
in S . Every node in the tree corresponds to one of the non-terminals in
the derivation and its children are the elements of the right-hand side
of the rule that was used to rewrite it in the derivation.
A PCFG adds to a CFG a finite vector θ of rule probabilities. I index

this vector by rules such that θX→γ refers to the probability of the rule

 (N ∪W )+ refers to the set of all strings that consist of an arbitrary combination
of elements of N and W , excluding the empty string. Following common practice,
I do not allow ε rules in a CFG.
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X → γ. A PCFG requires that θX→γ > 0 and that for all non-terminal
symbols X,

∑
r∈RX

θr = 1.
A PCFG defines a distribution GX over trees for every set TX which

can be defined as follows.

For terminal symbols w ∈ W , Gw puts all its mass on the unit tree
consisting only of a single node labeled w. For non-terminal symbols
X ∈ N ,

GX =
∑

X→B 1,..., Bn∈RX

θX→B 1,..., BnTreeDistA (GB1 , . . . ,GB2)

with

TreeDistA (G1, . . . ,Gn)
(
(A t1 . . . tn)

)
=

n∏
i=1

Gi(ti)

I use bracket-notation (A t1 . . . tn) for a tree rooted in A with chil-
dren t1 to tn which, themselves, are (possibly unit) trees. In other
words, TreeDist “is a distribution over trees where the root is labeled
A and each subtree ti is generated independently from Gi” (Johnson
et al., b). Intuitively, the probability of a tree according to a PCFG
is simply the product of the rule probabilities used in a derivation of
the tree.
When performing inference for rule probabilities, they are commonly

modeled as drawn from Dirichlet distributions. This is because, as
shown above, the Dirichlet prior is conjugate to the categorical like-
lihood and PCFGs also define such a likelihood. Hence, we can ana-
lytically integrate over the rule probabilities which leads to efficient
inference algorithms as discussed in Johnson et al. (a).
An AG is derived from a PCFG by selecting a subset A ⊆ N of

adapted non-terminals X  and defining a new distribution over trees
HX for each symbol X as follows. If X ∈ W , HX = GX is the distribution
which puts all its mass on the tree with the single node labeled X. If
X ∈ N , X 6∈ A , i.e. if X is a non-adapted non-terminal,

GX =
∑

X→B 1,..., Bn

θX→B 1,..., BnTreeDist(HB1 , . . . ,HBn)

HC{X} = GX

Thus, for terminal symbols and all non-adapted non-terminals HX =

GX and is defined as for the PCFG. For adapted non-terminals X ∈X ,
GX is defined as for non-adapted non-terminals but

HX = DP(α,GX )

 This definition, taken from Johnson et al. (b), is different from the more stan-
dard way of defining the distribution defined by a PCFG simply as the product of
the probabilities of the rules used in a derivation (Johnson, , see, e.g.), but it
makes it possible to see Adaptor Grammars as direct extensions for PCFGs.

 Following convention, I distinguish adapted non-terminals from non-adapted non-
terminals by underlining the former.
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Intuitively, the distribution over trees rooted in an adapted non-
terminal is a draw from a Dirichlet Process whose base distribution
is a prior distribution which defines a (possibly infinite) set of trees
using the PCFG recursion. Recall that a draw from a DP can be seen
as an infinite categorical distribution – here, a distribution that has a
parameter θT for every T ∈ TX . Unlike a PCFG, then, an AG cannot
be characterized in terms of a finite vector θ because the number of
trees rooted in an adapted non-terminal may be infinite. This makes an
AG a non-parametric model with an infinite number of parameters.

For practical implementations, the infinite distributions for the adapted
non-terminals are integrated out which, for hierarchical models in which
adapted non-terminals are dominated by other adapted non-terminals,
gives rise to a Chinese Restaurant Franchise representation. MCMC in-
ference for AGs using this representation is described in Johnson et al.
(b) and not reviewed here although the algorithm is somewhat sim-
ilar to the blocked sampling algorithm discussed in Chapter . Again it
is worth pointing out that even though intuitive explanations of adap-
tor grammars make use of the Chinese Restaurant Process and the idea
of there being a cache for previously generated trees, the actual model
is independent of this idea. In fact, Cohen et al. () describes a vari-
ational inference algorithm for adaptor grammars that does not make
use of the Chinese Restaurant Process.

.. AG as model definitions

I will briefly show how a model described as an AG can be related to
the kind of model definition used above, using as example Johnson et al.
(b)’s AG formulation of the Unigram model as defined in Figure ..

Seg → x (.)

Segs → Seg (.)

Segs → Seg Segs (.)

Word → Segs (.)

Words → Word (.)

Words → Word Words (.)

(.)

This grammar can be related to the model defined in Figure . as
follows. Rules .-. define the same distribution over words that Plex
in Figure ., i.e. the Unigram phoneme base distribution. In particular,
θ Seg , the vector of rule probabilities for the rules in R seg corresponds to
Θ; and θ Segs → Segs Segs corresponds to Φ, the stopping probability.
This illustrates how, in principle, a distribution modeled by context free
rules in an adaptor grammar can be re-expressed purely with finite-state
means as in Figure ..
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Rule . defines the distribution for trees rooted in the adapted non-
terminal Word , and HWord corresponds directly to G in Figure .. Fi-
nally, the simple unigram Markov Process defined by rules . and .
captures the generative process of generating Wi ∼ G and terminating
an utterance when Fi ∼ Bern indicates to stop.

The real power of Adaptor Grammars lies in their ability to define
rich hierarchies, as made use of in chapter  and chapter  by simply
‘nesting’ adapted non-terminals. For example, by grouping words into
‘collocations’ (phrases made up of multiple words) and adapting the
non-terminals dominating these phrases, one can define a collocation
model Johnson and Goldwater () simply by adding the following
to the AG for the Unigram model:

Collocs → Colloc (.)

Collocs → Colloc Collocs (.)

Colloc → Words (.)

According to rule ., HColloc ∼ DP(α,HWords ). As Words domi-
nates the adapted non-terminal Word for which HWord ∼ DP(α,H Segs ),
this yields a hierarchical Dirichlet Process model.
When integrating out the relevant distributions, this results in a Chi-

nese Restaurant Franchise in which table labels can be structured ob-
jects themselves and customers in the higher-level restaurant correspond
to the relevant parts of a structured object. This is illustrated in Fig-
ure ..

... Hierarchies in adadptor grammars

Interestingly, the ‘probabilistic hierarchy’ of the Chinese Restaurant
Franchise is the mirror-image of the phrase-structure hierarchy defined
by the CFG. Thus, whereas the Word non-terminal is dominated by
the Colloc non-terminal in a tree, the Word restaurant is higher up
than the Colloc restaurant in the franchise. This has the effect that
the distributions of non-terminals that sit ‘very low’ in the trees gener-
ated by an AG will be estimated from a ‘dampened’ frequency distribu-
tion (Goldwater et al., , see also).
Concretely, imagine another instance of the tree (C (W the)(Wdog))

is generated from the seating arrangement in Figure .. The entire
tree can be generated directly by seating another customer at the first
table, and this will leave all counts in hw unaffected. Thinking about
this in terms of inference rather than generation, this means that even
though the structure (w the) is observed in the input, this may not
influence the estimate of (w the) but only the estimate of the larger
structure in which it was contained. This tendency of estimating statis-
tics of linguistic structures from the types in which they occur rather
than from their token frequency has also been observed for human learn-
ers (Thiessen and Saffran, ) and arises naturally in the context of
hierarchical Bayesian modeling.
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Figure .: Illustration of the Chinese Restaurant Franchise induced by the
collocation model, and a seating arrangement for a particular
analysis of the input thedogbarks. It is not simply tables that
correspond to customers in the higher-level restaurant but actu-
ally sub-parts of the structured objects that comprise table labels.
This makes it possible to define deep hierarchies in which multiple
levels of structure are learned in a non-parametric way jointly.

One can easily add more levels to this hierarchical model by extending
the grammar further, and I discuss examples of this in chapters  and
.

It is worth stressing, however, that many models which are defined
using adaptor grammars can be re-expressed in a purely finite state
framework, as exemplified by the discussion above – the collocation
model does not rely on the generative power of context-free grammars.
Yet, adaptor grammars make it easy to define a variety of models with-
out having to derive a specific inference algorithm as in, for example,
Zhao et al. (unpublished).
Finally, it is worth pointing out a subtle but important difference to

the Bigram model. An adaptor grammar model will always consist of a
finite number of distributions, one per non-terminal, even though any
individual distribution may be non-parametric. However, to encode a

 There can also be multiple ‘independent’ hierarchies – if one defines a set of con-
nected non-terminals to be a set that contains all and only those non-terminals
that, in any tree generated by the grammar, stand in a dominance relationship,
there will be a distinct Chinese Restaurant Franchise for any such set of connected
non-terminals.
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Bigram language model as a PCFG, one needs a dedicated non-terminal
symbol for every word in the vocabulary. Paired with the assumption of
an infinite vocabulary, as in the Bigram model, this requires an infinite
number of non-terminal symbols.

The idea of generalizing PCFGs to infinite numbers of non-terminal
symbols has indeed been explored, see Liang et al. (), although to
my knowledge, no one has combined adaptor grammar’s ability to assign
non-parametric distributions to non-terminals and the ability to have
an infinite number of non-terminals into a single general framework.
Thus, as of now, the Bigram model cannot be expressed as an adaptor
grammar.
To conclude, adaptor grammars provide an easy-to-use framework

that allows one to study a large class of models without having to
implement a model-specific inference algorithm. In a sense, adaptor
grammars can be seen as the natural language processing analogues of
‘general purpose’ Bayesian inference tools such as Stan (Stan Develop-
ment Team, ) or BUGS (Lunn et al., ). These tools are not
suited to handle inference under models that involve highly structured
discrete latent structures whereas adaptor grammars make it possible
to express a large class of these kinds of models in a generic way.

 At least in theory – in practice, one can always enumerate the very large but finite
number of substrings in any finite amount of input over which we perform inference.
Yet, performing inference using such unwieldy grammars with very large numbers
of non-terminals is likely to be inefficient and violates the intuition that there could
always be a word that has not been observed in the finite input which such a model
would have to treat differently from all other words.
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PARTICLE F ILTERS FOR WORD SEGMENTATION

This chapter presents a particle filter algorithm for the word segmenta-
tion models of Goldwater et al. (). Particle filters (Murphy, )
are mathematically well-motivated incremental algorithms that produce
a finite approximation to the true posterior of a model, the quality of
which increases with larger numbers of particles and converging on the
true posterior as the number of particles goes to infinity. This guarantee
of asymptotic correctness makes them similar to Markov Chain Monte
Carlo methods that are usually used to study Bayesian models and sets
them qualitatively apart from most previously proposed online learners
for word segmentation that are based on heuristics.
The chapter is structured as follows. First, I discuss the idea of incre-

mental inference, also briefly discussing previous work on online learners
for word segmentation. I then derive a strictly incremental particle fil-
ter algorithm for the Unigram and Bigram model of word segmentation
introduced in Chapter . After discussing its performance, I describe
an extension to the algorithm that considerably boosts its performance
using the idea of rejuvenation at the expense of strict incrementality.
The chapter concludes with a critical discussion of my finding that,

under specific circumstances, incremental algorithms yield better seg-
mentations than batch algorithms although they can be shown to per-
form worse inference (as discussed below). I caution against interpreting
these results along the lines of “Less is more” (Newport, ; Phillips
and Pearl, in press) and that they ought to be viewed as pointing out
shortcomings of models rather than suggesting cognitively plausible in-
ference algorithms. In particular, I perform a detailed evaluation and
show how both bad and good performance of different incremental al-
gorithms as compared to their batch counterparts can be explained
by considering how the segmentations implied by the assumed model
change over time, a point systematically addressed in Chapter .

. motivation for online algorithms

Inference in probabilistic models can usually not be performed analyt-
ically and relies on approximate algorithms. A popular choice for al-
gorithms for approximate posterior inference are Markov Chain Monte
Carlo algorithms, a general class of algorithms that produce samples
from the posterior distribution of interest by making many passes over
the entire corpus. Thus, they are batch algorithms that treat the entire
input in a single large and iterate over it many times.


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Both from a practical and a theoretical stand-point, alternative algo-
rithms that perform inference in an incremental fashion are desirable.
For one thing, making many iterations over large amounts of data can be
computationally prohibitive and for very large datasets, it may not even
be possible to hold the entire input in memory all at once. From a the-
oretical perspective, incremental algorithms can be seen as addressing
the popular (if somewhat misguided) criticism leveled against Bayesian
modeling that Markov Chain Monte Carlo inference algorithms are not
cognitively plausible due to their batch nature. This can be seen as the
main motivation for studying incremental algorithms within cognitive
modeling, and I will return to a discussion of the results in the light of
this at the end of this chapter.

.. Constraints on Online Algorithms

A standard definition of online learning is that it involves (a) seeing
each example only once and (b) making learning decisions on the basis
of one example at a time immediately after having seen it, using a
finite amount of computation (Bishop, , p. ). The particle filter
presented in this chapter is an example of an algorithm that satisfies
these two requirements and consequently constitutes an online learning
algorithm according to this definition.
There are more lenient views of online learning which relax these

assumptions to some extent. For example, the Online EM algorithms in
Liang et al. () perform local updates as required by (b) but iterate
over the whole data multiple times, violating (a). Pearl et al. ()’s
DMCMC algorithm, discussed in the next section, is able to revisit
earlier examples in the light of new observations, violating thus both
(a) and (b) but still performs sequential inference as I will discuss later
on. In fact, it can be viewed as a special case of the particle filter with
rejuvenation, and we will see that it is only under a thus relaxed notion
of online learning that inference for the word segmentation models turns
out to work reasonably well.

. previous work

Online learning algorithms for Bayesian models are discussed within
both Statistics and Computational Linguistics but have, to my knowl-
edge, not yet been widely applied to the specific problem of word seg-
mentation. I briefly review previous work on incremental algorithms for
word segmentation.

 This applies to example tokens. There may well be multiple tokens of the same
example type.
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.. Dynamic Programming Maximization

Brent () and Venkataraman () propose a heuristic online learn-
ing algorithm that is a local MAP learner in the sense of Sanborn et al.
(): it tries to determine the posterior over segmentations for a se-
quence of unsegmented utterances u1:n by determining the local maxi-
mum a posteriori segmentation of each utterance in the sequence, given
only the observations it has observed so far.
Algorithmically, it determines the maximum a posterior segmentation

σ1 for the first unsegmented utterance u1 according to only the prior
constraints of the segmentation model. Then, it updates the segmenta-
tion model with the words posited in this segmentation and proceeds to
the next utterance. In the terminology of Chapter , we can concisely
define the algorithm as follows:

h0 = ∅
σi | hi−1 = arg max

σ
P(σ | ui,hi−1)

hi = update(hi−1,σi)

Here, hi−1 refers to the seating arrangement (see Chapter ) which
describes the model state after having processed the first i− 1 utter-
ances u1:i−1. I write h0 = ∅ to indicate that, initially, the seating
arrangement contains no customers and the predictive distributions ac-
cording to which the probability of a segmentation can be calculated
only reflect the priors built into the model.
Starting from such an empty seating arrangement, the segmentation

for utterance ui is determined by determining the maximum a posteriori
segmentation for ui given hi−1 and using this segmentation to update
the segmentation arrangement. I spell out the update method in more
detail below as it also forms part of my algorithm, see Figure ..
For details about how the maximum a posterior segmentation can

be determined, see Brent () and Venkataraman (). Basically, a
variant of the Viterbi algorithm that employs Dynamic Programming
treating the spans of the utterance as overlapping sub-problems can be
applied in a rather straight-forward fashion, hence the name Dynamic
Programming Maximization or dpm for short. However, we will see
later that, in fact, being able to use an efficient Dynamic Program
comes at the expense of maximizing not P(σ | ui,hi−1) as defined
by the segmentation model but a slightly different yet closely related
distribution Q(σ | ui,hi−1). Thus, this specific local MAP learning
algorithm can be viewed as embodying two heuristics – relying on local
maximization and making use of approximate maximization.

Goldwater () found that this algorithm does perform rather dif-
ferently to her Gibbs sampler for the same models and, by compar-
ing its results to those of a non-heuristic Gibbs sampler, found that
it over-estimates performance of the Unigram model at the expense of
under-estimating the relative gain of modeling Bigram dependencies. In
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fact, she could show that this heuristic algorithm led Brent () and
Venkataraman () to over-estimate the segmentation performance
of the Unigram model, and led Venkataraman () to under-estimate
the benefit that can be gained from modeling Bigram dependencies.

Similar differences between local MAP learners and batch algorithms
have been found for other models by Sanborn et al. (). I return to
this point and provide an explanation of this divergence in the discus-
sion of the experimental results and will also relate my findings to the
idea of ‘rational process models’ introduced in Sanborn et al. () in
the discussion at the end of this chapter.

.. Dynamic Programming Sampling

A slight variant of Local MAP learning is to randomly sample a segmen-
tation for each utterance from the local posterior over segmentations,
rather than deterministically choosing the local MAP. Pearl et al. ()
call this algorithm Dynamic Programming Sampling and it embodies,
at a high level, the idea of a particle filter.
The goal of a particle filter is to approximate a sequence of poste-

rior distributions over time. At every time-step, it maintains a set of
weighted particles – each particle corresponds to one of the many pos-
sible hypotheses over which the posterior is defined, and each weight
corresponds to the posterior probability. I discuss particle filters and
the idea of sequential inference in much more detail in sections . and
. but it is worth pointing out that Dynamic Programming Sampling
can be viewed as a -particle particle filter.
As Dynamic Programming Sampling randomly samples a segmenta-

tion rather than always choosing the most probable segmentation, its
performance can differ wildly across runs. Not surprisingly, Pearl et al.
() as well as Sanborn et al. () found it to, on average, perform
worse than local maximization and exhibit very high variance.

.. Decayed markov Chain Monte Carlo

Pearl et al. () present a Decayed Markov Chain Monte Carlo al-
gorithm (Marthi et al., ) that can be viewed as a sequential ver-
sion of the Gibbs Samplers presented in the previous chapter. For each
observed utterance, the algorithm is allowed to reconsider any possi-
ble boundary position it has encountered so far in light of its current
knowledge, but the probability of reconsidering any specific boundary
position decreases with its distance from the current utterance. In ef-
fect, boundaries in recent utterances are more likely to be reconsidered
than boundaries in earlier ones. This property is interpreted by Pearl
et al. () as a kind of memory decay.

They examined both how the amount of computation spent on past
observations and the choice of decay function (which puts a soft con-
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straint on how far back a learner effectively looks) affects inference. Not
surprisingly, they found that using more computation leads to better
performance and that the Bigram model seems to require a ‘larger mem-
ory’ (in the sense of considering observations further in its past) than
the Unigram model.
Their algorithm can be seen as an instance of a particle filter with a

single particle that uses rejuvenation as discussed below, and we will see
that my findings are similar to theirs. Note that this kind of algorithm
is not strictly online as, in the words of Pearl et al. (), it has
“knowledge of ‘future’ utterances when it samples boundaries further
back in the corpus than the current utterance”. I return to this point in
the discussion.

.. Batch inference for word segmentation

It is worth briefly mentioning the state-of-the-art inference algorithms
in Bayesian word segmentation which are not incremental but batch al-
gorithms. One can distinguish two closely related classes of algorithms.
On the one hand the original Gibbs samplers of Goldwater ()

which were reviewed in Chapter  sample individual boundary positions
to produce samples of entire segmentations. On the other hand, there
are blocked samplers that resample the segmentations for entire utter-
ances rather than just individual word boundaries, using a Metropolis-
inside-Gibbs step to perform the utterance-wise updates (Johnson et al.,
b; Mochihashi et al., ). The blocked sampling algorithm plays
an important role for the particle filter and is discussed in more detail
below.
Utterance based samplers have also been applied to more complex

models in the adaptor grammar framework, introduced in Johnson et al.
(b). To date, adaptor grammar models have reported the best scores
with roughly % word token f-score on the a variety of corpora that are
similar to the ones considered here. It is worth emphasizing, however,
that this score is attained by a considerably more complex model that
learns both syllable structure and hierarchical inter-word dependencies
rather than the Unigram and Bigram model I consider here. Thus,
superior performance of adaptor grammar models is not a direct result
of the specific inference algorithm used but of the choice of a better
segmentation model.

 A subtle difference between their implementation and the particle filter with reju-
venation is that they sample individual boundaries using the Gibbs sampling steps
discussed in Chapter  whereas my particle filters resample entire utterrances using
blocked sampling described below.

 In theory, the particle filter framework presented in this chapter could also be applied
directly to adaptor grammar models although I leave this for future work.
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. the goldwater model for word segmentation

The models I study are the Unigram and Bigram models described
in Goldwater et al. (). As a brief reminder for the reader, I give
a brief high-level description of the Unigram model and refer to the
review in Chapter  or the original descriptions in Goldwater ()
and Goldwater et al. () for more details.

The model defines a generative process for sequences of words w1:n.
Each sequence can be interpreted as a particular segmentation of an
unsegmented utterance u that consists of all the segments that make
up the words inw1:n concatenated in the right order and with no white
spaces. For example, if w = 〈the, dog〉 then u = 〈t,h,e,d,o,g〉.
The first word in this sequence is generated by a distribution over pos-

sible words, the so-called base distribution Plex that, in principle, can
generate words of an unbounded length (see Figures . and .). Each
following word is either generated by ‘reusing’ one of the previously
generated words, or by making a new draw from the base distribution.
This generative process, also known as the (labeled) Chinese Restau-
rant Process (CRP) and discussed in more detail in Chapter , can be
described through

P(W1 = w) = Plex(w)

P(Wi+1 = w | w1:i) =
c(w,w1:i) +αPlex(w)

i+α

Here, c(w,w1:i) is the number of times that word w occurs in the
sequence of previously generated words w1:i and α is the concentration
parameter of the CRP. It controls the probability of generating previ-
ously unseen words by making a new draw from Plex, with larger values
encouraging introduction of novel words and small values resulting in
fewer types that repeat more often.

An intuitive understanding of the CRP makes use of a restaurant
metaphor: each generated word corresponds to the dish eaten by a cus-
tomer in a restaurant with an infinite number of tables. Each table
serves exactly one dish which all customers sitting at it share, and cus-
tomers enter the restaurant sequentially and either sit at an already
occupied table with probability proportional to the number of people
already sitting there or sit at a currently unoccupied table with proba-
bility proportional to α. In this case, they ‘order’ a dish for the table
by sampling from the base distribution Plex (see Chapter  for more
detailed discussion).
Finally, note that the word sequences generated by this process are

exchangeable, i.e. every permutation of words is assigned the same prob-
ability. Therefore, according to de Finetti’s theorem (de Finetti, )
there exists some distribution G conditional on which all words in the se-
quence are distributed independently and identically. Indeed, the word
segmentation models are formally defined not in terms of the CRP but
in terms of non-parametric distributions over words which are drawn
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from Dirichlet Process priors. While the CRP allows us to efficiently per-
form inference under models which involve infinite distributions which
we cannot explicitly represent, for conceptual clarity it is important to
keep in mind that the CRP only arises as an effect of collapsing a model
which explicitly mentions these distributions. See Chapter  for a dis-
cussion of the relation between the Chinese Restaurant representation
under which inference is performed and the segmentation model which
is defined in terms of the Dirichlet Process. I will come back to this
point when discussing the hypothesis space of the segmentation model
in the next section.

. incremental inference

While this description has focused on the generative aspect of the
model, probabilistic models like this are usually not used to generate
random sequences of words but to perform inference over the latent
variables of the model, in this case, the actual words that make up the
sequence of segments. Thus, we are interested in the posterior distribu-
tion over segmentations S1:n for a sequence of unsegmented utterances
u1:n, P(S1:n | u1:n). Before presenting the particle filter inference algo-
rithm, I elaborate on the idea of incremental inference using a concrete
word segmentation example and also clarify the nature of the hypothesis
space, a point that was put in slightly misleading ways in Börschinger
et al. () and Börschinger and Johnson ().

In incremental inference, we want to sequentially calculate P(S1:t |

u1:t) for all t. S1:i is a sequence of random variables, and each St ranges
over the possible segmentations of the first t utterances of the corpus
u1:t. I refer to the posterior distribution P(S1:t | u1:t) as the posterior
distribution at time t, indicating that it corresponds to the posterior
distribution after having observed the first t utterances of the input.

A batch algorithm can infer P(S1:i | u1:i) for any i by performing
multiple iterations over u1:i, treating all observations as ‘known’ from
the beginning. Thus, in Gibbs sampling each of the many iterations the
sampler will perform can condition on all observations except for the
small span of unsegmented text that is affected by boundary which is
resampled (see Chapter ).
An incremental inference algorithm, in contrast, calculates a sequence

of posteriors, basing inference of the posterior at time t exclusively on
the posterior inferred for time t− 1 and the observation made at time
t – there is no need to, so to speak, re-examine previous observations.
Incidentally, this idea falls out naturally in a Bayesian framework.

.. Incremental Bayesian Inference

As discussed at the end of Chapter , Bayesians view posterior inference
as setting a normative standard for how beliefs ought to be updated on
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the basis of evidence. In particular, updating a prior belief P(H) on the
basis of some evidence E to a posterior belief P(H | E) is called Bayesian
updating as it relies on Bayes’ Theorem:

P(H | E) =
P(E | H)P(H)

P(H)
∝ P(E | H)P(H)

Assuming that, conditional on the hypothesis, the observations are
identically and independently distributed, one can show that there is
no difference between applying Bayesian updating using several obser-
vations at once or using the same observations one at a time, as can
easily be seen by the following algebraic manipulation:

P(H | E1,E2) ∝ P(E1,E2 | H)P(H)

∝ P(E1 | H)P(E2 | E1,H)P(H)

∝ P(H | E1)P(E2 | H)

The second line uses the chain rule to P(E1,E2 | H). In the third
line, P(E1 | H) and P(H) are combined into P(H | E1), the posterior
distribution over H given only the first observation; and, exploiting
the assumption that E1 and E2 are conditionally independent given H,
P(E2 | E1,H) simplifies to P(E2 | H).

Thus, we can write P(H | E1,E2) as the product of the likelihood of
H given E2 and the posterior distribution of H given E1 – “yesterday’s
posterior is today’s prior”. Thus, as Bishop () argues, a “sequential
approach to learning arises naturally when we adopt a Bayesian view-
point” (p. ) and particle filters can be viewed as exploiting the ability
to apply Bayes’ Theorem recursively to a sequence of observations.
Crucially, this ability assumes that observation are conditionally in-

dependent given the hypothesis. This assumption, however, is unprob-
lematic even though unconditional independence of observations would,
of course, render Bayesian updating impossible, as pointed out by De
Finetti:

If I admit the possibility of modifying my probability judg-
ment [=beliefs] in response to observations of frequencies; it
means that – by definition – my judgement of the probabil-
ity of one trial is not independent of the outcomes of the
others[.] (De Finetti (), quoted according to (Gillies,
, p. ))

As long as the observations are judged to be exchangeable – meaning
their ordering does not affect their joint probability – De Finetti’s the-
orem guarantees that there is some random variable H (which ranges
over distributions over the observations) such that all observations are
conditionally independent given H. Thus, the conditional independence

 I haven’t been able to determine who ought to be credited with this slogan.
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assumption made in the derivation above holds whenever the joint distri-
bution of the observations is exchangeable which is the case for virtually
all models ever considered.
With this, I turn to incremental inference under the word segmenta-

tion models. Recall from chapter  that the CRP induces an exchange-
able distribution over sequences of words. Thus we know that there is
some underlying distribution according to which the words in the se-
quence are conditionally independent, and in chapter  we saw that
this distribution is a draw from a Dirichlet Process:

G ∼ DP(α,Plex)

Wi | G ∼ G

As discussed in section ..., we can analytically derive the poste-
rior over G if we know the sequence of segmented words. Also, because
the words that make up these utterances are conditionally independent
given G, so are the individual sequences of words corresponding to each
individual utterance. Hence, we can also perform sequential inference
through recursive application of Bayes’ Theorem:

G | u1 ∼ DP

(
α+ |u1|,

∑|u1|
i=1 δu1,i +αPlex

α+ |u1|

)
= DP(α1,P1lex)

G | u1,u2 ∼ P(G | u1)P(u2 | G)

= DP

(
α1 + |u2|,

(
∑|u2|
i=1 δu2,i) +α

1P1lex
α1 + |u1|

)
. . .

G | u1:n ∼ DP

(
αn−1,

(
∑|un|
i=1 δun,i) +α

n−1Pn−1lex
αn−1 + |un|

)

As we do not observe segmented utterances, we have to sum over all
possible latent segmentations which turns the posterior distributions
into mixtures of Dirichlet Processes with one component per latent seg-
mentation. This sum is usually infeasible to perform as the number of
possible segmentations grows exponentially with the size of the corpus,
and working directly with infinite objects such as Dirichlet Processes
also poses practical problems.
For these reasons, the inference algorithms directly approximates the

marginal posterior over segmentations with G integrated out and oper-
ates in the Chinese Restaurant representation, as discussed at length
in Chapter . Thus, each state considered by the algorithm is a seating
arrangement which provides the sufficient statistics to calculate the pos-
terior expectation of G conditional on a particular segmentation of the

 For ease of presentation, I limit discussion to the Unigram model which only involves
a single G whereas the Bigram model includes an infinite number ofHws, see Chapter
.
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corpus. As conditioning on a ‘seating arrangement’ is equivalent to con-
ditioning on a particular G – its posterior expectation – the words and,
consequently, the utterances are also conditionally independent given a
particular seating arrangement h.

This makes successive application of Bayes’ Theorem applicable and
forms the basis for the particle filter. After this somewhat formal dis-
cussion, I give a concrete illustration of sequential inference for the
marginal posterior over segmentations.

.. An example for incremental inference

Figure . illustrates the sequence of marginal posteriors over segmen-
tations for a toy example comprising the three ‘utterances’ abcd, defg
and cdde in this order. Here, one can exhaustively enumerate all pos-
sible 8, 64, and 512 segmentations for the first, the first two and all
three utterances, respectively, and analytically calculate their posterior
probabilities..
Each column corresponds to a different posterior over segmentations,

with the first column corresponding to the posterior at t = 1 and the
third column to the posterior at t = 3. I represent segmentations as cir-
cles, with the radius of a circle roughly corresponding to the posterior
probability of this segmentation. Except for t = 1, one cannot depict
all possible segmentations in which case I only illustrate some segmen-
tations and summarize the remaining ones as a single big circle which
provides the overall number of non-depicted segmentations and their
total posterior probability mass.

... State-space and hypothesis space

Figure . suggests, somewhat misleadingly, that the hypothesis space
changes over time. This impression arises because we are working with
a collapsed model whose state space comprises the possible analyses
of the input rather than the infinite number of distributions over the
space of all possible words; particle filters working with a collapsed
representation are also called Rao-Blackwellised particle filters (Murphy
and Russell, ).
Recall from the previous discussion that each segmentation ‘hypoth-

esis’ defines the sufficient statistics required to recover a posterior over
the infinite distribution G. In this sense, even though the number of pos-
sible latent segmentations that need to be considered grows over time
simply because the size of the corpus grows, the hypothesis space accord-
ing to the segmentation model does not change – it always comprises
all distributions over the space of all possible words.

 The probabilities are calculated using a Unigram model with concentration param-
eter α = 1.0 and a Unigram phoneme base distribution with fixed uniform phoneme
probabilities and a stopping probability of 0.5 (see Figure .)
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ABCD

       t=1                t=2         t=3

ABCD
0.5319

AB CD
0.133

ABC D
0.133

A BCD
0.133

A B CD
0.0222

A BC D
0.0222

AB C D
0.0222

A B C D
0.0028

DEFG

ABCD
DEFG
0.3597

ABC D D EFG
0.1124

ABCD DE FG
0.0599

AB CD DE FG
0.0075

60 more...
0.4605

CDDE

AB CD
DE FG
CD DE

0.6985

ABCD
DEFG
CDDE

0.0173

510 more...
0.2842

posterior at time 1

observation at time 1

Figure .: Posteriors at time t = 1, t = 2, t = 3 for the sequence of utterances
abcd,defg and cdde. Each circle represents a specific hypothesis,
i.e. a segmentation of all utterances up to time t. The arrows indi-
cate relations between hypotheses over time with the solid arrow
indicating pointing towards the most probable hypothesis accord-
ing to the next posterior. Not all hypotheses are shown, nor are
all possible extensions of a hypothesis indicated through arrows.

What does change, however, is the state space. At time t, it comprises
all possible segmentations of the input of the unsegmented utterances
u1:t. This is different from more common applications of sequential in-
ference where, irrespective of the number of measurements on which one
conditions, the state space is identical. For example, in object tracking
the state space at every time step comprises the co-ordinates and the
velocity of the object. In contrast, for us the state space at time step t
comprises all possible segmentations of the first t utterances and is dif-
ferent from and bigger than the state space at time t ′ < t and smaller
than the state space at time t ′′ > t.

Second, one can group the segmentations at different time-steps into
disjoint ‘trajectories’: consider a specific latent segmentation ht at time
t that consists of the t segmentations s1:t of the first t unsegmented
utterances u1:t. For example, the most probable such latent segmenta-
tion at t = 2 in Figure . comprises the segmentations s1 = abcd and
s2 = defg. This is only ‘compatible’ with exactly one of the latent seg-
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mentations at time t = 1 , namely abcd, indicated by the arrow going
from the latter to the former.
Thus, while a latent segmentation may be extended in multiple ways

(as is illustrated for abcd in Figure .), no two latent segmentations at
time t can be extended to yield the same latent segmentation at time t+
1. Because of this, it can happen that every possible extension of a high-
probability segmentation at time t results in a very low segmentation
at time t+ 1; and that the only high probability segmentations at time
t+ 1 are extensions of low probability segmentations at time t.
Concretely, consider segmentation abcd at time t = 1. This is by far

the most probable segmentation given only a single utterance which
is plausible as there is, so far, no discernible pattern for repetition of
smaller elements. There are multiple ways in which this particular seg-
mentation can be ‘extended’ upon observing the next utterance defg,
one for every possible way of segmenting it. Two possible extensions
are depicted, and we see that one of the extensions is the most proba-
ble segmentation at t = 2 whereas another possible extension attains
considerably lower posterior probability. However, upon observing the
third utterance cdde the most probable extension of what was the most
probable segmentation at t = 1 only attains 1.7% posterior probability,
illustrating a case where the single most probable segmentation at time
t ′ can only be extended to low probability hypotheses at time t ′ + 1.
The reverse holds for 〈ab cd, de fg〉 which, at time t = 2, only has

a posterior probability of 0.75%, i.e. less than 1%. Yet, it is the only
segmentation that can be extended to 〈ab cd, de fg, cd de〉 which, with
almost 70% of the posterior probability mass, is by far the single most
probable segmentation at time t = 3.
As a final point, note that even though the order of observations

plays no role when one conditions on all of them because the model
is exchangeable, the ordering of the observations does lead to different
sequences of posterior distributions over segmentations. To illustrate,
compare Figure . to Figure .. Even though at t = 3, the proba-
bilities are exactly identical, the distributions at t = 2 differ rather
dramatically.
I now turn to discussing a particle filter algorithm which performs

incremental inference for the marginal posterior over segmentations as
just described for Bayesian word segmentation models.

. particle filtering for word segmentation

The algorithm is an instance of a particle filter, more precisely, of the
Sequential Importance Sampling Resampling (SISR) algorithm (Mur-
phy, , p. f). I briefly give the general idea of particle filters
before spelling out in detail the algorithm that can be used for word
segmentation models.

 Of course, there are 6 more extensions not shown.
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Figure .: Posteriors at time t = 1, t = 2, t = 3 for a different permuta-
tion of the utterances abcd,defg and cdde. Note that at t = 3,
the posterior probabilities over segmentations of the entire corpus
are identical to those in Figure ., yet at t = 2 the posterior
distribution over segmentations changes dramatically because the
observations on which the posterior at t = 2 conditions is different.

The general idea of particle filters is rather simple. One sequentially
approximates a target posterior distribution P by N weighted point
samples or particles. As pointed out in the previous discussion, here we
attempt to approximate the marginal posterior over segmentations of a
corpus – thus, each particle corresponds to a segmentation hypothesis.
In terms of the original segmentation model, each latent segmentation
actually provides the sufficient statistics for an entire distribution over
infinite distributions over possible words (see also section ...).
Thus, each particle corresponds to a set of hypotheses (this idea is

similar to that of Steinhardt and Liang, ) in the sense discussed
for the circles in Figure .. It is assigned a weight that reflects how
well this set of hypotheses or, equivalently, the corresponding latent
segmentation, is supported by the observations processed so far. At ev-
ery time-step, the set of particles only represents a sample from the
full hypothesis space and the weights represent the marginal posterior
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probability of each latent segmentation. Using these weights, we can
calculate a Monte Carlo approximation to the marginal posterior prob-
ability of every segmentation at each time.

