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Abstract

We address the problem of extending existing functional language compilers to support

generic programming constructs, such as those that arise in term rewriting and datatype

generic programs.

In particular, we present a compiler capable of compiling a wide range of generic pro-

grams in a way which substantially reduces the execution overhead traditionally asso-

ciated with such programs, without requiring type classes. We explicitly build upon a

baseline functional compiler by extending it to support a universal spine view of data and

by adding a mechanism for building polymorphic functions from monomorphic ones.

This work employs variants of standard pattern compilation and lambda lifting trans-

lations that render these generic extensions into efficient code while making only mod-

est modifications to our baseline compiler and its run-time. We show that type inference

(with annotations for higher-ranked types and polymorphic recursion) can be maintained,

by building all the mechanisms needed for type inference of generic programs on top of

an existing variant of Damas and Milner’s algorithm W.

We demonstrate that this compiler achieves type safe and efficient compiled generic

programs by showing the breadth of generic programs that we can encode with it and by

benchmarking the execution speed and memory use of the programs output by the com-

piler. The generic programs we demonstrate are generic transformations, generic queries,

generic traversals, generic equality, generic show plus a large number of variants of these.

We also provide a proof of the soundness of the type system which underpins the com-

piler.

In summary, the primary outcome of this research is a new compiler for generic pro-

grams which uses a unique combination of encoding techniques and which generates

efficient generic code. For each of our extensions (polymorphic functions with specific be-

haviour and the explicit spine view) we provide new algorithms for pattern compilation,

type inference and conversion to primitive operations. These can be easily incorporated

into existing functional language compilers.
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Chapter 1

Introduction

1.1 The Problem

At the time of writing, no widely used compiler for a general purpose functional language

uses a truly general mechanism specifically for compiling generic functions. Three widely

used compilers (GHC [73], Clean [11] and UHC [21]) build compilation of generics on top

of advanced and specialised features, such as type classes. A number of other systems

admit generic functions but compromise upon either the efficiency of the compiled code

or the safety of their type systems.

1.2 The Context

A generic function, in this thesis, is a function that can work over values of any datatype

without overloading the definition of that function.

More specifically, we will be considering the following functions in the remainder of

this thesis:

Generic Update A function that is capable of working over any data structure, applying

a type-preserving transformation at certain nodes.

Generic Query A function that is capable of working over any data structure and accu-

mulating a single-value result from calculations on certain kinds of nodes.

Generic Traversal Generic query and generic update require only some traversal of an

unknown structure. When we are able to write functions that traverse an unknown

structure according to a particular traversal strategy, we have generic traversal.



Generic Equality A function that can compute equality for values of all data types in the

language.

Generic Show A function that can compute a string representation for values of all data

types in the language.

Outside of advanced Haskell and Clean compilers, there certainly exists tools which

can either interpret, pre-process, or compile untyped versions of these generic functions.

They can be grouped into one of three categories:

Term Rewriting Term Rewriting is a complete model of computation where the result of

a program is achieved through successive translations of the input.

Datatype Generic Datatype generics is a style of programming where the structure of

the data that the function is operating over becomes an input to the function. This

structure argument may be explicit or implicit but it will always be used to guide

the evaluation. For example, one branch of evaluation is taken for sum types and

another for product types.

Pattern Calculus The pattern calculus [43, 46, 47, 42] is built around the idea that func-

tions and structures are colleagues in the job of computation and that neither should

be dominant over the other. As a result, there is a reified notion of data, making it

“first class” in a very deep sense. In particular, any data can act as a pattern in the

pure pattern calculus.

There are three general purpose functional language compilers which can compile and

run generic functions today. The first is GHC which now provides both Generic Haskell

and Scrap Your Boilerplate (SYB) [54, 53, 52]. The other two are UHC and Clean where a

datatype generic library has been integrated into the compiler. While all three are won-

derful tools, the methods by which they achieve compilation of generic functions are not

appropriate for use in other functional language compilers. Template Haskell is a meta-

programming tool specific to Haskell. SYB and the datatype generic libraries in UHC and

Clean all require at least type classes [90], which is a feature particular to Haskell and

Clean. In this thesis we describe three small additions that can be made to any functional

language compiler to realise compilation of generic programs. We will discuss further

the mechanisms used in GHC, UHC and Clean when we survey the field in Chapter 3.
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1.3 The Solution

In this thesis we present extensions to a baseline functional compiler that can type-check

these functions and compile them to C. A baseline functional compiler is one that only in-

cludes features common to most functional compilers. In other words, it does not have

language-specific or advanced features like Haskell’s type classes or OCaml’s objects/-

modules [59]. We will need to add a few advanced features (like rank-2 types and poly-

morphic recursion) but we do not take them as assumptions, we show how these are

added to the baseline compiler.

This approach brings the benefits of compilation of generic functions to any functional

language. In particular, we show how relatively orthogonal changes to a standard functional

compiler can provide this, keeping the most important characteristics of the original com-

piler intact. This means that our techniques can be applied to almost any functional lan-

guage compiler without compromising other important features such as type safety.

We achieve this with three new techniques, demonstrated and validated in a working

compiler.

A type-safe function extension mechanism We create a technique for extending

monomorphic functions to polymorphic ones which is both type-safe and has low

overhead at run time. Our technique is a hybrid of those used in Scrap Your Boil-

erplate and in the pattern calculus. Both of those are strongly typed (although in

quite distinct ways) but neither is immediately amenable to compilation in a base-

line functional compiler.

A compilation scheme for application pattern matches Application pattern matches are

a generic way to pull apart data which have so-far only ever been interpreted (in

RhoStratego [23] and bondi [30, 45] for example). We demonstrate how to compile

them to fast-running C code.

A type inference scheme for application pattern matches Our method of compiling ap-

plication pattern matches requires unique typing rules. We formulate and demon-

strate rules, which are related to those used in the static pattern calculus [30], but

which are more explicit and simpler to incorporate into a baseline functional com-

piler. We achieve these simpler rules by creating some useful program invariants

during pattern compilation.

At a higher level, the compiler presented in this thesis fills a number of holes in the

literature/available tools, as it provides:

9



A practical implementation of various calculii. The only existing implementation of the

pattern calculus is the interpreted language bondi. Although we don’t support all

pattern calculus features, our compiler is the first compiled implementation of a

significant part of the pattern calculus. The most complete current implementation

of the ρ-calculus [15, 16] is RhoStratego. Unfortunately it has not been updated in line

with the compiler needed to use it and so can’t currently be run. For people wanting

to use a typed and compiled implementation of the ρ-calculus, our compiler is now

the closest approximation available and could be expanded into a full implemen-

tation with relatively little work. Application pattern matching is supported and

explicit failure is emulated with function extension.

Faster generic programs. Our compiler is able to compile the above generic programs

into executables that have less run-time overhead due to generics than existing tech-

nologies which don’t require type classes (relative to its baseline speed). In Section

8.2.6 we discuss some very fast generic libraries that use type classes to achieve this

speed. Until then we will stop comparing our compiler to techniques that use type

classes since type classes are beyond the capabilities of a baseline functional com-

piler. This is very useful in functional programming where some of the tools for

writing these generic functions execute the code quite slowly.