Algorithmically, a particle filter starts from N initial particles which
reflect only the prior knowledge encoded in the model. Each individual
particle is updated sequentially by randomly sampling among possible
future ‘extensions’ of its corresponding latent segmentation in the sense
illustrated in Figure .. After each update, the weight of the particle
is adjusted to indicate how well the sampled extension fits the next
observation, increasing the weight of particles that provide assign high
probability to it and decreasing the weight of those that assign low
probability. To specify this in more detail the notion of a state space
model is useful.

.. State space model

A state space model defines how a latent state Z evolves over time
and generates observed measurements U at every time-step. Sequential
inference aims to identify the posterior distribution over latent states
at each time-step given only the observations up to this time-step, i.e.
P(Zt | Y1:t).
We can recast word segmentation as such a problem by considering

segmentations S1:t to be the latent states of which we only ever observe
the associated unsegmented utterances U1:t. Incremental inference for
the posterior over segmentations amounts to inferring the latent se-
quence of segmentations form the observed unsegmented utterances.
A state space model is defined in terms of two conditional distribu-

tions. A state-transition probability distribution P(ht+1 | ht) governs
the transition between the latent state at time t and the latent state
t+ 1; in the segmentation model, the latent states at time t are seating
arrangements that correspond to the specific segmentation choices s1:t
made for all observed utterances u1:t. And a distribution P(ut | ht) that
generates the observation at time t given the latent state at time t, in
this case an unsegmented utterance. The relationship between segmen-
tations and seating arrangements is explained in more detail in Chapter
 – for ease of presentation, I will usually depict latent states only as
segmentations rather than corresponding seating arrangements, as in
Figure ..
I define the transition function for latent states in a two step pro-

cess as follows. Assume we already have generated latent t segmented
utterances and a corresponding seating arrangement ht, i.e. a particu-
lar latent state at time t. At t = 0, this will just be an empty seating
arrangement h0 as no observations have been made.

 In this sense, the particle filter approximates the exact posterior distribution which,
as discussed in section .., is a mixture of DPs with one component per latent
segmentation as a mixture that only has n components, one for each particle.
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To generate a latent state for time t = 1, we first sample a random
sequence of words by running the generative process that underlies the
word segmentation model. This amounts to sampling from the poste-
rior predictive distribution P(W | h0) until an utterance boundary is
generated (see Chapter , equations . and .). I write this as

w1 | h0 ∼ P(· | h0)

w1 is the latent segmentation for the first observation. Given the
words that make up w1, we can update h0 accordingly which I write
as

h1 | w1 = update(h0,w1)

For this, we use the function update which sequentially adds cus-
tomers to an existing seating arrangement. Thus, we have generated
one particular latent state at t = 1 by first randomly generating a se-
quence of words and then using this sequence of words to update the
seating arrangement h0. We now repeat the process with the second
observation, first generating a random sequence of words from P(· | h1)
and updating h1 to h2 using this sequence of words. For the general
case, an update step can be written as

wt+1 | ht ∼ P(·,ht) (.)

ht+1 | wt+1 = update(ht,wt+1) (.)

Specifying the probability distribution that generates observations
from the latent state is trivial as the observation at time t+ 1 is just
the concatenation of the words wt+1 that were generated in sampling
the current latent state ht+1.

ut+1 | wt+1 = Concat(wt+1)

.. Naive Particle Filter

Particle filters perform inference in a state-space model by forward-
simulating a finite number of n particles. At every time t, we assume to
have access to a set of particles h(1:n)

t with weightsw(1:n)
t that provide

a Monte Carlo approximation to the posterior distribution of interest
at time t:

P̂(Ht = x | u1:t) =

n∑
i=1

w
(i)
t 1[x = h

(i)
t ]

 Note that I am merely defining the state space model under which inference will
be performed rather than the actual inference algorithm. Hence, the ‘segmentations’
are sampled unconditionally on any observation as they define what the observations
are. See the discussion of generative models and inference in section ..

 I use super-scripts to refer to individual particles. Thus, h(i)t refers to the ith particle
at time t; h(1:n)t refers to the set of n particles at time t.
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For time t = 0, a set of initial particles is usually generated by sam-
pling from the prior distribution and assigning equal weight to every
particle. As we perform inference under a collapsed representation, each
initial particle corresponds to an empty seating arrangement.

Given a set of weighted particles at time t, we generate a novel set
of particles at time t+ 1 through two steps. First, we update each in-
dividual particle through performing a ‘forward-simulation’ step. That
is, we sample

h
(i)
t+1 ∼ P(Zt+1 = h

(i)
t+1 | Zt+1 = h

(i)
t )

as defined by the state space model. Secondly, we update the weights
to take into account the novel observation ut+1, essentially multiplying
the previous weight w(i)

t and the joint probability of the novel latent
state and the observation P(ut+1,h(i)t+1 | h

(i)
t ).

I won’t go into the details of this general algorithm, known as the
Bootstrap filter (Gordon et al., ), because it exhibits a severe short-
coming for applications such as ours: in particular, P(ut+1 | ĥt+1) is
non-zero if and only if the words which were randomly sampled in the
update step can be concatenated such that they make up ut+1. This is
a consequence of choosing a deterministic mapping using the Concat
function to generate observations from latent states.
If sampling the new latent state is not constrained by the next obser-

vation, in such a case most proposed particles will assign 0 probability
to the next observation (as their corresponding segmentation is incom-
patible with the observed sequence of segments) and, consequently, end
up with a new weight of 0. This is illustrated in Figure . where each
dashed line indicates a particle that is incompatible with the next ob-
servation. In a high-dimensional space such as ours, one can expect
virtually every proposed extension to be assigned a weight of 0, making
application of this kind of inference practically impossible.
Luckily, this is not the only way to perform particle filtering. Murphy

() argues that it is “much better to actually look at the data ut
when generating a proposal.” (p. ) It can be shown that the optimal
distribution according to which one should evolve particles is P(ĥ(t+1)i |

ĥ
(t)
i ,ut+1) (ibid.), rather than using simple forward-simulation from
P(· | h(i)t ) which ignores ut+1.
Following this suggestion, we will sample the segmentation used to

update a particle a particle from the conditional distribution over seg-
mentations given the current observation P(· | h,u) rather than P(· | h).
This ensures that all updated particles will be assigned non-zero weights
but raises the practical problem of how one can sample from P(· | h,u),
i.e. the posterior distribution over segmentations for a given unseg-
mented utterance u and a seating arrangement h.
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Figure .: Illustration of the Bootstrap particle filter and its problem of
generating extensions that are ‘incompatible’ with the next obser-
vation, resulting in particles with weight 0 (indicated as dashed
lines that do not result in a novel particle). Refer to text for dis-
cussion.

.. Data-driven simulation using Sequential Importance Sampling

Sequential Importance sampling (Murphy, , p.ff) sidesteps this
problem by allowing to update particles using any proposal distribution
Q provided its support includes that of the conditional distribution P(· |
h,u) from which we really want to sample. All that is required is that
we be able to calculate the probability of every sampled segmentation
according to P(· | h,u) which, as we will see, can be done rather easily
in this case, even if sampling from P directly is infeasible.

Thus, one can choose any distribution Q from which it is easy to
sample to propose the updates and simply correct for the fact that
we extended the particles to a different distribution in the particle re-
weighting step, ensuring that the particle filter still provides an approx-
imation to the intended posterior. The use of a proposal distribution is
similar to Metropolis-Hastings sampling as used in, e.g., Johnson et al.
(b). The main difference is that, rather than rejecting generated
samples with some probability, one corrects for the difference between
proposal and true target distribution through a weighting scheme.
I briefly review the proposal distribution the algorithm makes use of

which was originally introduced in Mochihashi et al. () and is simi-
lar to the backward-sampling idea presented in Johnson et al. (b).
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... Blocked sampling from a proposal distribution

To propose extensions of a particle, we need a distribution that is de-
fined over segmentations of a given utterance u. Ideally, we want this
distribution to be as close as possible to the true posterior distribution
P(· | h,u) defined by the word segmentation model in terms of the pos-
terior predictive distribution induced by the seating arrangement h. For
the Unigram model, this is

P(w1:n | h,u) = P(w1 | h)

(
n∏
i=2

(P(wi | h
⋃
w1:i−1)(1− ps)

)
× ps1[Concat(w1:n) = u]

The reason this distribution is hard to sample from is that to calculate
this probability exactly, the seating arrangement h needs to sequentially
updated after every individual word in the sequence, indicated by writ-
ing h

⋃
w1:i−1. This adds two dimensions of complexity, the first being

that the process of updating a seating arrangement itself is random
rather than deterministic and no known closed formula to marginalize
over all possible seating arrangements is known. Secondly, the sequen-
tial updates make it impossible to marginalize over partial segmenta-
tions of u as the exact identity of the words used in a segmentation
affects the probability of words that can be used to segment the re-
mainder of u, rendering Dynamic Programming that relies on this kind
of overlapping-subproblem structure inapplicable.

There is, however, a straight-forward way of sampling from a slightly
different distribution that simply ignores these two issues:

Q(w1:n | h,u) =

(
n∏
i=1

P(wi | h)(1− ps)

)
ps

(1− ps)
1[Concat(w1:n) = u]

The sole difference to P(· | h,u) is that the probability of every
word is calculated using h rather than updating h during calculation.
This makes it possible to perform efficient sampling using a forward-
backward sampling scheme as has been first presented by Mochihashi
et al. (). As they only give the details for the Bigram model, I
present this algorithm for the Unigram model.
Assume an unsegmented utterance u consisting of n phonemes and a

seating arrangement h that defines the posterior predictive distribution
P(w | h) for every possible word. We build a chart of dimensions 1×n
in which each cell chart[i] contains the marginal probability according
to Q of an utterance that consists of the first i segments of u, u1:i – this
is also called the forward-probability of u1:i. This idea is illustrated in
Table . where the nth column contains the sum of the probabilities

 For simplicity, I assume a fixed stopping probability ps, rather than integrating this
parameter out. Extension along those lines is trivial and automatically dealt with
by the re-weighting step.

 See the discussion in Chapter .



. sequential importance sampling resampling 

function Sample(chart,u)
n = |u| . determine length of unsegmented utterance
sl← n . start with full utterance
i← 1 . index of generated words
while sl > 0 do

sample k ∝ P(usl−k+1:sl | h)chart[sl− k] . length of last
word

wi ← usl−k+1:sl . word spans from sl− k+ 1 to sl
i← i+ 1

sl← sl− k . subtract sampled word from utterance
end while
return w = wi,wi−1, . . . ,w1 . reverse sequence

end function

Figure .: Backward sampling for the Unigram model. At every iteration,
a word among all suffixes of u1:sl (an unsegmented utterance of
length sl) is sampled, starting with sl = n, i.e. the entire utter-
ance. Once a word has been sampled, the length of this word is
subtracted from sl and, until sl = 0, the process is repeated. The
segmentation is the reversed sequence of words that have been
sampled, and sequences will be sampled according to Q(w | h,u).
The required chart can be built using equation ..

of all possible segmentations of u1:n, the length n prefix of utterance
u. We can fill the chart efficiently going from left to right by taking
chart[0] = 1.0 by using

chart[k] =

(
k−1∑
i=1

chart[k− i− 1](1− ps)P(uk−i:k | h)

)
+ P(c1:k | h)

(.)

For the short utterance dog, Table . illustrates the full chart and
how the probability of the individual cells is calculated.
Given such a chart, one can sample a segmentation by making a

backwards-pass as follows. Let sl be the length of the entire utterance.
Then, sample the last word of the segmentation by sampling among
all possible suffixes of u1:sl – the probability that the last word of
a segmentation is usl−k+1:n is P(usl−k+1:n | h)chart[sl− k], i.e. the
probability of generating the final word of length k times the marginal
probability of the remaining prefix of the utterance. Having sampled a
last word, set sl = sl− k and repeat until sl = 0, i.e. until there is no
unsegmented prefix left. This algorithm is defined in Figure ..

. sequential importance sampling resampling

With this, everything needed for a sequential importance resampling
particle filter (Doucet et al., ; Murphy, ) for word segmentation
is in place. I introduce the algorithm and discuss its performance on a
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:ε :d :do :dog

. P(d | h)
P(do | h)+

P(o | h)(1− ps)α[1]

P(dog | h)+

P(og | h)(1− ps)α[1]+

P(g | h)(1− ps)α[2]

Table .: Illustration of the chart for the utterance u =dog. For readabil-
ity, I augment the index with the span of the utterance which is
covered by the column – column i spans the initial i segments of
u. chart[0] = 1.0 is required for the backward sampling pass in
Figure ..

toy example before evaluating its performance on actual child directed
speech.
The algorithm is defined in Figure . and proceeds as follows. At

time i = 0, initialize n identical empty seating arrangements or par-
ticles h(0)

1:N. At each time step i+ 1, we update each particle h(i)l by
first sampling a segmentation σ = w1:m from Q(· | h(i)l ,ui), i.e. the
proposal distribution over segmentations given the previous seating ar-
rangement and the current observation. This is done using the algorithm
in Figure ..
A subtle but important detail is that the proposal distribution is only

defined over actual sequences of words whereas the hypotheses the par-
ticle filter considers are seating arrangements. Rather than modifying
the proposal distribution to generate an assignment of words to tables
in h(p)t directly when sampling a segmentation from P(· | ut,h(p)t ),
we generate such an assignment ‘on-the-fly’ upon updating the parti-
cle with the proposed segmentation, keeping track of the probability of
each individual seating choice made during the update.

This is achieved using the function update as defined in Figure .
which makes use of the addCustomer functions defined in Chapter .
Note that depending on whether the Unigram or Bigram model is used,
a different implementation of update is used as the way of calculating
the probability for a segmentation differs between the two models, as
do the addCustomer functions used. Except for this, the algorithm is
generic and applies to both the Unigram and the Bigram model and can,
if the sample and update functions are appropriately changed, applied
to any other model as well.

 For quite technical reasons, modifying the proposal distribution is rather challeng-
ing. In particular if the segmentation contains multiple copies of a novel word-type,
one needs to ensure that assignments in which these tokens share a table are also
generated with non-zero probability, adding considerable complexity. In contrast,
my method of generating the seating assignment on the fly side-steps this problem
completely.
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: function PF(n,u1:m)
: initialize n empty seating arrangements (=particles) h(1:n)

0

: set all initial weights w(1:n)
0 to 1

n

: for t = 1→ m do
: for p = 1→ n do
: sample σt ∼ Q(· | h(p)t−1,ut) . using Figure .
: h

(p)
t ,ptrue = update(h(p)t−1,σt)

: w̃
(p)
t = ptrue/Q(σt | h

(p)
t−1,ut)

: end for
: for p = 1→ n do

: w
(p)
t =

w̃
(p)
t∑n

p ′=1 w̃
(p ′)
t

. normalize weights

: end for
: ÊSS = 1/(

∑n
p=1 (w

(p)
t )2)

: if ÊSS 6 threshold then . Resampling
: resample all particles according to w(1:n)

t

: set all weights to 1
n

: end if
: end for
: end function
function update(h,σ) . for Unigram model
ptrue = 1.0
for i = 1→ |σ|− 1 do
ptrue = ptrue × P(c | h)× addCustomer(σi,h)

end for
ptrue = ptrue × P(s | h)× addCustomer(σ|σ|,h)
return ptrue

end function
function update(h,σ) . for Bigram model
ptrue = 1.0
wp = $ . preceding word
for i = 1→ |σ| do
ptrue = ptrue × addCustomer(wp,σi,h)
wp = σi

end for
ptrue = ptrue × addCustomer(wp, $)
return ptrue

end function

Figure .: Sequential importance sampling resampling particle filter. The al-
gorithm is identical for the Unigram and the Bigram model except
for the different update function that needs to be used. The sole
difference in these functions concerns accounting for Bigram de-
pendencies and a slightly different treatment of word-boundaries.
The addCustomer functions are defined in Figures . and ..
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After having generated the extended particles using update, the pre-
vious weight w(p)

i−1 of each particle p is updated according to

w̃
(p)
i = w

(p)
t−1

P(ut | h
(p)
t )P(h

(p)
t | h

(p)
t−1)

Q(σ | h
(p)
i−1,ui)

= w
(p)
t−1

ptrue

Q(σt | h
(p)
t−1,ut)

This is the general weight update formula for a sequential importance
sampling particle filter (Murphy, , p. ) as applied to the spe-
cific example of word segmentation. This involves the ratio between the
probability of the proposed extension according to the target distribu-
tion P(· | h,u) and according to the proposal distribution Q(· | h,u) –
these so called importance weights give the algorithm its name.
To calculate P(h(p)t | h

(p)
t−1), i.e. the transition probability of transi-

tioning from latent state h(p)t−1 into latent state h(p)t , we use the def-
inition of this distribution in terms of sampling a random sequence
of words and adding these words to a seating arrangement (see equa-
tions . and .). Thus, this probability is simply the probability of
generating the words that comprise the latent segmentation at time t
from h

(p)
t−1 which I write as ptrue to emphasize that this probability has

to be calculated according to the model and not the proposal distri-
bution Q. This probability is automatically calculated by update and
makes up the entire numerator. The reason we can drop the P(ut | h

(p)
t )

factor is that the way in which h(p)t is generated ensures that it is 1.0:
only sequences of words that can be concatenated to yield ut are as-
signed non-zero probability by the proposal distribution, and for every
such sequence P(ut | h

(p)
t ) = 1.0.

The denominator – the marginal probability of the new observation
according to the proposal distribution – can be calculated for any σ =

w1:n using

Q(σ | h,u) =
Q(σ,u | h)

Q(u | h)
(.)

=
Q(σ | h)

Q(u | h)
(.)

Q(σ | h) =

P(σ1 | h)(
∏|σ|
i=2(1− ps)P(σi | h))ps

P(σ1 | $,h)
(∏|σ|

i=2 P(σi | σi−1,h)
)
P($ | σ|σ|,h)

(.)

Q(u | h) = chart[n]

By construction, chart[n] contains the marginal probability of the
utterance, that is, Q(u | h). For equation ., one needs to distin-
guish the Unigram (upper) and Bigram (lower) case. We can simplify
Q(σ,u | h) to Q(σ | h) because Q(u | σ,h) = 1 for every segmentation
that is compatible with u and 0 for every other.

 For the Unigram model, we need to multiply in the probability of generating the
utterance boundary, hence Q(u | h) = α[n]ps.
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Figure .: Graphical depiction of a simulated run of the sequential impor-
tance sampling particle filter.

Finally, we renormalize the particle weights to ensure they character-
ize a probability distribution, yielding the new set of weights w(i)

1:n.
For now, I ignore the final resampling step in lines 11 to 14 and will

return to it after looking at a worked example of the algorithm described
so far which is known simply as sequential importance sampling.

.. A worked example

Figure . depicts in detail the evolution of a set of 8 particles using
the sequential importance sampling algorithm on the toy corpus used
in Figure ..
Each circle corresponds to a particle, identified by the specific segmen-

tation it corresponds to and its weight. There can be several particles
that are identical, as is the case for the three particles at time t = 1

that all correspond to the segmentation ab cd. According to this spe-
cific set of particles, the approximate posterior probability of ab cd
will be 3× 0.17 = 0.41 which is quite different from the true posterior
probability of 0.13 (see Figure .).

 While for ease of visualization, I represent particles through the associated sequence
of segmentations, recall that each particle corresponds to a specific seating arrange-
ment rather than a sequence of segmentation choices.



 particle filters for word segmentation

P(〈ab cd, de fg, cd de〉 | u1:3) % Particles

True .

,, . .

, . .

, . .

Table .: Posterior probability of the MAP segmentation at t = 3 for very
large numbers of Particles. Also given is the fraction of particles
that correspond to this MAP segmentation which is roughly 1.5%
despite these particles accounting for roughly 70% of the posterior
probability mass.

This illustrates a general issue of simulations based on random sam-
pling – we may simply be “unlucky” and the most frequent outcome
in a set of samples may not coincide with the most probable outcome
according to the distribution we try to approximate. Indeed, this par-
ticular set of particles does not contain a particle that corresponds to
the true MAP hypothesis at t = 1, assigning 0 probability rather than
0.53 to the segmentation abcd. Of course, this danger gets smaller as we
increase the number of samples and Tables . and . show how larger
numbers of particles lead to better approximations, getting arbitrarily
close to the true posterior in the limit.
Despite its shortcomings, the 8 particle example is useful for under-

standing the idea of the algorithm. In particular, it allows us to track
how individual particles are extended according to the algorithm in Fig-
ure . – the trajectory of each particle is indicated by blue arrows in
Figure ..
In this particular run, two of the ab cd particles get extended by

choosing def g as the segmentation of the second observation whereas
the third one gets extended with defg, resulting in different weights
for these particles at time t = 2. This shows why it is important to
have multiple identical particles as otherwise, only one possible future
extensions of every hypothesis could be explored.
We also see that the particle abc d at time t = 1 gets extended using

d efg, ending up with the highest weight at t = 2. This is due to the
fact that it is able to ‘reuse’ the word d, indicated by boldface in the
figure, and thus can assign higher probability to the second observation
than any of the competing particles who do not ‘spot’ an already known
word in their analysis of the observation. Interestingly, the other two
hypotheses that posited a word d at t = 1 are updated in a way that
does not reuse the word, resulting in lower posterior weights at time
t = 2. Again, this reflects the random nature of the update – rather
than deterministically picking the highest probability extensions, we
randomly sample segmentations.

Unsurprisingly, the posterior approximation at t = 2 is no better
than it was at t = 1, assigning the highest weight to a particle that
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corresponds to abc d / d efg, a hypothesis that under the true posterior
only has a probability of 0.11. It also still assigns 0 probability to the
true MAP hypothesis abcd / defg as it could not have generated it,
lacking a particle that corresponds to abcd at t = 1. This illustrates
a general issue with incremental inference algorithms – if a hypothesis
is not generated at some point, the algorithm will never be able to
consider it even if later evidence speaks strongly in favor of it. Thus, a
strictly incremental particle filter can get side-tracked through ‘unlucky’
choices and never recover from this, a well-known problem for particle
filters (see e.g. Murphy, , Fig. .) to which I will return in the
discussion.
There are two more points I want to illustrate with this concrete ex-

ample. The first is that a particle’s weight may increase considerably
from one time step to the other, as is evident from comparing the par-
ticles at t = 2 and t = 3: a particle corresponding to the segmentation
ab c d / de fg with weight 0.07 gets extended to a particle that has
a weight of 0.54 at t = 3 because its initial segmentation choices – al-
though scarcely supported at t = 2 – provide a high-probability analysis
of the third observation which reuses the ‘words’ c, d and de as illus-
trated by bold-facing. Conversely, a highly weighted particle can end
up among the lowest weighted particles, an example of which can also
be seen in moving from t = 2 to t = 3. This up- and down-weighting
of particles is how the algorithm can handle the changes in posterior
probabilities illustrated in Figure ..
Finally, Table . compares the most probable  segmentations ac-

cording to the simulation employing 8 particles that I just discussed, a
simulation employing 100 particles and the analytically determined pos-
terior distribution. Alongside each hypothesis, I list how many particles
correspond to this segmentation.
We see that, unlike the simulation using 8 particles, the one with 100

results in a reasonable (though still far from perfect) approximation
to the posterior that correctly identifies the MAP hypothesis at each
time. Looking only at the probability of the most probable hypothe-
sis at t = 3, Table . shows that using ever more particles results in
a perfect approximation, illustrating the asymptotic correctness of the
particle filter – using 1, 000, 000 particles correctly identifies the proba-
bility of the MAP segmentation up to almost 3 decimal places. Yet, it
is striking just how many particles are required to accurately estimate
the probability of the MAP hypothesis even in this toy example which
only considers 3 observations and where the total number of possible
segmentations for the entire corpus is merely 512.
One issue that is apparent from Tables . and . is that at t = 3,

most of the particles correspond to low probability segmentations. Of
the 100 particles, only a single one corresponds to the MAP segmen-
tation while 93 particles are used to account for only 17% of the ap-
proximation. This is because at t = 2, the ‘ancestor’ of this particle
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(corresponding to the segmentation ab cd / de fg) has very low pos-
terior probability and many of the high-probability segmentations at
t = 2 can only be extended into low probability segmentations at t = 3
(see Figure .). Indeed, Table . shows that the fraction of particles
that account for the MAP segmentation at t = 3 is consistently below
2% for large numbers of particles.

.. Resampling

This tendency of a small number of particles to attract most mass and,
as a result, the weights of all other particles getting closer and closer
to 0 is known as the “degeneracy problem, and occurs because we are
sampling in a high-dimensional space (in fact, the space is growing over
time)” (Murphy, , p. ), as was illustrated by Figure ..
There are two related reasons why only a few of the particles taking

up almost all of the weight is undesirable. First, extending particles
with very low weights can be seen as a waste of computation as they
contribute very little to the approximation to the posterior; second,
having only few particles that represent high probability hypotheses
limits the ability to consider alternative extensions of these hypotheses
– we’d rather spend the computation wasted on the low probability
particles on exploring more possible extensions of the high probability
particles.
A straight-forward way of addressing this is to resample the n parti-

cles according to their current weights. This results in high probability
particles having multiple ‘descendants’ which can be independently ex-
tended to explore future possibilites, and in low weight particles being
‘weeded out’, preventing the algorithm to spend any more resources in
exploring how they could be extended. After resampling, the set of parti-
cles constitutes an i.i.d. sample from the original approximate posterior
distribution and we assign equal weight to every resampled particle.
The general idea is illustrated in Figure ..

resampling using residual sampling There are multiple
ways in which one can resample particles. For an experimental evalua-
tion of different strategies, see Douc and Cappé (). I follow their
suggestion to use residual resampling :
First, for every particle h(j)i with weight w(j)

i we calculate M(j) =

bn×w(h)
i c. This is the minimal number of descendants that particle

h(j) will have and it is simply the (integer part of) the number of
times one expects to see particle h(j) if one samples n times from the
distribution defined by the current weights. Due to the rounding down,∑n
k=1M

(k) may be less than n. This is where residual sampling comes
in.
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 True

t seg P̂ n seg P


abcd .  abcd .

ab cd .  abc d .

a bcd .  a bcd .


abcd / defg .  abcd / defg .

abc d / d efg .  abc d / d efg .

abcd / de fg .  abc d / defg .


ab cd / defg / cd de .  ab cd / de fg / cd de .

ab cd / d e fg / cd d e .  a b cd / de fg / cd de .

abcd / de fg / cd de .  ab cd / de f g / cd de .

Table .: Top- segmentations according to true posterior and to a particle
filter with 100 particles and resampling after every observation.

Let r = n−
∑N
k=1M

(k). We generate the remaining r particles by
drawing r times from the distribution defined by the current weights
which is equivalent to drawing a vector 〈M̄1, . . . , M̄N〉 ∼ Mult(r,w(1:n)

i ),
i.e. making a draw from the multinomial distribution over r outcomes
defined by the current particle weights (see Table . for a definition of
the Multinomial distribution).

Finally, we let particle h(j) haveM(j)+M̄(j) descendants after resam-
pling, resulting in n particles which are likely to include many copies
of high probability particles and may completely lack low probability
particles.
An additional question concerns when to perform the resampling

steps. The approximate effective sample size, defined as

ÊSS =
1∑N

i=1(w
(t)
(i))

2

provides an easy to calculate metric according to which one can de-
cide when to resample. If all particles have the same weight ÊSS = N

which indicates that all of the particles contribute to the posterior ap-
proximation. If the weights are heavily skewed, however, ÊSS will be
considerably smaller than N and its magnitude provides a rough esti-
mate of how many of the particles are actually used for the approxi-
mation and how many particles have become “useless”. Whenever ÊSS
falls below a certain threshold (for example N

2 ), a resampling step is
performed and, as all resampled particles have identical weight, after
this ÊSS = N.

I experimented with the thresholds N (corresponding to resampling
after every observation) and N

2 , finding little difference between the
two thresholds. All experiments that follow have been performed with
resampling after every observation.
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Figure .: Illustration of sequential importance sampling resampling

While this addresses the degeneracy problem, it introduces an orthog-
onal issue known as sample impoverishment (Murphy, , p. ).
This is the issue that low probability hypotheses may be completely
lost during a resampling step even though they may be the only hy-
potheses that could have been extended to high probability hypotheses
later on. Basically, the replication of locally high probability particles
leads to an irrecoverable loss of diversity and this may result in the
particle filter getting side-tracked.
For example, consider again the low-probability hypothesis in Fig-

ure . at t = 2 which ends up as the highest probability hypothesis at
t = 3. Having a local probability less than 1%, particles corresponding
to this hypothesis are very likely to be weeded out, eliminating the MAP
hypothesis completely from the posterior approximations that can be
generated at t = 3 by extending the current set of particles.

The problem is illustrated by Table . which provides posterior ap-
proximations from a 100 particle particle filter which resamples after
every observation. While we see that at t = 2, the approximation is
reasonable and the number of particles corresponds to the posterior
probability of the corresponding hypothesis, at t = 3 the posterior
approximation is completely off – in fact, the true MAP hypothesis
is assigned probability 0 as the locally low probability hypothesis cor-
responding to ab cd / de fg was ‘weeded out’ at time t = 2, making
it impossible to draw the correct conclusion from the observation at
t = 3. Again, using more particles will address this problem although,
as before, the number of particles that is required to perform accurate
inference may be impractically high for all but small examples.
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. experimental evaluation

After having looked in some detail at the algorithm and its performance
on a toy example, I now turn to evaluating the sequential sampling
resampling particle filter to actual child directed speech.

There are two questions of interest with respect to the performance of
the algorithm. First, we would like to know how faithful the algorithm
is to the original model, i.e. whether the approximation to the posterior
distribution it infers is close to the true posterior distribution. As it
is hard to perform qualitative evaluation of the kind illustrated in Ta-
ble . in a setting which comprises hundreds of particles and hundreds
of utterances, I evaluate the quality of the posterior approximation by
the expected negative log-probability of the segmentations found by an
algorithm.

The idea behind this is that an accurate posterior approximation
ought to concentrate most of its mass on high probability segmen-
tations and thus, result in a better expected negative log-probability.
Crucially, we can easily calculate this for every particle (see Chapter ),
and for each particle filter, we can calculate the expectation by taking a
weighted sum according to the current particle weights. This is also the
metric which Pearl et al. () used to compare inference performance
of their incremental DMCMC learner and the batch sampler.
Similarly, as we cannot determine the true posterior I use the batch

sampler of Chapter  for comparison, considering the expected negative
log-probability of the sample segmentations it generates as reference
point for the particle filter – ideally, the particle filters should attain an
expected negative log-probability that is close to or even better than
that of the batch sampler. To get an idea of how important annealing
(see Chapter ) is for the batch Gibbs sampler, I compare a ‘vanilla’
Gibbs sampler batch that does not use annealing and a Gibbs sampler
using the simulated annealing schedule discussed in Chapter , batch-
anneal. I initialize each batch sampler randomly by putting a bound-
ary at every possible position with probability 0.5 although preliminary
experiments suggested that different initialization schemes (putting no
boundaries at all, putting boundaries with at random with higher or
lower probability) had no noticeable effects on performance.

Second, we would like to know how well each algorithm performs in
terms of the segmentation. As is common, I calculate precision, recall
and the harmonic mean of the two, f-measure, for tokens, boundaries
and types in the lexicon (see Chapter ). For the batch samplers, I calcu-
late the maximum marginal segmentation for each individual utterance
in the corpus from all the samples collected during a run. For the particle
filters, I build the maximum marginal segmentation for each utterance

 This is essentially the idea Goldwater () used to asses how well a sampler
converged onto the true posterior.
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by considering the segmentation posited by each particle according to
its weight.
Table . illustrated that particle filters perform better with larger

numbers of particles, converging to an exact inference algorithm in the
(theoretical) limit where the number of particles goes towards infinity.
While there are obvious practical constraints on the number of parti-
cles with which one can experiment, I compare a particle filter with a
single particle (also called ‘Dynamic Programming Sampling’ by Pearl
et al. ()), 100 and 10, 000 particles, always running 10 independent
simulations for each algorithm. We refer to these algorithms as pf-,
pf- and pf-,.
For the Gibbs samplers, I run 10 independent simulations for 20, 000

iterations, considering the first 10, 000 iterations as burn-in. For batch-
anneal, the temperature was raised from 10 to 1 during the first 10, 000
iterations to facilitate convergence on the target distribution, using the
same schedule as in Chapter . Over the last 10, 000 iterations, every
10th sample was collected, for a total of 1000 samples from each simu-
lation.
As a ‘baseline’ I consider the dpm algorithm which is a heuristic local

MAP algorithm (see above).
As test data, I use the Alice section of the Brent-Bernstein-Ratner

corpus already used in Chapter . While previous work evaluated on the
entire Brent-Bernstein-Ratner corpus, as mentioned before this corpus
is a concatenation of 9 distinct corpora. Also, “[a] well-known prob-
lem with the particle filter is that its performance degrades quickly
when the dimension of the state dimension increase” (Gustafsson et al.,
) which, considering that the state-space grows exponentially in
the length of the corpus, suggests that differences between incremen-
tal and batch inference are going to become more severe over time. In
fact, Börschinger and Johnson (), Börschinger and Johnson ()
and, for different online learners, Pearl et al. () and Phillips and
Pearl (in press) evaluate on larger corpora and report large differences
between all incremental and batch learners.
In contrast, here I look at natural corpus comprising roughly 1000

utterances directed at a single child rather than concatenating corpora
which have been collected across multiple infants (such as the Brent-
Bernstein-Ratner corpus) and provide a more detailed analysis. This
allows me also to show, for the first time to my knowledge, that in-
cremental inference can, indeed, be ‘more efficient’ than naive batch
inference that does not rely on additional techniques such as simulated
annealing.

.. Parameter settings

Both the Unigram and the Bigram model have several parameters which
I set to those reported in Goldwater et al. () as yielding the best
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performance: α0 = 20 for the Unigram model and α0 = 3000,α1 = 100
for the Bigram model. For a detailed explanation of the two models and
the parameters, see Figure . on page  and Figure . on page .
Additionally, I compare a ‘restricted’ base distribution like the one de-
fined in Figure . on page  with the unrestricted Unigram phoneme
distribution of Figure . on page  to see whether this has an impact
on incremental inference. Whereas the Unigram phoneme distribution
assigns non-zero probability to every possible sequence of phonemes, in-
cluding obviously non-words such as very long sequences of exclusively
consonants, the restricted base distribution assumes a possible word
constraint (Norris et al., ) that assigns 0 probability to words that
lack at least a single vowel.

Thus, I consider two settings for each model, referring to those as
uni-nc (unigram with no possible word constraint), uni-sc (unigram
with possible word constraint), and bi-nc and bi-sc for the Bigram
model.

.. Unigram Model

... Inference without possible word constraint

Table . gives median segmentation scores for the different algorithms,
averaged over 10 independent simulations. To get an idea of the vari-
ance, Figure . plots mean token f-score, boundary precision, boundary
recall, lexicon precision and lexicon recall for the particle filters and 2
batch Gibbs samplers as box-plots. These plots exclude the dpm algo-
rithm which does not have any variance across runs.
For the uni-nc setting, we find that the number of particles has a

dramatic effect on all metrics, with more particles leading to consistently
better performance and, as is evident from Figure ., lower variance.
The batch samplers exhibit very little variance on all metrics, indi-

cating that they reliably converge to a mode of the posterior. Yet, there
is a noticeable difference between batch and batch-anneal, indicat-
ing that the two batch samplers are attracted to different modes, with
batch-anneal getting slightly better token f-score.
In terms of segmentation performance, pf- has a median token f-

score of only 29% with scores ranging from 5% to 42% whereas pf-
reaches a median token f-score of 46% with scores ranging from 33 to
60%, worse than either of the batch samplers which reach 66% (batch-
anneal) and 62% (batch), respectively.

pf-,’s token f-score is close to that of batch with 60%, illus-
trating how using more particles brings performance of the incremental
algorithm closer to that of the batch samplers.
The simple dpm algorithm outperforms pf- and, perhaps slightly

surprising, pf- although its 51% token f-score are well below that of
pf-, and the batch samplers.
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algorithm tf bp br lp lr -logProb×103

pf- . . . . . .

pf- . . . . . .

pf-, . . . . . .

dpm . . . . . .

batch . . . . . .

batch-anneal . . . . . .

Table .: Segmentation performance for the Unigram model without possible
word constraint. “tf”, “bp”, “br”, “lp”, and “lr” are short for token f-
score, boundary precision, boundary recall, lexicon precision and
lexicon recall, respectively.