Optimisable generic programs. By compiling these generic functions to very simple con-

structs within the compiler, they are more easily optimised. We show in Section 8.4

how existing functional programming optimisations are preserved by the compiler

and how they can operate efficiently around generic code. This is not possible with

libraries for example.

A unique combination of generic techniques. In achieving all these things we have as-

sembled a unique combination of techniques for dealing with generic functions,

including some which are completely novel. Even where the techniques themselves

are not new, their specific juxtaposition in our compiler is.

1.3.1 Research Questions

We summarise this introduction by explicitly stating the research questions we will an-

swer in this thesis:

• Is it possible to add generics to a baseline functional compiler without requiring

advanced language features and in a way which is type-safe?
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• Is it possible to make the addition of type-safe generics a simple task for language

implementors?

• Is is possible to have this type-safe generics mechanism generate efficient target code

relative to other generics techniques?

• Is it possible to prove the soundness of the resulting type system?

1.4 This Thesis

Chapter 2 describes in greater detail the generic functions handled by our compiler and

gives an encoding of them. The encodings are given in a concrete syntax which our com-

piler can process, called . This chapter also gives a brief introduction to  itself

in order that the encodings are clear.

Chapter 3 explores existing solutions to the problem of expressing generic functions.

We highlight where our solutions fit into this picture and explain why they are the most

appropriate for a baseline functional compiler.

Chapter 4 describes a baseline functional language compiler which occupies a space

which lies at the intersection of existing functional languages such as Standard ML [2],

OCaml, Haskell and Mercury [82]. This compiler is the seed from which we grow our

final compiler capable of compiling generic functions. We describe this compiler in some

significant detail because the algorithms we use for our new features are dependent on

the basic algorithms they extend.

Chapter 5 describes our function extension operation which solves the problem of poly-

morphic functions with specific behaviour (see Section 3.3.1 ). We will have already described

function extension in Chapter 3, so in this chapter we explain how to incorporate it into a

Hindley-Milner type system and how to compile it to a simple run-time operation.

Chapter 6 describes application pattern matches which solve the problem of structure

agnosticism (see Section 3.3.3). Again, the mechanism will have been described in Chapter

3, so in this chapter we are concerned with compiling and typing this feature. We will

compile application pattern matches to simple primitive operations by carefully extending

a standard pattern compilation algorithm. We will also describe type inference rules for

these primitives, inspired by a solution used in the static pattern calculus [44].

Chapters 7 and 8 evaluate the final compiler and thus the techniques we used to create

it. Chapter 7 demonstrates that we can write in  all the generic functions described

in Chapter 2 and explores the space around these particular examples to demonstrate the
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generality of the solutions we have described. We will show that a very large class of

programs can be written using these techniques. Chapter 8 evaluates how successfully

we have achieved the goal of being compiled. We demonstrate the speed and the memory

use of the compiled code and the opportunities for optimising in the compiler.

Chapter 9 validates the type system of  by proving the soundness of the under-

lying type relation with regard to the operational semantics of ’s core language.

Chapter 10 concludes this work with a discussion of future directions for this research

and a summary of what we have achieved.

The compiler which implements the algorithms and techniques described in this thesis

is available online at dgen.science.mq.edu.au where one can compile and execute code

directly and download the compiler for running locally.
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Chapter 2

Generic Functions

In this chapter we first introduce the language our compiler speaks, /S, and

then encode each of our generic functions in this language. While this chapter contains

no details of our technical contributions, it does introduce them. Furthermore, each of

the generic snippets we introduce in this chapter is new in the sense that, while there

are broadly equivalent encodings elsewhere, the style of programming generic functions

which we show here is interesting in its own right.

In this thesis, generic function refers specifically to one of the functions defined in this

chapter. Each of these functions is able to do its job on any data structure, in fact on any

input at all. They are also able to do this without being enumerated for each type, or each

type constructor, i.e. they are not overloaded. The term generic has a much wider meaning

outside this thesis (as we discuss in Section 2.8), however in this thesis its meaning is

restricted to these five types of functions.

For each of these functions we give a general description and then show an encoding of

it in our concrete language . In this way we can introduce both the generic functions

and our language.

The subject of this thesis is a compiler, not a programming language. The concrete lan-

guage we present here () is the simplest practical concrete language corresponding to

an abstract language S. It exists only to allow one to experiment with the compiler

and to describe algorithms/programs without resorting to abstract syntax.

2.1 Pattern Terminology

Patterns and pattern matching are very important in this thesis. To aid the discussion we

will describe, by example, some specific terms that we will use in this thesis. Consider



the following Haskell case expression

1 case a of
2 B b -> foo
3 C c1 c2 -> bar

The value on which the case expression branches (a) we call the scrutinee. The alterna-

tives (B b -> foo and C c1 c2 -> bar) we call branches, case branches, or case alternatives.

The above code has two case branches. The pattern (B b and C c1 c2) of a branch we will

call the left hand side (LHS) of the branch, while the expression that is returned when that

branch is chosen (foo and bar) we call the right hand side (RHS) of the branch.

2.2 dgen

 is the name we have given to our compiler implementation and is also the name

of the concrete programming language corresponding to an abstract syntax, S, that

sits at the front of our compiler. S would be the target of a desugaring phase in,

for example, a Haskell or ML compiler based on our techniques, so  looks like a

desugared version of those languages.

The concrete syntax () is a very simple realisation of its abstract syntax. We will

introduce the concrete syntax (and make clearer the semantics) by way of some familiar

programming tasks. Listing 2.1 shows  code for extracting the head of a list, including

the definition of the list type.

Listing 2.1: head function on lists
1 adt list(a) = Nil() | Cons(a, list(a))
2

3 def head(lst) = case [lst] of
4 { [Cons(x,xs)] -> x
5 } otherwise -> error ”partial definition error in head”

The adt keyword defines a new datatype which is defined in the normal algebraic

datatype fashion (as sums of products), while the def keyword defines a new function.

Errors in  carry a string to emit on the console upon the program halting. The abstract

syntax in Figure 2.1 omits the string from errors for brevity.