Looking beyond token f-score, we see that the segmentations inferred
by the particle filters and the batch samplers differ qualitatively. Whereas
both batch samplers get well above 90% boundary precision with virtu-
ally no variance across runs, pf- reaches only 49%, pf- only 69%
and pf-, ‘only’ 83%. Of all the incremental learners, the dpm
baseline attains the highest boundary precision with 86%.

pf- exhibits higher boundary recall than precision although neither
score is particularly good and remains behind those of the other al-
gorithms. Yet, all other algorithms have higher precision than recall,
indicating the kind of undersegmentation behavior Goldwater ()
identified for the Unigram model. This is particularly striking for the
dpm learner whose recall is below 50%, accounting for its mediocre
token f-score despite the high boundary precision. While we see that us-
ing more particles increases boundary precision and recall, pf-,’s
precision is still roughly 10% lower than that of either batch samplers.
Boundary recall explains the difference between batch and batch-

anneal. The former only gets 64% recall to its 90% precision, indicat-
ing severe undersegmentation. In contrast, batch-anneal gets 74%
boundary recall, still considerably less than its precision but notice-
ably higher than that of batch, accounting for the difference in token
f-score.
Finally, the lexicon scores indicate that even though pf-, per-

forms very similarly to the batch samplers in terms of token f-score, it
both posits more non-word types in its segmentation (lower precision)
and identifies fewer of the gold word types (lower precision) than the
batch samplers.
With this, I turn to comparing inference rather than segmentation

performance according to the expected negative log-probabilities. To
get an idea of the variance, Figure . plots the expected negative log-
probability for the segmentations of all 1093 utterances for the differ-
ence algorithm which is also given in Table .; here, lower means higher
probability and, consequently, better. Again, we see that the batch sam-
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Negative log-probability of segmentations

algorithm pf-1 pf-100 pf-10,000 batch batch-anneal
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Figure .: Negative log-probabilities for the 1093 segmented utterances ac-
cording to the particle filters and batch Gibbs samplers with and
without annealing; lower means better (see text). We see a clear
improvement in going from pf- to pf-, and then moving
towards batch sampling without annealing. Best inference perfor-
mance is achieved by Gibbs sampling with annealing. Also note
that adding the possible word constraint does not affect the rank-
ing but dramatically reduces variance for the 1 particle particle
filter.

plers exhibit virtually no variance whereas the particle filters’ variance
decreases with number of particles.
Not surprisingly, we see that using more particles improves the ex-

pected negative log-probability; there is, however, still a noticeable gap
between pf-, and the two Gibbs samplers, indicating that offline
inference is considerably more efficient. We also see a small if notice-
able difference between batch and batch-anneal, suggesting that
even for batch inference, details of the inference algorithm can impact
the quality of the posterior approximation.
We also find that even though pf-, is the best performing in-

cremental algorithm, dpm comes in second and outperforms pf- in
terms of expected negative log-probability, indicating that a rather large
number of particles is required to outperform the simple dpm base-line.

... Inference with the possible word constraint

The scores for the uni-sc setting are given in Table . and Figure .
and show that adding the possible word constraint changes the picture.
First, there are much smaller differences in segmentation accuracy as

measured by token f-score between dpm, pf- and pf-, all of which
now achieve between 55% and 58%. In contrast, the constraint has
virtually no effect on the performance of the batch samplers whose token
f-scores stay roughly the same to uni-nc. Yet, unlike for uni-nc pf-
, now comes out as the best-performing segmentation algorithm,
with 70% token f-score.

Despite the similarities in token f-score the actual segmentations iden-
tified by batch and incremental algorithms still differ considerably.
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algorithm tf bp br lp lr -logProb×103

pf- . . . . . .

pf- . . . . . .

pf-, . . . . . .

dpm . . . . . .

batch . . . . . .

batch-anneal . . . . . .

Table .: Segmentation performance for the Unigram model with possible
word constraint.

Turning to boundary scores, we first note that compared to uni-nc,
all algorithms get higher precisions. pf- and pf- now get scores
well over 80% (over the low 49 and 69%, respectively). pf-, even
reaches 92% boundary precision although the two batch samplers get
slightly better still with 93% (batch) and 94% (batch-anneal). dpm’s
boundary precision also increases to 90%, outperforming pf- and pf-
 but being outperformed by pf-,. dpm also gets a minor boost
in its already high precision, now reaching 90%, slightly lower than that
of pf- and better than that of pf- and pf-.
The increase in boundary precision is not surprising as the possible

word constraint rules out many segmentations that posit boundaries
at ‘impossible’ positions (yielding words that lack a syllabic segment).
Yet, it is striking that whereas batch learners and dpm were able to
identify boundaries with high precision even without such a constraint,
the particle filters – in particular those that make use of relatively few
particles – benefit tremendously from it.
On the other hand, boundary recall is almost entirely unaffected.

batch’s is still is roughly on par with pf- and pf-, and pf-
is virtually identical to batch-anneal, with dpm also remaining at
roughly 50%.
The lexicon scores show that all the particle filters get a noticeable

boost in lexicon precision and recall but still are considerably worse than
those of batch and batch-anneal. This is particularly interesting for
pf-, as it attains the overall best token f-score but has consider-
ably lower lexicon precision and recall than either of the batch samplers.
Arguably, this is because the incremental learner reliably segments high
frequency items.
Turning to inference performance as measured by negative log-probability,

we see both from the table and in Figure . that adding the possible
word constraint decreases variance for pf- and pf- and, overall,
makes the gap between the particle filters smaller. It does, however,
neither close the gap between pf- and batch nor between batch
and batchAnneal. If anything, the latter gap seems to have widened
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algorithm tf bp br lp lr -logProb×103

pf- . . . . . .

pf- . . . . . .

pf-, . . . . . .

dpm . . . . . .

batch . . . . . .

batch-anneal . . . . . .

Table .: Segmentation scores for the Bigram model without possible word
constraint.

slightly, that is, it looks as if with the added constraint the difference
between batch-anneal and batch is more pronounced.

We also see that with the possible word constraint, pf- is not only
able to outperform dpm on segmentation metrics but also in terms of
expected log-probability, indicating that for more constrained models a
particle filter with relatively few particles has a chance of outperforming
the strong dpm baseline.
Overall, then, we find that the base distribution leaves batch infer-

ence rather unaffected but makes a big difference for the incremental
algorithms. I return to this point in the discussion.

.. Bigram model

... Inference without possible word constraint

Table . reports the median scores across the 10 simulations for the
algorithms in the bi-nc setting. Figure . provides the corresponding
box-plots to give an idea of the variance. The most striking difference to
the uni-nc setting is the large gap between all of the particle filters and
the batch samplers, as well as the rather large difference between batch
and batchAnneal. In addition, even pf-, is outperformed by
dpm, suggesting that for this model, even as many as 10, 000 particles
do not result in very accurate incremental inference.

With respect to token f-score, batch-anneal performs best with a
median of 74%. In contrast, batch only gets a median of 66%. Thus,
annealing makes an even bigger difference for the Bigram than for the
Unigram model.
The particle filters now all perform considerably worse, pf- with

roughly 20%, pf- with roughly 32% and pf-, with only 44%
token f-score. Thus, while we still see clear improvements in increasing

 Comparing the respective negative log-probabilities, though, we see that pf-,
identifies higher probability-segmentations than dpm, also suggesting the possibil-
ity that the posterior distribution is multi-modal and that the particle filter gets
attracted by a mode that corresponds to lower accuracy segmentations than dpm.
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Negative log-probability of segmentations

algorithm pf-1 pf-100 pf-10,000 batch batch-anneal
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Figure .: Negative log-probabilities for the segmentations of the 1093 ut-
terances found by the particle filters and batch Gibbs samplers
with and without annealing. Lower means better. We see a clear
improvement in going from pf- to pf-, and then moving
towards batch sampling without annealing. Best inference perfor-
mance is achieved by Gibbs sampling with annealing.

the numbers of particles, even pf- is outperformed by almost 10%
by the dpm algorithm which gets 53%. This is despite the fact that the
batch learners actually perform better than under uni-nc, indicating
that the model itself implies higher quality segmentations and that the
incremental learners perform inference rather badly.
The boundary scores indicate that the issue is one of over-segmentation

for the particle filters, as boundary recall is consistently higher for all
of the particle filters than precision. In contrast, the batch samplers
still attain high boundary precision and lower recall, indicating under-
segmentation that is, however, not as severe as for the Unigram model.
This suggests that the Bigram model generally favors segmentations

with more boundaries than the Unigram model, leading to segmenta-
tions with higher recalls. Whereas the batch samplers are able to take
advantage of this as their precision is high, the incremental learners
seem to end up with severely over-segmented solutions which, for pf-
,, remain below 60% boundary precision but well above 70% recall.

Turning to inference performance in Figure ., we see a similar pic-
ture to Figure . in that increasing the number of particles improves
log-probability. Yet, there is still a considerable gap to the Gibbs sam-
plers, and a bigger difference between batch and batch-anneal than
was evident for the Unigram model, consistent with the larger gap be-
tween the two samplers in terms of token f-score.

To sum up, then, incremental inference performs much worse for the
Bigram model than for the Unigram model, both in terms of identifying
accurate word segmentations and high probability solutions.
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algorithm tf bp br lp lr -logProb×103

pf- . . . . . .

pf- . . . . . .

pf-, . . . . . .

dpm . . . . . .

batch . . . . . .

batch-anneal . . . . . .

Table .: Segmentation performance for the Bigram model with possible
word constraint.

... Inference with possible word constraint

Adding the possible word constraint has a similar effect as it had for
the Unigram model although it is, overall, less pronounced, as can be
seen in Table ..

pf-’s token f-score is now 53%, noticeably worse than pf- (62%),
and pf-, performs on par with batch with 66%. The best algo-
rithm is, still, by far batch-anneal with 75%. As for the Unigram
model, dpm is largely unaffected by the possible word-constraint and
now falls, in terms of token f-score, between pf- and pf-.

Another difference to the Unigram model is the fact that of the batch
samplers, only batch-anneal gets a noticeable boost in boundary pre-
cision, and the boundary precision improvements for the particle filters
are much less pronounced than was the case for uni-sc. Yet, they suf-
fice to have all algorithms but pf- clearly undersegment, that is, posit
segmentations with higher boundary precision than recall in line with
the behavior of the batch samplers.
As for inference performance, the picture is similar to that for the

Unigram model although the difference between batch and batch-
anneal is much bigger for bi-sc and, by the same token, that pf-,
comes rather close to batch. This indicates that annealing is of crucial
importance for the batch sampler to perform accurate inference and, in
this case.

.. Discussion

The over-arching question raised by the results is why we observe the
differences between incremental and batch learners we do and why those
differences are larger for the Bigram than for the Unigram model.
Generally speaking, it is not surprising that, despite their asymptotic

guarantees, the particle filters do not perform identically to their batch
alternatives. The strict incremental character of the algorithm which
only allows extensions of segmentations that correspond to one of the
finitely many particles at the previous time-step to be considered at all
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suggests one obvious reason for the difference: the posterior probability
of initial segmentations may change rather dramatically over time, just
as we saw that in Figure . the posterior probability of segmenting
the first utterance as abcd drops upon observing the third utterance
whereas that of segmenting it as ab cd increases dramatically.

To extend on this reasoning, Figure . plots the change of token
f-scores over time as approximated by running the Gibbs sampler over
initial prefixes of the corpus of different sizes, both for uni-nc and bi-nc,
the settings where the particle filters performed worst. The scores for the
particle filters are taken from the simulations presented in the previous
section whereas the calculated the scores for the batch samplers from
simulations on just the corresponding prefix of data.
We see that for bi-nc, there is a sudden increase in token f-score for

batch-anneal between 200 and 500 utterances, jumping from a mere
55% to roughly 74%. This indicates that very rapidly, the most prob-
able segmentation of many utterances – including utterances observed
very early on – changes dramatically to segmentations that result in
high token f-scores. And that, conversely, early on the most probable
segmentations are segmentations with relatively low token f-scores.
This is reminiscent of the situation depicted in Figure . where the

segmentation of the first two hypotheses changes radically upon observ-
ing the third utterance. Here, however, this change is happening over
a much longer period and, crucially, after several hundred observations
have already been processed. Thus, a strictly incremental learner is un-
likely to be able to change its early decisions at so late a point as the
required hypotheses will already have been lost due to resampling or
simply attained a weight of virtually 0. Again, this is similar to the
issue we already observed for the toy example in Table . although
on a considerably larger scale, suggesting that no practically feasible
number of particles will overcome it in this case. Thus, in cases like this
any incremental learner that can only rely on a finite set of samples at
any point in time and never ‘revise’ earlier analyses will deviate in its
conclusions from a batch learner.
Notably, for uni-nc, there is no jump of comparable magnitude, sug-

gesting a more gradual change of the posterior distribution. Of course,
the same principled issue arises – observations made at a very late stage
may change the posterior probability of early observations in dramatic
ways, making a very low probably hypothesis highly probable and vice
versa. Thus, while we also observe deviation between incremental and
batch learners in this case it is less pronounced and we see that, at least
with 10, 000 particles, the particle filter is able to track the segmenta-
tion performance of the unannealed batch sampler in terms of token
f-score.
Curiously, we also see that the gap between annealed and unannealed

batch samplers widens for the Bigram model as a function of input
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uni-nc bi-nc

n P(seg) Seg P(seg) Seg

 . yuwanttu siD@bUk . yuwan ttu siD@bUk

 . yuwant tu siD@bUk . yuwan ttu siD@bUk

 . yuwant tu si D@bUk . yuwan ttu si D@bUk

 . yuwant tu si D@ bUk . yuwant tu si D@ bUk

 . yuwant tu si D@ bUk . yuwan ttu si D@ bUk

 . yuwant tu si D@bUk . yu want tu si D@ bUk

Table .: Top segmentations according to the marginal posterior over seg-
mentations of the first utterance of the corpus for different amounts
of input, according to the run of batch-anneal that attained the
highest log-probability.

size, indicating that even batch learners can struggle when performing
inference over larger amounts of data.

The issue of changes in posterior probabilities of segmentations can
be illustrated directly by looking at the most probable segmentation for
the first utterance according to the marginal posterior over time. This
is shown in Table ., using the samples generated by run of batch-
anneal that attained the highest log-probability. Note how the Bigram
model has very high uncertainty for the first 20 utterances, with the
most probable hypothesis getting only a little over 5% of the probabil-
ity mass. In contrast, the Unigram model already puts 42% on the seg-
mentation “youwantto seethebook” for n = 10. Crucially, the Unigram
model puts high probability on a ‘linguistically meaningful’ segmenta-
tion early on, and while there are minor changes over time, the overall
picture remains surprisingly constant from the beginning.
Not so for the Bigram model which early on favors a somewhat odd

segmentation “youwan tto seethebook”, being reasonably certain about
it at around n = 50 but, at n = 100, changing its mind briefly to
the more accurate “youwant to see the book”, only to revert back at
n = 200 and, finally, at n = 500 – the point at which we observed the
steep increase – commits to the fully correct segmentation “you want to
see the book”.

Additional support for my explanation comes from considering actual
inference rather than segmentation performance. Figure . compares
the expected negative log-probability of the segmentations identified
by the different algorithms for the first 10, 20, 50 and 100 utterances
for the bi-nc model. As dpm exhibits no variance, I indicated its log-
probability using a horizontal dashed line.

For  and  utterances, pf- and pf-, perform on par or
even slightly better than batch and batch-anneal. Of course, ex-
pected negative log-probability is only a coarse proxy for inference per-
formance as a posterior with high uncertainty will attain higher negative
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expected log-probability than a posterior that concentrates more mass
on a single high probability hypothesis – a case where more accurate
inference would be indicated by a higher than a lower scores. While
it is conceivable that the particle filter is ‘more efficient’ for small cor-
pora as the particles are extended independently whereas the Markov
Chain Monte Carlo samplers can suffer from high auto-correlation and
poor mixing, we should not over-interpret the fact that pf- and
pf-, attain ‘better’ expected negative log-probabilities for  and
 utterances. The relevant point is that as the number of observation
increases, the gap between the particle filters and the batch learners
grows larger, with the particle filters falling behind more and more.
Again, this suggests that the particle filters suffer from the fact that
the posterior distributions change quite radically over time in the sense
that segmentations that have high posterior probability given only a few
initial observations may get very low posterior probability conditional
after having observed several more utterances, and vice versa. Thus,
even though at t = 20 they may have succeeded in providing a good
approximation to the posterior up to t = 20, their approximation may
lack particles that correspond to hypotheses that, at a much later time
point, will get high posterior probability.

Incidentally, this also offers an explanation of the fact that the dpm
algorithm outperforms all particle filters for bi-nc with respect to token
f-score. It is precisely because of its reliance on a simple local MAP
heuristic which makes it ignore the initially ‘misleading’ conclusions
actually implied by the data – note how its expected log-probability
is well below that of pf- and pf-, initially, reflecting that its
initial choices are not really supported by the data. Despite this, it
overtakes pf- at around  utterances and comes close to pf-,
at around  utterances, indicating that its initial choices are ‘justified’
to a certain degree in hindsight by future observations.
This explanation is somewhat different to the explanation Pearl et al.

() adduce to account for the difference between incremental and
batch learners. They suggested that this difference is due to the fact
that the former may simply be unable “to recover from mistakes made
early on”. Yet, I think it is misleading to simply talk about ‘mistakes’
here, as the goal of incremental inference is to approximate the poste-
rior at every time-step. And we have just seen that, at least for the
first 10 or 20 utterances, inference performance of the particle filters is
not dramatically worse (if worse at all) than that of the batch learners.
The issue is, in a sense, not that the particle filter fails early on in pro-
viding good approximations but that the true posterior may, early on,
assign a very low probability to segmentations that, given many more
observations, will get high probability. This can be called a ‘mistake’ in

 Actually, this reflects the fact that dpm relies on an approximate MAP segmentation
algorithm which, initially, prefers to not posit any boundaries. If it were determining
the actual MAP segmentations, one would expect its early inference performance to
be rather well.
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hindsight but, from the view of incremental inference, this terminology
is misleading.
This both accounts for the general difference between the particle

filters and the batch learners, and, in pointing out the sudden change
for bi-nc, for the fact that the particle filters perform worse for the
Bigram model than for the Unigram model.
Interestingly, it is not just the incremental learners that seem to strug-

gle. For both uni-nc and bi-nc we find that a batch sampler without
annealing is unable to take advantage of the additional utterances to
the same extent as batch-anneal. This shows, not very surprisingly,
that the inference problem becomes harder as a function of the input
size and that, somewhat surprisingly, this leads to noticeable differences
even between batch learners that process the entire corpus in an offline
fashion. Hence, even for batch learners accurate inference is far from
trivial for these models, and while this effect is much more pronounced
for the Bigram model it is also obvious for the Unigram model. Overall,
then, the fact that incremental learners perform worse than their batch
counterparts is not too surprising, considering that even the latter have
to rely on techniques such as annealing to improve convergence.
Finally, it is worth stressing again that upon adding the substantive

possible word constraint, the segmentation performance gap between
incremental and batch learners gets much smaller. This is because rul-
ing out segmentations that include ‘words’ without at least one syllabic
segment reduces posterior uncertainty early on and, crucially, prevents
particle filters from committing to hypotheses that posit single conso-
nants or short sequences of consonants as words. While a batch learner
may draw very similar conclusions from a large set of utterances with
and without the possible word constraint, incremental learners depend
heavily on the initial choices they make on the basis of only very few
observations. By cutting down the number of possible choices there and
ruling out hypotheses that will have devastating effects on future seg-
mentations – such as treating highly frequent segments such as D (the
“th” in “the”, “that”, etc) – the possible word constraint can be essential
to their performance.

. particle filter with rejuvenation

The previous discussion suggests that strict incrementality is at the
heart of the problem. In fact, there are two related issues that need to
be dealt with. First, there is the general issue of loss of sample diver-
sity already alluded to above – very quickly, almost all particles will
agree exactly on the analyses of all previous observations. While this
can be addressed to some extent through the use of large numbers of
Particles, for all but very small numbers of observations this is prac-
tically impossible, as “all the particles will collapse to a single point
within a few iterations” (Murphy, ). This is not only a problem in
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Figure .: Expected negative log-probability of the segmentations identi-
fied by the different algorithms for the first 10, 20, 50 and 100
utterances of the data. dpm is represented by a dashed red line.
Note that even though pf- and pf-, yield rather good
expected negative log-probabilities early on, they start falling be-
hind rather early. In contrast, even though dpm initially is con-
siderably worse than pf- and pf-,, it overtakes them as
more observations are considered. See text for discussion.

so far as it makes the approximations at later time points degenerate; it
also, to come to the second issue, makes it impossible to revise analyses
of earlier observations. In cases where alter observations are strongly
informative about earlier segmentations by making much more proba-
ble segmentations that were very low probability when considering only
the initial observations, this makes it impossible for the particle filter to
ever get close to the true posterior distribution over segmentations and,
in so far as those early segmentations impact the analysis of novel seg-
mentations, processing more data will emphasize rather than overcome
the differences.
To address these two, I use a strategy known as rejuvenation. When-

ever the particles are resampled and there are likely to be many identical

 There is some variation in the use of ‘rejuvenation’. For example, Murphy ()
refers to the resampling step as ‘rejuvenation’. I follow Canini et al. () in using
‘rejuvenation’ to refer to the act of resampling previous analyses. In any case, this
is the preferred meaning of ‘rejuvenation’ within Computational Linguistics and
Natural Language Processing judging from recent publications such as May et al.
().
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Figure .: Schematic illustration of rejuvenation of a single particle. At
t = 3, the hypothesis corresponding to the particle has low pos-
terior probability because its initial guess – despite being highly
probable at t = 1 – is not very likely given the other two ob-
servations. Rejuvenation allows a particle to revise earlier deci-
sions by treating past observations as novel data which can be
re-evaluated in the light of the other observations that have been
processed in the meantime.

copies, we have each particle reanalyze some of the observations it has
made so far conditional on its analyses of all other observations (Canini
et al., ; Murphy, ). This ‘rejuvenation’ (an ‘aged’ particle is
made young again) can be viewed as performing Gibbs sampling over
some of the previously observed utterances and leads to a larger variety
of particles.
The idea is illustrated in Figure . for the toy corpus on which I

discussed incremental inference previously. It depicts the segmentation
choices a single particle may make over time, referred to as its history,
together with the posterior probability of these choices according to the
model. Note how the posterior probability of the segmentation accord-
ing has dropped to a mere 4% at t = 3 even though it has, by making a
‘lucky’ decision at t = 2, correctly segmented the last two observations.
In a strictly incremental setting, there is no possibility for this particle
to ever revise the analysis of the first observation even though, given
its analyses of the other two observations, the original analysis made at
t = 1 is very improbable. Rejuvenation allows the particle to re-examine
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the first observation in the light of the other observations, treating it as
if it were a new observations which will be segmented anew, ignoring
its original analysis but taking into account the knowledge gained from
the other observations.
Before I go on to describe rejuvenation in more detail, note that

adding it to the algorithm requires that previous observations (and their
analyses according to each particle) be stored. Thus, a particle filter
with rejuvenation is no longer online in the sense that it can discard
every observation after it has processed it. However, it still performs
incremental inference, that is, it provides a posterior approximation
after every observation has been observed, rather than only considering
the full set of observations and delaying inference until then.

.. Rejuvenation step using Metropolis-Hastings blocked sampling

Let us associate with every particle h(p)t at time t a history of segmen-
tations σ(p)

1:t which records the segmentations this particle posited for
observations u1:t. A single rejuvenation step for a particle h(p)t with
history σ(p)

t is defined algorithmically in Figure ..
It randomly chooses an utterance uj among the utterances observed

up to time t. By optionally restricting the ability to re-examine previous
observation to the most recentwin (mnemonic for ‘window’) utterances,
I add a memory constraint along the lines of Pearl et al. () to my
algorithm. While I sample uniformly among all utterances in a given
window rather than sampling with probability proportional to how far
in the past any utterance is, making this change to the algorithm is
trivial. Preliminary experiments found no interesting difference arising
from the use of ‘decayed’ rather than uniform sampling using a fixed-
size window and I restrict attention to this. I return to the relationship
of my algorithm to Pearl et al. ()’s Decayed Markov Chain Monte
Carlo learner in the discussion.

After having determined an utterance to be re-analyzed, we pretend
that this utterance hasn’t been observed before but only became avail-
able after having processed the remaining t−1 observations, resampling
an analysis for uj and updating the particle accordingly. This is pos-
sible because the word segmentation model is exchangeable, and thus
we can reuse the algorithm to sample a segmentation for an utterance
given a particle h that we needed for the particle filter to begin with.
However, because this algorithm samples from a distribution that is
slightly different from that defined by the model, we need to correct for
this difference.
For the particle filter, this correction step is part of calculating the

particle weight. Here, we hold the weights constant and, instead, per-
form a Metropolis-Hastings accept/reject step. Rather than always us-
ing the proposed new segmentation σ ′, we calculate an acceptance prob-
ability pa and only change the segmentation with probability pa, keep-
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function rejuvenate(ht,u1:t, sigma1:t,win = −1)
if win = −1 then

uniformly sample j, 1 6 j 6 t . unrestricted memory
else

uniformly sample j, max(1, t−win) 6 j 6 t . restricted
end if
h
−j
t ,pold = remove(ht,σj) . remove old analysis

sample σ ′ ∼ Q(· | h−jt ,uj) . sample novel analysis
qold = Q(σj | h

−j
t ,uj)

qnew = Q(σ ′ | h−jt ,uj)
ht,pnew = update(h−jt ,σ ′)
calculate pa = pnewqold

poldqnew
. MH acceptance probability

if nextDouble 6 pa then . accept novel analysis
σj = σ

′

else . reject novel analysis
remove(ht,σ ′) . undo update
update(ht,σj) . add original segmentation back

end if
end function
function remove(h,w1:n) . for Unigram model
ptrue = 1.0
for i = 1→ n− 1 do
ptrue = ptrue × removeCustomer(wi,h)× P(c | h)

end for
ptrue = ptrue × removeCustomer(wn,h)× P(s | h)

return 〈h,ptrue〉
end function
function remove(h,w1:n) . for Bigram model
ptrue = 1.0
wp = $
for i = 1→ n do
ptrue = ptrue × removeCustomer(wp,wi,h)
wp = wi

end for
ptrue = ptrue × removeCustomer(wp, $)
return 〈h,ptrue〉

end function

Figure .: Algorithm to perform rejuvenation and required helper functions
to update particles.
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ing the original segmentation with probability 1 − pa. I briefly walk
through the algorithm given in Figure . and the involved helper
functions.

To rejuvenate a particle ht with associated history σ1:t, we begin
by randomly sampling an utterance uj among the previously observed
utterances u1:t to be re-examined, optionally considering only the last
win utterances (see above). Then, we ‘move uj to the end’ of the ob-
servation sequence by first updating ht as if it had never processed uj
so far. This is valid because the utterances are exchangeable and corre-
sponds to removing all customers associated with words in the current
segmentation σj for uj, yielding an updated particle h−t j. The super-
script indicates that this particle’s seating arrangement is identical to
that of ht except for lacking all customers associated with σj.
The update is performed using the remove helper function which re-

moves the words (or, for the Bigram model, bigrams) in σj from ht. As
we will require pold = P(σj | h

−j
t ) in calculating the acceptance prob-

ability, we calculate it while actually removing σj from the particle’s
history.

Once the particle has ‘forgotten’ everything about σj, we first we
propose a new analysis σ ′ for uj using the algorithm in Figure ..
Then, we calculate qnew and qold, i.e. the probabilities of σj and σ ′

according to the proposal distribution Q(· | hjt,uj).

To calculate pnew = P(σ ′ | h−jt ) we actually update the particle with
the new segmentation, using the update function we already made use
of in the particle filter. Again, note that in addition to the probabilities
of the individual words those responsible for the utterance boundary
need to be included in this calculation.
Finally, we calculate pa = pnewqold

poldqnew
and, with probability pa, accept

the new proposal by replacing σj with σ ′. Otherwise, we reject the new
proposal and set the particle to its original state by first removing σ ′

and then updating it again using σj.

Thus a rejuvenation step is, essentially, identical to a single sampling
step in the blocked Metropolis-within-Gibbs samplers of Mochihashi

 A detail that is easy to overlook is that this probability needs to include the prob-
abilities governing utterance boundaries. Even though these are observed, in the
Bigram model they affect the probability of the final word of a segmentation; and
in the Unigram model, they affect the number of words in a segmentation.

 Note that we only need to know these probabilities up to a normalization constant.
Thus, in this case we can ignore conditioning on uj and directly use equation .
rather than ..

 Again, the fact that we treat table assignments implicitly through the
addCustomer and removeCustomer functions means that we may recover a
seating arrangement that differs slightly from the original seating arrangement. I
found this to make no difference to ensuring recovery of the original seating arrange-
ment. See the related discussion about intermediate updates in the algorithm in
Figure . on page .
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for q = 1→ r do . perform r rejuvenation steps
for p = 1→ n do . for each particle

rejuvate(h(p)i ,u1:i,σ
(p)
1:i ,win)

end for
end for

Figure .: ]
Code for adding rejuvenation to the particle filter described in Fig-
ure .. Add these lines after line 12 of this algorithm. win is the size of
the window in which the incremental learner can perform rejuvenation
steps – setting it to −1 results in a particle filter that can re-segment
every previously observed utterance, setting it to w restricts it to only
the most recent w observations.

et al. () and, for the slightly more complex Adaptor Grammar
framework, Johnson et al. (b).

.. Adding rejuvenation to the particle filter

We can add rejuvenation to the particle filter described in Figure .
by adding the code in Figure . after line , i.e. after the particles
were resampled.

Obviously, the number of rejuvenation steps r impacts runtime of the
algorithm. In particular, if we set r very large and resample after every
observation the particle filter essentially turns into a batch sampler
over the entire corpus upon observing each observation. Also, while
leaving runtime unaffected the choice of window size win is likely to
affect performance in limiting the algorithms ability to revise earlier
observations.
Considering the case where r → ∞ also shows that adding rejuve-

nation to the particle filter leaves unaffected its asymptotic guarantee
to converge on the true posterior in the limit as in this case, we just
recover a batch sampler (indicating ‘unlimited’ memory). By setting
r = 0, we get the strictly incremental particle filter, showing that the
particle filter with rejuvenation includes both strict online learning and
batch learning as boundary cases.
Setting the number of particles to 1 and sampling previous utter-

ances according to a decay function my algorithm recovers the DM-
CMC learner of Pearl et al. (), showing that it is a special case of
a particle filter with rejuvenation that only uses a single particle.

 It is worth pointing out, though, that Mochihashi et al. () omit the accept/reject
step in the description of their algorithm. While it is true that, for most problems,
the acceptance probabilities are essentially 1.0 and omitting this step makes no
difference, for small amounts of data this can make a huge difference.
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. experimental evaluation

As before, we are interested in understanding how the particle filters
compare to the batch samplers and how their performance varies as
a function of the number of particles and, as another parameter, the
number of rejuvenation steps. I limit myself to considering particle fil-
ters that use 1 and 100 particles. For r, I consider the values 1, 10, 100
and 1000. To refer to the different algorithms, I extend the previously
used pf-n notation which indicated the number of particles by adding
the number of rejuvenation steps. Thus, pf-- is a particle filter
with a single particle, performing 1000 rejuvenation steps after each
resampling step.

Finally, I investigate the impact of window size for pf-- and pf-
-, considering 500 and 100. pf--- refers to a particle
filter with a single particle,  rejuvenation steps and a window size
of 100.

.. Unigram model

As can be seen from Table ., adding rejuvenation drastically im-
proves performance of the particle filters, consistently letting them out-
perform the batch learners in terms of token f-score. The picture differs
somewhat between uni-nc and uni-sc, and as before, I discuss these
settings separately.

... Without possible word constraint

Not surprisingly, the overall best performance is achieved by pf--,
the particle filter that uses the most particles and rejuvenation steps.
With 77%, its token f-score is roughly 10% higher than that of the best
performing batch sampler, and looking at its boundary precision and
recall scores we find that rather than over- or undersegmenting, it seems
to strike a good balance between the two.
We also see that by only adding 10 rejuvenation steps to pf- we

can boost its token f-score by more than 20% to 68%, slightly higher
than that of batch-anneal, illustrating that rejuvenation is indeed a
very effective strategy to improve word segmentation. For pf-, consid-
erably more rejuvenation steps are required to yield good performance,
with even 100 steps remaining well below 60% token f-score. Yet, with
1000 rejuvenation steps, even pf- attains higher token f-score than the
batch learners. Unlike pf- and its rejuvenated variants, though, it is
very prone to over-segmenting, attaining the overall highest boundary
recall of 92% and remaining at a quite low boundary precision of 79%.
Looking at the impact of the window size, we find next to no difference

in limiting the window to the most recent 500 utterances. Only being
allowed to consider the most recent 100 utterances, however, results
in a noticeable drop of roughly 5− 6% in token f-score which remains,
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nevertheless, on par with or above that of the best performing batch
learner. While this shows some sensitivity to the window size, it is
consistent with the previous observation in Figure . that for the
Unigram model, there is a rather gradual improvement in token f-score
over time rather than the huge jump we observe for the Bigram model
between 200 and 500 utterances.

Finally, though, it needs to be noted that despite the good segmen-
tation scores, in terms of log-probability none of the particle filters can
close the gap to either batch or batch-anneal. This indicates that
the particle filters are still performing worse inference than their batch
counterparts. I return to this point in the discussion.

... With possible word constraint

For uni-sc, pf-- and pf-- attain the best token f-scores, not
pf--. This is somewhat surprising as the latter makes use of
more particles but looking at log-probabilities, we see that, again, better
token f-score is not correlated with higher log-probability. Indeed, pf-
 and its variants consistently get higher log-probabilities than pf-.

A possible explanation for the exceptionally high token f-score for
pf- – 86% which is a full 20% more than that of batch-anneal – is
again provided by boundary precision and recall. Whereas for uni-nc,
pf- had to suffer from comparatively low boundary precision, adding
the possible word constraint results in boundary precisions that are
consistently above 90%, starting from as little as 10 rejuvenation steps.
Coupled with pf-’s preference for high boundary recall, this improved
precision results in a considerable boost in token f-score.
Ironically, the reason that pf- does not benefit as strongly is that

it is able to explore the hypothesis space more effectively, correctly
zoning in on solutions that have a slightly lower boundary recall and
mimicking, to some extent, the undersegmentation behavior observed
for the batch samplers. Yet, the boundary recall for pf- is still no-
ticeably higher than that of the batch samplers, explaining why it is
able to attain a token f-score of 81% and why its log-probability is still
lower than that of either of the batch samplers.
Turning to the impact of window size, again we see that limiting the

window to the most recent 500 utterances has little to no impact. Yet,
limiting it to the last 100 utterances yields noticeable drops in token
f-score of 4− 5% which are accompanied by a drop in boundary recall
rather than precision.
Thus, pf--- only attains 77% boundary recall as opposed

to the 85% of pf-- with a virtually unchanged precision. While
the segmentation metrics for pf--- are, in a sense, closer to
that of batch and batch-anneal, its inference performance is worse
rather than better than that of pf--. While this is not surprising
in as much as one would expect a limited window to yield worse infer-
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ence, it also shows that the relationship between segmentation scores
and log-probabilities is not straight-forward for uni-sc.

As a last point, for uni-sc we find that limiting the window to the
most recent 100 observations yields worse results than using only 100
rejuvenation steps on the entire history. This is something we could
not observe for uni-nc where, irrespective of window size, all learners
making use of 1000 rejuvenation steps outperformed the corresponding
learner that only used 100 rejuvenation steps.

.. Bigram model

I now turn to the Bigram model, again examining bi-nc and bi-sc
separately.