Listing 2.2 shows a merge sort program which demonstrates more features. There are

no modules, but a C-like preprocessor supports importing definitions from other files. Re-

cursive let bindings are introduced with the letrec keyword while let introduces non-
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Listing 2.2: merge sort (ported from [32])
1 #include ”dgen_lib/std.dgen”
2

3 def cmp_less() = -1
4 def cmp_greater() = 1
5 def cmp_equal() = 0
6

7 def merge_cmp(cmp,y,z) = case [y,z] of
8 { [Nil(), y] -> y
9 ; [Cons(a,x),Nil()] -> Cons(a,x)

10 ; [Cons(a,x),Cons(aa,xx)] ->
11 if (cmp(a,aa) < cmp_equal | cmp(a,aa) i== cmp_equal)
12 then Cons(a,merge_cmp(cmp,x,Cons(aa,xx)))
13 else Cons(aa,merge_cmp(cmp,Cons(a,x),xx))
14 } otherwise -> error ”partial definition error in merge_cmp”
15

16 def merge_sort(cmp,x) = letrec n() = length(x)
17 and nn() = n / 2
18 in if (n < 1 | n i== 1)
19 then x
20 else merge_cmp( cmp
21 , merge_sort( cmp
22 , take(nn,x)
23 )
24 , merge_sort( cmp
25 , drop(nn,x)
26 )
27 )

recursive bindings. Such bindings are separated with the keyword and. All functions

and constructors take their arguments in parentheses, separated by commas and empty

argument definitions can be given with empty parentheses. Separate from programmer-

defined functions are the built-in operations which can have infix syntax. S has dif-

ferent operations for each of string equality (s==), integer equality (i==), boolean equality

(b==) and character equality (c==), a fact that is omitted from Figure 2.1 for brevity. Func-

tions and constructors can be “curried” by giving only some of the arguments. The case

expressions branch on a list of expressions (i.e. there is a list of scrutinees), rather than

a single expression. There is thus a corresponding list of patterns in each branch of the

case expression (hence the list notation we used in Listing 2.1, even when there was only

one scrutinee and one pattern). This allows desugaring of the equational style of function

definition and simplifies the definition of pattern compilation (Section 4.1). Each case ex-

pression has a distinguished and compulsory default branch, identified by the keyword

otherwise which is the result if none of the branches match. Case branches are listed in

curly braces separated by semi-colons.  has list syntax using square braces and com-

mas, which is the only desugaring done in the parser. This desugaring does not apply to

case scrutinees and patterns where our abstract data type for case expressions receives

15



the lists.  passes parameters by value and has no side-effect-causing built-in opera-

tions1, thus no side-effects at all.

Function application to arguments is done with standard parameter list syntax but

 also allows constructor application to arguments when the (partially applied) con-

structor is the result of some function. In this case the application uses function appli-

cation syntax except that an @ annotation is added to the front of the application. For

example, the following function, structural_id, will pull apart a value and then put it

back together (giving an error for data that is not structured). It uses a feature we will talk

more about later, application pattern matches (x(y)), for pulling data apart.

1 def structural_id(a) = case [a] of
2 { [x(y)] -> @x(y)
3 } otherwise -> error ”err”

Notice that we need to annotate the code for putting the data back together with @

to indicate this is a data application, not a function application. This is necessary only

for our parser, internally all applications are the same. When we want to apply (as data)

the result of a function to its remaining arguments, the parser is sometimes not able to

identify this as legal (in fact, in this particular case it could, but this is a “toy” example).

It would require us to first bind the result to a variable. We wanted to avoid this extra

binding for reasons of clarity, so we introduced the @ annotation as a clue to the parser.

In practice we find it a useful way to document the code for data applications and we use

it in that way throughout the thesis2.

Anonymous functions (lambdas) are introduced with the fun keyword.

1 def id = fun(x) = x

Finally, there is a distinguished function main which defines the function to run on

program execution3. We will now introduce the five kinds of generic functions which we

will use as examples throughout this thesis.

Rather than continue to describe  in detail, we will now describe the abstract
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Figure 2.1: S, the abstract syntax of 

s ::= sd (S program)
sd ::= adt K x = sk | def x ot = se | main = se (top-level definition)
sk ::= K (sk | x) (constructor definition)
se ::= x (expression)

| K se (constructed value)
| se se′ (application)
| fun x = se (anonymous function)
| let x ot = se in se′ (let binding)
| letrec x ot = se in se′ (recursive let binding)
| case x of sp → se otherwise se′ (case expression)
| l (literal value)
| lo (built-in operation)
| ∅ (error)

sp ::= x | l | K sp | x(x′) (pattern)
l ::= char (literal)
| number

lo ::= se (+ | − |=|̸=|<|>|6|>) se′ (built-in operation)
| se ◃ se′ (function extension)

ot ::= τ | ϵ (optional type annotation)

syntax of  shown in Figure 2.1 (which is actually S).

S has all the usual functional programming features. Data is described as al-

gebraic datatypes (adt). Top-level function definitions bind an expression to a name.

Anonymous functions are defined by lambda abstractions with normal function appli-

cation for evaluating functions. There are let and letrec expressions for local function

naming. S also has the usual literal values and an error term (∅) which halts ex-

ecution. Case expressions pull apart data and operate similarly to those in Haskell and

ML, with the exception that each case expression matches a number of values against an

equal number of patterns. A successful match only occurs if all values match their corre-
1Output to the console is supported, and is strictly a side-effect but since there is no mechanism for those

actions to feed back into the program, we don’t have any great need to think about side-effects for the purposes
of this work. Furthermore,  uses eager evaluation which makes is simple to reason about the order of
console output operations.

2At this point we would like to remind the reader that ’s concrete syntax is a means to an end, and
effort that could have been put into improving it has gone into other work instead. The focus of this thesis is
the abstract syntax S and the compiler that processes it.

3When we want to demonstrate use of a library module, which can’t have a main definition, we will call it
main_func.
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Figure 2.2: Types in S

τ ::= α (type variable)
| T τ (parameterised type constructor)
| τ → τ′ (function types)
| Char | Integer (literal types)

sponding pattern. A pattern is either a variable, literal value, a constructor with patterns

as arguments (nested patterns) or an application pattern match of two variables, which is

one of our extensions for generic functions. You will also notice a primitive operation ◃

which is our function extension operation, also used for generic functions and not usually

part of a functional language. We will discuss these mechanisms in more detail in Chap-

ter 3. We see them in use in our encoding of the generic functions in this chapter, but a

full description of how they work will be deferred until Chapter 3

Named functions can be annotated with a type (ot) which is used to guide type infer-

ence for features, such as polymorphic recursion, where types can’t be inferred.

Figure 2.2 describes the language of types in S. Types are either variables, named

types where T is the type constructor (which can be parameterised by other types), func-

tion types, or one of the literal types.

2.3 Generic Update

A generic update function is one that can traverse any data value and perform a type-

preserving transformation at specific nodes in the structure. It can be considered a type-

preserving map capable of operating on any structure. Both the structure and the oper-

ation are parameters to the generic update function. Throughout this thesis we use the

salary update snippet to demonstrate this type of function.

The salary update snippet (shown in Listing 2.3, which is a translation of an example

from [53]) defines an algebraic datatype for company structures, and code for updating

the salary of all employees of the company. Both the particular company to work over, and

the updating function are arguments to the generic update function, generic_update.

The generic_update function actually defers its job to one of our generic traversal

functions, apply_to_all, discussion of which we defer to Section 2.5. If we assume that

apply_to_all takes a function and applies it to each part of the input data, our job is
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Listing 2.3: The salary update snippet
1 adt company() = C(list(dept()))
2 adt dept() = D(string, manager(), list(sub_unit()))
3 adt sub_unit() = PU(employee())
4 | DU(dept())
5 adt employee() = E(person(), salary())
6 adt person() = P(string, string)
7 adt manager() = M(employee())
8 adt salary() = S(int)
9

10 // setup
11 def gen_com() = let ralf() = E(P(”Ralf”, ”Amsterdam”), S(8000))
12 and joost() = E(P(”Joost”, ”Amsterdam”), S(1000))
13 and marlow() = E(P(”Marlow”, ”Cambridge”), S(2000))
14 and blair() = E(P(”Blair”, ”London”), S(100000))
15 in C([ D(”Research”, M(ralf), [PU(joost), PU(marlow)])
16 , D(”Strategy”, M(blair), [])
17 ]
18 )
19

20 // logic
21 def incS(amt, s) = case [s] of
22 { [S(s)] -> S(s + amt)
23 } otherwise -> error ”partial definition error in incS”
24 def id(x) = x
25 def increment(amt) = incS(amt) ◃ id
26 def generic_update(func, dat) :: (∀ a . (a) -> a, b) -> b = apply_to_all(func,dat)
27

28 //do it
29 def main_func() = generic_update(increment(237),gen_com)
30

31 // > output is:
32 // > Company[ Department: Research, Ralf<Amsterdam, 8237>,
33 // > [ Joost<Amsterdam, 1237>
34 // > , Marlow<Cambridge, 2237>
35 // > ]
36 // > and Department: Strategy, Blair<London, 100237>, []
37 // > ]

to construct a function which knows how to process each part of the input data. Since

apply_to_all has the type (∀a.a → a) → b → b, this function must have type ∀a.a →

a. Typically, simple polymorphic languages only allow two function with that type, the

identity function (fun(x)= x) and bottom. We use a function extension operator (◃) to add

specific behaviour to the identify function. This is one of our extensions to the baseline

functional compiler and its semantics will be clarified in Chapter 3. The resulting function

will give the specific behaviour on inputs of the specific type, while still deferring to the

identity for all other types. Thus, increment is a function which will increment a salary

if applied to one and do nothing to its input otherwise. It is this function that we set to

be applied to all nodes in the data structure in question. Upon running generic_update

with increment(237) and the example company structure, the result is the same company
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structure with every salary increased by 237. Note that  type annotations are all given

in an“uncurried” style but the functions can be curried. It is for ease of parsing that the

uncurried style is used in the concrete syntax.

2.4 Generic Query

A generic query function is able to traverse any data structure, accumulating a single

value as its result. It can be considered a fold that can operate on any data structure. Both

the data and the accumulation operation are parameters to the function, but the same

mechanism can be used to define functions with a set accumulator. Throughout this thesis

we use the name analysis snippet (Figure 2.4) to demonstrate this type of function.

The name analysis snippet includes the definition of an abstract syntax tree datatype

(adapted from a simple imperative language by Reynolds [77]), and code to check that

every use of a name is preceded by the definition of that name. The check_it function is

the accumulating operation, and a_correct_command gives some data to test the function

on.

We assume the presence of a generic_query function, whose definition we give in

Section 2.5. It is like a fold over any data structure. Its type signature is (∀a.r → a →

r) → r → b → r and operates thus.

This function takes an accumulating (or folding) operation and a starting value

as its first two parameters. The third parameter is the data to work over and

the result is the final result of applying the accumulating function at every

node in the input value.

With this function present, we can define an actual generic update example by defining

the accumulating function. As in generic update, this function needs a very polymorphic

type since it is applied at every node, and again we build it up with the function extension

mechanism. We define separate functions for each interesting data type (i.e for comm and

int_exp, but not for bool_exp since it plays no part in the computation) and combine

them with a generic failover4 case (fun(a)= strbool on line 36). The resulting function,

check_it will use check_comm when it encounters a command node, check_intexp when

it encounters an integer expression and the failover case for all other nodes.
4We like the term “failover” for this function since it is a function that protects us from unsafe generic

traversal by stepping in when all other options fail.
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Listing 2.4: The name analysis snippet
1 // -- Abstract Syntax -- -- Example Concrete Syntax--
2 adt comm() = CAssign(string, int_exp()) // ident := exp
3 | CDecl(string, int_exp(), comm()) // let ident := exp in comm
4 | CSkip() //
5 | CSeq(comm(), comm()) // comm1 ; comm2
6 | CWhile(bool_exp(), comm()) // while (bool) { comm }
7 | CPut(int_exp()) // printf(exp)
8

9 adt int_exp() = IUse(string) // ident;
10 | ILit(int) // 5
11 | IPlus(int_exp(), int_exp()) // 5 + ident
12

13 adt bool_exp() = BTrue() // true
14 | BFalse() // false
15 | BEq(int_exp(), int_exp()) // 5 == ident
16 | BNEq(int_exp(), int_exp()) // 5 != ident
17 | BAnd(bool_exp(), bool_exp()) // true && ident
18 | BOr(bool_exp(), bool_exp()) // true || ident
19

20 def check_comm(strbool,comm)
21 :: (pair(list(string),bool),comm()) -> pair(list(string),bool)
22 = case [strbool,comm] of
23 { [Pair(lst,b), CAssign(s, ie)] -> Pair(lst,elem(fun(p,q) = p s== q, s,lst) & b)
24 ; [Pair(lst,b), CDecl(s,ie,c)] -> Pair(Cons(s,lst), b)
25 ; [Pair(lst,b), z] -> strbool
26 } otherwise -> error ”partial definition error in check_comm”
27

28 def check_intexp(strbool,comm)
29 :: (pair(list(string),bool),int_exp()) -> pair(list(string),bool)
30 = case [strbool,comm] of
31 { [Pair(lst,b), IUse(s)] -> Pair(lst,elem(fun(p,q) = p s== q, s,lst) & b)
32 ; [Pair(lst,b), z] -> strbool
33 } otherwise -> error ”partial definition error in idbu”
34

35 def check_it(strbool) :: (pair(list(string),bool), a) -> pair(list(string),bool)
36 = check_comm(strbool) ◃ check_intexp(strbool) ◃ fun(a) = strbool
37

38 def decl_before_use(comm) = snd(generic_query(check_it,Pair([],true),comm))
39

40 def a_correct_command() =
41 CDecl( ”v”
42 , ILit(1)
43 , CWhile( BNEq(IUse(”v”), ILit(3))
44 , CSeq( CAssign(”v”, IPlus(IUse(”v”),ILit(1)))
45 , CPut(IUse(”v”))
46 )))

2.5 Generic Traversal

The generic query and generic update functions above have assumed some way to visit all

the values in a structure. Generic traversal functions are programmer-defined functions that

do this visiting and which have been crafted to traverse the structure in whatever way suits

the problem at hand.

To demonstrate generic traversal we will encode two traversal strategies for both queries

21



and updates; top-down and bottom-up. The same techniques used to define these two ex-

amples can be used to define myriad other traversal strategies.