... Without possible word constraint

For bi-nc, even adding 1000 rejuvenation steps to pf- doesn’t bring it
up to the performance of either of the batch samplers although it consid-
erably improves performance. Its token f-score is only slightly lower than
that of batch, and its expected log-probability improves to 27.53× 103
compared to 27.47× 103 for batch. Overall, it is striking how effective
adding a few rejuvenation steps is in improving performance even for
a particle filter with only a single particle. For example, pf-- out-
performs pf-, on all metrics by a fair margin even though, in a
certain sense, it uses much less memory and performs less computation:
whereas pf-, has to extend 10, 000 individual particles for each
utterance, thus performing 10, 000×N utterance samples for a corpus
of size N, pf-- only extends a single particle but performs 100 ad-
ditional sampling steps for each of the N utterance, totaling in 101×N
samples.
Of course, this way of quantifying computational effort makes strong

assumptions about the underlying architecture. For example, if there
were no limit to the number of parallel computation steps that can be
performed, using a very large number of particles with no rejuvenation
would still, essentially, amount to only one computational step per ut-
terance (as, by assumption, all updates can be performed in parallel). In
contrast, rejuvenation requires sequential processing as it can only ever
resample an utterance conditional on the segmentations on all other ut-
terances. Rather than speculating on the proper way of quantifying com-
putational effort in ways that are relevant to understanding language
acquisition, I refrain from pushing this point (see also the discussion
of cognitive plausibility below). For practical purposes, however, these
kinds of considerations may be very relevant, and my findings seem to
suggest that trading off rejuvenation against number of particles ought
to be preferred (though see May et al., , for discussion of rejuvena-
tion and particle filters as applied to LDA).
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Yet, all pf- variants suffer from rather low boundary precision with
comparatively high recall, suggesting that despite their similarity in
token f-score to batch the segmentations it identifies are still system-
atically different to the undersegmented segmentations identified by the
batch learners. While we see that more rejuvenation steps lead to higher
boundary precision, rather than increasing the number of rejuvenation
steps even further I turn to see how a larger number of particles benefits
from rejuvenation steps.
As expected, using 100 particles always leads to better results than us-

ing a single particle with the same number of rejuvenation steps. Some-
what surprisingly, though, we now see pf-- outperform batch
with respect to inference performance and, in terms of token f-score,
even batch-anneal. Interestingly, this is despite the fact that its seg-
mentation metrics are slightly worse and, as before, the segmentation
inferred by the incremental learner indicates slight oversegmentation
rather than undersegmentation.
Turning to pf-- we find an even better log-probability and

with 76% the best token f-score for the bi-nc model, 2% higher than
that of batch-anneal. While its log-probability is slightly lower with
26.74× 103 vs 26.55× 103, it is noticeable higher than that of batch.
Also, even though pf-- has a higher boundary recall than

precision, there is only a 3% difference between its boundary precision of
86% and batch-anneal’s 89%. Thus, we find that using 100 particles
coupled with 1000 rejuvenation steps allows an incremental algorithm
to outperform batch, the vanilla batch sampler, and, with respect to
token f-score, even batch-anneal.
Finally, looking at the impact of window size, we see that smaller

windows yield worse performance on all metrics. For pf--, we find
that restricting the learner to the most recent 500 observations has only
a very minor (but still noticeably larger than for uni-nc) impact, re-
sulting in drops of roughly 2− 3% on all segmentation metrics and a
slightly worse log-probability. Limiting it to the most recent 100 utter-
ances results in a much larger drop, bringing token f-score down from
65% to 51%. In fact, we find that pf--- performs worse than
pf--, showing clearly that it is not only the number of rejuvena-
tion steps performed but also the ‘memory’ of the learner in the form
of the window that impact performance and that this is much more
pronounced for the Bigram than for the Unigram model.
The trend is similar for pf--. Here, limiting the window to 500

observations results in a relatively larger drop in token f-score from 76%
to 70%, and again pf--- performs worse than pf--.
The impact of window size is expected given the previous discussion of

Figure .. There was a major jump between 200 and 500 utterances,
indicating that the ability to re-examine observations that are more
than 100 utterances in the past is important. Further support for this
comes from Figure . which compares the token f-score for different
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Figure .: Comparing the impact of window size for pf-- for bi-nc.

input sizes for pf--, pf--- and pf---, and
we see that, as expected, there is no noticeable difference between the
three for n = 100. Yet, pf-- begins falling behind at n = 200

and, finally, pf-- falls behind after n = 500 despite performing
the same number of rejuvenation steps as pf--.

... The effect of the possible word constraint

Adding the possible word constraint changes the picture in an interest-
ing way. As before, we witness an overall improvement in scores for the
incremental learners. In fact, for bi-sc even adding as little as 10 reju-
venation steps to either pf- or pf- boosts segmentation accuracy
to 73%, outperforming batch and coming close to batch-anneal’s
75%. Somewhat surprisingly, perhaps, batch is not only outperformed
in terms of token f-score but also in terms of log-probability, indicating
that for the thus constrained model incremental inference with rejuve-
nation is more efficient than batch sampling without annealing.
Increasing the number of rejuvenation steps keeps improving token

f-score for both pf- and pf-, and they are outperforming batch-
anneal starting from r = 100. Yet, as for bi-nc the gap between
batch-anneal’s log-prob and that of the incremental learners is not
closed completely for bi-sc, showing that, with respect to inference
performance, batch-anneal is the best choice.
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Another rather striking point is that the overall best token f-score
is achieved not by pf-- but by pf--, with 83% against
81%. Yet, pf-- attains better lexicon scores that are on par
with those of batch-anneal and, indeed, its boundary precision of
93% is only 1% lower than that of batch-anneal whereas its recall is
6% higher, accounting for the better token f-score. In contrast, despite
slightly higher token f-score pf-- shows signs of mild oversegmen-
tation with a boundary precision of slightly less than 90% versus a
rather high recall of 92%, thus indicating that it deviates more strongly
from batch-anneal and thus the posterior implied by the model than
pf--.
This fits the pattern we already observed for uni-sc where we also

found pf- rather than pf- to yield the highest token f-scores de-
spite worse inference according to the negative log-probability. I believe
that the same explanation applies in these two cases: incremental learn-
ing generally favors segmentations with higher boundary recall than
batch inference, even if the global solution preferred by the model has
lower recall. Whereas pf- is slowly approaching the globally pre-
ferred solution, pf- seems to use be unable to ‘overcome’ its preference
for high-recall solutions even using rejuvenation. Thus, whereas pf--
 shows evidence for mild undersegmentation pf-- presumably
attained its slightly higher token f-score precisely because it does not
exhibit this behavior.
Finally, for the impact of window size we see a similar picture as for bi-

nc: while limiting the window size to 500 now has a very small impact,
limiting it to 100 results in a noticeable drop in performance although,
in this case, even the so-constrained learners attain a token f-score that
is higher than that of batch if lower than that of batch-anneal.
In conclusion, even when incremental learners are provided with the

ability to perform rejuvenation a constraint like the possible word con-
straint boosts segmentation performance considerably.

. discussion

The discussion of the algorithms so far has focused on a technical anal-
ysis of the performance of the different algorithms. Summing up the
detailed discussion of the preceding paragraph, the main findings of my
experiments are that

• all else being equal, incremental particle filters perform better
with more particles

• without rejuvenation, even large numbers of particles perform con-
siderably worse than non-incremental batch inference

• adding a constraint on possible words has a huge positive effect on
particle filter performance (both with and without rejuvenation)
but hardly affects batch inference
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• in terms of segmentation but not log-probability, a particle filter
with rejuvenation and the possible word constraint can outper-
form batch inference

Here, I will address more directly the question of what my findings
have to say about language acquisition.
While concerns about the inference mechanism are of only secondary

interest from the general Bayesian modeling perspective outlined in
the first chapter, incremental algorithms are interesting in at least two
ways. First, they make it possible to connect Bayesian models rather
directly to psycho-linguistic experiments, and the particle filter algo-
rithm discussed here has in fact been used two studies of human word
segmentation (Meylan et al., ; Kurumada et al., ).

Moreover, in so far as it is an asymptotically correct inference algo-
rithm, study of a ‘constrained’ incremental algorithm can shed some
light on how processing limitations impact the conclusions that can be
drawn from specific input. As a concrete example, we saw that a re-
quirement for incremental processing seems to dampen the preference
for undersegmentation exhibited by the word segmentation models. This
the idea of the rational process approach of Sanborn et al. (), also
taken up for word segmentation in Pearl et al. () and, more recently,
Phillips and Pearl (in press).

Generally speaking, the idea is that differences between the conclu-
sions drawn by human learners and those implied by a Bayesian model
may be due to the former performing inference in a constrained set-
ting. Although not mentioned in the rational process literature, this
idea bears some resemblance to that of type-II rationality as defined
by Good (), that is, “maximization of expected utility taking into
account deliberation costs”. I discuss this idea in some more detail giv-
ing some concrete examples before pointing out possible problems with
these kinds of interpretations.

.. The role of processing constraints

One can interpret my findings in this framework by identifying the
dimensions along which the incremental algorithm can be characterized
as being more constrained than the ‘ideal’ batch learners.

... Order effects

For example, Figures . and . illustrated how in such a setting, ‘order
effects’ may arise because the distributions induced by different subsets
of the entire data may be dramatically different even though the pos-
terior given the full data is identical. Indeed, due to the requirement
of making local decisions, particle filters can be used to derive order ef-
fects from models that are, strictly speaking, order insensitive due to the
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Particles % Correct order % Correct order

  

  

  

  

Table .: Comparison of how often a particle filter with different num-
ber of particles correctly identified the MAP segmentation of the
two 3 utterance corpora in Figure . (order) and Figure .
(order).

exchangeability assumption built into most Bayesian models (Sanborn
et al., ).
To illustrate this for word segmentation, consider again the example

in Figure .. I run 100 independent simulations of particle filters with 1,
10 and 100, and 1000 particles on this toy corpus and count the number
of times in which the correct global MAP segmentation was identified.
The order column of Table . indicates that for this corpus, 1000
particles are required to reliably identify the MAP segmentation. Even
using 100 particles only correctly identifies the MAP segmentation of
the corpus in roughly 50% of the simulations.
We have already seen that increasing the number of particles ad-

dresses leads to better performance (see Tables . and .). Here I
show how simply changing the order to that in Figure . also improves
performance. Recall that due to the exchangeability of the word seg-
mentation models, the MAP segmentation for both corpora segments
all three utterances identically. Thus, from the perspective of the model
there is no difference between these orderings, Yet, the order column
of Table . shows that performance is much better on this alternative
ordering for particle filters that use only a few particles.
From an acquisition point of view, this raises the possibility that

certain ordering properties exhibited by child-directed speech might be
crucial for constrained learners such as infants to adequately solve word
segmentation and related acquisition problems. Of course, making this
connection requires some way of linking the constraints inherent in a
particle filter to those human learners are subject to. One possibility
would be to argue that ‘number of particles’ and ‘window size’ corre-
spond to the memory limitations of human infants. In this thesis, how-
ever, I will not further investigate this possibility for reasons detailed
below.

... Importance of substantive constraints

Another interesting observation may be derived from the huge perfor-
mance difference we observe for the particle filters for the models with
and without the possible word constraint. Recall from both Chapter 
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and the experiments in this chapter that for batch learners, there was
virtually no difference in performance between the model with and with-
out possible word constraint – according to the segmentation model, the
same segmentations are assigned high posterior probability irrespective
of whether or not a possible word constraint is assumed.
Yet, for all incremental learners I considered we found that the con-

straint makes a huge difference. This suggests that even though, as
shown by performance of the batch learners, the input by itself con-
tains sufficient information to identify reasonable segmentations, the
incremental learners I considered are unable to leverage this informa-
tion unless a substantive constraint on the shape of possible words (here,
that each word has to contain at least one syllabic segment) is built into
the model.
Assuming that infants are incremental learners as well and that they

are constrained in ways similar to particle filters, this suggests that
for human (as opposed to ‘ideal statistical’) learners a substantive con-
straint on the form of possible words is necessary to solve the segmenta-
tion problem. I am not aware of any experimental work addressing the
exact nature of such a constraint in infants although Norris et al. ()
reports evidence for a possible word constraint in adult segmentation.

... Less is more?

Turning to the learners with rejuvenation, we note on the one hand a
relaxation of processing constraints in adding ‘memory’ and the ability
to revise earlier decisions to the incremental learner. On the other hand
we get two additional parameters which control just how constrained
the algorithm is: number of rejuvenation steps and size of the window
within which the algorithm can resample previous observations.

This results in a learner that is a generalization of the Decayed
Markov Chain Monte Carlo learner of Pearl et al. () and, more
recently, Phillips and Pearl (in press). Not surprisingly, then, my re-
sults are largely in line with theirs. Like them, I find that the ‘con-
strained’ incremental learners (with rejuvenation) can outperform their
batch counterparts in terms of segmentation performance, and that this
trend is more pronounced for the Unigram than for the Bigram model.
Indeed, this observation isn’t new, at least for the Unigram model: Gold-
water () already pointed out that the dpm algorithm proposed by
Brent () results in higher token f-scores but lower log-probabilities
according to the Unigram model than her batch Gibbs sampler.

 A subtle difference is that they also consider pre-syllabified input but only consider
an ‘unrestricted’ base distribution. In a sense, however, one can view my use of a
constrained base distribution as a slightly weaker version of their pre-syllabifying
the corpus – while they ensure through pre-processing that posited words will always
be made out of valid syllables, I merely enforce that every posited word contain at
least a single syllabic element.
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An attractive interpretation proposed by Pearl et al. () and
Phillips and Pearl (in press) of this kind of finding – an algorithm that
is more ‘constrained’ than another algorithm performs better – makes
use of the “Less is More” hypothesis (Newport, ): the idea that cer-
tain kinds of ‘cognitive limitations’ can aid rather than hurt infants in
acquiring their first language. Concretely, the idea is that by not having
sufficient memory to represent examples in a way that makes it possi-
ble to detect ‘global’ patterns that might also be a source of confusion,
infants avoid many mistakes and identify more useful regularities than
adult language learners.
This can, indeed, be seen as providing a possible explanation of the

surprisingly good performance of the rejuvenated particle filters for the
Unigram model – we’ve already pointed out that the incremental learn-
ers have much less of a tendency to undersegment than their batch
counterparts, and that this seems to fall out of the requirement of incre-
mental processing, introducing a (soft) greedy strategy in which words
acquired early on are consistently segmented out of the input, avoid-
ing undersegmentation. In contrast, the batch learners take a ‘global
view’ of the data and pick up frequently co-occurring words much more
directly, ironically leading to undersegmentation that results in lower
token f-scores. Similarly if somewhat less pronounced, for the Bigram
model we find the best performing particle filters to attain higher bound-
ary recall than the batch learners.
Taken together, then, my findings seem to also speak in favor of a

“Less is More” effect in word segmentation. Yet, I am reluctant to draw
strong conclusions along those lines as the best performing algorithms
are not the most constrained I considered – in contrast, they are those
that come rather close to the batch learners with which they were con-
trasted, requiring substantial amounts of rejuvenation steps and, as
is clear from the experiments on window size, a rather large memory.
Thus, in a sense I observe a clear “more is more” effect for the learners,
probably missed by Pearl et al. () and Phillips and Pearl (in press)
because the Decayed Markov Chain Monte Carlo learner is only one of
the many possible particle filters one can consider.

.. Problems for ‘Rational Process’ interpretations

While it is tempting to take the incremental algorithms of this chapter
as proposals about actual inference mechanisms and, as just done, derive
predictions from a ‘Rational Process’ perspective, I believe there to be
several problems with this view.
For one thing, it is hard to properly judge the ‘cognitive plausibility’

of an algorithm. In our case, some of the obvious questions are how many
particles counts as cognitively plausible – 1, 2, 1000 or even 1, 000, 000?

‘Intuitively’, 1 particle sounds more plausible than 1, 000, 000 but
other than appealing to intuition, I don’t see a principled way of de-
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ciding this question. One possible way is to compare performance as
a function of particles to actual human performance, as in (Meylan
et al., ). Yet, in a sense this pre-judges the question by assuming
that modifying the number of particles is the right way of modeling
constraints; but perhaps it is another determinant such as window size
or the number of rejuvenation steps. A related problem is that it is
currently not clear how ‘high-level’ notions such as a particle or a reju-
venation step could be mapped onto properties of the brain. In light of
these issues and in the absence of detailed studies along those lines, I
believe the most reasonable stance to be to simply not relate number
of particles and cognitive processing in overly strong ways.
Similarly with respect to rejuvenation steps – ‘intuitively’ an algo-

rithm that performs 1000 additional samples per observation looses a
lot of the appeal it got for performing incremental inference but how
many – if any – rejuvenation steps are cognitively plausible? With re-
spect to the Decayed Markov Chain Monte Carlo learner, Phillips and
Pearl (in press) assume that it is to perform 20, 000 additional samples
per observation, arguing that it still requires “approximately % less
processing than the [Batch sampler], a significant processing reduction”
because the batch samplers performs 20, 000 iterations over the entire
corpus. It is, however, neither clear that the batch sampler really re-
quires as many iterations as it is usually run for nor that this is a
meaningful dimension along which to compare the algorithms – the ma-
jor ‘cognitive plausibility’ issue of batch algorithms is their processing
data in large batches rather than the number of iterations they perform
over it.

Relatedly, then, the kind of resampling steps performed by the DM-
CMC learner and the particle filters with rejuvenation are nothing but
partial batch samples. If this kind of processing is deemed undesirable
because of cognitive implausibility for the batch samplers, why isn’t
this considered to raise the same issue for incremental learners? Phillips
and Pearl (in press) are correct to point out that limiting the learners
memory adds an additional constraint to batch processing but this just
raises the next question how this constraint ought to be implemented
properly. They chose a decay function, I use a fixed window size – both
choices raise an additional question, namely which parameter for the
decay function to choose and which window size to use. I found that
a window size of 500 and 100 lead to rather different results, and that
larger memory is better – but how large exactly is plausible?

 For example, I found no difference between running the batch sampler for 2000 or
20, 000 iterations for all the word segmentation models. The reason I used 20, 000
iterations for my experiments is that I was interested in both generating a reasonably
large number of posterior samples and, to some extent, the fact that this is the
number of iterations Goldwater () and Goldwater et al. () reported for
the Gibbs samplers I used, rather than having determined this to be the minimal
number required for the algorithm to converge.
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.. Suboptimal model and suboptimal algorithm

Finally, there is something odd about taking the observation that worse
inference can lead to better segmentation as evidence for a particular
segmentation model. This is how one might be tempted to interpret
Pearl et al. () and Phillips and Pearl (in press) – “cognitively plau-
sible learners outperform the ideal” (Phillips and Pearl, ). While I
do believe that these kinds of findings are interesting, I think there are
reasons to be cautious with this kind of interpretation.
In particular, the ‘constrained-is-better-than-ideal’ interpretation pre-

supposes some variant of the idea that humans may apply a ‘suboptimal’
algorithm to a particular model and, precisely because of the suboptimal
algorithm, exhibit good performance. Of course, one cannot fully rule
out this possibility; talk about how particular models relate human per-
formance are notoriously difficult, and we always face the problem that
human behavior only imperfectly reflects the underlying mechanisms
that give rise to it. Indeed, Kripke () claims that it is impossible to
empirically distinguish between “someone assumes a particular model
but makes a mistake in applying it” from “someone assumes a different
model and correctly applies it” and raises this as a general challenge to
cognitive science (for a critical discussion, see Chomsky ()).
Even ignoring this philosophical problem, I find it odd to assume sub-

optimal algorithms rather than trying to understand in what sense the
model is inadequate.
At this point, I believe that rather than raising more questions to

which, admittedly, I do not have the answers, I should elaborate on
how I believe my findings ought to be interpreted.

.. Interpreting results from incremental algorithms

Given that I am reluctant to interpret the experimental results of the
algorithms ‘mechanistically’, what do they tell us about human lan-
guage acquisition? As discussed in Chapter , I believe the strength of
computational modeling to be its ability to evaluate specific proposals
and their consequences in a principled fashion and this is how I believe
my findings ought to be viewed as well. Thus, rather than taking my
algorithms as specific proposals about actual mechanism I take them as
tools to study what kind of issues may arise in incremental inference in
principle, providing useful information about the properties of models
which can then be explored in the Bayesian framework.

To provide two examples which will be taken up – again within a
modeling framework that does not focus on inference algorithms – I
consider briefly the impact of the possible word constraint and the fact
that sub-optimal inference leads to better segmentation.
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... Sensitivity to input size

With respect to the possible word constraint, I noticed that without
it incremental learners performed considerably worse on the Bigram
model than on the Unigram model. My analysis suggested that the
major issue was that the Bigram model does, indeed, early on assign
high probability to segmentations which are not linguistically plausible;
and that because of this, an incremental learner may correctly commit
to segmentations with low segmentation accuracy early on and simply
be unable to recover from this later.

I also found that this trend was less pronounced for the Unigram
model, suggesting – not implausibly – that a more complex model may
simply require more input to induce segmentations which correspond
to our expectations. As this issue was somewhat alleviated by adding
the possible word constraint, this raises the question whether a more
complex model may actually require a substantive constraint to perform
well not only on large amounts of data but also on little amounts. In the
next chapter, I will examine this question in a detailed way, comparing
several models of differing ‘complexity’ as to how their performance
depends on ‘possible word constraints’.

... Modeling assumptions

Relatedly, I believe the finding that sub-optimal inference results in bet-
ter segmentation to be informative not about the mechanism humans
might use but about what kind of model might be more adequate. Thus,
rather than trying to ‘fit’ a bad model to human performance by posit-
ing a ‘bad’ inference algorithm (an idea which I criticized above), one
can use properties of the inference algorithm as informing construction
of more adequate models.

For example, the observation that using more particles with rejuvena-
tion lowers segmentation score while increasing inference performance
provides additional evidence that undersegmentation is an effect of the
ability to identify ‘global’ patterns. A model that avoids this, then, needs
to have some means of either ‘explaining these patterns away’ or some-
how limiting the amount of input over which patterns can be detected. I
will explore the former idea – allowing models to explain away patterns
– in the next chapter but believe that my findings suggest an interest-
ing question for future work. In particular, is there a way of defining
a model that enforces the kind of ‘locality constraint’ that arise in in-
cremental processing and allow the particle filter with rejuvenation to
identify high accuracy segmentations under the Unigram model?

beyond exchangeability Recalling that part of the reason
why incremental and batch learners perform so differently is that the
former are simply unable to properly handle the kind of ‘long range’
relations that, according to the underlying model, hold between obser-
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vations that are arbitrarily far apart in the input. This is a consequence
of exchangeability, i.e. the assumption that the order of observations
should not affect the conclusions drawn from them.
My observation that it is precisely because the incremental algorithm

is unable to connect observations that are very far apart in the in-
put that it performs better suggests that assuming a non-exchangeable
model may be an alternative way of addressing the problem of under-
segmentation. For example, recent work in Machine Learning on non-
exchangeable models using the distance dependent Chinese Restaurant
Process (Blei and Frazier, ) may point towards the construction of
models that imply the kind of ‘useful’ locality constraint directly, rather
than deducing it from processing limitations.
While I leave exploration of this idea for future work, it is worth point-

ing out that for non-exchangeable models particle filters may prove to
be the only feasible inference algorithms as common Markov Chain
Monte Carlo algorithms require exchangeability to be computationally
tractable. In contrast, the correctness of a strictly incremental parti-
cle filter is independent of any assumption of exchangeability and can
directly be applied to such a model.
To conclude, then, I believe the results in this chapter to contribute

in multiple ways to the study of word segmentation in a Bayesian frame-
work. One can take the algorithms as proposals about mechanism, fol-
lowing work such as Pearl et al. () and Phillips and Pearl (in press);
my preferred interpretation, though, is in terms of suggesting novel re-
search questions about models; in particular how input size and model
assumptions interact and whether assumptions such as exchangeability
are adequate for our purposes. The next chapter directly addresses the
first of these two questions and studies how a large class of different
models performs on different amounts of input.





4
STUDYING THE EFFECT OF INPUT S IZE FOR
BAYES IAN WORD SEGMENTATION

Studies of computational models of language acquisition depend to a
large part on the input available for experiments. In this chapter, I
study the effect that input size has on the performance of word segmen-
tation models embodying different kinds of linguistic assumptions. This
directly addresses two questions raised by the findings of the previous
chapter:

. Do complex models such as the Bigram model rely more heavily
on additional constraints to yield good performance on little data
than ‘simple’ models such as the Unigram model?

. How can undersegmentation behavior of models be addressed by
changing the assumptions built into the model?

Because currently available corpora for word segmentation are not
suited for addressing this question, I perform my study on a novel corpus
based on the Providence Corpus (Demuth et al., ).

I find that, indeed, input size can have dramatic effects on segmen-
tation performance and that, somewhat surprisingly, models perform-
ing well on smaller amounts of data can show a marked decrease in
performance when exposed to larger amounts of data. I also find that
moving towards more complex models requires the addition of strong
constraints on possible words to yield good performance on even large
amounts of data, suggesting that the answer to our first question is yes.
As for the second question, I show that combining constraints on pos-
sible word forms with modeling word-dependencies using collocations
successfully addresses the undersegmentation problem.
In addition, I present the data-set on which I perform the experi-

ments comprising longitudinal data for six children. This corpus makes
it possible to ask more specific questions about computational models
of word segmentation, in particular about intra-language variability and
about how the performance of different models can change over time.

. introduction

Segmenting a stream of sounds into discrete words is one of the first
tasks that children acquiring their native language have to tackle. Com-
putational models of word segmentation enable us to study this problem

 The corpus and the code to run the experiments is available at http://web.science.
mq.edu.au/~bborschi/.



http://web.science.mq.edu.au/~bborschi/
http://web.science.mq.edu.au/~bborschi/
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in a controlled and detailed manner, allowing for example for an exam-
ination of the usefulness of different kinds of cues or different learning
strategies, as discussed in more detail in Chapter .
Just as important as the actual models, however, is the adequacy of

the input used to evaluate them — if we are interested in answering
questions about human language acquisition, the data we evaluate our
models on needs to be comparable to what children are likely to have
access to. To this end, several datasets of phonemically transcribed
child directed speech (CDS) have been constructed in several languages,
ranging from English to Italian, Polish, Sesotho and Chinese (Brent
and Cartwright, ; Gervain and Erra, ; Boruta and Jastrzebska,
; Johnson, a; Johnson and Demuth, ). In addition to cross-
linguistic variation adequate computational models also need to handle
language-internal variation along several dimensions, a topic that has
so far received little interest.
In this chapter, I look at one of the most basic points of variation: the

actual size of the input to the learner. It is common to evaluate models
on a single large dataset. In fact, size seems to be so important that often
several corpora are concatenated to yield a larger input set. Yet, to my
knowledge little work has looked at understanding how input size affects
segmentation performance. The longer children are exposed to language,
the more data they are exposed to and the better at their language they
become, something one would expect from adequate models of language
acquisition as well.
I run my experiments on a novel dataset that contains longitudi-

nal data for six children from the Providence Corpus (Demuth et al.,
). It has two advantages over the current defacto standard for
word segmentation studies for English, the Bernstein-Ratner-Brent cor-
pus (Brent, , in the following, BRB Corpus).

First of all, it cleanly separates CDS that is directed at different chil-
dren with one separate corpus per infant; in contrast, the BRB Corpus
contains data from  different children with no clear indication of the
different portions. In addition, recording for some of the children in
the BRB corpus began as late as month  and for others as early as
month , raising a potential issue with respect to the comparability of
the individual corpora.
In contrast, the Providence Corpus provides data for all of the chil-

dren starting from month  at the latest and starting from month 
at the earliest and thus constitutes a much more homogeneous data set.
Finally, the BRB corpus with its roughly , utterances is too small
to systematically address questions about input size.
My transcription of the Providence Corpus contains more than ,

CDS utterances in total and spans a period of several months for all
of the children. This makes it possible to both compare inter-child vari-

 Thus, in Chapter  and  I restricted attention to a sub-part of this corpus that
corresponds to a single child.
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ability in word segmentation across comparable situations and to study
developmental changes in individual children over a period of several
months. As such, the resource will allow researchers to ask a wider range
of questions than is currently the norm.
For the experiments on the effects of input size I focus on one of the

six sub-corpora of the dataset, yet I describe and make available the
full data so as to enable other researchers to take advantage of this new
resource as well. Other studies that make use of my data are Börschinger
and Johnson () (forming the basis for Chapter  of this thesis) and
Synnave et al. ().
The outline of the chapter is as follows. First, I provide background

about the original Providence Corpus, my way of phonemically tran-
scribing it and the properties of the new data-set I created. In sec-
tion ., I introduce the models of word segmentation which I examine
with respect to the effect of input size in section .. Section . dis-
cusses my findings and the final section concludes.

. the providence corpus

The Providence Corpus (Demuth et al., ) was collected during -
 from participants in southern New England. It contains longitudi-
nal audio/video recordings of  monolingual English-speaking mothers
and their children from approximately - years during spontaneous in-
teractions at home. The children included  boys (Alex, Ethan, William)
and  girls (Lily, Naima, Violet). Each was recorded for approximately
 hour every  weeks beginning at the onset of first words. Two of the
girls have denser corpora, with weekly recordings from ;-; (Naima)
and ;-; (Lily), and Naima’s recordings tended to be . hours long.
There is therefore more data for this mother and child. Lily’s mother
also talked quickly; there is therefore much data from Lily’s mother as
well. Recording began around one year or once the parent reported that
the child was producing approximately four words.
Digital audio/video recordings took place in each child’s home. In

most cases a research assistant came to set up the recording equipment
and then left, encouraging naturalistic spontaneous speech interactions
between parent and child. The children and parent (usually the mother)
wore a wireless Azden WLT/PRO VHF lavalier microphone pinned to
the collar. The child’s radio transmitter was stored in a child-sized back-
pack. The radio receiver was attached to the top of a small Panasonic
PV-DVD-K Mini digital video recorder placed on a tripod nearby.
Although parent and child could move freely about, the video informa-
tion was useful in determining the context of what was being discussed,
including possible target words. The availability of video would allow
future work along the lines of Frank et al. () and Jones et al. ()
although so far, we haven’t made direct use of the video recordings.
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The digital audio/video recordings were downloaded onto a com-
puter, and both adult and child speech were orthographically tran-
scribed using CHAT conventions (cf. MacWhinney ()). The child
data — but unfortunately not the caregivers’ — were then also tran-
scribed in phonemic transcription. All mother and child transcriptions,
as well as audio/video files, can be found on the CHILDES database
http://childes.psy.cmu.edu/. I used the XML version of the data
for the transcription process.
The transcripts include both the child’s and the adults’ utterances. As

potential input to computational models of word segmentation, however,
we are exclusively interested in the CDS parts of the transcripts which
we focus on in the following. Note that all corpus statistics mentioned
in the rest of the paper exclude child utterances.

.. Producing a phonemically transcribed version

To find CDS utterances, for all six children we extract the orthographic
transcriptions for all utterances made by caregivers from the XML tran-
scripts of the Providence corpus, starting from  months up to and
including  months. This makes the data qualitatively comparable to
the BRB Corpus that includes CDS from between  and  months of
the children’s age. In total, we extract , utterances with a ,
distinct (orthographic) types but the number of utterances some utter-
ances are not transcribed (see section ...). I also ignore all child
utterances as I am interested in generating child-directed input for the
models.
To turn the orthographic representations into a phonemic format that

is suitable for studying language acquisition, we perform a four step
process of filtering, dictionary look-up, heuristic construction of pro-
nunciations for unknown types and manual transcription of unknown
types not covered by the heuristic as well as correction of mistakes made
during earlier steps.

... Filtering words

We manually remove types that we consider to be obvious non-words,
in particular interjections such as hmmmhmmm or mmmmhmmm, obvi-
ous onomatopoeic wordplay such as nananana and unintelligible words
which are transcribed in the Providence Corpus as xxx and yyy. This
is consistent with the procedure followed by Brent () and, more
recently, Boruta and Jastrzebska (), making the corpus compara-
ble in this respect to theirs. We do not, however, remove these items in
cases where the resulting utterance would have been rendered fully un-
intelligible or where a word that should have been excluded according

 Available at http://childes.psy.cmu.edu/data-xml/Eng-USA/Providence.zip

http://childes.psy.cmu.edu/
http://childes.psy.cmu.edu/data-xml/Eng-USA/Providence.zip
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to the above criteria was used as an actual word in a large number of
cases.

In total, we identify  such non-words and we remove all occur-
rences of these types from the transcript, leaving the remaining words
in the utterance: utterances including any of the non-words are still
transcribed as long as there is at least one word left after removing all
non-words.
A total of , utterances are thus completely ignored, with ,

utterances consisting of exactly one of these filtered elements, in partic-
ular xxx (unintelligible, ), oh () and hmmm ().

... Dictionary lookup

After filtering, we perform a simple dictionary-lookup transcription
using a phonemic dictionary. We use the VoxForge dictionary which
uses a standard phone set for American English, corresponding to the
DARPABET coding. We also provide a script that maps this represen-
tational scheme into one-character-per-phoneme representations that
are required by some of the currently common word segmentation tools.

If there are multiple pronunciations available for a type, we always pick
the first one. While this constitutes an idealization we believe that an
explicit idealization is to be preferred over an overly simplistic method
of artificially introducing variability such as randomly choosing a pro-
nunciation.
In total, the VoxForgeDictionary covers  of the  remaining

types in the data, leaving  of the types untranscribed. We transcribe
these words manually, using a simple pre-processing heuristic to aid the
process.

... Heuristically constructing pronunciations for unknown words

Many of the unknown words are either forms of types that already are in
the lexicon, e.g. possessives (Elmo’s) or plurals (Legos), or compounds
of two types that are both in the lexicon individually (frenchtoast, ted-
dybear). We handle the former case by simple rules operating on the
orthographic forms directly.

 The former applies mostly to cases where an item is mentioned rather than used, e.g.
”Does the baby say ‘Wah wah’?”; the latter, for example, applies to ‘bonk’ which,
in addition to its onomatopoeic use, also occurs as a verb in the corpus, including
its preterite and participle. The data includes the full list of filtered items as well
as the scripts that perform the automatic steps of transcription from the original
xml-data so that researchers can easily make their own decisions about which items
to exclude.

 While this may seem like a lot of items to exclude, most of these are hapaxes like
bumpoopadoompadadooboom or doodleuhdoo.

 The dictionary is available at http://www.repository.voxforge1.org/downloads/

SpeechCorpus/Trunk/Lexicon/VoxForge.tgz. The lexicon with which the experi-
ments were performed was retrieved on July th, .

 E.g. dpseg (Goldwater et al. ).

http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Lexicon/VoxForge.tgz
http://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/Lexicon/VoxForge.tgz
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If we encounter an orthographic form w for which the VoxForgeDic-
tionary does not provide a pronunciation and which ends in either s, es
or ’s, we try to automatically construct a pronunciation as follows.

First, determine whether the stem s of the orthographic word that
remains if we strip the ending e ∈ {es, ’s, s} has a pronunciation in the
dictionary. If not, we cannot automatically construct a pronunciation.
Otherwise, let b be the pronunciation of s.

We then construct a pronunciation p for w based on the following
rules, depending on the identity of the ending e:

• e = es: p = b+ /@z/

• e = s or e = ’s:

– if b ends in a voiced segment, p = b+ /z/

– else p = b+ /s/

To identify potential compounds, we try to decompose a word w into
a prefix p and a maximal suffix s such that the dictionary provides
pronuncations for both p and s are known forms.

Taken together, the heuristic applies to  cases which we then man-
ually correct for mistakes.

... Manual transcription

The remaining  word types are labeled manually, using where avail-
able the form-annotation in the XML files as guide-line.

.. Statistics

The final corpus comprises a total of , phonemically transcribed
utterances and consists of six distinct sub-corpora, each corresponding
to the CDS directed at one of the six children. Each sub-corpus is, in
turn, subdivided into individual files corresponding to the age of the
child at which recording took place, ranging from  up to  months.
Both within these individual files and within the overall corpus, the
order of the CDS utterances corresponds to the order in which these
utterances were actually made, making them suitable for studies that
look at changes over time.
Table . gives summary statistics over the full amount of data for

each individual child. Looking at total number of utterances, we can
broadly identify two groups: for Alex, Violet and William there are
considerably less CDS utterances than for Ethan, Lily and Naima. This
is presumably mostly due to recording beginning at different ages and

 An alternative way of constructing pronunciations is to use letter-to-sound rules, a
strategy that may be more appropriate for large corpora with many unknown words.

 While not always provided for caregiver utterances, some of them include phonetic
markup for individual words, in particular if the words were names.
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Name #Utt #Tok #Type ∅ Utt. Len. ∅ Tok. Len ∅ Type Len.

Alex , , , . . .

Violet , , , . . .

William , , , . . .

Ethan , , , . . .

Lily , , , . . .

Naima , , , . . .

Table .: Statistics about the different sub-corpora of the Providence corpus,
including total number of utterances, tokens, types, as well as av-
erage utterance, token and type length (in phonemes). I use ∅ as
shorthand for ‘average’. While roughly comparable, I focus on the
Naima corpus which is the largest corpus and provides the most
data for my experiments.

different numbers of sessions having been recorded for different children,
as discussed above.
Yet, there also seem to be noticeable differences in terms of utterance-,

token- and type-length. Although I will not do so in this paper, perform-
ing comparative evaluation of models across the children may lead to
the discovery of interesting predictors of model performance and per-
haps even actual language ability on behalf of the children.
For the rest of the chapter, I will focus on the Naima part of the

corpus and take a closer look at how the segmentation performance of
different segmentation models changes as a function of the size of the
input.