It is possible to define a set of generic traversal operations up-front and to require your

programmer to use one of these for all generic updates and generic queries. This can work

quite well in practice, but is not what we mean when we say “generic traversal”. When we

use this term we are referring to programmer-defined generic traversals, and the ability

for the programmer to create custom traversals that suit their purpose. For example, our

name analysis snippet can only work if the generic_query operation traverses top-down,

applying the accumulating function to nodes higher in the value before passing the result

to those lower in the value. This is not a universal requirement and it may be necessary at

some time to have a similar function that works some other way. With generic traversal,

the programmer is free to create whatever traversal they need.

2.5.1 Bottom-Up Update

The apply_to_all function, as used in the salary update snippet, is actually a bottom-up

traversal; its full definition in  is shown in Listing 2.5

Listing 2.5: A bottom-up generic traversal
1 def apply_to_all(f,g) :: (∀ a . (a) -> a, b) -> b =
2 case [g] of
3 { [c(a)] -> f(@apply_to_all(f,c)(apply_to_all(f,a)))
4 ; [o] -> f(o)
5 } otherwise -> error ”partial definition error in apply_to_all”

The apply_to_all function has two arguments, a function to apply at every node (f),

and a value to traverse (g). It works by inspecting its argument (case [g]) and branching

based on whether it is a compound (c(a)) or a atom (o). These are the application pattern

matches we saw in Section 2.2. These are one of our extensions to the baseline functional

compiler and their semantics will be clarified in Chapter 3. This relies on the ability to see

all values in the language as binary trees: compounds are the internal nodes and atoms

are the leaves. We describe how to do this in Section 3.3.3, but for now we must take as

an assumption that it works.

With this in place, we can apply f to all nodes by applying it to the current node and

recursively applying apply_to_all to each child (c is the left child and a is the right). We

then stitch the two transformed halves back together with the @ annotation, which helps

the parser understand curried application. Recall that we will always use @ to annotate
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data application even though there is no difference in the abstract syntax.

The apply_to_all function works in a bottom-up manner, which is encoded by ap-

plying the function f to the result of stitching together the transformed children. We show

how to encode a top-down traversal in the next subsection.

2.5.2 Top-Down Update

It is quite straightforward to write a version of generic_updatewhich processes its second

argument from the top-down instead of from the bottom up. Listing 2.6 shows just such

a function.

Listing 2.6: Top-down update
1 def apply_to_all_td(f,g) :: (∀ a . (a) -> a, b) -> b =
2 let fg() = f(g)
3 in case [fg] of
4 { [c(a)] -> @apply_to_all_td(f,c)(apply_to_all_td(f,a))
5 ; [o] -> o
6 } otherwise -> error ”partial definition error in apply_to_all_td”

The general mechanism is the same but we first call the transformation function (f) on

the current node and then recursively call apply_to_all_td on the result of that function

call. We must be careful not to re-apply f when the result of calling it on the current node

is an atom (line 5).

2.5.3 Top-Down Query

The generic_query function — used in Listing 2.4 and defined in Listing 2.7 — is actually

a top-down generic query function. The accumulation function will first be applied to the

node being inspected, then the result is threaded to the right-hand argument, finally to the

left-hand argument. So in fact, it is top-down, right-to-left. Top-down left-to-right could

also be easily encoded but it would require a little extra work since using application

pattern matches exposes children right-to-left.

Listing 2.7: A top-down (right-to-left) generic query
1 def generic_query(f,start,dat) :: (∀ a . (r,a) -> r, r, b) -> r =
2 case [dat] of
3 { [c(z)] -> generic_query(f,generic_query(f,f(start,dat),z),c)
4 ; [o] -> f(start,o)
5 } otherwise -> error ”partial definition error in generic_query”
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As with apply_to_all, we rely on the ability to see any value as a tree, meaning our

job is to apply the accumulator at the correct places and to thread the output of the ac-

cumulator to the recursive calls in the correct order. We first apply the accumulator to

the whole value at the current node (f(start, dat)), then use the result of this as the

start value for a recursive call on the right sub-tree, finally passing that result to the start

parameter of a recursive call for the left sub-tree.

2.5.4 Bottom-Up Query

We can easily create a bottom-up version of generic_query by changing the places at

which we call the accumulator function. Listing 2.8 shows such a function. Instead of

first calling the accumulator on the current node, we defer that job until the left and right

subtrees are processed, passing the final result of the right subtree as the start value for

the current node.

Listing 2.8: A bottom-up (left-to-right) generic query
1 def generic_query_bu(f,start,dat) :: (∀ a . (r,a) -> r, r, b) -> r =
2 case [dat] of
3 { [c(z)] -> f(generic_query_bu(f,generic_query_bu(f,start,z),c),dat)
4 ; [o] -> f(start,o)
5 } otherwise -> error ”partial definition error in generic_query_bu”

2.6 Generic Equality

Generic equality is a single function which can determine the equality of two values of

any type. The geq function in Listing 2.9 is a generic equality function.

First, we must define a sequence of generic versions of the built-in equality functions,

each able to deal with one addition built-in type. The first of these, g_str_equals5, can

deal with either two strings (by the left argument to the function extension of line 6, or

two constructors (by the right argument). It is built up in two steps, an outer instance

of function extension (line 6) creates a function that calls another instance of function

extension (line 3) if the first argument is a string. The “inner” extended function then

calls string equality if the second argument is also a string, otherwise it returns false. The
5g_ and generic_ are prefixes we use in function names to indicate a function is structure agnostic. Some-

times we use g_ to keep the identifier short (as we have done here), other times it is to match existing functions
we are emulating (geq is the identifier used in bondi for generic equality for example). Where there is no par-
ticular reason to use g_ we prefer the more precise generic_.
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Listing 2.9: Generic Equality
1 def g_str_eq() :: (a,b) -> Bool =
2 (fun(a) = (fun(b) = a s== b)
3 ◃
4 (fun(b) = false)
5 )
6 ◃ (fun(a) = (fun(b) = a === b))
7

8 def g_int_eq() :: (a,b) -> Bool =
9 (fun(a) = (fun(b) = a i== b)

10 ◃
11 (fun(b) = false)
12 )
13 ◃ g_str_eq()
14

15 def g_char_eq() :: (a,b) -> Bool =
16 (fun(a) = (fun(b) = a c== b)
17 ◃
18 (fun(b) = false)
19 )
20 ◃ g_int_eq()
21

22 def g_bool_eq() :: (a,b) -> Bool =
23 (fun(a) = (fun(b) = a b== b)
24 ◃
25 (fun(b) = false)
26 )
27 ◃ g_char_eq()
28

29 def bi_eq(x,y) :: (a,a) -> Bool
30 = g_bool_eq(x,y)
31

32 def geq(a,b) :: (a,b) -> bool = case [a,b] of
33 { [c1(a1),c2(a2)] -> geq(c1,c2) & geq(a1,a2)
34 ; [c1(a2),z2] -> false
35 ; [z1,c2(a2)] -> false
36 ; [z1,z2] -> bi_eq(z1, z2)
37 } otherwise -> error ”partial definition error in

geq”
38

39 def main_func() = geq([One(),Zero()],[One(),One()])

outer extended function defers to constructor equality if the first argument is not a string.

This constructor equality (===) is the secret to writing this function. By pulling apart data

as we did in generic traversal, constructors can be exposed without their arguments. If we

add some basic built-in functions that work on these “lonely” constructors (constructors

with none of their arguments attached), we can write functions like equality and the next,

show. In this process, the constructor equality function is used as the right hand argument

to an extension operator, which means it must have type (a,b)-> bool. We then build

this up through the next three definitions until we have a function with extensions for

all built-in types plus constructors. This function (bi_eq) is used to check the equality

of atoms, and all other equality checks are done by the main geq function. geq inspects
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its two arguments and, if they are the same structure, either recurses into the branches

for compound inputs or calls the atomic equality for atomic inputs. It gives false for

inputs of different structure. The generic equality in Listing 2.9 is longer than it should

be because of deficiencies in the  parser. If we bypass the parser and use S we

can define all the g_*_eq functions within bi_eq.

2.7 Generic Show

Generic show is a single function which can encode, as a string, any value of any type.

Listing 2.10 is a code snippet demonstrating this function.

Listing 2.10: Generic Show
1 def gshow(a) :: (a) -> String
2 = case [a] of
3 { [c(p)] -> gshow(c) ++ ”(” ++ gshow(p) ++ ”)”
4 ; [z] -> bishow(z)
5 } otherwise -> error ”partial definition error in gshow”
6

7 def bishow() :: (a) -> String
8 = let si(x) = show_int(x)
9 and sc(x) = show_char(x)

10 and sb(x) = show_bool(x)
11 and ss(x) = if (x s== ””) then x else x
12 and ds(x) = show_constr(x)
13 in si ◃ sc ◃ sb ◃ ss ◃ ds

We use exactly the same mechanism in gshow as we did in geq. The main difference is

that we need a different built-in function working on lonely constructors. In this case we

use show_constr which will convert any lonely constructor to a string representation, and

will give a run-time error otherwise. Thus, like ===, it has a very polymorphic type ((a)

-> String), which means it can be used in the right hand side of the extension operator

(◃). Note that  does not support type annotations that could be used to indicate ss

(x) should be (String)-> String. Thus we have had to pad the encoding with an if

expression to enforce the desired type. Because we are describing a baseline functional

compiler with additions that are orthogonal to other functional language features, there is

no impediment to implementing more general type annotations. However, this is beyond

the focus of this work, hence the work-around for ss(x). Furthermore, the simple parser

in  has forced us to bind each built-in function to a let-bound variable since the parser

expects functions (not built-ins) as arguments to ◃. We can write the same code in the

abstract syntax without the let-bindings for si, sc, etc.

Note that these are not the only kinds of generic functions that  can compile. They
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are a minimal set of abilities that a compiler should have to call itself “generic” in the sense

we use it here. In Chapter 7 we explore the breadth of generic code that can be compiled

with .

2.8 Other “Generic” Functions

“Generic” is a heavily overloaded term in computing, in this section we further clarify

how we use it in this thesis by explaining what it is not in this context.

2.8.1 Object Oriented Generics

The generic functions of object oriented (OO) languages like Java and C# bear no relation

to the generic functions we have listed above. This thesis starts from the assumption that

the parametric polymorphism that these mechanisms implement is already available as a

starting point. The functions above are all from a higher-level form of generics.

2.8.2 Term Rewriting

Term rewriting is a computational style characterised by repeated translations (rewrites)

of a value (term). We can achieve term rewriting with generic update, generic query and

generic traversal. Generic query allows us to transform any value into an atomic value and

generic update allows us to transform any value into any other compound value. Generic

traversal is required because the order in which a term is rewritten can be programmable

in term rewriting. Furthermore, with generic traversal, we can emulate any of the pre-

defined traversal algorithms used in the various pure term rewriting systems. So our use

of generics is compatible with that used in these systems. We show in Section 7.2.7 how

to emulate term rewriting in .

2.8.3 Datatype Generics

Datatype generics is a more specifically defined term, characterised by a set of canon-

ical examples. All five of our functions are included in this definition. There are also

other functions in this set, such as generic map and generic read, which we do not in-

clude because the “spine view” (see Section 3.3.3) of data exposed with application pat-

tern matches does not immediately support them. We discuss these functions and how

we would go about supporting them in Section 7.3.
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2.9 Summary

In this chapter we have made precise the term “generic” in the context of this thesis; it

refers to the language/compiler features require to implement these eight program snip-

pets:

1. Salary Update

2. Name Analysis

3. Apply to All

4. Top-Down Apply to All

5. Generic Query

6. Bottom-Up Generic Query

7. Generic Equality

8. Generic Show

In Chapter 7 we will look at extensions of this set but until then we refer only to these

features. We also saw a baseline functional programming language – with just two non-

standard features; application pattern matches and function extension – that was able to

describe all of these generic examples. The remainder of this thesis is concerned with

compiling this language, in particular, the two non-standard features. In this chapter we

have only given a hint of how these features work. In the next chapter we explore the

specific problems they solve and how they do it, greatly expanding our understanding of

how they work. In chapters 5 and 6 we will complete the picture by describing how to

implement them.
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Chapter 3

Encoding Generic Functions

In this chapter we will survey existing techniques for expressing generic functions. We will

highlight those that are currently used in compilers and explain why those techniques

are not appropriate for a baseline functional compiler. We will also evaluate the other

techniques for their applicability to our task and describe the novel techniques we use.

This chapter will make clear why none of the existing techniques are appropriate without

some modification and explain where our new techniques fit in relation to these existing

ones.

Most of the existing tools for processing generic functions fit into one of three broad

computational styles:

• term rewriting,

• pattern calculii, and

• datatype generics.

We begin with a brief introduction to each of these in Section 3.2 before describing in more

detail the two particular capabilities required to support generic functions:

• polymorphic functions with specific behaviour (Section 3.3.1) and

• structure agnosticism (Section 3.3.3).

Every tool capable of processing generic functions will have a solution for both of these

capabilities. It is the different solutions to each that we are primarily concerned with in

this chapter. We will show that none of the existing solutions suffices for our purpose and

we will describe our techniques as variants/extensions of existing techniques. We split

our survey according to these two capabilities, first discussing polymorphic functions

with specific behaviour, then discussing structure agnosticism.



As solutions to polymorphic functions with specific behaviour, we will discuss:

• function extension,

• extension types,

• by-passing static type checks,

• universal representation of data,

• type manipulation, and

• explicit failure.

We evaluate each of these as a solution for a baseline functional compiler and then

describe the novel technique we use in , function extension with a single operator (see

Section 3.3.2). This technique is a new variant of both function extension and extension

types.