. bayesian word segmentation

The word segmentation models I study in this paper are Goldwater’s
Unigram model (Goldwater, ; Goldwater et al., ) and Johnson
(b)’s collocation-syllable Adaptor Grammar models. A detailed re-
view of the mathematics for these kinds of models is provided in chap-
ter . Here, I only give an intuitive idea of Bayesian word segmentation
models although I will discuss, in some detail, the different collocation-
syllable models below. I also want to remind the reader that I use adap-
tor grammars as a modeling framework because this allows us to easily
specify a huge variety of models. As discussed in Chapter , I do not
want to suggest that context-free rules are required for word segmenta-
tion; indeed, the string languages generated by the adaptor grammars
I use are regular and the structured objects generated by them could
also be generated by a simple probablistic branching process such as
a Hidden Markov Model. Despite this, using the context-free grammar
format makes both implementing, presenting and reasoning about the
models much easier.
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.. Intuition for Bayesian Word Segmentation

All the models are Bayesian probabilistic models that define a genera-
tive process for the target of learning, in this case segmented utterances
or sequences of words. This generative process is defined with the help
of the Dirichlet Process (DP): at an intuitive level, the DP is use-
ful for word segmentation because it biases models to identify compact
ways to represent the observed unsegmented utterances, trading off the
number of both tokens and types used in an analysis of the data.

This trade-off is a consequence of the way that probabilities are as-
signed to tokens under a DP model: the probability of hypothesizing a
word token depends on the number of times that its type has previ-
ously been hypothesized, and the probability of a full segmentation of
the data is the product of the probabilities for all the tokens used in
the segmentation. This tends to make solutions in which a small num-
ber of words is used relatively frequently yet not over-excessively (as
would be the case if every individual segment were a type) the most
probable which, in most cases, also leads to linguistically reasonable
results. What differentiates the different models from one-another are
the specific assumptions about the nature of possible word types and the
relationships between word tokens. I will elaborate on these points, thus
introducing all models used in the experiments.

.. Assumptions about possible words

The base distribution which specifies a model’s prior expectations about
the form of words plays is a crucial part of any Bayesian segmentation
model. Here I compare how different assumptions about the base distri-
bution interact with the assumptions the model makes about word-to-
word dependencies.

A naive assumption about possible words is that they can be any
arbitrary sequence of segments. Under such a Unigram phoneme distri-
bution (see also Figure .) both dog and qfx would be equally good
candidates for possible words a priori. While obviously not true of hu-
man languages (bnik isn’t a possible English word), this was the base
distribution built into the original Unigram and Bigram models (Gold-
water et al., ) that initiated research on Bayesian word segmen-
tation. While it has been shown to work reasonably well on in specific
settings, we already saw in Chapter  and, considering incremental infer-
ence, in Chapter  that without additional constraints this kind of base
distribution can lead to surprisingly bad performance. Staying close to

 Adaptor Grammars actually use the Pitman-Yor Process, a strict generalization of
the DP. I gloss over this detail.

 Or a token of another entity, e.g. a syllable or a multi-word expression, if the model
incorporates these notions.
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the original models, I showed how adding a possible word constraint
along the lines of Norris et al. () can partially address these issues.

Extending the idea of such a possible word constraint in a linguis-
tically motivated way and utilizing Adaptor Grammar’s ability to eas-
ily specify rich hierarchical models, I now consider the even more con-
strained assumption that words have to be sequences of syllables. In-
deed, there is strong evidence that even very young infants track proba-
bilities defined over syllables (Saffran et al., ), and recent work such
as Phillips and Pearl (in press) argues that the syllable has advantages
over the phoneme as a primitive unit in word segmentation.

... Phonemic or syllabic input

While this may be viewed as arguing for using syllabified rather than
phonemic input, Schrimpf and Jarosz () argue that proper syllabifi-
cation presupposes successful word segmentation. Their example is that
a phoneme sequence such as /l U k æt/ (“lookat”) can only be correctly
syllabified as /l U k - æt/ if /l U k/ has already been identified as a word;
otherwise, syllabification principles such as onset maximization (see, e.g.
Hayes, , p. ) will syllabify it as /l U - k æt/.

I share Schrimpf and Jarosz ()’s feeling that this suggests that syl-
labification and word segmentation need to be performed jointly rather
than separately and use phonemic input and models that can perform
joint segmentation and syllabification.

... Unconstrained base distribution

Chapter  described an extension of the unconstrained base distribu-
tion of Goldwater () and Goldwater et al. () as a probabilistic
finite state automaton. Here, I re-express the same distribution as a
Probabilistic Context-Free Grammar. This can be done concisely using
the three rules in Figure ..
Rule . defines that words are arbitrary sequences of segments as

generated by rules .-.. Here, rule . is actually a rule schemata
which abbreviates an entire set of re-write rules, one for every phoneme
x ∈ Σ where Σ is the phoneme inventory of the data.

Word is underlined, indicating that it is an adapted non-terminal (see
Chapter ). Recall that this means that the model will learn an inven-
tory of and a distribution over complete subtrees dominated by a Word
non-terminals which, essentially, corresponds to the lexicon inferred by
the segmentation model.
As not every suffix of a word is itself another word, we want to keep

separate the non-terminal that implements the recursion, Segs , from
the adapted non-terminal that enables the model to learn words, Word ,
explaining why we need the unary rule ..

 There also is the issue that it is not clear what recursion involving adapted non-
terminal means and ought to be avoided for technical reasons, see Johnson ().
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Segs → Seg (.)

Segs → Seg Segs (.)

Seg → x (.)

Figure .: Adaptor Grammar rules to define an unconstrained base distri-
bution over all possible sequences of segments. An example tree
generated by these rules is depicted on the left.

The distribution over sequences of phonemes defined by these rules is
equivalent to that defined by the automaton in Figure .. In particular,
the probabilities associated with the rules corresponding to . directly
correspond to Θ, the probabilities governing transitions from state 0 to
state 1; and the probability of rule . corresponds to Φ, the stopping
probability with which the automaton transitions into its final state.

... Syllable base distribution

We can put constraints on possible words by requiring words to be se-
quences of syllables rather than arbitrary sequences of segments. The
rules in Figure . define a base distribution that enforces this constraint
which is, essentially, that of Johnson (b). I use brackets to indicate
optionality of a category on the right hand side, allowing us to com-
pactly present multiple alternatives. For example, rule . abbreviates
the 2 rules

SyllIF → OnsI Rhyme

SyllIF → Rhyme

Also note that I explicitly limit the length of possible words to 4
syllables, following Johnson (b) and Johnson and Goldwater ().
I do this for reasons of efficiency as avoiding a recursive rule at this level
greatly speeds up the parsing that is required by the adaptor grammar
inference program. In preliminary experiments I found no noticeable
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differences between using a fully recursive alternative in which words
could consist of any number of syllables extend for noticeable increased
runtime. This is not very surprising, considering that most words in
English child directed speech tend to be mono-syllabic.
To explain the base distribution these rules define in more detail, I

now discuss the assumptions about syllable structure they encode which
correspond to standard assumptions made in phonology (Hayes, ,
e.g.). To begin with, it requires each syllable to contain a vowel, as
syllables need to have a vocalic core also called nucleus. This requires
us to pre-specify the set of phonemes which are vowels V and the set
of phonemes which are consonants C .

Preliminary experiments showed that it is also possible to infer which
phonemes are which although, as vocalic and consonantal segments dif-
fer considerably in their acoustic properties (Ladefoged, ), I believe
that assuming this difference is unproblematic.

Optionally, the obligatory vowel which each syllable needs to contain
can be preceded by an optional sequence of consonants called onset and
followed by an optional sequence of consonants called coda. Nucleus and
coda are grouped into a constituent called rhyme.
Thus, all rules defining syllables conform to the general schema

Syll → (Ons )Rhyme

Rhyme → V Coda

The specific rules, taken from Johnson and Goldwater (), make
additional assumptions in order to allow the model to notice aspects of
syllable structure that are particular to an individual language and can
help in word segmentation.
For example, in order to allow it to learn which sequences of conso-

nants are likely to occur in onsets and codas, I treat both onsets and
codas as adapted non-terminals. This makes it possible for the model
to capture aspects that are specific to individual languages – for exam-
ple, that onsets such as /sp/ are dispreferred in Spanish but are fine in
English – from the data, relying only on (arguably universal) general
knowledge about syllable structure.
Moreover, I allow the model to learn certain aspects of the phono-

tactics of the language by identifying which specific onsets are limited

 Because diphtongs are treated as single segments, there is no need to allow a sequence
of vowels in nucleus position. In fact, this is also true for the data on which Johnson
(b) evaluated, rendering his mention of such a rule superfluous.

 A potential complication is that in languages such as Tamil Berber, consonants may
play the role of syllabic nuclei in particular contexts but not others. To some extent,
English exhibits a similar phenomenon in words such as /b A t l

"
/ (“bottle”) which

may be analyzed as containing a syllabic /l
"
/. Here, I ignore these issues and make

the simplifying assumption that the role each segment can play is specified ahead of
time (although it is possible for phonemes to count as both consonantal and syllabic,
allowing the model to choose the analysis of each token depending on the context).
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to or strongly indicative of the beginning of words; and which codas
are limited to or strongly indicative of the end of words. For example, a
complex onset such as /s t r/ as in /s t r E N T/ (“strength”) occurs most
frequently word-initially, and the coda /N T/ occurs almost exclusively
word-finally.

To enable the model to exploit these kinds of phonotactic cues, two
kinds of onsets and codas are distinguished, OnsI for word-initial on-
sets, Ons for word-internal onsets, CodaF for word final codas, and
Coda for word-internal codas. Crucially, these different non-terminals
are adapted as, otherwise, the model would not be able to learn the
preferred role of entire sequences of consonants.

As a result of the two way distinction of onsets and codas, we have to
distinguish 4 syllable non-terminals. SyllIF corresponds to the single
syllable in a mono-syllabic word in which the (optional) onset has to
be OnsI and the (optional) coda has to be CodaF because the same
syllable is both initial and final. SyllI is a word-initial syllable in a multi-
syllabic word, thus its onset (if any) has to be a OnsI but its coda (if
any) a word-internal coda Coda . Similarly, SyllF corresponds to the
word-final syllable in a multi-syllabic word which uses Ons and CodaF .
Finally, Syll corresponds to a word-internal syllable and (optionally)
uses both Ons and Coda .

.. Assumptions about relations between word tokens

So far, I have only discussed the base distribution. Another aspect with
respect to which one can distinguish different models are the distribu-
tional assumptions they encode about the words in an utterance.
The simplest such assumption is, arguably, that all words are indepen-

dent, resulting in a 0th-order Markov or Unigram model in which the
probability of a sequence of words is just the product of the marginal
probability of each word. As a result, the probability of “the dog barks” is
indistinguishable from “barks dog the”, showing that these assumptions
clearly do not suffice to capture semantic or syntactic relations between
words. Although popular in early work on segmentation (Brent, ;
Venkataraman, ; Goldwater, ), this Unigram assumption has
been shown to also be problematic for word segmentation. In particu-
lar, Goldwater () and Goldwater et al. () demonstrated that
the Unigram assumption encourages undersegmentation, an issue I also
noticed in the discussion in the previous chapter.
The Unigram model can be expressed as an Adaptor Grammar (John-

son, ), using the following rules which generate sequences of rules

 An investigation into how much these particular cues help is provided in Chapter .
 Note that unlike onsets and codas, syllables themselves are not adapted. In

Börschinger et al. (), I discuss a variant of the model in which entire syllables
are adapted. Subsequent experiments indicate that this does not make a difference
to the overall findings but that adapting syllables leads to even more severe under-
segmentation behavior.
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SyllIF → (OnsI )RhymeF (.)

SyllI → (Ons )Rhyme

SyllF → (Ons )RhymeF

OnsI → Cons

Ons → Cons

CodaF → Cons

Coda → Cons

Cons → C (Cons )

RhymeF → V (CodaF )

RhymeF → V (Coda )

C → c , c ∈ C

V → v , v ∈ V

Figure .: Adaptor Grammar rules to define a base distribution that con-
strains words to be sequences of syllables. In addition, this
grammar enables the model to use phonotactic cues to word-
boundaries by learning word-initial onsets (OnsI ) and word-final
codas (CodaF ). An example tree is given to the left.

which generate sequences of adapted Word non-terminals using a sim-
ple 0th-order Markov process:

Words → Word

Words → Word Words

The kind of structure generated by these rules is illustrated in Fig-
ure .. By using either the rules in Figure . or those in Figure .
to expand the Word non-terminal, one recovers the unigram model
described in Chapter  with the unconstrained base distribution of Fig-
ure ., or a unigram-syllable model which makes use of the more
constrained base distribution described above.
One way in which Goldwater () proposed to address this is by

moving from a Unigram to a Bigram model. In such a model, the prob-
ability of a sequence such as “the dog barks” is the product of the prob-
abilities of the bigrams, i.e. all pairs of adjacent words. How this can be
done is reviewed in detail in Chapter , and although under certain cir-
cumstances this results in noticeably improvements over the Unigram
assumption, increasing the order of the language model even further
showed no noticeable gains. In particular, Mochihashi et al. () con-
sidered a Trigram model in which the probability of a sequence is the
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Figure .: Illustration of the kinds of structures that the Unigram and the
Collocation model generate for an utterance.

product of the probabilities of every triple of adjacent words in an ut-
terance and reported, essentially, the same performance as the Bigram
model.
Interestingly, the Bigram model cannot be expressed as an Adaptor

Grammar, at least in the current instantiation of Adaptor Grammars
that assume a finite set of non-terminal symbols. This is because un-
like the 0th-order Markov process of the Unigram model, the 1st-order
Markov Process of the Bigram model would need to be described us-
ing a particular adapted non-terminal for every possible word (also see
the discussion at the end of Chapter ). Thus, there is no straight-
forward way in which the syllable base distribution of Figure . can
be combined with a Bigram model – while it is, theoretically, possible
to re-code this base distribution, the rich hierarchy it includes and the
latent sub-word structure make this challenging.
An alternative way of relaxing the independence assumption between

words has been proposed by Johnson (b), employing a hierarchical
instead of a sequential notion of context. His collocation model assume
that sentences are sequences of multi-word sequences or collocations.
Consequently, the model not only learns words but an additional kind
of entity, entire chunks of words. Importantly and in contrast to the
Unigram and Bigram models, these chunks are stored in addition to
and not at the expense of the words that make them up — a collocation
model can infer that /D @ d o g i/ (thedoggie) is a high-frequent sequence
that is made up of the distinct words /D @/ (the) and /d o g i/ (doggie).
The collocation model can be ‘derived’ from the Unigram model

by adding the rules

Collocations → Collocation (Collocations )

Collocation → Words
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Collocation3s → Collocation3 (Collocation3s )

Collocation3 → Collocation2s

Collocation2s → Collocation2 (Collocation2s )

Collocation2 → Collocations

Collocations → Collocation (Collocations )

Collocation → Words

Words → Word (Words )

Figure .: Adaptor grammar rules for a collocation-model. To expand the
adapted Word non-terminal, either the rules in Figure . or those
in Figure . can be used. The former yields the colloc model,
the latter the colloc-syll model.

and letting Collocations be the start-symbol of the Adaptor Gram-
mar. Thus, just like the Unigram model one can combine the collocation
model with the different assumptions about words discussed above. The
kind of structures generated by the collocation model is illustrated in
Figure . – note that the expansion of each Collocation uses the kind
of structure the Unigram model uses to analyze an entire sentence.
Adaptor Grammars make it easy to further extend the collocation

model by adding additional levels above the Collocations non-terminal.
Just as one derives the collocation model from the Unigram model by
adapting the non-terminal that spans the whole sentence in the Un-
igram model, one can derive a collocation model from the colloca-
tion model by adding the following rules and using as start symbol the
Collocation2s non-terminal:

Collocation2s → Collocation2 (Collocation2s )

Collocation2 → Collocations

Johnson and Goldwater () found that using yet another level,
i.e. a collocation-model, yields best performance. Following this obser-
vation, in this chapter I examine models using up to 3 levels of collo-
cations, and I consider for each model whether or not it assumes an
unconstrained (Figure .) or a syllable-constrained (Figure .) base
distribution. For concreteness, the grammar for a collocation-model is
given in Figure . down to the adapted Word non-terminal which can
either be expanded using the rules in Figure . or those in Figure ..
I refer to the Unigram model with unconstrained base distribution

simply as unigram, and analogously, to the collocation models with un-
constrained base distribution as colloc, colloc, and colloc. To
distinguish these models from those with the syllable base distribution,
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I refer to the latter as unigram-syll, colloc-syll, colloc-syll,
and colloc-syll, for a total of 8 models.

. experiments

As human language learners tend to get better at their native language
with longer exposure, one would expect adequate computational mod-
els to exhibit something similar, initially improving as more data is
observed and, at some point (probably beyond the size of samples one
usually can look at in practice), asymptotically approaching some upper
bound.
Also, I want to address one of the questions raised in the previous

chapters by the bad performance of the Bigram model on small amounts
of data, namely whether more complex models require stronger induc-
tive biases (as encoded in the syllable base distribution) to perform well
on smaller amounts of data.

.. Corpus

The longitudinal data available in the Providence Corpus suggests a
natural setup for studying these questions by constructing inputs that
consist of all CDS utterances directed at an individual child up to a
certain point of time. For my experiments, I use the Naima section of
the Providence Corpus and collect CDS utterances from when Naima
was  months old through to when she was  months old to construct
 differently sized inputs, each input consisting of all CDS utterances
in the corpus up to and including a given month.
I refer to the different input sets by the last month from which it

includes data. For example, data set 11 includes all utterances in the
Naima corpus which were collected up to her 11th month; data set
12 will add to this corpus the utterances collected ruing Naima’s 12th

month, and so forth. Thus, another way of viewing the different datasets
is as larger and larger prefixes of the entire Naima corpus. Table .
presents high-level summary statistics for the different input sets.
For ease of discussion, I use “language exposure” and “input size” ex-

changeably, a simplifying yet justified choice as is evident from Table .
that shows how the number of utterances grows over time.

 Börschinger () includes a discussion of the original Bigram model. As one cannot
combine it with the syllable base distribution and increasing the order of the Markov
language model has not shown to yield improvements (Mochihashi et al., ), I
exclude it from discussion here.
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Month Utterances Tokens Types Avg. Utt. Len

  ,  .

 , , , .

 , , , .

 , , , .

 , , , .

 , , , .

 , , , .

 , , , .

 , , , .

 , , , .

 , , , .

Table .: The properties of the different input sets. Note that each later
month properly includes all utterances from the earlier months,
e.g the  utterances of the input at month  include the 
utterances of the input at month , and so forth.

.. Evaluation

... Evaluation data

Word segmentation is an instance of unsupervised learning and as such,
it is common to simply evaluate on the input that model performed in-
ference over. However, this does not allow us to systematically compare
performance of models across largely different inputs. To illustrate, per-
formance on a very large corpus may – when summarized by a single
score calculated with respect to this corpus – be worse than that on
a smaller corpus (again, summarized by a single score calculated with
respect to this smaller corpus) simply because the two corpora vary
considerably.
To address this, I also evaluate on a held-out test-set which is con-

stant across all experimental conditions, irrespective of the input. The
scores on this held-out data can be compared directly across conditions,
making a comparison of how overall segmentation quality changes over
time meaningful.
I construct the test-set by sampling  CDS utterances from the

nd month of each of the six children’s sub-corpus in the Providence
Corpus, for a total of 1, 200 held-out utterances.

The segmentation on the held-out data is calculated after inference
has been performed on the input, thus implicitly defining a (probabilis-
tic) lexicon according to which one samples a segmentation for each

 Including CDS utterances directed at other children also introduces some amount
of variation so that one can ensure that benefits of more complex models are not
simply due to over-fitting the peculiarities of the Naima corpus.
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utterance in the test-set. Note that during this process, no novel words
are added to the model’s lexicon; in this sense, we evaluate the knowl-
edge the learner has acquired after having had access to the input.

... Evaluation metrics

As evaluation metrics, I use the standard token and boundary scores
going back to Brent and Cartwright () and reviewed in Chapter
. The single most representative score for overall segmentation per-
formance is token f-score, the harmonic mean between token precision
(number of correct tokens identified by the model over the number of
total tokens predicted by the model) and token recall (number of cor-
rect tokens identified by the model over the true number of tokens in
the input) as a measure of segmentation accuracy.

... Experimental setup

My experimental procedure follows closely the one outlined in Johnson
and Goldwater (). I used the August  version of Mark John-
son’s Adaptor Grammar implementation to run two Markov Chain
Monte Carlo chains for each of the models for  iterations, collect-
ing sample analyses for the held-out test-set with a lag of  after a
burn-in of  iterations.
I then determine the maximummarginal posterior segmentation (John-

son and Goldwater (), see Chapter  for a review) for each individ-
ual utterance on the basis of the 80 samples that were collected for each
condition.
An overall summary of the experimental results is given in Figure .

which plots token f-score on both the input and the held-out test-set for
different amounts of input size, with the size of the input getting larger
from left to right. I indicate the base distribution used by each model
by the line-type, using solid lines for the syllable base distribution and
dashed lines for the unconstrained Unigram phoneme base distribution.
The different (in)dependence assumptions about words are indicated by
color.

. discussion

Overall, one can see two broad patterns of behavior across the different
models which are largely consistent for evaluating on the input and
on the held-out data. One group of models exhibits a degradation in
performance for larger amounts of inputs, in particular the unigram,
unigram-syll, colloc-syll; and to a lesser degree the colloc-
syll and the colloc-syll. The other group comprises the collocation

 Available at http://web.science.mq.edu.au/~mjohnson/code/py-cfg-2012-08-16.

tgz.

http://web.science.mq.edu.au/~mjohnson/code/py-cfg-2012-08-16.tgz
http://web.science.mq.edu.au/~mjohnson/code/py-cfg-2012-08-16.tgz
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models with no syllable structure, i.e. colloc, colloc, and colloc,
show signs of improvement over time.

.. Differences between evaluation on input and held-out data

Overall, the trends as well as segmentation performance are by and
large identical on both the input and the held-out data; because, as
I have argued before, it is not clear how a token f-score for a corpus
of 900 utterances ought to be compared to one for a corpus of 25, 000
utterances, I focus the discussion on the held-out data where all the
scores are calculated across the same utterances, irrespective of the
input size.
Yet, it is interesting to note that a model that has seen as little as

roughly 1, 000 to 2, 500 utterances (which corresponds to months 11
and 12) performs almost as well on its input as on held-out data – thus,
there is no evidence for ‘over-fitting’ in the classical sense that good per-
formance on the ‘training data’ entails considerably worse performance
on held-out data.

.. Performance of different models

The colloc-syll model clearly emerges as the most accurate with a
token f-score of % at peak performance at around  months (,
utterances) that drops to around % at month  (, utterances).
Second best is the colloc-syll model which peaks at around % at
month  and also drops by % to about % at month . The third
place is taken by colloc-syll which peaks already at month 11 with
% token f-score. However, it exhibits a much more dramatic drop
than the higher-order collocation models, steadily dropping in token
f-score by almost 10% to % at month 21.
Determining a clear fourth place is harder. Thus, even though up until

roughly 14 months the unigram-syll model is outperformed only by
the higher-order collocation syllable models, at this point it is overtaken
by colloc, the simplest collocation model that does not use syllable
structure; and at 16 months, by colloc. This is because unigram-
syll exhibits the most dramatic drop in performance, from around %
at month  ( utterances) to slightly less than % for month ;
in contrast, even though colloc starts out with only % at onth 11,
its performance increases over time and seems to asymptote to slightly
above 70% starting from month .
The largest performance improvement is seen for colloc which

jumps from only % for month  to about % for month . Despite
this, even after this huge increase it remains the worst model.
To sum up, there are two types of behaviour. unigram, colloc-

syll, colloc-syll and colloc-syll exhibit what I call overlearn-
ing : they reach their peak performance for relatively small amounts of
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input and gradually get worse as the size of the input grows larger. This
is much more pronounced for unigram-syll and colloc-syll than
for colloc-syll and colloc-syll, with the latter remaining above
% accuracy even for the largest amount of input. Despite overlearn-
ing, colloc-syll and colloc-syll perform word segmentation the
most accurate for all sizes of input. On the other hand, the collocation
models lacking the assumption of syllable structure do not exhibit over-
learning, at least not on the amount of data I tested them.
To my knowledge, I am the first to identify these two different trends

which I will now attempt to explain.

.. Overlearning

I begin with a detailed explanation of “overlearning”, starting from an
original observation going back to Goldwater () who noticed that
the Unigram model tends to identify undersegmented solutions where
the predicted (incorrect) words often consist of several of the (correct)
words. Her explanation for this is that “groups of words that frequently
co-occur violate the unigram assumption in the model since they exhibit
strong word-to-word dependencies”, and that “[t]he only way the model
can capture these dependencies is by assuming that these collocations
are in fact words themselves.” (Goldwater, , p.)

Why is it, however, that these “misleading” co-occurrences occur in
the data in the first place and, apparently, become more problematic
the larger the input is?

... Explaining overlearning

I suspect that many of the “collocations” a model such as unigram
is susceptible to arise from principled regularities governing language
which are not accounted for by the model. I discuss this idea first for
the unigram model and then argue that it extends to the collocation-
syllable models as well.
As a concrete example, note that English syntax requires (most)

prepositional phrases to begin with a preposition-determiner sequence.
As both prepositions and determiners are a small closed class, there is
only a small number of sequences such as “in the” or “of a”. Crucially,
the occurrence of a sequence such as in the is largely independent of
what is actually being talked about (as it excludes the head-noun of the
prepositional phrase) and the number of its occurrences can therefore
be expected to just keep growing with the amount of input.
This is supported by figure . which plots the change in relative fre-

quency of several function word bigrams and a ‘content’ bigram such as
the baby which is, indeed, the highest frequency bigram including a noun.
Whereas occurrences of the content bigram are restricted to contexts
in which a baby plays any role, the function word bigram are necessi-
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Figure .: Frequency of several high frequency function word bigrams over
time as well as that of the highest-frequency content word bigram
the baby. See Table . for further discussion of these patterns.

tated not by conversation topic but English syntax. Consequently, their
frequency in the input grows much more dramatically over time.
Recalling that the unigram model was shown to undersegment high-

frequency items, this observation directly leads to the prediction that it
will perform worse when trained on larger amounts of data: the evidence
for spurious ‘words’ such in the grows steadily with the input size.
The experimental results strongly suggest that this reasoning is cor-

rect. The drop in performance for the unigram model is clear from
figure : it reaches peak performance of around % when its input con-
sists of a mere  utterances, and its segmentation accuracy steadily
drops as it processes larger inputs down to around % for an input of
, utterances. When syllable structure is taken into account, the
drop is even more pronounced as it starts from % and also drops to
around %.
More direct support for explaining the drop by the negative impact

of the increasing frequency of patterns like the one in figure . comes
from figure . that plots how well the model is able to identify word
types of different frequencies in the test set as a function of input size.
Note how for higher-frequency types, the Unigram model’s perfor-

mance decreases more dramatically than for low frequency types for
larger amounts of input. To investigate whether this difference in perfor-
mance could actually be due to high-frequency items getting “absorbed”
into larger units as I suggest following Goldwater (), in Table .
I perform a qualitative evaluation of a number of actual examples of
patterns involving high-frequency items that are themselves of differ-
ent frequencies. As is clear, cases that are analyzed correctly at month
 are almost consistently misanalysed as a single word at month ,
showing that the “loss” of high-frequency items is a major reason for
the overlearning.
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Figure .: Token f-scores for word types of different frequencies in the test-set
as a function of the size of the input. Note that the Unigram and
the collocSyll model already show clear decreases in accuracy over
time for types of frequency larger than  whereas the collocSyll
model shows a relatively robust performance up to the highest-
frequency bin of types with frequency larger than . The drop
in performance shows that even the collocSyll model suffers from
“overlearning” although this behavior is much less pronounced than
for the other models and only occurs dramatically for the highest-
frequency types in the data.

Surprisingly, perhaps, the same kind of explanation seems to apply
to the collocation-syllable models.
While originally proposed by Johnson (b) to specifically address

the problem of undersegmentation, looking at figure . indicates that
collocation models do not solve the problem of high-frequency words
completely, although it seems to get less problematic with the number
of collocational levels the model has at its disposal. Looking at the kind
of units learned by the collocation-models explains why that is: among
the high-frequency collocations learned by both the colloc-syll and
the colloc-syll model from the largest input is, for example, the
two ‘word’ sequence doyou remember.
While this is a better solution than the unigram model’s doyoure-

member, it still involves the undersegmented collocation do you which,
incidentally, is another example for a high-frequency function word bi-
gram. The colloc-syll model analyses this specific case correctly as
a three-word collocation do you remember, but it fails to acquire the
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collocation do you on its own and prefers to use the “word” doyou in
most other cases.
This shows that collocations do not solve the undersegmentation

problem but only push it back a level, in line with figure .: while
the colloc-syll model behaves relatively stable for word-types with
frequencies smaller than , it also shows a marked drop for the high-
frequency word types from around % at month  to just below %
for month . Some concrete examples of patterns which the colloc-
syll model is and isn’t able to handle correctly are given in table .,
alongside the performance of the Unigram model for these cases. This
clearly illustrates how, even though colloc-syll handles some of the
patterns which unigram misanalyzes correctly, its ability to handle
word-dependencies breaks for high-frequency patterns.

... A general problem for Bayesian models?

With this, the fact that even for collocation-models the undersegmen-
tation problem gets worse for larger inputs shouldn’t be too surprising.
As pointed out above, many of the patterns leading to undersegmenta-
tion errors are due to syntactic regularities that, for example, require
prepositions to be followed (in almost all cases) by articles. Figure .
indicates that these kinds of patterns grow continuously with the size
of the input, suggesting that models that “merely” model co-occurrence
statistics are bound to fail at some point.
This may almost seem like a general problem for Bayesian probabilis-

tic models of the kind discussed here that, in a sense, simply try to
identify high-frequency patterns in the input. Yet this is not so.
For one thing, the lack of detailed linguistic structure is not inherent

to the Bayesian framework that is fully unrestricted as to what kind
of structures a model is defined over. This much is clear from the ease
with which syllable structure can be incorporated into the models.

Secondly, even without additional linguistic structure the relative ro-
bustness of the colloc-syll model shows that while not fully solving
the problem of misleading co-occurrences, a sufficiently rich colloca-
tional structure goes a long way in alleviating the problem for input
sizes that go well beyond , utterances. It suffices to handle most
cases involving content words such as nouns, correctly learning for exam-
ple that despite its (relatively) high frequency, the baby consists of two
individual words. Figure . shows that for patterns like this, frequency
grows much slower over time (although still too fast for a model lack-
ing any ability to model larger-than-word-units such as the unigram
model), not too surprising considering that the occurrence of content
words — unlike function words — is mainly dependent on what is ac-
tually being talked about and that conversation topics tend to change
over time.
Finally, we also see that – at least on a corpus of up to roughly

25, 000 utterances – using two or three levels of collocation is suffi-
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cient to prevent overlearning for all but the highest frequency items.
That is, in Figure . one only observes clear instances of overlearning
for colloc-syll and colloc-syll for words of frequency 200 and
larger. Thus, these kinds of models may actually be sufficient to prevent
overlearning in ‘realistic’ scenarios of large but finite amounts of input
despite the fact that, theoretically, they too will start undersegmenting
when exposed too enough input.

undersegmentation as desideratum? A final point which
I briefly want to raise is that from a certain perspective, undersegmen-
tation may be viewed as a ‘feature’ rather than a shortcoming of a
segmentation model. Thus, Lignos () argues that “a good model of
infant word segmentation” should be able to replicate “at early stages
of learning, undersegmentation of function word collocations” (p. ).
In particular, he points out that in his seminal work on language acqui-
sition, Brown () reports that infants tend to analyze pure function
word sequences such as that a or verb-article collocations such as get a,
have a, etc. as monomorphemic (see p. ff).

This raises a general issue with the kind of evaluation common in com-
putational modeling of word segmentation – treating the orthographic
transcript as gold standard is questionable from a developmental point
of view where infants do, indeed, undersegment. Generally speaking, I
believe this criticism to be valid; yet, addressing it properly requires
establishing an alternative gold standard which, given that evidence
about the kinds of undersegmentations infants do perform, is currently
at best anecdotal, even in the language acquisition literature.
While I am looking forward to the development of such a standard

by language acquisition researchers, at the current stage I am skeptical
towards viewing particular patterns of undersegmentation as ‘benefi-
cial’. In the absence of a well-established standard against which to
compare, this may result in situations where the relative merit of differ-
ent models depends on the subjective judgment of the researcher as to
which undersegmentations are ‘good’ and which are ‘bad’. For this rea-
son I exclusively evaluate against the orthographic transcript although
I am aware of the limitation of this approach. In forthcoming work,
Phillips and Pearl (in press) discuss in some more detail the limits of
this approach and show how additional detailed evaluation that looks
at specific attested error patterns can address some of its shortcomings.
Coming back to the question whether the overlearning exhibited by

the models may not be viewed as an argument in favor of them, I also
want to point out that – counter to Brown ()’s observation and
Lignos ()’s demand, the collocation syllable models exhibit severe
undersegmentation not in the early but late stages of learning, i.e. only
once they have been exhibited to huge amounts of input. I believe this to
cast general doubt on the idea that overlearning – at least as exhibited
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by the models under discussion here – is desirable from a cognitive point
of view.

.. Performance of unconstrained models

What remains to be given is an explanation why the collocation models
without syllable structure lead to an overall worse performance but seem
to exhibit a positive relation between amount of input and segmentation
accuracy. The key to this, I believe, lies again in considering the kinds
of regularities the model is sensitive to; this also provides an answer to
the question raised by the previous chapter, i.e. whether richer models
require stronger constraints to perform well on little data.

... Constraints on possible words

With no restriction on what an actual word may look like, high-frequency
patterns of any kind — including individual phonemes and short n-gram
like sequences of phonemes — can be employed by a probabilistic seg-
mentation model to explain the input they get. In particular, for little
input with overall few word tokens and, consequently, relatively few
repetitions for each of the actual word types, the evidence for high-
frequency non-words (e.g., simply treating an individual phoneme as a
word) is extremely high, possibly leading to over- rather than underseg-
mentation.
For example, inspecting the segmentations generated by colloc

at month  we find that most frequent “word” is learned is t which
is used in “collocations” like t o, ge t or, illustrating the problem very
nicely, j us t. The reason these segmentations make sense for the model
is that, of course, every individual phoneme occurs frequently in the
input and, as such, is a plausible word; in particular as the fact that
certain sequences occur more frequently than would be expected if all
‘words’ were independent, such as the preposition to, can be explained
by positing the ‘collocation’ t o.

While ‘statistically reasonable’, segmentations involving ‘words’ such
as t should be ruled out on the grounds that t simply is not a possible
word in any language. And indeed, as can be seen from the performance
of the collocation syllable model, adding a constraint that rules out
these kinds of analyses forces the model to identify units that match
closely with actual words.
Of course, this immediately raises the question why the unigram

model does not require a possible word constraint. To understand this,
recall that under the unigram model, all tokens in a segmentation
are fully independent (see above and Chapter ). Thus, it can only
consider the marginal probabilities of the words in a sequence to predict
its overall probability whereas a collocation (or a Bigram) model can
take into account contextual dependencies.
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With this, consider again a segmentation such as t o as posited by
the colloc model. The reason the Unigram model does not posit
this analysis is that the phoneme sequence /t u/ (corresponding to the
word to) occurs much more frequently than would be expected if it
really were the sequence of two independent ‘words’ t and u. To wit,
the relative frequency of the bigram /t u/ among all possible phoneme
bigrams at month 11 is 0.6%. In contrast, the marginal frequencies of
the phoneme /t/ is 0.07% and that of /u/ is 0.04%, hence according to
a unigram model the expected frequency of /t u/ ought to be 0.3%,
half of what is actually observed. Consequently, the Unigram model will
posit the single word to as the alternative analysis is at odds with the
empirically observed frequencies.
In contrast, a collocation model can account for the mismatch by as-

signing a probability directly to the collocation t o which need not be
identical to the product of the marginal probabilities of t and o. In ad-
dition, by assigning independent probabilities to t and o which capture
the occurrence of these phonemes in other contexts, the overall data
can be fit much better, making the undersegmented t o the preferred
solution.
Ironically then, the oversegmentation behavior is worst for models

with a lot of additional structure such as the colloc model that,
when combined with a syllable structure constraint, leads to the best
performance. Without such a constraint, however, it uses the structure
it has at its disposal to identify “statistically plausible” but linguistically
meaningless segmentation.