As solutions to structure agnosticism, we discuss:

• full universal representation of data,

• pre-defined generic traversals, and

• object-based reflection.

We evaluate each of these as a solution for a baseline functional compiler and then de-

scribe the technique used in , explicit spine view via application pattern matches (Section

3.3.4). This approach to structure agnosticism has been used before in interpreters, but it

has never been compiled. Our contribution is the compilation of this feature described in

Chapter 6.

3.1 Evaluation Criteria

If we are to evaluate each existing solution, we must decide what constitutes a desirable

set of characteristics. In this section we outline the characteristics which we require of a

technique to be appropriate for use in a baseline functional compiler.

No changes to the semantics of the original language (abbreviated to “semantic”) We are

describing a way to turn any functional language compiler into one capable of com-

piling generic functions. If changes to the semantics of the original language were

required it would not be possible to describe these techniques as extensions. Their
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incorporation into a compiler would potentially render invalid all existing code for

that compiler.

No dilution of the static type system (abbreviated to “type”) Our starting point is stat-

ically typed compilers with a Hindley-Milner type system and thus the audience is

developers who value static typing. We cannot admit any technique that requires a

relaxation of the static type safety of the language.

Minimal changes to the compiler (abbreviated to “changes”) The smaller the number

of changes, and the easier they are to implement, the more likely they will be incor-

porated into existing compilers. A compiler is already a very complicated artefact,

thus techniques that are difficult to implement in isolation could be prohibitively

difficult to add to an existing compiler. Furthermore, minimal changes are easier to

verify as correct.

No use of advanced language features (abbreviated to “baseline”) As we have already

discussed, a solution that relies on a particular language feature like lazy evalua-

tion, type classes or advanced module systems, will not be simple to implement in a

language without those features. We are very concerned in this thesis with ensuring

the techniques we present are applicable to the widest possible range of program-

ming languages.

We don’t have a separate criterion relating to the expressiveness of the tool. However,

only tools capable of encoding all the generic snippets in Chapter 2 are included in this

survey.

3.2 Approaches

Before looking in detail at each technique, we give a general overview of the three com-

putation styles in which generic functions are commonly expressed.

3.2.1 Term Rewriting

Term rewriting is a complete model of computation where results are achieved by succes-

sive translations of the input. Input is treated as a tree of data that is traversed, applying

translations at certain nodes. This is particularly suited to tasks like program compilation,

but any data can be treated as a tree of nodes.
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There are broadly two categories of term rewriting systems. Those that rely on pre-

defined traversal algorithms, and those that allow the programmer to create their own

traversal strategies from smaller, more primitive strategies. In this work, “term rewriting”

refers to both types, “strategic rewriting” refers to the later, and if we need to refer to the

former exclusively, we will call it “pure term rewriting”.

Term rewriting systems tend to have less-strict type systems than typical statically

types programming languages, although there are exceptions to this (such as A+S

[87]). For example, Kiama [81] is a term rewriting library embedded in the statically typed

functional/OO language Scala but it uses very general types during re-writing. All values

on which rewriting occurs are treated as the same type (Term) meaning that many of the

assurances of the static type system are lost.

3.2.2 Generic Calculii

Under this umbrella we include the pattern calculus [47], Faure’s patched pattern calculus [29],

the ρ-calculus [15, 16], the lambda calculus with constructors [4], bondi [30, 45] and RhoStratego

[23]. The first four are extensions to the lambda calculus which attempt to capture: the

role of data (the pattern calculus and the lambda calculus with constructors), and the se-

mantics of rewriting (the ρ-calculus and Faure’s patched pattern calculus). Interestingly,

the two concerns have converged on very similar calculii, so we restrict our discussion to

the pattern calculus when considering details. RhoStratego is a programming language

built originally as an implementation of the ρ-calculus, but eventually relaxing its adher-

ence to that calculus. It is the only example we know of a compiled and typed functional

language which embraces failure as a primitive. The bondi language is an interpreted

implementation of the pattern calculus. Lämmel’s System S′
γ is also a generic calculus,

but as it is the pre-cursor to“Scrap Your Boilerplate”, we will discuss in when we discuss

that library in Section 3.3.3.

All these systems take the simplest, most internally consistent approach possible and

thus are a good source of desugaring techniques and compilation ideas. However, the

calculii sometimes define semantics which require interpretation rather than compilation.

RhoStratego, while strictly a compiled language, does not compile patterns, which is a

major impediment to raw speed and optimisation possibilities.

3.2.3 Datatype Generics

Datatype generics make most sense in the context of statically typed, polymorphic and

functional programming languages like Haskell, ML and Clean, although the ideas ac-
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tually apply in a somewhat broader context than that [66]. Languages like Haskell and

ML have advanced type systems that admit parametric polymorphism. Datatype generic

tools introduce another level of polymorphism above that, also referred to as polytypic or

type indexed functions. This extra level of polymorphism is enough to encode our generic

functions.

3.2.4 Others

There are many other systems which can encode our generic functions but which are too

far removed from our compiled and strongly typed constraints. However, we mention them

where the comparison is particularly relevant. Untyped functional languages like Lisp

and Scheme allow encoding of generic functions with similar techniques, but devoid of

static types. Particular DSLs like XQuery [92] can elegantly encode, again without the

kind of type system we are talking about, some of the generic functions. However, these

DSLs are not general purpose tools. We pay particular attention to how you could encode

generic functions in statically typed, object oriented languages since many people will

have tried (perhaps successfully) to do just that, and the comparison is enlightening.

3.3 Capabilities

We break the generic functions down into two capabilities that are required to implement

them. We got a sneak-peek of these in the previous chapter when we saw  snippets

implementing generic functions; now we will look at them in detail.

3.3.1 Polymorphic Functions with Specific Behaviour

The salary update snippet requires that a single function be applied to particular parts of

a composite value. Those parts are identified by type. We want to take in any possible

structured value and apply an increment at all salaries within it. We will work under the

assumption that there are already ways to traverse structured values, Section 3.3.3 goes

into detail on how to achieve this. There are broadly two ways to approach polymorphic

functions with specific behaviour:

Parameterise the traversal by type and function: You pass to the traversal 1) the type at

which to apply 2) the function to apply, and leave it to do the rest of the work.

Apply a single function to every part of the tree: Such a function must do nothing un-

less it is being applied to a value of the right type (in this case salary). We need to
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write functions that can be applied to any value (i.e. have type ∀a.a → X), but which

do something at specific types (i.e. are not just constant functions).

We refer to both possible solutions as polymorphic functions with specific behaviour.

Function Extension

Function extension takes an existing function with the required polymorphic type and

extends it with a more specific function. This creates a new function with the required

polymorphic type, but which uses the specific function whenever it is applied to an ap-

propriate type. You can either think of it as specialising the polymorphic function, or as

attaching a fail-safe to the specific function. For example, the salary update snippet needs

a function which increments a salary and does nothing for all other types.