Increasing the amount of input leads to the same overall change in
segmentations – larger and larger units will be posited by the model the
more and more input it processes. Yet, in this case this actually leads
to more accurate rather than worse segmentation because the models
tendency to oversegment is so large initially that it takes a huge amount
of data to overcome it.
In line with this, at month  the top- word list is ing, you, z, the and

to. This shows, that, as expected, more input does lead to larger units
being segmented; but also that even for well over , utterances, the
colloc model prefers to posit short ‘words’ as it has another three
levels of collocations that it can use to assemble them into larger units.
The colloc and colloc model are less extreme in their overseg-

mentation behavior as they have fewer “levels” at their disposal, discour-
aging the excessive use of one-phoneme ‘words’ more severely. Thus,
the oversegmentation behavior is less pronounced early on and, conse-
quently, less input is required to achieve reasonable segmentation per-
formance of around 70% token f-score. For these models, however, one
also sees evidence for beginnings of undersegmentation for the colloc
model, consistent with the observation that it seems to ceil at around
70% token f-score starting from month 15. Also, its highest-frequency

 This bigram may, of course, also occur as part of another word, as in altogether.
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Figure .: Token f-scores for word types of different frequencies in the test-
set as a function of the size of the input. Note that the colloc
model exhibits overlearning for words of frequency larger than 20,
and colloc exhibits clear overlearning of words of frequency 200,
indicating that even these models will overlearn as they see more
and more input.

words at month  include “overlearned” units like areyou and doyou,
demonstrating that the colloc model is beginning to overlearn just
like the syllable-structure models.
This is also suggested when we look at Figure . which, just as Fig-

ure . for the models that overlearn, plots token f-score for words of
different frequencies for the collocation models without syllable struc-
ture. In Figure ., we observe an overlearning pattern already for words
of frequency 10 and 20. Here, for colloc we see no such behavior at all
although, starting at 50 for colloc, one also sees the suspicious drop;
and for colloc, one clearly sees overlearning on words of frequency
200, demonstrating that if we were to increase the input amount further,
these models would also begin to undersegment more and more severely
and, ultimately, exhibit an overall drop in segmentation performance.
In conclusion, I think this shows that the intuitively attractive behav-

ior of such unconstrained models to get better over time is an artifact
of their strong preference for short units that, for small amounts of
data, masks the overlearning inherent in the model at the expense of
segmentation accuracy.
To summarize this discussion then, the fact that models lacking sylla-

ble structure do not exhibit overlearning in my experiments should not
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be taken as evidence that they are more adequate than their overlearn-
ing relatives. Rather, and consistent with the discussion in chapter , it
demonstrates that richer models which include notions such as colloca-
tions require stronger constraints on what counts as a possible word to
perform good segmentation on small amounts of data at all, highlighting
the importance of constraints on the form of possible words.

.. Parameter settings

I want to briefly mention the possibility that overlearning may be ad-
dressed by manually choosing appropriate values for the models’ hyper
parameters for differently sized inputs. Goldwater () observed and
the discussion in Chapter  confirmed that the segmentations proposed
by her Bigram model depend on the choice of hyper-parameters, and
Johnson (b) observed a similar sensitivity to hyper parameters in
Adaptor Grammar models.

Thus, it may be possible to identify different hyper parameter settings
for different amounts of input that, to some extent, prevent or alleviate
overlearning. I cannot rule out this possibility and it may, indeed, be a
reasonable way of addressing these kinds of problems as they arise in
practical applications of Bayesian models which exhibit similar kinds
of behavior. From a computational modeling point of view, however, I
find this to be an undesirable strategy.
First, the number of hyper parameters in an Adaptor Grammar is

twice the number of adapted non-terminal symbols, making the identi-
fication of well-performing hyper parameters very challenging. Indeed,
Johnson and Goldwater () found that their automatically inferred
hyper parameters (see Chapter , hyper parameter sampling) led to
better performance than any of the values Johnson (b) had manu-
ally considered. As it is reasonable to expect that more realistic models
of human language will be more complex and therefore will have even
more hyper-parameters than the models investigated here, manually
choosing hyper parameter values seems infeasible.
More importantly, I believe manual setting of hyper parameters or, as

it is know in Machine Learning, parameter tuning to be a questionable
move for computational models of language acquisition. It is certainly
conceivable that (things loosely corresponding to) hyper parameters are
indeed fixed by human biology to values that result in good segmenta-
tions. Yet, cross-linguistic evaluation of segmentation models has not
suggested that a single set of hyper parameters performs well across dif-
ferent languages – the settings that work for English have so far worked
considerably worse for other languages. Also, as argued in chapter ,
models which do not require hyper-parameters to be fixed to specific
values should be preferred on general simplicity grounds over models
that do require such prespecification.
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. conclusion and perspectives

I have presented a novel corpus of English CDS derived from the Prov-
idence Corpus for studying models of word segmentation. This corpus
makes it possible to address a wider range of questions than is currently
common, for example with respect to the study of how the segmenta-
tions predicted by a model may change over time.
The primary contribution of this chapter is the identification of a

so far unreported “overlearning” effect for state-of-the-art word segmen-
tation models on large amounts of data and an explanation of this
behavior. In particular, I argue that unless linguistic regularities are
modeled explicitly, they will give rise to ‘misleading patterns’ which
lead Bayesian word segmentation models to undersegment more as they
see more input and, consequently, perform worse rather than better seg-
mentation. Yet I found that by adding a sufficiently rich ‘collocational’
structure, this problem can be pushed back considerably to yield stable
performance up to roughly 25, 000 utterances.
I have also demonstrated that adding the power to capture more dis-

tributional dependencies to a segmentation model also adds the need
for a stronger constraint on possible word forms. In particular, even
though the colloc-syll model emerges as the overall best and most
robust segmentation model, the colloc model exhibits severe overseg-
mentation behavior and requires very large amounts of inputs to iden-
tify words rather than sub-word units such as very frequent phoneme
n-grams. This provides a positive answer to the question raised in chap-
ter  whether richer segmentation models also require more substantive
constraints to perform well on small amounts of data.
I conclude this chapter by pointing out possible ways of extending

this work, also noting two recent examples which can be seen as taking
a first step in either of these directions.

.. Future work

I hypothesized that the tendency to undersegment needs to ultimately
be addressed by modeling additional levels of linguistic structure that
properly explain the high frequency of certain patterns in ways that do
not require treating them as single units. A first step in this direction
was taken in Synnave et al. () where we added a kind of semantic
annotation capturing the idea of activity contexts (Roy et al., ). We
found that, as expected, trying to account for the topicality of words –
their tendency to occur more frequently in particular contexts as others
– addresses overlearning and results in significant improvements.

Additional possible ways of adding semantics is to incorporate learn-
ing of simple word-object correspondences as in Jones et al. () and
Johnson et al. () to the model. As the Providence corpus makes

 I am third author of this paper.
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available video recordings for all the transcripts, it should theoretically
be possible to annotate each utterance with a set of salient objects.
Following the strategy outlined in Johnson et al. (), it would then
be straight-forward to add the ability to associate particular words or
collocations with salient objects in context, providing a further way in
which some notion of semantics could be incorporated into word seg-
mentation.
In addition to semantics, incorporating syntactic dependencies is likely

to help overcome overlearning of, in particular, function word sequences.
A general challenge is choice of an appropriate set of syntactic notions
that is not tailored directly at the language under investigation and, of
course, additional information that could be used to determine syntactic
dependencies, e.g. high-level meaning representations for utterances or
parts of them. Focusing on English, Johnson et al. () shows how in-
corporating the abstract knowledge that mono-syllabic function words
can occur at the edges of collocational units improves segmentation and
it would be interesting to see whether their models, evaluated on the
Brent-Bernstein-Ratner corpus, also address overlearning on the Naima
corpus or other corpora of comparable size.
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EXPLORING THE ROLE OF STRESS IN BAYES IAN
WORD SEGMENTATION

Stress has long been established as a major cue in word segmentation for
English infants. In this chapter I show that enabling a current state-of-
the-art Bayesian word segmentation model, the Johnson and Goldwater
()’s colloc-syll model that was also examined in the previous
chapter, to take advantage of stress cues noticeably improves its perfor-
mance.
I find that the improvements range from  to %, depending on

both the use of phonotactic cues and, to a lesser extent, the amount of
evidence available to the learner. I also find that in particular early on,
stress cues are much more useful for the model than phonotactic cues
by themselves, consistent with the finding that children do seem to use
stress cues before they use phonotactic cues.
Finally, I study how the model’s knowledge about stress patterns

evolves over time. I not only find that the model correctly acquires the
most frequent patterns relatively quickly but also that the Unique Stress
Constraint that is at the heart of a previously proposed model does not
need to be built in but can be acquired jointly with word segmentation.

. introduction

Among the first tasks a child language learner has to solve is picking out
words from the fluent speech that constitutes its linguistic input. For
English, stress has long been claimed to be a useful cue in infant word
segmentation (Jusczyk et al., , b), following the demonstration
of its effectiveness in adult speech processing (Cutler et al., ).
Several studies have investigated the role of stress in word segmenta-

tion using computational models, using both neural network and “non-
statistical” approaches (Christiansen et al., ; Yang, ; Lignos
and Yang, ; Lignos, , ) which will be reviewed below.
Bayesian models of word segmentation (Brent, ; Goldwater, ),
however, have until recently completely ignored stress. The sole excep-
tion in this respect is Doyle and Levy () who added stress cues to
the Bigram model (Goldwater et al., , also see Chapter ), find-
ing small but statistically significant improvements when applying the
model to pre-syllabified data.
In this chapter, I extend on this work and show how to integrate stress

cues into the flexible Adaptor Grammar framework (Johnson et al.,

 The datasets and software to replicate the experiments are available from http:

//web.science.mq.edu.au/~bborschi/



http://web.science.mq.edu.au/~bborschi/
http://web.science.mq.edu.au/~bborschi/
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b, see Chapter  for a brief review). This allows me to both start
from a stronger baseline model and to systematically investigate how
the role of stress cues interacts with other aspects of the model. In
particular, I find that phonotactic cues to word-boundaries interact with
stress cues, indicating synergistic effects for small inputs and partial
redundancy for larger inputs.
Overall, I find that stress cues add roughly % token f-score to a

model that does not account for phonotactics and % to a model that
already incorporates phonotactics. Relatedly and in line with the finding
that stress cues are used by infants before phonotactic cues (Jusczyk
et al., a), I observe that phonotactic cues require more input than
stress cues to be used efficiently.
A closer look at the knowledge acquired by the models shows that

the Unique Stress Constraint of Yang () can be acquired jointly
with segmenting the input instead of having to be pre-specified; and
that the models correctly identify the predominant stress pattern of
the input but underestimate the frequency of iambic words, which have
been found to be missegmented by infant learners.

The outline of the chapter is as follows. In section . I review prior
work. Section . introduces the adaptor grammar segmentation models
and section . explains the experimental evaluation and its results. Sec-
tion . discusses my findings, and Section . concludes and provides
some suggestions for future research.

. background and related work

.. Lexical stress in word segmentation

Lexical stress is the “accentuation of syllables within words” (Cutler,
). Following Cutler and Carter ()’s observation that stressed
syllables tend to occur at the beginnings of words in English, Jusczyk
et al. () investigated whether infants acquiring English take advan-
tage of this fact. Their study demonstrated that this is indeed the case
for  month olds, although they found no indication of using stressed
syllables as cues for word boundaries in  month olds. Their findings
have been replicated and extended in subsequent work (Jusczyk et al.,
b; Thiessen and Saffran, ; Curtin et al., ; Thiessen and Saf-
fran, ), identifying a by now well-established set of findings about
the role stress plays in early word segmentation:

. English infants treat stressed syllables as cues for the beginnings
of words from roughly  months of age, suggesting that the role
played by stress needs to be acquired, and that this requires an-
tecedent segmentation by non-stress-based means (Thiessen and
Saffran, )
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. English infants exhibit a preference for low-pass filtered stress-
initial words from this age, suggesting that it is indeed stress and
not simply other phonetic or phonotactic properties (which are
missing in low-pass filtered speech) that are treated as a cue for
word-beginnings (Jusczyk et al., )

. phontactic cues seem to be used later than stress cues by infants,
evidence for their being used occurring only at around  months
and later (Mattys et al., ; Mattys and Jusczyk, ; Jusczyk
et al., a)

. once stress start being used from around  months, they seem to
outweigh other (e.g. distributional or phonotactic) cues to word
boundaries up until roughly  to  months, illustrated by fre-
quent mis-segmentations of words that do not conform to the dom-
inant stress-initial pattern such as /g i "t ar/ (guitar) (Thiessen
and Saffran, )

The experiments in this chapter address these points from a computa-
tional modeling perspective and shows that joint Bayesian models that
incorporate distributional, phonotactic and stress cues exhibit similar
behavior as will be discussed below.
It is worth noting at this point that the English stress system is in fact

quite complex. The linguistic knowledge required to correctly predict
the stress of a word involves more than merely knowing that most words
tend to be stressed on their first syllable – common linguistic analyses
of stress systems make use of ideas such as syllable weight and foot
structure, all of which will be ignored in this chapter (for an accessible
introduction, see Hayes, , chapter ). The reason for this is that
there is little evidence that the subtle aspects of the English stress
system that require a deeper analysis play an important role at the
stage of word segmentation.

.. Prior modeling work on stress in word segmentation

The earliest computational model for word segmentation incorporating
stress cues I am aware of is the recurrent network model of Christiansen
et al. () and Christiansen and Curtin (). Segmentation using
neural networks has fallen somewhat out of favor recently, and its per-
formance is, indeed, considerably lower than that of the other lexical
segmentation models which incorporate the idea of an explicit lexicon
in which word forms are stored; in this case, the best segmentation
accuracy reported by Christiansen et al. () and Christiansen and
Curtin () is a mere % whereas the base-line models I consider
in this chapter already attain an accuracy of well over %. For this
reason, I do not discuss these models in more detail.
A highly influential segmentation model that explicitly incorporated

stress cues is presented by Yang (). It is a simple incremental algo-
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rithm that embodies an allegedly universal substantive constraints on
the stress-patterns of possible words called the Unique Stress Constraint
(USC) which was defined by Yang and Gambell () as follows:

unique stress constraint A word can bear at most one pri-
mary stress[.] (p. )

A constraint like this is made plausible by the idea that one of the
roles played by stress is its culminative function, i.e. the idea that it
identifies the single most salient syllable of a word(Fromkin, ; Cut-
ler, ). In a sense, the USC can be viewed almost as a tautology –
primary stress is defined as the most prominent stress in a word, and
of course there is at most a single most prominent stress in any word.
Yang () argued, rather influentially, that statistical word segmenta-
tion are outperformed by a simple algorithm that relies on a ‘Universal
Grammar’ principle such as the USC rather than distributional regu-
larities of the input; and indeed, he reported very good segmentation
results of 85.6% segmentation accuracy on a corpus of pre-syllabified
child directed speech, outperforming a transitional-probability learner
of the kind proposed by early work such as as Saffran et al. () by
a huge margin.
However, the high scores Yang () and Yang and Gambell ()

reported depend on the questionable assumption that, in fact, every
word token contain a stressed syllable, including function words. While
this assumption has more recently also been made explicitly by Doyle
and Levy () (discussed below), Lignos further explored Yang’s orig-
inal algorithm, taking into account that function words should not be
assumed to possess lexical stress cues. While his scores are in line with
those reported by Yang, the importance of stress for this learner were
more modest, providing a gain of around .% (Lignos, ).
Working in the Bayesian framework I use as well, Doyle and Levy

() extend the Bigram model of Goldwater et al. () by adding
stress-templates to the base distribution which defines the prior expec-
tations a model has about possible words (see Chapter , , and  for a
discussion about how assumptions built into the base distribution affect
word segmentation). A stress-template indicates how many syllables the
word has, and which of these syllables (if any) are stressed. Thus, un-
like in the Yang/Lignos the model of Doyle and Levy () can, at
least in theory, form explicit expectations about the stress pattern of
its language by learning a distribution over stress-templates from the
input.
Interestingly, Doyle and Levy () do not directly examine the

probabilities their model infers for the different stress-templates but
they do report, on the basis of calculating the fraction stress-initial
words in the proposed segmentation, that their model does slightly pre-
fer stress-initial words over the baseline model which does not make
any use of stress cues. The ability to explicitly represent expectations
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about stress patterns is something that differentiates probabilistic mod-
els from other approaches, making it possible to not only ask whether
stress aids segmentation but also address how the role played by stress
can be acquired. I extend on this in my experiments by directly exam-
ining how expectations about stress patterns develop over time.
Like Yang and Lignos, Doyle and Levy () report that stress cues

aid segmentation, although their reported gain of % in token f-score
is even smaller than that reported by Lignos (). Also, a slightly
surprising result of their work (which may even be viewed as supporting
Yang and Gambell ()’s criticism of ‘statistical’ learners) is that a
simple baseline which proposes to put a boundary at every possible
position reaches a segmentation accuracy of 82% but Doyle and Levy’s
stress model only 68%.
The approach presented in this chapter is, in terms of also using a

Bayesian model for word segmentation, similar to theirs but differs in
several respects. First, I use Adaptor Grammars (Johnson et al., b),
a grammar-based formalism for specifying non-parametric hierarchical
models. Previous work explored the usefulness of, for example, syllable-
structure (Johnson, b; Johnson and Goldwater, ; Börschinger
et al., , also previous chapter of this thesis) or morphology (Johnson,
b,a) in word segmentation. The closest work to this is Johnson and
Demuth () who investigate the usefulness of tones for Mandarin
phonemic segmentation. Their way of adding tones to a model of word
segmentation is very similar to my way of incorporating stress which I
will explain in the next section.

. models

I give an intuitive description of the mathematical background of Adap-
tor Grammars in .., referring the reader to Johnson et al. (b)
for technical details and to chapter  for a brief review. The models I
examine are derived from the collocational model of Johnson and Gold-
water () by varying three parameters, resulting in  models: two
baselines that do not take advantage of stress cues and either do or do
not use phonotactics, as described in Section ..; and four stress mod-
els that differ with respect to the use of phonotactics, and as to whether
they embody the Unique Stress Constraint introduced by Yang ().
I describe these models in section ...

.. Adaptor Grammars

Briefly, an adaptor grammar (AG) is a probabilistic context-free gram-
mar (PCFG) with a special set of adapted non-terminals which are
treated differently from the non-terminals of a standard PCFG. I use un-
derlining to distinguish adapted non-terminals (X ) from non-adapted
non-terminals (Y ).
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The distribution for each adapted non-terminal X is drawn from
a Pitman-Yor Process which takes as its base-distribution the tree-
distribution over trees rooted in X as defined by the PCFG. As an
effect, each adapted non-terminal can be seen as having associated with
it a cache of previously-generated subtrees that can be reused without
having to be regenerated using the individual PCFG rules.

This allows AGs to learn reusable sub-trees such as words, sequences
of words, or smaller units such as Onsets and Codas. Thus, while or-
dinary PCFGs have a finite number of parameters (one probability for
each rule), Adaptor Grammars in addition have a parameter for every
possible complete tree rooted in any of its adapted non-terminals, lead-
ing to a potentially infinite number of such parameters. The Pitman-Yor
Process induces a rich-get-richer dynamics, biasing the model towards
identifying a small set of units that can be reused as often as possi-
ble. In the case of word segmentation, the model will try to identify as
compact a lexicon as possible to segment the unsegmented input.

.. Baseline models

The starting point is the state-of-the-art AG model for word segmen-
tation, Johnson and Goldwater ()’s colloc-syll model, reproduced
in Figure .. The model assumes that words are grouped into larger
collocational units that themselves can be grouped into even larger collo-
cational units. This accounts for the fact that in natural language, there
are strong word-to-word dependencies that need to be accounted for if
severe undersegmentations of the form “is in the” are to be avoided (Gold-
water, ; Johnson and Goldwater, ; Börschinger et al., , see
also the previous chapter for extended discussion).
It also relies on an arguably universal form of syllable structure to

constrain the space of possible words. Finally, this model can learn
word-initial onsets and word-final codas. In a language like English, this
ability provides additional cues to word-boundaries as certain onsets
are much more likely to occur word-initially than medially (e.g. “bl”
in “black”), and analogously for certain codas (e.g. “dth” in “width” or
“ngth” in “strength”).

I define an additional baseline model by replacing rules (.) and (.)
by (.), and deleting rules (.) to (.). This removes the model’s
ability to use phonotactic cues to word-boundaries.

Word → Syll ( Syll ) ( Syll ) ( Syll ) (.)

I refer to the model in Figure . as the colloc-phon model, and the
model that results from substituting and removing rules as described

 This idea relies on the Chinese Restaurant representation, see Chapter  for discus-
sion.

 I follow Johnson and Goldwater () in limiting the length of possible words to
four syllables to speed up runtime. In pilot experiments, this choice did not have a
noticeable effect on segmentation performance.
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Collocations3 → Collocation3
+ (.)

Collocation3 → Collocations2 (.)

Collocations2 → Collocation2
+ (.)

Collocation2 → Collocations1 (.)

Collocations1 → Collocation + (.)

Collocation → Words (.)

Words → Word + (.)

Word → SyllIF (.)

Word → SyllI ( Syll ) ( Syll ) SyllF (.)

SyllIF → (OnsetI )RhymeF (.)

SyllI → (OnsetI )Rhyme (.)

SyllF → (Onset )RhymeF (.)

CodaF → Consonant + (.)

RhymeF → Vowel (CodaF ) (.)

OnsetI → Consonant + (.)

Syll → (Onset )Rhyme (.)

Rhyme → Vowel (Coda ) (.)

Onset → Consonant + (.)

Coda → Consonant + (.)

Figure .: Adaptor Grammar for the baseline model. I use regular-expression
notation to abbreviate multiple rules. X {n} stands for up to n
repetitions of X , brackets indicate optionality, and X + stands
for one or more repetitions of X . X indicates an adapted non-
terminal. Rules that introduce terminals for the pre-terminals
Vowel , Consonant are omitted. Refer to the main text for an
explanation of the grammar.

as the colloc-nophon model. One can also limit the model’s ability to
capture word-to-word dependencies by removing either rules (.) to
(.), yielding a colloc-model, to (.) to yield a colloc-model or all
rules up to (.) to yield a unigram-moldel (Johnson and Goldwater,
, previous chapter).

These models, in particular the colloc-model, are more similar to the
Bigram model used in Doyle and Levy () and, as expected, we find
their performance to gradually deteriorate as compared to the colloc-
model (as discussed at length in the previous chapter). For this reason,
I focus on the colloc-models.
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.. Stress-based models

In order for stress cues to be helpful, the model must have some way
of associating the position of stress with word-boundaries. Intuitively,
the reason stress helps infants in segmenting English is that a stressed
syllable is a reliable indicator of the beginning of a word (Jusczyk et al.,
). Thus, if one already knew of this correlation one way to take
advantage of stress cues would be to always hypothesize (or hypothesize
with very high probability) a word boundary before every observed
stressed syllable; indeed, this metrical segmentation strategy (Cutler,
) has been found to be employed by adult speakers of English.

In the context of language acquisition, however, knowledge about the
proper role of stress cannot be assumed from the outset as, crucially,
languages differ with respect to how stressed syllables relate to word
boundaries. Nevertheless, one can expect that if there is a (reasonably)
reliable relationship between the position of stressed syllables and be-
ginnings (or endings) of words, a learner might exploit this relationship
by somehow picking up on it.
An alternative idea about how stress might be exploited in word

segmentation is the one argued for by Yang () and Lignos ().
There, the USC provides a hard constraint that excludes possible seg-
mentations that violate the USC and, thus, cuts down the space that
needs to be considered by a learner, arguably facilitating the segmenta-
tion problem.
In the Bayesian framework used here, both ideas can be captured di-

rectly (and independently) by modifying the base distribution or lexical
generator that is responsible for generating Word s. I first describe how
stress-preferences can be incorporated before I show how the USC can,
optionally, also be added to the models.
Here, changing the lexical generator corresponds to modifying the

rules expanding Word . A straight-forward way to modify it accord-
ingly is to enumerate all possible sequences of stressed and unstressed
syllables. While there is a huge number of alternative rules that could
be used and that encode subtly different biases, I found this approach
to work well already.
In the data, stress cues are represented using a special terminal “ ∗ ”

that follows a stressed vowel, as illustrated in Figure .. In the gram-
mar, “ ∗ ” is constrained to only surface following a Vowel , rendering
a syllable in which it occurs stressed ( SSyll ). Syllables that do not
contain a “ ∗ ” are considered unstressed (USyll ).

By performing inference for the probabilities with which Word ex-
pands into any of the possibly sequences of stressed and unstressed
syllables, i.e. the rules abbreviated by schema (.), the models can,
for example, learn that a bi-syllabic word that is stress-initial (a trochee)
is more probable than one that puts stress on the second syllable (an

 This is, in essence, also the strategy chosen by Doyle and Levy ().
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Word → { SSyll | USyll }{1,4} (.)

SSyll → (Onset )RhymeS (.)

USyll → (Onset )RhymeU (.)

RhymeS → Vowel ∗ (Coda ) (.)

RhymeU → Vowel (Coda ) (.)

Onset → Consonant + (.)

Coda → Consonant + (.)

Figure .: Description of the colloc-nophon-stress model. I use X {m,n} for
“at least m and at most n repetitions of X ” and {X | Y } for “ei-
ther X or Y ”. Stress is associated with a vowel by suffixing it with
the special terminal symbol ∗ , leading to a distinction between
stressed ( SSyll ) and unstressed (USyll ) syllables. A word can con-
sist of any possible sequence of up to four syllables, as indicated by
the regular-expression notation. By additionally adding initial and
final variants of SSyll and USyll as in Figure ., phonotactics
can be combined with stress cues.

iamb). This would be represented by having P(Word → SSyll USyll ) >
P(Word → USyll SSyll ).

Thus, by assigning probabilities to not only words but also to stress-
patterns, our model can (partly) capture the regularities exhibited its
input and, crucially, use these preferences to identify words.
One can combine this lexical generator with the colloc-nophon base-

line, resulting in the colloc-nophon-stress model. One can also add
phonotactics to the lexical generator in Figure . by adding initial and
final variants of SSyll and USyll , analogous to rules (.) to (.) in
Figure .. This yields the colloc-phon-stress model.
Finally, one can add the Unique Stress Constraint (USC) (Yang,

) by excluding all variants of rule (.) that generate two or more
stressed syllables. For example, the lexical generator for the colloc-
nophon-stress model will include the rule Word → SSyll SSyll ; this
pattern violates the USC as it generates a word with two stressed sylla-
bles, and thus this rule will be missing from a lexical generator that
embodies the USC. I refer to the models that include the USC as
colloc-nophon-stress-usc and colloc-phon-stress-usc models. A com-
pact overview of the six different models is given in Table ..

. experiments

I evaluate the models on several corpora of child directed speech. I
first describe the corpora used, then the experimental methodology em-
ployed and finally the experimental results. As the trend is comparable
across all corpora, I only discuss in detail results obtained on the Alex
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grammar phon stress USC

colloc-nophon

colloc-phon •
colloc-nophon-stress •
colloc-phon-stress • •

colloc-nophon-stress-usc • •
colloc-phon-stress-usc • • •

Table .: The different models used in the experiments. “phon” indicates
whether phonotactics are used, “stress” whether stress cues are used
and “usc” whether the Unique Stress Constraint is assumed.

orthographic the do-gie

no-stress dh ah d ao g iy

stress dh ah d ao * g iy

Table .: Illustration of the input-representation I choose. I indicate primary
stress according to the dictionary with bold-face in the orthography.
The phonemic transcription uses ARPABET and is produced using
an extended version of CMUDict. Primary stress is indicated by
inserting the special symbol “*” after the vowel of a stressed syllable.

corpus. For completeness, however, Table . reports the “standard” eval-
uation of performing inference over all of the three corpora.

.. Corpora and corpus creation

Following Christiansen et al. () and Doyle and Levy (), I use
the Korman corpus (Korman, ) as one of the corpora. It com-
prises child-directed speech for very young infants, aged between 
and  weeks and, like all other corpora used in this chapter, is avail-
able through the CHILDES database (MacWhinney, ). I derive a
phonemicized version of the corpus using an extended version of CMU-
Dict (Carnegie Mellon University, ), as I was unable to obtain the
stress-annotated version of this corpus used in previous experiments.
The phonemicized version is produced by replacing each orthographic
word in the transcript with the first pronunciation given by the dictio-
nary. CMUDict also annotates lexical stress, and I use this information
to add stress cues to the corpus. I only code primary lexical stresses in
the input, ignoring secondary stresses in line with experimental work
that indicates that human listeners are capable of reliably distinguish-
ing primary and secondary stress (Mattys, ). Due to the very low
frequency of words with  or more syllables in these corpora, this choice
has very little effect on the number of stress cues available in the input.

 http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict.0.7a

http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict.0.7a
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My version of the Korman corpus contains, in total, , utterances.
Unlike Christiansen et al. (), Yang (), and Doyle and Levy
(), I follow Lignos and Yang () in making the more realistic
assumption that the  mono-syllabic function words listed by Selkirk
() never surface with lexical stress. As function words account for
roughly % of the tokens but only roughly % of the types in the cor-
pora, this means that the type and token distribution of stress patterns
differs dramatically in all the corpora I examine, as can be seen from
Table ..

I also added stress information to the Brent-Bernstein-Ratner cor-
pus (Bernstein-Ratner, ; Brent, ), following the procedure just
outlined. This corpus is a de facto standard for evaluating models of
Bayesian word segmentation (Brent, ; Goldwater, ; Goldwater
et al., ; Johnson and Goldwater, ), comprising in total 
utterances.
As a third corpus, I use the Alex portion of the Providence cor-

pus (Demuth et al., ; Börschinger et al., ). A major bene-
fit of the Providence corpus (also see previous chapter) is that the
video-recordings from which the transcripts were produced are available
through CHILDES alongside the transcripts. This will allow future work
to rely on even more realistic stress cues that can be derived directly
from the acoustic signal. I believe choosing a corpus that makes richer
information available will be important for future work on stress (and
other acoustic) cues.
Another major benefit of the Alex corpus is that it provides longi-

tudinal data for a single infant, rather than being a concatenation of
transcripts collected from multiple children, such as the Korman and
the Brent-Bernstein-Ratner corpus. In total, the Alex corpus comprises
, utterances.

To make the results roughly comparable in terms of overall input
size, I only use the first 10, 000 utterances for both the Korman and
the Alex corpus as the Brent-Bernstein-Ratner corpus only comprises
9, 790 utterances. Note that despite the differences in age of the infants
and overall make-up of the corpora, the distribution of stress patterns
across the corpora is roughly the same, as shown by Table . for the
first , utterances of each of the corpora. This suggests that the
distribution of stress patterns both at a token and type level is a robust
property of English child-directed speech.

.. Syllabified versus phonemic input

A major point of divergence from previous work such as Yang (),
Lignos () and Doyle and Levy () is my use of phonemic rather
than pre-syllabified input. I already discussed this choice in Chapter 
but briefly repeat what I consider a convincing argument against the
use of pre-syllabified input.
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Pattern
brent korman alex

Token Type Token Type Token Type

W+ . . . . . .

SW∗ . . . . . .

WSW∗ . . . . . .

Other . . . . . .

Table .: Relative frequencies for stress patterns for the corpora used in the
experiments. X∗ stands for 0 or more, X+ for one or more repeti-
tions of X, and S for a stressed and W for an unstressed syllable.
Note the stark asymmetry between type and token frequencies for
unstressed words. Up to two-decimal places, patterns other than
the ones given have relative frequency . (frequencies might not
sum to  as an artefact of rounding to  decimal places). Note that
these relative frequencies are calculated from the gold standard.

Onset-maximization is an efficient means of syllabifying words but,
as can be seen easily, runs into problems when syllabifying an unseg-
mented corpus into syllables. In particular, a sequence such as /l U k
æt/ (“lookat”) will, relying simply on onset-maximization, be syllabified
as /l U - k æt/ because /k/ is a valid onset in English. While it is true
that, in fluent speech, this kind of re-syllabification where the coda of
one word (here, the /k/ of “look”) may be analyzed as the onset of the
following word, running a segmentation model on input in which this
sequence would be represented by two atomic syllables /lU/ and /k æt/
will prevent the model from segmenting this stretch correctly.

Preparing the syllabification of the corpus on the basis of a tran-
script that includes the word boundaries, however, corresponds to the
dubious assumption that an infant may, indeed, have applied onset-
maximization as if it knew the words. Consequently, I decide to use
phonemic input but apply a model which can infer a latent syllabifica-
tion jointly with syllabifying the corpus.

.. Experimental questions

The aim of the experiments is to understand the contribution of stress
cues to the Bayesian word segmentation models described in Section ..
To get an idea of how input size interacts with this, I look at prefixes of
the corpora with increasing sizes (, , , , , , and
, utterances), essentially the methodology I also used in Chapter
. Yet, the increments used here are much smaller and allow us to get
at possible differences between models that, on corpora of 1000 or more
utterances, may perform indistinguishably.
The standard evaluation of segmentation models, going back to Brent

(), involves having them segment their input in an unsupervised
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manner and evaluating performance on how well they segmented that
input. I measure segmentation performance using the standard metric
of token f-score (Brent, ) which is the harmonic mean of token
precision and recall. Token f-score provides an overall impression of
how accurate individual word tokens were identified. To illustrate, if
the gold segmentation is “the dog”, the segmentation “th e dog” has a
token precision of 13 (one out of three predicted words is correct); a
token recall of 12 (one of the two gold words was correctly identified);
and a token f-score of ..

Following the idea of chapter , to make segmentation scores of mod-
els which processed different amounts of inputs comparable, I addition-
ally evaluate the models on a test set for each corpus. In addition, use of
a separate test set has previously been suggested as a means of testing
how well the knowledge a learner acquired generalizes to novel utter-
ances (Pearl et al., ), allowing us to more directly ask in what
sense learning about stress helps segmentation of novel utterances.
I create the test-sets by taking the final  utterances for each cor-

pus. These  utterances will be segmented by the model after it has
performed inference on its input, without making any further changes
to the lexicon that the model has induced. In other words, the model
will have to segment each of the test utterances using only the lexicon
(and any additional knowledge about co-occurrences, phonotactics, and
stress) it has acquired from the training portion of the corpus during
inference.
Finally, I want to understand what kind of stress pattern preferences

the models acquire. Recall that these models explicitly represent their
knowledge about stress in the form of the probabilities it assigns to
the different expansions of the adapted non-terminal Word in (.). I
modified the adaptor grammar inference software to also produce sam-
ples of the rule probabilities in addition to sample segmentation and, for
every sample segmentation, collect the associated rule probabilities. In
this way, one can directly examine what preferences the model acquired
and also how they develop as it processes more input.

.. Inference

For inference, I closely follow the methodology used in the previous
chapter and Johnson and Goldwater (). Using my modified version
of the adaptor grammar sampler that produces samples for the rule
probabilities, I run 4 independent Markov Chains for 1, 000 iterations.
The first 800 iterations are used as burn-in and I collect 20 samples
with a lag of 10 iterations between each sample from each chain, for a
total of 80 sample segmentation per model for the input and 80 sample
segmentations for the test set.
For evaluation, I determine the maximum marginal a posteriori seg-

mentation – for each individual utterance, I determine the segmentation
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p s usc
alex korman brent

train test train test train test

. . . . . .

• . . . . . .

• . . . . . .

• • .88 .88 .88 . .87 .

• • . .88 . .88 . .

• • • .88 .88 .88 . .87 .88

Table .: Token f-scores on both train and test portions for all three corpora
when inference is performed over the full corpus. Note that the
benefit of stress is clearer when evaluating on the test set, and that
overall, performance of the different models is comparable across all
three corpora. Models are coded according to the key in Table ..

which, across all samples, occurred the most frequently. This produces a
single segmented input and test corpus for each model which I evaluate.

Also, rather than manually determining the hyper parameters for the
models I put independent vague Gamma(0.01, 0.01) priors on the con-
centration parameters for each adapted non-terminal and independent
uniform Beta(1, 1) priors on the discount parameter for each adapted
non-terminal; the Adaptor Grammar sampler then also performs infer-
ence for the hyper parameters.

.. Experimental conditions

Each of the six models is evaluated on inputs of increasing size, starting
at  and ending at , utterances. This allows us to investigate
both how performance and “knowledge” of the learner varies as a func-
tion of input size, similar to my experiments in Chapter  which showed
that input size can have dramatic effects on model performance.
For completeness and comparison to prior work, however, I also report

the “standard” evaluation, i.e. performance of the models in Table .,
i.e. the token f-score attained when inference was performed over the
entire input. This I do for all of the three corpora on which I performed
the experiments. As the experimental results are very similar across all
corpora, I will focus the more detailed discussion on the Alex corpus.
For this, Figure . depicts how token f-score on the test set (depicted

on the y-axis) changes as a function of the input size (depicted on the
x-axis).

 Note that I am using a different parametrization of the Gamma distribution
than Johnson and Goldwater (), see Table . on page . Thus, the
Gamma(0.01, 0.01) prior I use is equivalent to the Gamma(0.01, 100) prior Johnson
and Goldwater () suggest.
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Figure .: Segmentation performance of the different models, across differ-
ent input sizes and as evaluated on the test-set for the Alex corpus.
The no-stress baselines are given in red, the stress-models without
the Unique Stress Constraint (USC) in green and the ones includ-
ing the USC in black. Solid lines indicate models that use, dashed
lines models that do not use phonotactics. Refer to the text for
discussion.

. discussion

We find a clear improvement for the stress-models over both the colloc-
nophon and the colloc-phon models. As can be seen in Table ., the
overall trend is the same for all three corpora, both when evaluating on
the input and the separate test-set. Adding both stress or phonotactics
by itself improves over the respective base-lines, although combining the
two when performing inference over the full corpora yields no noticeably
gains. Also note how the relative gain for stress is roughly % higher
when evaluating on the test-set; this might have to do with Jusczyk
()’s observation that the advantage of stress “might be more evident
for relatively unexpected or unfamiliarized strings”.

 I performed Wilcox rank sum tests on the individual scores of the  independent
chains for each model on the full training data sets and found that the stress-models
were always significantly more accurate (p < 0.05) than the baseline models except
when evaluating on the training data for the Korman and Brent corpora.
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Figure .: Token f-score on the test-set as a function of the input size, with
models using phonotactics on the right and those without on the
left. This presents the same information as Figure . but makes
it easier to visualize the gain simply due to stress.

Moving beyond evaluating on a single huge test-set, however, we
see from Figure . further interesting differences between the colloc-
nophon and the colloc-phon models that only become evident when
considering different input sizes.

.. Stress cues without phonotactics

For ease of visualization, Figure . plots the same information as Fig-
ure . but uses a separate plot for the models without and with phono-
tactics.

For the colloc-nophon models, we observe a relatively stable im-
provement by adding stress cues of -%, irrespective of input size and
whether or not the Unique Stress Constraint (USC) is assumed. The
sole exception to this occurs when the learner only gets to see  ut-
terances: in this case, the colloc-nophon-stress model only shows a %
improvement, whereas the colloc-nophon-stress-usc model obtains a
boost of roughly %.
Noticeable consistent differences between the colloc-nophon-stress

and colloc-nophon-stress-usc model, however, all but disappear start-
ing from around  utterances. This is somewhat surprising, consider-
ing that it is the USC that was argued by Yang () to be key for
taking advantage of stress.

 On data in which function words are marked for stress (as in Yang () and Doyle
and Levy ()), the USC yields extremely high scores across all models, simply
because roughly every second word is a function word. Given that this assumption
is extremely unnatural, I do not take this as an argument for the USC.
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I take this behavior to indicate that even with as little evidence as
 to  utterances, a Bayesian ideal learner can leverage stress cues
in such a way that adding the USC does not add anything. In fact, from
the discussion in Section .. it will become clear that the model does,
in a sense, infer the USC constraint from the input.

.. Stress cues and phonotactics

Overall, the models including phonotactic cues perform better than
those that do not rely on phonotactics. However, the overall gain con-
tributed by stress to the colloc-phon baseline is smaller, although this
seems to also depend on the size of the input.
Thus, while phonotactics by itself appears to be a powerful cue, yield-

ing a noticeable -% improvement over the colloc-nophon baseline,
the learner seems to require at least around  utterances before the
colloc-phon model becomes clearly more accurate than the colloc-
nophon model. There is virtually no improvement from adding phono-
tactics for 100 and 200 utterances, suggesting that a certain amount of
input is required for phonotactic cues to become useful.
In contrast, even for only  utterances stress cues by themselves

provide a % improvement to the colloc-nophon model, as is very clear
from Figure .. This shows that these kinds of cues can be taken ad-
vantage of earlier, at least by a Bayesian ideal learner.

While the number of utterances processed by a Bayesian ideal learner
is not directly related to developmental stages (also see the critical dis-
cussion at the end of Chapter ), this observation is consistent with
the psycholinguists’ claim that phonotactics are used by infants for
word segmentation after they have begun to use stress for segmenta-
tion (Jusczyk et al., a).
The % difference between the colloc-phon-stress / colloc-phon-

stress-usc models to the colloc-phon baseline is smaller than the %
difference between the colloc-nophon and colloc-nophon-stress mod-
els. This shows that there is a redundancy between phonotactic and
stress cues in large amounts of data, as their joint contribution to the
colloc-nophon baseline of roughly 7% is less than the sum of their indi-
vidual contributions at , utterances, of % (for phonotactics) and
% (for stress).
This redundancy does, however, seem to depend to a large extent on

the amount of input. In particular, at  utterances the addition of
stress cues leads to an  – % improvement, depending on whether
or not the USC is assumed, whereas for the colloc-nophon model we
only observed a  – % improvement. This is particularly striking when
we consider that by themselves, the phonotactic cues only contribute
a % improvement to the colloc-nophon baseline when trained on the
 utterance corpus, indicating a synergistic interaction (rather than
redundancy) between phonotactics and stress for small inputs.
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Figure .: Evolution of the knowledge the learner acquires on the Alex cor-
pus. The red dotted line indicates the empirical type distribu-
tion of a specific pattern, and the double-dashed line the empiri-
cal token distribution. Top-Left: Stress-initial pattern, Top-Right:
Unstressed Words, Bottom-Left: Stress-second pattern, Bottom-
Right: Patterns that violate the USC.

This effect disappears starting from around  utterances; for in-
puts of size  and larger, the net-gain of stress drops from roughly
% to –% improvement over and above what is contributed by phono-
tactics. That is, while we did not notice any relationship between input
size and impact of stress cues for the colloc-nophon model, we do see
such an interaction for the combination of phonotactics and stress cues
which, taken together, lead to a larger relative gain in performance on
smaller inputs than on large ones.

.. Acquisition of stress patterns

In addition to acquiring a lexicon, the Bayesian learner acquires knowl-
edge about the possible stress patterns of English words. The fact that
this knowledge is explicitly represented through the PCFG rules and
their probabilities that define the lexical generator allows us to study the
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generalisations about stress the model actually acquires. While Doyle
and Levy () suggest carrying out such an analysis, they restrict
themselves to estimating the fraction of stress patterns in the segmented
output. As shown in Table ., however, the type and token distribu-
tions of stress patterns can differ substantially. I therefore investigate
the stress preferences acquired by the learner by examining the proba-
bilities assigned to the different expansions of rule (.), aggregating
the probabilities of the individual rules into patterns. For example, the
rules Word → SSyll (USyll ){0,3} correspond to the pattern “Stress on
the first syllable”, whereas the rules Word → USyll {1,4} correspond
to the pattern “Unstressed word”. By computing the respective prob-
abilities, one gets the overall probability assigned by a learner to the
pattern.
Figure . provides this information for several different rule patterns.

Additionally, these plots include the empirical type (red dotted) and
token proportions (red double-dashed) for the input corpus. Note how
for the two major patterns, all models successfully track the type, rather
than the token frequency, correctly developing a preference for stress-
initial over unstressed words, despite the comparable token frequency
of these two patterns. This is compatible with a recent proposal by
Thiessen and Saffran (), who argue that infants infer the stress
pattern over their lexicon.
For Bayesian models such as the ones examined in this chapter or

Goldwater et al. ()’s, there is no need to pre-specify that the distri-
bution ought to be learned over types rather than tokens, as the models
automatically interpolate between type and token statistics according
to the properties of their input (Goldwater et al., ). In the adaptor
grammar model, the fact that the left-hand side of the rules responsi-
ble for the stress-pattern (rule .) ensures that the probability of a
stress pattern will be estimated not directly from the number of tokens
with which each pattern occurs. Instead, it will be estimated from the
number of tables with this stress pattern in the Chinese Restaurant fran-
chise representation where it is common to have very few tables with
the identical label. This is discussed in more detail in section ... on
page .
In addition, a Bayesian framework provides a simple answer to the

question of how a learner might identify the role of stress in its language
without already having acquired at least some words. By combining
different kinds of cues, e.g. distributional, phonotactic and prosodic,
in a principled manner a Bayesian learner can jointly segment its input
and learn the appropriate role of each cue, without having to pre-specify
specific preferences that might differ across languages.
The iambic rule pattern that puts stress on the second syllable is

much more infrequent on a token level. All models track this low token
frequency, underestimating the type frequency of this pattern by a fair
amount. This suggests that learning this pattern correctly requires con-
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siderably more input than for the other patterns. Indeed, the iambic
pattern is known to pose problems for infants when they start using
stress as an effective cue. It is only from roughly  months of age
that infants successfully segment iambic words (Jusczyk et al., b).
Not surprisingly, the USC doesn’t aid in learning about this pattern
because it is completely silent on where stress might fall (and does not
noticeably improve segmentation performance to begin with).
Finally, one can also investigate whether the models that lack the

USC nevertheless learn that words contain at most one lexically stressed
syllable. The bottom-right graph in Figure . plots the probability
assigned by the models to patterns that violate the USC. This in-
cludes, for example, the rules Word → SyllS SyllS and Word →
SyllS SyllU SyllS . Note how the probabilities assigned to these rules
approaches zero, indicating that the learner becomes more certain that
there are no words that contain more than one syllable with lexical
stress. As I argued above, this suggests that a Bayesian learner can ac-
quire the USC from a modest amount of data — it will properly infer
that the unnatural patterns are simply not supported by the input
To summarize, by examining the internal state of the Bayesian learn-

ers one can characterize how their knowledge about the stress prefer-
ences of their languages develops, rather than merely measuring how
well they perform word segmentation. We find that the iambic pattern
that has been observed to pose problems for infant learners also is harder
for the Bayesian learner to acquire, arguably due to its extremely low
token-frequency.

. conclusion and future work

I have presented adaptor grammar models of word segmentation that
are able to take advantage of stress cues and are able to learn from
phonemic input. I find that phonotactics and stress interact in interest-
ing ways, and that stress cues makes a stable contribution to existing
word segmentation models, improving their performance by -% token
f-score.
I also find that the USC introduced by Yang () need not be

prebuilt into a model but can be acquired by a Bayesian learner from
the data. Similarly, I directly investigate the stress preferences acquired
by the models and find that for stress-initial and unstressed words,
they track type rather than token frequencies. The rare stress-second
pattern seems to require more input to be properly acquired, which is
compatible with infant development data.
There are several directions in which future work can extend on my

findings. An important goal to be addressed in the future is to evaluate
segmentation models on typologically different languages and to study
the relative usefulness of different cues cross-lingually. For example, lan-
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guages such as French lack lexical stress; it would be interesting to know
whether in such a case, phonotactic (or other) cues are more important.

Relatedly, there always is a risk that artificially created data masks
the complexity exhibited by real speech. For example, the pronunciation
variation that words are subject to in real speech is likely to affect how
individual occurrences of a word are stressed as well. An example for
this problem is given in the next chapter, and future work should use
data directly derived from the acoustic signal to account for contextual
effects, rather than using dictionary look-up or other heuristics. In using
the Alex corpus, for which good quality audio is available, I have taken
a first step in this direction, and indeed preliminary results building on
this chapter are reported on in Pate et al. (shed).





6
A JO INT MODEL OF WORD SEGMENTATION AND
PHONOLOGICAL VARIAT ION

Word-final /t/-deletion refers to a common phenomenon in spoken En-
glish where words such as /wEst/ “west” are pronounced as [wEs] “wes”
in certain contexts. Phonological variation like this is common in natu-
rally occurring speech. Current computational models of unsupervised
word segmentation usually assume idealized input that is devoid of these
kinds of variation. I extend a non-parametric model of word segmenta-
tion by adding phonological rules that map from underlying forms to
surface forms to produce a mathematically well-defined joint model as
a first step towards handling variation and segmentation in a single
model. I analyze how my model handles /t/-deletion on a large corpus
of transcribed speech, and show that the joint model can perform word
segmentation and recover underlying /t/s. I find that Bigram depen-
dencies are important for performing well on real data and for learning
appropriate deletion probabilities for different contexts.

. introduction

Computational models of word segmentation try to solve one of the
first problems language learners have to face: breaking an unsegmented
stream of sound segments into individual words. Currently, most such
models assume that the input consists of sequences of phonemes with no
pronunciation variation across different occurrences of the same word
type. In this chapter I describe an extension of the Bayesian models of
Goldwater et al. () that incorporates phonological rules to “explain
away” surface variation. As a concrete example, I focus on word-final
/t/-deletion in English, although our approach is not limited to this
case. I choose /t/-deletion because it is a very common and well-studied
phenomenon (see (Coetzee, , chapter ) for a review) and segmental
deletion is an interesting test-case for our architecture. Recent work has
found that /t/-deletion (among other things) is indeed common in child-
directed speech (CDS) and, importantly, that its distribution is similar
to that in adult-directed speech (ADS) Dilley et al. (to appear). This
justifies our using ADS to evaluate our model, as discussed below.
Our experiments are consistent with long-standing and recent find-

ings in linguistics, in particular that /t/-deletion heavily depends on
the immediate context and that models ignoring context work poorly
on real data. I also examine how well the models identify the probabil-
ity of /t/-deletion in different contexts. I find that models that capture
bigram dependencies between underlying forms provide considerably


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more accurate estimates of those probabilities than corresponding uni-
gram or “bag of words” models of underlying forms.
In section . I discuss related work on handling variation in com-

putational models and on /t/-deletion. Section . describes my com-
putational model and section . discusses its performance for recov-
ering deleted /t/s. I look at both a situation where word boundaries
are pre-specified and only inference for underlying forms has to be per-
formed; and the problem of jointly finding the word boundaries and
recovering deleted underlying /t/s. Section . discusses my findings,
and section . concludes with directions for further research.

. background and related work

.. /t/-deletion

/t/-deletion has received a lot of attention within linguistics, and I point
the interested reader to (Coetzee, , Chapter ) for a thorough re-
view. Briefly, the phenomenon is as follows: word-final instances of /t/
may undergo deletion in natural speech, such that /wEst/ “west” is
actually pronounced as [wEs] “wes”. While the frequency of this phe-
nomenon varies across social and dialectal groups, within groups it has
been found to be robust, and the probability of deletion depends on its
phonological context: a /t/ is more likely to be dropped when followed
by a consonant than a vowel or a pause, and it is more likely to be
dropped when following a consonant than a vowel as well. Two recent
publications are of direct relevance to this chapter.
Dilley et al. (to appear) study word-final variation in stop consonants

in CDS, the kind of input one ideally would like to evaluate the models
on. They find that “infants largely experience statistical distributions
of non-canonical consonantal pronunciation variants [including deletion]
that mirror those experienced by adults.” This both directly establishes
the need for computational models to handle this dimension of variation,
and justifies my choice of using ADS for evaluation, as mentioned above.

.. Prior modeling work

The work of Elsner et al. () is most closely related to my goal
of building a model that handles variation. They propose a pipe-line
architecture involving two separate generative models, one for word-
segmentation and one for phonological variation. They model the map-
ping to surface forms using a probabilistic finite-state transducer which
is able to represent a large class of phonological rules such as context-
dependent deletion or insertion of particular segments.

 Following the convention in phonology, I give underlying forms within “/. . . /” and
surface forms within “[. . . ]”.
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Their approach first applies the Bigram model of Goldwater et al.
() (see Figure . on ) to a corpus which exhibits pronunciation
variation. From this initial segmentation, the parameters of the trans-
ducer and a clustering of the types in the initial segmentation into clus-
ters of ‘underlying forms’ is determined using Viterbi EM (Spitkovsky
et al., ). Using this clustering, a second version of the corpus is
generated by replacing every token with the underlying form of its cor-
responding cluster, reducing the variation. Then, they apply the word
segmentation model again to the modified corpus. On an artificially cre-
ated version of the Brent-Bernstein-Ratner corpus (Brent, ), they
demonstrate that their pipeline approach leads to more accurate seg-
mentation.
Elsner et al. () extends this work by performing segmentation

and clustering jointly, using essentially the same architecture. This re-
sults in a segmentation model that can handle virtually arbitrary pro-
nunciation variation. However, as they point out, joint inference under
this model is infeasible and they resort to several heuristics to per-
form approximate inference. In this chapter, I illustrate an alternative
research strategy, starting with a single well-studied example of phono-
logical variation. This permits me to develop a joint generative model
for both word segmentation and variation which can form the basis
for specific explorations – here, how a deletion phenomenon impacts
segmentation.
An earlier approach that is close to the technical idea underlying my

approach is Naradowsky and Goldwater (). Their work was mo-
tivated by the observation that Goldwater ()’s model for English
stem-suffix morphology cannot correctly analyze forms such as baking
where the stem bake loses its final e. This is because Goldwater’s model
can only concatenate stems and suffixes without changing them. Narad-
owsky and Goldwater ()’s model, in contrast, allows the output of
the concatenation to undergo limited amounts of changes at the junc-
ture by assuming that a spelling rule applies to the concatenation of
stem and suffix. Here, the rule is “delete a stem-final e if the suffix
begins with an i”.

This is achieved by adding to the model a huge (but finite) number
of possible rewrite rules. Crucially, each of these rules is ‘reversible’ in
the sense that given an observed unsegmented word such as baking and
an analysis of this into ‘surface’ stem and suffix such as bak-ing, each
possible spelling rule determines exactly one underlying form. Thus,
the spelling rule “delete a stem-final e if the suffix begins with an i”
determines as the underlying stem bake whereas the rule “add a k to
the stem if the suffix begins with an i” determines as underlying stem
ba. The probabilities of these rules are learned jointly with the stem-
suffix analyses and, indeed, this model performs better than the original
morphology model as it handles case such as baking correctly. As will
become clear below, my own model exploits the same idea – adding a
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rule that can account for differences between the actual observations
and the posited observation. However, as I consider segmenting entire
utterances into words rather than the considerably simpler task of seg-
menting words into exactly one stem and one (possibly empty) suffix,
only a single such rule will be considered in this chapter.
Coetzee and Kawahara () provide a computational study of (among

other things) /t/-deletion within the framework of Harmonic Grammar.
They do not aim for a joint model that also handles word segmentation,
however, and rather than training their model on an actual corpus, they
evaluate on constructed lists of examples, mimicking frequencies of real
data. Overall, my findings agree with theirs, in particular that capturing
the probability of deletion in different contexts does not automatically
result in good performance for recovering individual deleted /t/s. I will
come back to this point in the discussion at the end of the chapter.

. the computational model

My models build on the Unigram and the Bigram model introduced in
Goldwater et al. () and reviewed in more detail in Chapter  (see
Figures . on page  and . on page ). Figure . shows the
graphical model for the joint Bigram model (the Unigram case is triv-
ially recovered by generating the Ui,js directly from G rather than from
HUi,j−1). Figure . gives the mathematical description of the graphical
model and Table . provides a key to the variables of my model.

The model generates a latent sequence of underlying word-tokens
U1, . . . ,Un. Each word token is itself a non-empty sequence of seg-
ments or phonemes, and each Uj corresponds to an underlying word
form, prior to the application of any phonological rule. This generative
process is repeated for each utterance i, leading to multiple utterances
of the form Ui,1, . . . ,Ui,ni where ni is the number of words in the ith

utterance, and Ui,j is the jth word in the ith utterance. Each utter-
ance is padded by an observed utterance boundary symbol $ to the left
and to the right, hence Ui,0 = Ui,ni+1 = $. Each Ui,j+1 is generated
conditionally on its predecessor Ui,j from HUi,j , as shown in the first
row of the lower plate in Figure .. Each Hw is a distribution over
the possible words that can follow a token of w and G is a global dis-
tribution over possible words, used as back-off for all Hw. Just as in
Goldwater et al. (), H is drawn from a Dirichlet Process (DP) with
base distribution Plex and concentration parameter α0, and the word
type specific distributions Hw are drawn from a DP(L,α1), resulting in
a hierarchical DP model (Teh et al., ).
The base distribution Plex functions as a lexical generator, defining a

prior distribution over possible words. In principle, Plex can incorporate
arbitrary prior knowledge about possible words, for example syllable

 Each utterance terminates as soon as a $ is generated, thus determining the number
of words ni in the ith utterance. See Goldwater et al. () for discussion.
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Variable Explanation

Plex base distribution over possible words

G back-off distribution over words

Hw distribution over words following w

Ui,j underlying form at position j in utterance i, a word

Si,j surface realization of Ui,j, a word

Rc /t/-deletion probability in context c

Wi observed segments for ith utterance

Table .: Key for the variables in Figure . and Figure ..

structure (cf. Johnson (b)). Following the experimental findings of
Chapter , I use a simpler possible word constraint that only rules out
sequences that lack a vowel (see Figure . on page  for more discus-
sion). While this is clearly a simplification it is a plausible assumption
for English data.

.. Modeling variation

Instead of generating the observed sequence of segments W directly
by concatenating the underlying forms as in Goldwater et al. (), I
map each Ui,j to a corresponding surface-form Si,j by a probabilistic
rule component PR.
This rule component is a conditional distribution PR(S | U) over

surface forms S given a particular underlying form U. The range of
S is determined by the phonological processes that are available to the
model. Here, the phonological phonological processes only include a rule
for deleting word-final /t/s but in principle, PR can be used to encode
a wide variety of phonological rules.
Thus, in the /t/-deletion model for a given underlying form u the

possible surface realizations depend on whether or not u ends in a /t/.
If this is the case, S ranges over both u and DelF(u) where DelF(u) =
u1:|u|−1; in other words, DelF(u) is the result of deleting the final
segment of u.
If u does not end in a /t/, S only ranges over u. This reflects that the

model only assumes a single process of variation and that underlying
forms that cannot exhibit this variation are deterministically mapped
to their underlying form.
I consider three kinds of contexts on which a rule’s probability of

applying depends:

. a uniform context that applies to every word-final position

. a right context that also considers the following segment
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. a left-right context that additionally takes the preceeding segment
into account

For each possible context c ∈ C there is a random variable Rc which
stands for the probability of the rule applying in this context. I refer to
concrete values of this probability with ρc.

Writing contexts in the notation familiar from generative phonology
Chomsky and Halle (), the model can be seen as implementing the
following probabilistic rules under the different assumptions:

uniform /t/ → ∅ / ]word

right /t/ → ∅ / ]word β

left-right /t/ → ∅ / α ]word β

β ranges over V(owel), C(onsonant) and $ (utterance-boundary), and
α over V and C. I define a function Cont that maps a pair of adjacent
underlying forms Ui,j,Ui,j+1 to the context of the final segment of Ui,j.
For example, Cont(/wEst/,/@v/) returns “C ]word V” in the left-

right setting, or simply “ ]word” in the uniform setting. Cont returns
a special NoT context if Ui,j doesn’t end in a /t/. I stipulate that
ρNoT = 0.0. Then one can define PR as follows:

PR(DelFinal(u) | u, r)) = ρCont(u,r) (.)

PR(u | u, r) = 1− ρCont(u,r) (.)

Depending on the context setting used, the model includes one (uni-
form), three (right) or six (left-right) /t/-deletion probabilities ρc. I
place a uniform Beta(1, 1) prior on each of those so as to learn their
values in the learn-ρ experiments below.

Finally, the observed unsegmented utterances Wi are generated by
concatenating all Si,j using the function Concat which simply con-
catenates all underlying words without boundaries. The entire input is
made up of several unsegmented utterances – as usual, I assume that
utterance boundaries are observed and need not be inferred.

.. Modeling intuition

I briefly comment on the central intuition of this model, i.e. why it
can infer underlying from surface forms. Bayesian word segmentation
models try to compactly represent the observed data in terms of a small
set of units (word types) and a short analysis (a small number of word
tokens). Phonological rules such as /t/-deletion can potentially “explain
away” an observed surface type such as [wEs] in terms of the underlying
type /wEst/ which is independently needed for surface tokens of [wEst].

 For right there are three and for left-right six different rules, one for every instanti-
ation of the context-template.
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Thus, the /t/→ ∅ rule makes possible a smaller lexicon for a given
number of surface tokens.

For this to work, of course, there needs to be sufficient evidence for
the underlying type in the observed data, and the “probability cost”
incurred by each application of a phonological rule must not outweight
the savings made through the smaller lexicon.
Obviously, human learners have access to additional cues, such as

the meaning of words, knowledge of phonological similarity between
segments and so forth. One of the advantages of an explicitly defined
generative model such as ours is that it is straight-forward to gradually
extend it by adding more cues, as I point out in the discussion.

.. Inference

Just as for the Goldwater et al. () segmentation models, exact
inference is infeasible for the joint model. I extend the collapsed Gibbs
breakpoint-sampler of Goldwater et al. (), reviewed in detail in
chapter , to perform inference for the extended models. For details such
as how to calculate the Bigram probabilities in Figure ., see either
chapter  or the original paper. Here I focus on the required changes
to the sampler so as to perform inference under the richer model. I
consider the case of a single surface string W, so I drop the i-index in
the following discussion.
KnowingW, the problem is to recover the underlying formsU1, . . . ,Un

and the surface forms S1, . . . ,Sn for unknown n. A major insight in
Goldwater’s work is that rather than sampling over the latent word
variables that define the segmentation directly (the number of which
we don’t even know), one can instead perform Gibbs sampling over a
set of boundary variables B1, . . . ,B|W|−1 that jointly determine the val-
ues for the variables of interest where |W| is the length of the surface
stringW. For the original segmentation model, this is discussed in more
detail in Chapter , see in particular Figure . on page .
For the /t/-deletion model, each Bj ∈ {0, 1, t}, where Bj = 0 indicates

absence of a word boundary, Bj = 1 indicates presence of a boundary
and Bj = t indicates presence of a boundary with a preceding underlying
/t/. The relation between the Bj and the S1, . . . ,Sn and U1, . . . ,Un is
illustrated in Figure .. The required sampling equations are given in
Figure ..

. experiments

.. The data

I am interested in how well the model handles /t/-deletion in real data.
Ideally, we’d evaluate it on CDS but as of now, I know of no available
large enough corpus of accurately hand-transcribed CDS.
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P(bj = 0 | h
−j) ∝ P(w12,u | wl,u,h−j)× Pr(w12,s | w12,u,wr,u)

× P(wr,u | w12,u,h−j)∪ 〈wl,u,w12,u〉)

P(bj = t | h
−j) ∝ P(w1,t | wl,u,h−j)× Pr(w1,s | w1,t,w2,u)

× P(w2,u | w1,t,h−j)∪ 〈wl,u,w1,t〉)× Pr(w2,s | w2,u,wr,u)

× P(wr,u | w2,u,h−j)∪ 〈wl,u,w1,t〉 ∪ 〈w1,t,w2,u〉)

P(bj = 1 | h
−j) ∝ P(w1,s | wl,u,h−j)× Pr(w1,s | w1,s,w2,u)

× P(w2,u | w1,s,h−j)∪ 〈wl,u,w1,s〉)× Pr(w2,s | w2,u,wr,u)

× P(wr,u | w2,u,h−j)∪ 〈wl,u,w1,s〉 ∪ 〈w1,s,w2,u〉)

Figure .: Sampling equations for the Gibbs sampler, see figure . for il-
lustration. bj = 0 corresponds to no boundary at this position,
bj = t to a boundary with a preceeding underlying /t/ and bj = 1
to a boundary with no additional underlying /t/. I use h−j for
the statistics determined by all but the jth position, including
the specific seating arrangement (see Chapter  for details). I use
h−j ∪ 〈r, l〉 for the result of updating the previous statistics with
an additional count of the bigram 〈r, l〉. P(w | l,h) refers to the
bigram probability of 〈l,w〉 given h. See equations . on page 
for the details of calculating these bigram probabilities. For more
details about the sampler, see the discussion in chapter . The dis-
tribution that calculates the underlying-to-surface mapping prob-
abilities PR is defined in the text.

Instead, I used the Buckeye Corpus (Pitt et al., ) for my experi-
ments, a large ADS corpus of interviews with English speakers that have
been transcribed with relatively fine phonetic detail, with /t/-deletion
among the things manually annotated. Pointing to the recent work by
Dilley et al. (to appear) I want to emphasize that the statistical distri-
bution of /t/-deletion has been found to be similar for ADS and CDS,
at least for read speech.
I automatically derived a corpus of , word tokens across ,

utterances from the Buckeye Corpus by collecting utterances across all
interviews and heuristically splitting utterances at speaker-turn changes
and indicated silences.
The Buckeye corpus lists for each word token a manually transcribed

pronunciation in context as well as its canonical pronunciation as given
in a pronouncing dictionary. As input to my model, I use the canonical
pronunciation unless the pronunciation in context indicates that the
final /t/ has been deleted in which case I also delete the final /t/ of the
canonical pronunciation Figure . shows an example from the Buckeye
Corpus, indicating how the original data, a fully idealized version and
the derived input that takes into account /t/-deletions looks like.
Overall, /t/-deletion is a quite frequent phenomenon with roughly

% of all underlying /t/s being dropped. The probabilities become



 a joint model of word segmentation and phonological variation

1 10 t 1
I h      i  i       t $

underlying

surface
boundaries

observed I h i i t $

I h      i       t  i       t $

Figure .: The relation between the observed sequence of segments (bot-
tom), the boundary variables b1, . . . ,b|W|−1 the Gibbs sampler
operates over (in squares), the latent sequence of surface forms
and the latent sequence of underlying forms. When sampling a
new value for b3 = t, the different word-variables in figure .
are: w12,u=w12,s=hiit, w1,t=hit and w1,s=hi, w2,u=w2,s=it,
wl,u=I, wr,u=$. Note that one needs a boundary variable at the
end of the utterance as there might be an underlying /t/ at this
position as well. The final boundary variable is set to 1, not t,
because the /t/ in it is observed.

orthographic I don’t intend to

transcript /aI R oU n I n t E n d @/

idealized /aI d oU n t I n t E n d t U/

t-drop /aI d oU n I n t E n d t U/

Figure .: An example fragment from the Buckeye-corpus in orthographic
form, the fine transcript available in the Buckeye corpus, a fully
idealized pronunciation with canonical dictionary pronunciations
and the version of the data with dropped /t/s.

more peaked when looking at finer context; see Table . for the em-
pirical distribution of /t/-dropping for the six different contexts of the
left-right setting.

.. Recovering deleted /t/s, given word boundaries

In this set of experiments I am interested in how well the model recovers
/t/s when it is provided with the gold word boundaries. This allows us
to investigate the strength of the statistical signal for the deletion rule
without confounding it with the word segmentation performance, and
to see how the different contextual settings uniform, right and left-right
handle the data. Concretely, for the example in Figure . this means
that one tells the model that there are boundaries between /aI/, /doUn/,
/IntEnd/, /tu/ and /liv/ but one does not tell it whether or not these
words end in an underlying /t/. Even in this simple example, there are
 possible positions for the model to posit an underlying /t/. I evaluate
the model in terms of f-score, the harmonic mean of recall (the fraction
of underlying /t/s the model correctly recovered) and precision (the
fraction of underlying /t/s the model predicted that were correct).
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uniform right left-right

Unigram
learn-ρ . . .

gold-ρ . . .

Bigram
learn-ρ . . .

gold-ρ . . .

Table .: F-score of recovered /t/s with known word boundaries on real data
for the three different context settings, averaged over two runs (all
standard errors below %). Note how the Unigram model always
suffers in the learn-ρ condition whereas the Bigram model’s per-
formance is actually best for learn-ρ in the left-right setting.

In these experiments, I ran a total of  iterations with a burnin of
. I collect samples with a lag of  for the last  iterations and
perform maximum marginal decoding over these samples Johnson and
Goldwater (), as well as running two chains so as to get an idea of
the variance.

I am also interested in how well the model can infer the rule prob-
abilities from the data, that is, whether it can learn values for the
different ρc parameters. I compare two settings, one where inference for
these parameters is performed assuming a uniform Beta prior on each
ρc (learn-ρ) and one where the model is provided with the empirical
probabilities for each ρc as estimated off the gold-data (gold-ρ), e.g.,
for the uniform condition .. The results are shown in Table ..
Best performance for both the Unigram and the Bigram model in the

gold-ρ condition is achieved under the left-right setting, in line with
the standard analyses of /t/-deletion as primarily being determined by
the preceding and the following context. For the learn-ρ condition,
the Bigram model still performs best in the left-right setting but the
Unigram model’s performance drops in all settings and is now worst in
the left-right and best in the uniform setting.
In fact, comparing the inferred probabilities to the “ground truth” in-

dicates that the Bigram model estimates the true probabilities more
accurately than the Unigram model, as illustrated in Table . for the
left-right setting. The Bigram model somewhat overestimates the proba-
bility for all post-consonantal contexts but the Unigram model severely
underestimates the probability of /t/-deletion across all contexts.

 As manually setting the hyper parameters for the DPs in the model proved to be
complicated and may be objected to on principled grounds, I perform inference
for them under a vague Gamma(0.01, 0.01) prior, as suggested by Teh et al. ()
and Johnson and Goldwater (), using my own implementation of a slice sam-
pler (Neal, ).
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C C C V C $ V C V V V $

empirical . . . . . .

Unigram . . . . . .

Bigram . . . . . .

Table .: Inferred rule-probabilities for different contexts in the left-right set-
ting from one of the runs. “C C” stands for the context where the
deleted /t/ is preceded and followed by a consonant, “V $” stands
for the context where it is preceded by a vowel and followed by the
utterance boundary. Note how the Unigram model severely under-
estimates and the Bigram model slightly over-estimates the proba-
bilities.

uniform right left-right

Unigram
learn-ρ . . (+) .

gold-ρ . . .

Bigram
learn-ρ . . .

gold-ρ . . .

Table .: F-score of /t/-recovery with known word boundaries on artificial
data, each condition tested on data that corresponds to the as-
sumption, averaged over two runs (standard errors less than %
except (+) = .%)).

.. Artificial data experiments

To test my Gibbs sampling inference procedure, I ran it on artificial
data generated according to the model itself. If the inference procedure
fails to recover the underlying /t/s accurately in this setting, one should
not expect it to work well on actual data. I generated the artificial data
as follows.

I transformed the sequence of canonical pronunciations in the Buck-
eye corpus (which I take to be underlying forms here) by randomly
deleting final /t/s using empirical probabilities as shown in Table .
to generate a sequence of artificial surface forms that serve as input to
the models. I did this for all three context settings, always estimating
the deletion probability for each context from the gold-standard. The
results of these experiments are given in table .. Interestingly, perfor-
mance on these artificial data is considerably better than on the real
data. In particular the Bigram model is able to get consistently high
F-scores for both the learn-ρ and the gold-ρ setting. For the Uni-
gram model, we again observe the severe drop in the learn-ρ setting
for the right and left-right settings although it does remarkably well in
the uniform setting, and performs well across all settings in the gold-
ρ condition. I take this to show that the inference algorithm is in fact
working as expected.
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Unigram Bigram

learn-ρ . .

gold-ρ . .

Table .: /t/-recovery F-scores when performing joint word segmention in the
left-right setting, averaged over two runs (standard errors less than
%). See Table . for the corresponding segmentation F-scores.

.. Segmentation experiments

Finally, I am also interested to learn how well one can do word seg-
mentation and underlying /t/-recovery jointly. Again, I look at both
the learn-ρ and gold-ρ conditions but focus on the left-right setting
as this worked best in the experiments above. For these experiments,
I perform simulated annealing throughout the initial  iterations,
gradually cooling the temperature from  to , following the observa-
tion by Goldwater et al. () that without annealing, the Bigram
model gets stuck in sub-optimal parts of the solution space early on.
During the annealing stage, I prevent the model from performing infer-
ence for underlying /t/s so that the annealing stage can be seen as an
elaborate initialization scheme, and then have it perform joint inference
for the remaining  iterations, evaluating on the last sample and av-
eraging over two runs. As neither the Unigram nor the Bigram model
performs “perfect” word segmentation, one expects to see a degrada-
tion in /t/-recovery performance and this is what one finds indeed. To
give an impression of the impact of /t/-deletion, I also report numbers
for running only the segmentation model on the Buckeye data with no
deleted /t/s and on the data with deleted /t/s. The /t/-recovery scores
are given in Table . and segmentation scores in Table .. Again
the Unigram model’s /t/-recovery score degrades dramatically in the
learn-ρ condition. Looking at the segmentation performance this isn’t
too surprising: the Unigram model’s poorer token F-score, the standard
measure of segmentation performance on a word token level, suggests
that it misses many more boundaries than the Bigram model to begin
with and, consequently, can’t recover any potential underlying /t/s at
these boundaries. Also note that in the gold-ρ condition, the joint Bi-
gram model performs almost as well on data with /t/-deletions as the
word segmentation model on data that includes no variation at all.

The generally worse performance of handling variation as measured
by /t/-recovery F-score when performing joint segmentation is consis-
tent with the finding of Elsner et al. () who report considerable
performance drops for their phonological learner when working with
induced boundaries (note, however, that their model does not perform
joint inference, rather the induced boundaries are given to their phono-
logical learner as ground-truth).
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Unigram Bigram

learn-ρ . . (.%)

gold-ρ . .

no-ρ . .

no-var . .

Table .: Word segmentation F-scores for the /t/-recovery F-scores in Ta-
ble . averaged over two runs (standard errors less than % unless
given). no-ρ are scores for running just the word segmentation
model with no /t/-deletion rule on the data that includes /t/-
deletion, no-var for running just the word segmentation model
on the data with no /t/-deletions.

. discussion

There are two interesting findings from my experiments. First of all,
we find a much larger difference between the Unigram and the Bigram
model in the learn-ρ condition than in the gold-ρ condition. I suggest
that this is due to the Unigram model’s lack of dependencies between un-
derlying forms, depriving it of an important source of evidence. Bigram
dependencies provide additional evidence for underlying /t/ that are
deleted on the surface, and because the Bigram model identifies these
underlying /t/ more accurately, it can also estimate the /t/ deletion
probability more accurately.

For example, /t/ dropping in “don’t you” yields surface forms “don
you”. Because the word bigram probability P(you | don’t) is high, the
bigram model prefers to analyse surface “don” as underlying “don’t”.
The Unigram model does not have access to word bigram information
so the underlying forms it posits are less accurate (as shown in Table
), and hence the estimate of the /t/-deletion probability is also less
accurate.
When the probabilities of deletion are pre-specified the Unigram

model performs better but still considerably worse than the Bigram
model when the word boundaries are known, suggesting the importance
of non-phonological contextual effects that the Bigram model but not
the Unigram model can capture. This suggests that for example word
predictability in context might be an important factor contributing to
/t/-deletion.

The other striking finding is the considerable drop in performance
between running on naturalistic and artificially created data. This sug-
gests that the natural distribution of /t/-deletion is much more com-
plex than can be captured by statistics over the phonological contexts
I examined. Following Guy (), a finer-grained distinction for the
preceding segments might address this problem.
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Yet another suggestion comes from the recent work in Coetzee and
Kawahara () who claim that “[a] model that accounts perfectly for
the overall rate of application of some variable process therefore does not
necessarily account very well for the actual application of the process
to individual words.” They argue that in particular the extremely high
deletion rates typical of high frequency items aren’t accurately captured
when the deletion probability is estimated across all types. A look at
the error patterns of the model on a sample from the Bigram model in
the learn-ρ setting on the naturalistic data suggests that this is in fact
a problem. For example, the word “just” has an extremely high rate of
deletion with 1746

2442 = 0.71%. While many tokens of “jus” are “explained
away” through predicting underlying /t/s, the (literally) extra-ordinary
frequency of “jus”-tokens lets the model still posit it as an underlying
form, although with a much dampened frequency (of the  surface
tokens,  are analyzed as being realizations of an underlying “just”).

The /t/-recovery performance drop when performing joint word seg-
mentation isn’t surprising as even the Bigram model doesn’t deliver
a very high-quality segmentation to begin with, leading to both spar-
sity (through missed word-boundaries) and potential noise (through
misplaced word-boundaries). Using a more realistic generative process
for the underlying forms, for example an adaptor grammar Johnson
et al. (b), could address this shortcoming in future work without
changing the overall architecture of the model although novel inference
algorithms might be required.

. conclusion and outlook

I presented a joint model for word segmentation and the learning of
phonological rule probabilities from a corpus of transcribed speech. I
find that a Bigram model reaches % /t/-recovery F-score when run
with knowledge of true word-boundaries and when it can make use of
both the preceeding and the following phonological context, and that
unlike the Unigram model it is able to learn the probability of /t/-
deletion in different contexts. When performing joint word segmentation
on the Buckeye corpus, the Bigram model reaches around above %
F-score for recovering deleted /t/s with a word segmentation F-score
of around % which is % better than running a Bigram model that
does not model /t/-deletion.
I also identified additional factors that might help handling /t/-deletion

and similar phenomena, suggesting ways in which future work can ex-
tend the kind of model presented here. In particular, my findings high-
light the importance of phonological contexts, word predictability and
item- and frequency-specific probabilities in handling phonological vari-
ation.
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Another obvious extension is towards models that handle more than
just a single phenomenon and, ultimately, to models that also induce
the phonological rules from the input.
Also, the two-level architecture I present is not limited to the mapping

being defined in terms of rules rather than constraints in the spirit of
Optimality Theory (Prince and Smolensky, ); I sketch how the
model can be modified along those lines in the final chapter of the
thesis as a suggestion for future work.
To conclude, I presented a model that provides a clean framework

to test the usefulness of different factors for word segmentation and
handling phonological variation in a controlled manner.
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CONCLUS ION

. contributions

In this thesis, I have presented several studies on computational models
of word segmentation. Here, I will briefly summarize the findings and
contributions of the individual chapters.

bayesian modeling framework In chapter , I argue for a
particular view of Bayesian modeling that emphasizes the idea of under-
standing what can be learned from particular kinds of inputs making
particular assumptions, connecting this to poverty of stimulus argu-
ments. In chapter , I introduce the mathematical background for non-
parametric models of word segmentation that forms the basis for the
experiments in the thesis, reviewing in close detail the Unigram and
Bigram model of Goldwater et al. (). I also extend these models by
adding hyper parameter inference and a base distribution that embodies
a possible word constraint.

incremental inference In chapter , I present a novel incre-
mental particle filter algorithm for Goldwater et al. ()’s Unigram
and Bigram model. I compare the algorithm to a batch Markov Chain
Monte Carlo algorithm and identify several interesting differences be-
tween incremental and batch inference. I find that the need for a lin-
guistically informed base distribution over possible words is much more
pronounced in the incremental than in the batch setting; and that allow-
ing the particle filter to perform ‘rejuvenation’ considerably improves
its performance, allowing it to outperform the batch algorithm in terms
of segmentation performance in particular settings.
I argue that the experimental findings ought to be interpreted not as

providing evidence for particular mechanisms employed by human learn-
ers but as suggesting novel questions to ask about word segmentation
models. In particular, the findings suggest that the kind of segmenta-
tions implied by a model can change as a function of the input size, a
topic investigated in more detail in the next chapter.

sensitivity to input size Chapter  studies how input size
and different modeling assumptions interact in word segmentation. I
demonstrate that non-parametric word segmentation models exhibit a
counter-intuitive overlearning property in which having access to more
data worsens rather than improves segmentation performance and argue
that this is due to linguistic dependencies that are not properly handled


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by the model. This can be partly addressed by modeling additional as-
pects of language jointly with word segmentation – in particular, I show
that using Johnson (b)’s idea of collocations prevents overlearning
on a large corpus of child-directed speech.
I also find that for a collocation model to perform well, constraints

on possible words are necessary. In particular, a collocation model that
considers words to be arbitrary sequences of phonemes is prone to over-
segment the input; as a result, it only attains 20% token f-score when
performing inference over 1, 000 utterances and peaks at 55% token
f-score when performing inference over roughly 25, 000 utterances. In
contrast, if words are required to consist of syllables the same model con-
sistently attains more than 80% token f-score, demonstrating both the
effectiveness and necessity of constraining the form of possible words.

stress and phonotactic cues in segmentation In chap-
ter , I extend a previously proposed model of word segmentation John-
son and Goldwater () in a way that allows it to take advantage
of stress cues. In line with psycholinguistic evidence, I find that stress
cues improve segmentation. In particular, I demonstrate that a segmen-
tation model can correctly identify the preference for word-initial stress
exhibited by the English language; and that, contrary to Yang (),
no substantive constraint such as a Unique Stress Constraint needs to
be built into a segmentation model but can be inferred from the input.
I also find that the ability to observe phonotactic cues to word bound-

aries interacts with the ability to use stress cues. The experimental
results indicate phonotactic and stress cues are partly redundant for
the segmentation models I study, highlighting the importance to be ex-
plicit about all assumptions built into a model so as to not under- or
overestimate the relative importance of any individual cue.

modeling pronunciation variation Chapter  presents a
way of adding pronunciation variation to the Unigram and Bigram
model and discusses the specific phenomenon of word-final /t/-deletion.
Experimental evaluation on a large corpus of naturalistic speech shows
that the ability to model phonological context is essential to accurately
model phonological variation; and that the ability to capture word de-
pendencies is important to infer the rate at which a variable rule such
as /t/-deletion applies.

The second important result is that the actual complexity of a phe-
nomenon such as /t/-deletion can be vastly underestimated when eval-
uating models on ‘artificial’ data. Thus, whereas the model I present
performs close to perfect on a corpus in which word-final /t/s were ran-
domly deleted according to probabilities observed in naturalistic data,
its performance drops when applied to a corpus in which the overall
rate of deletions is identical but their occurrence is not ‘random’ but
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was manually annotated. This highlights the importance of using natu-
ralistic data in evaluating models.

. directions for future work

The findings of this thesis suggest roughly two related directions for
future work: moving towards more realistic models and moving towards
more realistic and thorough evaluation. I will illustrate some possible
future extensions.

.. Towards more realistic models

... Joint modeling

The overlearning effect identified in chapter  indicates that even for a
‘simple’ language acquisition problem such as word segmentation, it is
important to adequately capture the linguistic dependencies that exist
between words. This points towards integrated models of language ac-
quisition in which, for example, word segmentation is performed jointly
with semantic and syntactic acquisition.

Recent examples of this kind of work by Synnave et al. () and
Johnson et al. () explore semantic and syntactic extensions to the
segmentation models examined in chapter .

adding semantics In Synnave et al. we demonstrate that in the
same experimental scenario, a model that associates words with latent
‘activities’ such as eating or playing is less prone to undersegmentation
and can successfully cluster words into semantically coherent groups.
An obvious extension of this work is to incorporate the word-referent
learning of Jones et al. () which can be easily expressed as an
adaptor grammar as well (Johnson et al., ). This would require,
however, considerable manual annotation effort as salient objects for
each utterance need to be identified from the video recordings of the
transcripts.

adding syntax Johnson et al. () demonstrates how substan-
tive knowledge about the syntactic distinction of function and content
words aids segmentation. In many languages, function words like “the”
and “a” tend to occur at the edges of content words and to be monosyl-
labic. These tendencies can be easily encoded in an adaptor grammar,
and Johnson et al. show that a model that incorporates knowledge of
these tendencies yields 92% token f-score on the Brent-Bernstein-Ratner
corpus, outperforming previous state-of-the-art models by 4%.
In addition, their model correctly identifies content words such as

“book”, “want” or “doggy” as different from function words such as “a”,
“to” or “in”. An obvious and, given the findings of chapter , promising
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extension of their work is to study its sensitivity to input size. This will
help understand whether basic knowledge of syntax can already address
overlearning to some extent.

integrating syntax and semantics In addition to jointly
modeling segmentation and semantics on the one hand and segmenta-
tion and syntax on the other hand, one can imagine jointly modeling
all three. At the current stage, an integration of the models of Synnave
et al. and Johnson et al. seems feasible and worthwhile, in particular
with respect to the question whether modeling both (some aspects of)
semantics and syntax is a more effective means of addressing overlearn-
ing than modeling just one of the two.
Of course, the concrete suggestions discussed here only scratch the

surface of what acquisition of semantics and syntax really amount to.
While I am looking forward to models that not only infer situational
contexts and word referents but the actual meaning conveyed by an
utterance jointly with word learning, I am doubtful that interesting
models of this kind of complexity can be built at the moment. From
a theoretical point of view because we lack detailed theories of how
the kinds of meaning representations used by young infants actually
look and, just as importantly from a modeling point of view, how the
input required to build these kinds of representations could be encoded.
From a practical point of view because, even if we had such theories,
annotating even small amounts of data in such a fashion seems like a
daunting task.
This is not to say that future work should limit itself to exploring

‘mock’ semantics and syntax; rather, I advocate a stepwise approach
in which one gradually relaxes the simplifying assumptions inherent
in current models in ways that promise to be feasible given current
knowledge and technologies.

... Beyond exchangeability

Another direction in which models can be made more realistic is by
challenging some of the mathematical assumptions inherent in current
proposals. In particular, recall that exchangeable models are completely
insensitive to the order of observations. This is not true of human learn-
ing (see Langley, , for a review). In addition, this is part of the
reason for overlearning problem as order-insensitivity makes it possible
to notice ‘patterns’ over observations that are arbitrarily far apart in
the input.

The findings of the particle filter experiments show that one can de-
rive order effects from exchangeable models using ‘broken’ inference.
While this ‘rational process’ (Sanborn et al., ) approach to connect
Bayesian models more directly to experimental results on human perfor-
mance is popular, in chapter  I argue that we should instead consider
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models which do not rely on a psychologically implausible assumption
such as exchangeability.
Indeed, non-exchangeable models are a topic that has gained inter-

est in statistical modeling. A recent review of a variety of prior dis-
tributions that can be used in the definition of such models is given
by Foti and Williamson (). One particular proposal that lends it-
self to a straight-forward application to current models is the distance-
dependent Chinese Restaurant Process (ddCRP) of Blei and Frazier
(). As a concrete suggestion for future work, I sketch how it can be
applied to the Unigram model of word segmentation.

unigram ddcrp model The ddCRP is a generalization of the
Chinese Restaurant Process which, as discussed in chapter , is at the
heart of current models of word segmentation.

At a high-level, the original Unigram model can be defined by sequen-
tially sampling words using the predictive probability of a CRP (see
equation . on page )

P(Wi = w | w1:i−1) ∝ c(w,w1:i−1) +αPlex(w)

In this model, all previously generated words contribute to the predic-
tive probability of the ith words. In contrast, a ddCRP Unigram model
is defined in terms of the following predictive distribution

P(Wi = w | w1:i−1) ∝

 i∑
j=1

1[wj = w]K(di,dj)

+αPlex(w)

Here, di and dj are timestamps of the respective words – for exam-
ple, one can imagine each word to be timestamped with the utterance
in which it occurs, with an actual time or simply with its position
in the overall sequence of words. K(x,y) is a kernel function which
controls how strongly the jth observation wj influences the predictive
probability of Wi. If K is constant, this just results in the original ex-
changeable Unigram model. However, if K is not constant this yields
a non-exchangeable distribution over sequences of words where, for ex-
ample, words that are “too far in the past” do not influence current
segmentation choices. A simple choice for a kernel function is a fixed
window size kernel of the form

K(di,dj) =

1 if dj > di −n

0 else

 Strictly speaking, current models are defined in terms of the Dirichlet Process,
and the Chinese Restaurant Process arises during inference – see section ...
on page  for discussion.
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This has the effect that only the most recent n words can directly
influence how an utterance will be segmented. Intuitively, one can think
of such a model as ‘forgetting’ observations that are too far in the
past. Crucially, however, in so far as the segmentation choices for the
utterances with the ‘window’ are affected by observations outside of
the current window, these utterances still have an indirect effect on
the segmentation; in particular, the segmentation choices of a ddCRP
model with window size n on the final utterances in a large corpus do
not have to be identical to those of an exchangeable CRP model which
is only run on the final n utterances.

inference in non-exchangeable models A practical prob-
lem raised by non-exchangeable segmentation models is many inference
algorithms rely on exchangeability for their efficiency. This is particu-
larly clear for Gibbs sampling. For example, consider performing Gibbs
sampling on a large corpus with thousands of utterances. In order to
resample a boundary, the probabilities of making a small ‘local change’
need to be calculated which, in an exchangeable model, usually in-
volves only the calculation of a small number of probabilities as one can
think of the change as occurring at the end of the sequence of obser-
vations, leaving the probability of everything ‘before it’ unaffected (see
Figure . on page ).
In a non-exchangeable, however, the actual order of observations

plays an important role. Therefore, the probabilities of everything fol-
lowing the boundary that is being resampled need to be recalculated
– thus, if the second utterance in a 20, 000 utterance corpus is resam-
pled, the change in probability across all of the remaining 19, 998 utter-
ances needs to be considered. It may still be possible to derive efficient
batch algorithms in this case, but at least obvious ideas such as using
a Metropolis-Hastings sampler do not solve the problem introduced by
non-exchangeability as calculating the acceptance probability raises the
exact same problem.
However, an incremental particle filter like the one chapter  does

not rely on exchangeability. Thus, the kind of sequential inference al-
gorithm presented in this thesis is likely to prove useful for the study
of non-exchangeable models for which batch algorithms may be imprac-
tical. It is worth pointing out, however, that in such a case, the use
of rejuvenation also needs to be avoided or carefully restricted in so
far as the correctness of rejuvenation also relies on exchangeability (see
page ).

 Depending on what timestamps were chosen, this could also mean the most recent
n utterances or the last hour / day / . . . .
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... Handling phonological variation

A third aspect of more realistic modeling assumptions concerns the
handling of variation in the input. I only sketch some concrete proposals
of how the work in chapter  may be extended.

locally normalized maximum entropy models One
promising strategy is to use a locally normalized Maximum Entropy
model (Berger et al., ) for the distribution PR that maps underly-
ing to surface forms. From a practical point of view, this will allow for
a less restricted use of contextual features in determining whether or
not a phonological rule applies in any given context.
For example, while conditioning on whether or not the preceding

segment is a consonant is already informative of whether or not /t/-
deletion applied, knowing the place of articulation of that segment is
likely to be even more informative: nasals such as “n” (in “want”) tend to
encourage /t/-deletion more than stops such as “p” (in “wept”). Handling
a large number of possibly interacting features in a generative model like
the one in chapter  is, however, impractical. For an excellent discussion
of this point, see (Smith, , p ff).
A conditional model, in contrast, makes it possible to use arbitrary

features of the observations, sidestepping the kind of problems that
arise in a generative model completely. Concretely, for the /t/-deletion
in chapter  one can use a logistic regression model (Murphy, ,
chapter ) for the distribution PR, yielding a simple form:

PR(tdrop | u, r) =
exp(
−−−−→
f(u, r)−→w)

1+ exp(
−−−−→
f(u, r)−→w)

−−−−→
f(u, r) is the feature vector which summarizes all relevant information

for /t/-deletion provided by the context which is defined by the underly-
ing form u and the following underlying form r. −→w is the weight-vector
that indicates, for each feature, whether it makes /t/-deletion more
probable (positive weight) or less probable (negative weight) to apply.
The weight vector has to be modeled as a random variable and takes the
role of the multiple ρ-probabilities in the original model. A natural prior
distribution on it is a multi-dimensional Gaussian which corresponds to
performing l2 regularization (Murphy, , p. ).
Note that using this alternative distribution allows us to recover the

original model by choosing six indicator features of the form “1 if the
previous segment is a consonant and the following segment is a vowel,
else 0”, “1 if the previous segment is a vowel and the following segment
is a vowel, else 0”, . . . . More importantly, using this kind of distribution
makes it very easy to incorporate many features that might be useful.

 This idea of using locally normalized discriminative models as parts of larger gener-
ative model was popularized by Berg-Kirkpatrick et al. ().
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For example, one can include a feature that indicates whether or not
the preceding segment is a nasal, whether it is voiced, or whether the
manner of articulation of the following segment is also a stop. All that
needs to be changed is the function that maps underlying form and
context to the feature vector.
Using such a distribution is also interesting from a theoretical per-

spective: Goldwater and Johnson () shows that the features in a
Maximum Entropy model can be related rather directly to the kinds
of constraints posited in Optimality Theory (Prince and Smolensky,
). This will make it possible to connect more directly with con-
crete proposals about phonological processes as constraints proposed
by phonologists can be used to design useful features; and modeling
results could be used to test whether or not particular constraints facil-
itate acquisition of particular phenomena.

inference for weights Modifying the inference to accommo-
date this richer kind of distribution is straight-forward. In particular,
conditional on any particular value of −→w , the /t/-deletion probabilities
for every underlying form are independent and the sampling equations
in Figure . on page  can be used.

Similarly, it is straight-forward to re-estimate −→w given a current seg-
mentation with indicated /t/-deletion decisions. Thus, note that this
defines a set of labeled examples as every underlying form that ends in
a /t/ is a relevant example and the currently inferred positions at which
/t/-deletion occurred provide the labels. There are several possibilities
of performing inference for the posterior distribution of −→w given a set
of labeled examples (see Murphy, , chapter .). Arguably the eas-
iest approach is to use Metropolis-Hastings sampling with a Gaussian
proposal distribution that is centered around the MAP value for −→w .
This requires identifying the MAP weight vector for a logistic regres-

sion which is, however, a standard problem in machine learning (see
Murphy, , chapter  for extensive review). In addition, I suspect
that directly using the MAP or sampling values using a Metropolis-
Hastings scheme will make little difference, just as sampling or opti-
mizing the concentration parameters seems to make no difference in
practice.

handling more phenomena Another important goal for fu-
ture work is to design models that handle more variation phenomena.
Here as well, using a logistic regression for PR seems like a promising
approach as it is easy to extend to a multi-class logistic regression (also
known simply as a Maximum Entropy classifier). Formally, one adds a
random variable Oi for every underlying form Ui which ranges over all

 Strictly speaking, the connection is to Harmonic Grammar rather than Optimality
Theory. For discussion, see Goldwater and Johnson () and for a review of both
Optimality Theory and Harmonic Grammar, see Smolensky and Legendre ().
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possible phonological processes that can apply to Ui, including a spe-
cial NoOp rule which indicates that no rule applied. The corresponding
surface form Si is then generated by ‘applying’ Oi to Ui. This mapping
needs to be deterministic but otherwise, can be rather unconstrained.
However, it needs to be kept in mind that during inference, the reverse
mapping of Si to all possible pairs 〈Ui,Oi〉 that yield Si needs to be
considered.
In this case, the sampling algorithm described in chapter  needs

to be modified so as to not only make a ternary decision (no bound-
ary, boundary with /t/-deletion, boundary without /t/-deletion) but
to make a decision over all possible pairs of underlying forms and oper-
ations that are compatible with the observed surface form. For a very
specific process such as /t/-deletion, the underlying form is uniquely
determined. For more general processes such as deletion of any final
segment, however, many possible underlying forms may need to be con-
sidered. To illustrate, a surface form such as [k æ] can be the result of
applying DeleteFinal to any of /k æt/ (“cat”), /k æb/ (“cab”), /k æp/
(“cap”), . . . , . In theory, this is straight-forward but may raise practical
problems if the set of underlying forms becomes very large.

learning phonological rules This raises the issue which
rules ought to be considered and, ultimately, whether the rules them-
selves could be learned rather than pre-specified.
Here, the alternative finite-state transducer architecture of Elsner

et al. () looks very attractive as a finite-state transducer can be
viewed as a compact representation of a very large number of different
phonological rules that rewrite underlying segments depending on their
context. As Elsner et al. point out themselves, however, to be tractable
the structure of their transducer needs to severely constrained. For ex-
ample, they report that it is infeasible to condition re-write operations
on the phonological context, allowing essentially only for context-free
rewrite rules of the form /x/→ [y]. In addition, they exclude the ability
to delete underlying segments (rules of the form /x/→ ε). The reason
for this latter restriction is that unrestricted deletion yields an infinite
number of possible underlying forms – a single observed segment could
have arisen from an arbitrary number of underlying segments of which
all but one were deleted. A consequence of this restriction is that their
model currently induces /w a n/ (“wan”) as the underlying form for /w
a n t/ (“want”) as it can only capture rules that insert segments rather
than delete segments.
Arguably, this is merely a practical problem. A finite-state transducer

architecture can in principle handle both context-sensitive rewriting
and deletion. And there are likely to be ways to make inference in
these models feasible without sacrificing the ability to recover plausible
underlying forms. Yet, I find the practical problems that arise when one
tries to model phonological variation in a highly unrestricted fashion
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telling; and I think they suggest that strong constraints are needed for
a feasible treatment of phenomena such as variation.

learning optimality theoretic constraints Another
interesting recent proposal worth discussing as a possible extension is
Doyle et al. ()’s non-parametric model that can induce Optimality
Theory (Prince and Smolensky, )-like constraints in an unsuper-
vised fashion. This is particularly interesting because, as mentioned
above, the features in a Maximum Entropy model can be viewed as cor-
responding to Optimality Theory constraints. However, in its current
form Doyle et al.’s model requires knowledge of the underlying forms.
Theoretically, it is easy to extend their model to an unsupervised

case by using an iterative strategy such as Expectation Maximization
or Gibbs sampling in which underlying forms are proposed conditioning
on a current set of constraints, and constraints are induced conditioning
on the currently estimated underlying forms.
In practice, however, this again raises the question how the range of

underlying forms can be suitably constrained – the nature of the induced
constraints depends heavily on the form of the underlying forms, but
what counts as a plausible underlying form depends heavily on what
possible constraints are. Thus, even if it may be possible to induce
the relevant constraints given knowledge of the underlying forms rather
than assuming knowledge of the relevant constraints to be innate, some
strategy of restricting the underlying forms in a plausible way during
learning is required in a language acquisition scenario where only surface
forms are observed.

.. More realistic evaluations

... Cross-linguistic evaluation

An important question is whether model performance on English trans-
lates to other languages. As it is plausible to assume that infants’ ability
to segment their speech stream is universal, failure to generalize to other
languages constitutes a severe shortcoming of any proposed model.
This question has been discussed widely in the literature (Fleck, ;

Fourtassi et al., ; Daland and Zuraw, ), and the general find-
ing is that there is a huge gap between performance on English and
other languages. The stress model investigated in this thesis raises two
concrete questions in this respect.

First, does the particular way in which the current model takes ad-
vantage of stress generalize to languages which exhibit more complex
stress-patterns? In particular, English’s tendency of short words makes
it unnecessary to consider relative stress-patterns such as ‘ante penulti-

 Note that in word segmentation, the problem is even harder in that even the surface
forms – i.e. the actual words – are latent.
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mate’ (stressed on the third syllable counting from the end of the word)
on child-directed speech as this pattern only makes a real difference over
‘stressed on the first syllable’ for words that are at least 4 syllables long.
For languages with longer words, however, a more complex model of
stress may be required to yield noticeable segmentation gains. Unfortu-
nately, at the current stage there is lack of experimental evidence with
respect to the role stress plays in infant segmentation across languages
with different stress patterns (Höhle et al., ), raising the question
of how results from computational models on other languages ought to
be interpreted.
A second question concerns whether making use of stress cues pro-

vides a way of improving the performance of current models on lan-
guages other than English. For example, Fourtassi et al. () argue
that the reason Japanese is hard is a very high segmentation ambigu-
ity – there is an extremely large number of possible segmentations of
any given utterance even if one only considers true Japanese words. Ar-
guably, to solve this problem a model needs to rely on additional cues
which reduce this ambiguity which is inherent in the data if it is only
considered as a sequence of phonemes. Stress or, in the case of Japanese,
pitch accent seems like a natural candidate for this and it would be in-
teresting to understand both if and how a segmentation model could
use these cues to aid segmentation.
Of course, any cross-linguistic explorations either presupposes the

existence or needs to involve the creation of a relevant data set. While
CHILDES (MacWhinney, ) makes available transcripts of child-
directed speech across a wide variety of languages, creating data sets
that can be used to evaluate models and the usefulness of cues such as
stress is a challenge in and of itself.

... More detailed evaluations

Whereas it is generally accepted that there is a need for wider cross-
linguistic evaluation, a topic that has not received a lot (if any) attention
so far is the methodological question how segmentation models ought
to be evaluated. At the moment, models are mainly compared by their
segmentation accuracy which is usually defined as the token f-score.
This raises the question to what gold standard proposed segmenta-

tions of a given corpus should be compared. The orthographic segmen-
tation is currently considered as the only correct answer. This makes it
easy to evaluate models on large corpora as creating the gold standard
is trivial. It is, however, questionable that the actual segmentations of
young infants coincide perfectly with those prescribed somewhat arbi-
trarily by a writing system.
This may be more obvious for languages which lack a clear notion

of orthographic word. For example, Chew () provides ample evi-
dence that native speakers of Japanese are often unable to put mean-
ingful word boundaries in their romanized transcriptions of Japanese
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sentences. In addition to indicating that even competent speakers may
not have clear intuitions as to where exactly word boundaries fall in
every context, this also suggests a possible explanation for the surpris-
ingly high segmentation ambiguity Fourtassi and Dupoux () found:
the orthographic segmentation of their corpus may simply not employ
a consistent notion of word versus morpheme, leading to an overesti-
mation of true words in this corpus because sequences of grammatical
morphemes may have been transcribed as individual words in some
contexts and sequences of multiple ‘words’ in others.
In conclusion, it is an empirical question into what word-like units

humans segment their input, even for languages such as English. Thus,
consider the question of whether treating the sequence /D@dog/ (“the-
dog”) as a single rather than two words really ought to be considered
as a mistake. On the one hand, we have every reason to believe that
speakers of English know that “the” is a word and that “dog” is another
word. Yet, there is evidence that young infants do treat cases like this
as instances of single words (Brown, ), and we are ultimately not
interested in models for the sake of recovering the orthographic stan-
dard but to understand how infants do what they do. In so far as this
might deviate from the orthographic standard, it is not clear whether
a model that attains a higher token f-score with respect to it is really
preferable over a model that attains a lower f-score.

Relatedly, if models posit additional units such as collocations an
important question is whether these units are also posited by human
learners – concretely, are the multi-word sequences posited by a collo-
cation model similar to the kinds of collocations infants are known to
acquire?
Consequently, we should be thinking about psychologically motivated

evaluations that go beyond looking at a simple summary statistic such
as segmentation accuracy with respect to some gold segmentation. This
is not to say that our current way of evaluating models is completely
meaningless – they are the best objective standard we currently have –
but I think there is a clear need to work more closely with experimental
psycholinguists in evaluating and comparing different models.
To this end, the kind of qualitative analysis done in Table . on

page  where particular patterns are directly examined could be used
to both derive predictions for possible language learning experiments
and to evaluate models against results of such experiments suggests one
possible analysis that could be used to provide more detailed analyses
of models in the future that can then be compared to what we know
about human performance on particular patterns.
Similarly, taking a closer look at the performance of particular types

of words as in Figure . on page  or directly evaluating linguistic
knowledge inferred by a model as in the stress pattern evaluation in
Figure . on page  are strategies that should allow for a more
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direct connection to psycholinguistic findings than merely comparing
segmentation accuracies on large quantities of data.

... Posterior analysis

To conclude, I want to illustrate a strength of the Bayesian approach
that has so far not been used to its full extent and, in particular with
respect to detailed evaluations, might prove very fruitful: its ability
to directly quantify uncertainty. Thus, it is common in current work
(including this thesis) to collapse posterior distributions down to a single
number or, in the case of word segmentation, segmentation. At no point,
posterior probabilities of particular choices are considered directly. For
example, even though maximum marginal segmentations take, in a clear
sense, into account the information present in the posterior distribution,
at the end they produce single segmentation for each utterance.
The Bayesian framework allows one to also ask directly how certain

one should be about segmenting an utterance in a particular way. For
example, it may well be the case that given the input the model is next
to 100% certain that one utterance ought to be segmented like this
but, with respect to some other utterance, only 9% certain of the single
most probable segmentation. This is valuable information in that low
certainty can be viewed as the model’s way of explicitly saying that it
does not really know what to do with an observation – there really is
not sufficient information to segment it.
There is evidence that human learners are sensitive to certainty in this

sense as they tend to actively ignore observations which are so complex
that, given their current knowledge, they cannot identify any particular
analysis with reasonable certainty. This “Goldilocks-effect” (Kidd et al.,
) can be derived directly from Bayesian models, and I will briefly
sketch two ways in which this can be done in future work in the context
of word segmentation.

posterior entropy to select utterances Table . on
page  illustrated the idea of enumerating an entire marginal posterior
distribution for a particular segmentation. Manual inspection of these
distributions can prove interesting in and of itself. The information
conveyed by such a distribution can, however, also be used to decide
whether or not a segmentation prediction is made at all. In particu-
lar, if the posterior distribution reflects that there are many competing
segmentations of comparable probability it intuitively makes sense to
abstain from committing to any individual segmentation.
Marginal posterior entropy is an easy-to-calculate metric that reflects

just this. For an utterance u, one can define its posterior entropy as
H(u) = −

∑
s
P̂(s) log P̂(s) where the sum is over all sample segmenta-

tions for this utterance and P̂(s) is the Monte Carlo approximation to
the posterior probability of this particular segmentation. To illustrate,
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select # utterances token f-score pred. types % correct

all 1, 093 .58 420 .47

H(u) 6 2.0 818 .65 250 .56

H(u) 6 1.0 505 .75 155 .59

H(u) 6 0.1 216 .84 58 .74

Table .: Evaluating the Bigram model with hyper parameter sampling and
with unconstrained base distribution on the Alice corpus, taking
into account posterior entropy. Note how token f-score on the ut-
terances about which the model is certain is considerably higher
than on the entire corpus.

the entropy of the posterior in Table . is approximately 1.12 which, at
a high level, can be interpreted as there being two segmentations that
account for most of the probability mass and with respect to which the
learner is somewhat undecided.
To illustrate how this idea can be used in evaluating models, recall the

bad performance of the Bigram model on the Alice corpus when hyper
parameters are inferred (see Table . on page ). Table . shows
that if evaluation is limited to those utterances about which the model
is very certain, both the token f-score (on a smaller sample) and the
precision of the inferred lexicon are considerably higher, suggesting that
the bad performance is due to there being a lot of uncertainty about
most of the utterances. This is, actually, in line with the discussion in
chapter  – more complex models, such as the Bigram model, require
either strong constraints or large amounts of data to reliably segment
their input.
In addition to offering a finer grained way of evaluating models, this

strategy might also be ultimately incorporated directly into learning
algorithms. For example, one can imagine a learner that processes its
input sequentially in mini batches. After each mini batch, it can use
posterior entropy to determine the utterances which are actually used to
update its beliefs about words; and ignore segmentations about which
it is very uncertain, mimicking to some extent the selective behavior
exhibited by humans (Kidd et al., ).

bayesian word spotting The posterior distribution also al-
lows one to identify parts within individual utterances about which the
model is certain to different degrees. This makes it possible to perform
word spotting, i.e. identifying only those parts in an utterance about
which the model is certain.

One can view each sample segmentation as a binary vector that indi-
cates presence (1) or absence (0) of a word-boundary. By averaging over
all binary vectors derived from our samples, we get a marginal estimate
of how strongly the learner beliefs there to be a boundary at any given
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certainty segmentation

1.0 xxx

0.9 xxx si xxx

0.8 xxx si D@bUk

0.5 yu wanttu si D@bUk

Table .: Partial segmentations of “youwanttoseethebook” at different cer-
tainty levels. Note that at certainty 0.5, the segmentation is identi-
cal to the maximum marginal posterior segmentation of the entire
utterance, but that for higher certainty levels entire parts of the
utterance may remain unanalyzed.

position. As an example, the average boundary vector for the posterior
in Table . is

v = y〈0u0.51w0a0n0t0t0u0.99s0i1.0D0@0.13b0U0〉k

with the marginal boundary probabilities written as subscripts in
between adjacent phonemes. While this vector does not define any par-
ticular segmentation, one can use it to identify parts of the utterance
which the model is certain enough to segment and parts which it is not
certain about.
To this end, one can define the notion of a ‘γ-certain word’: a γ-

certain word is a word for which the model is certain to degree γ that
it is present in an utterance. Crucially, all segmentations with non-
zero posterior probability, that is, not only the single most probable
segmentation, are taken into account for this.
Referring to the elements of v using subscripts such that v0 = 0 and

v1 = 0.51, a γ-certain’ word is any sequence of phonemes between two
boundary indices l and r, l < r, such that vl > γ and vr > γ, and for
all j, l < j < r, vj < 1− γ.
Table . illustrates this idea. For different values of γ, it gives the γ-

certain words in the example utterance and represents the ignored parts
using xxx. We see that in this case, the learner is really only certain
about the presence of the word /si/ (“see”). In particular, it is rather
uncertain how the initial sequence “you wantto” ought to be segmented,
and only at certainty 0.5 it identifies the two words “you” and “wanttu”.

This technique could be used to see whether, for example, particular
words such as “mammy” or “daddy” are learned with much higher cer-
tainty than other words by different models. More generally, the idea
of word spotting might make it possible to connect segmentation mod-
els with experimental results in which infants’ knowledge of words at
different stages is evaluated.
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. conclusion

There are many interesting questions that remain to be addressed in
understanding how human infants perform word segmentation and ul-
timately acquire language. I hope that this thesis serves its purpose
by providing some answers to certain specific questions, raising novel
questions that ought to be addressed in future work, and, in this final
chapter, providing concrete suggestions as to how one may go about
answering some of these questions.
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