This approach is used in SYB where there are a number of functions provided which

can specialise a polymorphic function with a specific one. For example, mkT takes one

function as an argument and uses it to specialise the polymorphic identity function. mkQ

takes a function and uses it to specialise a polymorphic constant function (specified with

its second parameter). For example, Listing 3.1 shows how to define a function with SYB

that increments salaries and leaves all other values untouched (incrementS), and how to

define a function which extracts integers from salaries while giving 0 when applied to

something that is not a salary (extractS). We refer to this examples as fixed function ex-

tension since the functions which are specialised are only partly under the programmer’s

control.

Listing 3.1: Fixed function extension in SYB
1 incrementS = mkT (\S(i) -> S(i + 1))
2 extractS = mkQ 0 (\S(i) -> i)

However, mkT and mkQ are often too restrictive, we would like to define what polymor-

phic function to use for mkT and to define the constant as a function for mkQ. Thus SYB

also defines extT and extQ which allow for this extra flexibility. Listing 3.2 shows how to

define incrementS and extractS using these functions. We refer to this version as flexible

function extension since the programmer defines all parts of the extension.

Listing 3.2: Flexible function extension in SYB
1 incrementS = extT (\a -> a) (\S(i) -> S(i + 1))
2 extractS = extQ (\a -> 0) (\S(i) -> i)
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The extT and extQ functions are not directly encoded in SYB. They are realised via a

type-safe cast mechanism. This mechanism requires some kind of type parameter, telling it

what type we wish to cast to, and a value to cast. It will return a boxed value (for example,

Maybe in Haskell, Option in Scala) which is empty if the cast failed and full with the cast

value if the cast succeeds.

Achieving the type-safe cast is a problem in itself, but with type classes (as in Haskell)

it can be achieved. SYB does this (shown in Listing 3.3), using the implicit type parameter

that type-classes generate to direct the cast, and the overloading provided by type-classes

to give a definition for each type.

Listing 3.3: increment encoded in with type-safe cast
1 mkT :: (Typeable a, Typeable b) => (b -> b) -> a -> a
2 mkT f = case cast f of
3 Just g -> g
4 Nothing -> id
5

6 incS :: Int -> Salary -> Salary
7 incS k (Salary j) = Salary (j + k)
8

9 increment :: Int -> a -> a
10 increment k = mkT (incS k)

Flexible function extension (extT and extQ) does many of the things we require (as per

the evaluation criteria in Section 3.1) but it won’t be our final solution. The use of type-safe

cast with fail-over means that there is no loss in type safety. SYB required only minimal

changes to GHC and only small and commonly available extensions to Haskell (such as

higher ranked types). However this was done with a great deal of help from the type-

class mechanism built into Haskell. A baseline functional compiler does not have type

classes. Thus the SYB implementation of polymorphic functions with specific behaviour

can not be used verbatim in . However, we will show that something very similar

can be achieved without type-classes at all if we are willing to try a few other compiler

extensions. These are simpler than type-classes and by moving expensive operations like

type checks out of a library and into the compiler we will get much lower overhead for

generic programs (see Section 8.2).

Another possible improvement from the point of view of a compiler writer is the above

use of two function extension operations1. We will see in the next section a technique that

requires only one function extension mechanism. If we could use one operation rather

than two, we would not only reduce the implementation burden, we could get closer to
1We showed four, but mkT and mkQ can be written using extT and extQ, so you only need two.
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emulating the technique we are going to see in the next section, extension typing, although

that remains future work.

Extension Typing

The SYB primitives extT and extQ extend one function with another based on types. The

pattern calculus, and bondi, use a mechanism which extends functions based on construc-

tors. This mechanism is called extension in the pattern calculus literature ([44], Chapter

4), but we call it extension typing because it requires particular typing rules. An extension

in the pattern calculus is a triple, p, s and r written p -> s | r. This defines a compu-

tation which tries the pattern p. Upon success it returns expression s, with appropriate

bindings. Upon failure to pattern match, it returns expression r.

The two main differences between extension typing and function extension are: exten-

sion typing is a single operation which can do the job of both extT and extQ, and extension

typing mechanism is constructor focussed rather than type focussed. For example, Listing

3.4 shows how to encode the increment function in bondi and demonstrates this focus on

constructors.

Listing 3.4: increment encoded in bondi
1 let (increment : Int -> a -> a) i =
2 S a -> S (a + i)
3 | x -> x

The x -> x case alternative is not capturing left-over salary constructors (as it would

in a Hindley-Milner system); it is capturing all possible constructors, including those from

other types. The type signature of increment captures this, it has a type variable (implic-

itly universally quantified) as its second argument.

This change in the semantics of pattern matching makes extension typing inappropri-

ate for our needs. Furthermore, the type system required for full extension typing is a

significant departure from standard Hindley-Milner. However, we are attracted by the

single operator for all function extension and thus we use for  a mechanism that is

part-way between function extension and extension typing (see Section 3.3.2).

By-pass Static Type Checks

Listing 3.5 shows a possible encoding of the increment function in a (Java-like) statically

typed object oriented language. It requires manipulation of types and type cast, both of
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which are mechanisms which allow the programmer by-pass the static type checking of

the language.

Listing 3.5: increment encoded in a Java-like language
1 Object increment(Object x){
2 if (x.isIntanceOf().className(”Integer”){
3 return ((Integer)x + 1)
4 } else {
5 return x
6 }

If the programmer always witnesses a cast with an isInstanceOf, then we won’t get

any problems, but this is not enforced by the type system. Most static OO languages allow

encoding in a similar fashion.

Dynamic2 OO languages can simply do without the type cast, but don’t have static

types at all, so are even further from our desired compiler.

Universal Representation of Data

Some systems use a value-level representation of types to get polymorphic functions with

specific behaviour. LIGD [14], for example, gives a Rep α value for every type α, which is

the representation of that type. This value must be passed as an extra parameter to func-

tions that have specific behaviour at a specific type. Listing 3.6 shows how the increment

function is encoded in LIDG [78]. The extra parameter which contains all the type infor-

mation is the second (Rep a) one.

Listing 3.6: increment encoded in LIDG [78]
1 increment :: Float -> Rep a -> a -> a
2 increment f (RSum a b ep) t = case from ep t of
3 Inl x -> to ep (Inl (increment f a x))
4 Inr y -> to ep (Inr (increment f b y))
5 increment f (RPair a b ep) t = case from ep t of
6 x :*: y -> to ep (increment f a x :*: increment f b y)
7 increment f (RType e a ep) t = to ep (increment f a (from ep t))
8 increment f (RCon ”S” a) t = case a of
9 RFloat ep -> to ep (incS f (from ep t))

10 increment f (RCon s a) t = increment f a t
11 increment f _ t = t
12

13 incS :: Float -> Float -> Float
14 incS f s = (s + f)

2Where “dynamic” means either duck-typed or run-time typed. I.e., languages like SmallTalk, Ruby,
Python, Objective-C.
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The increment function branches based on the form of this representation parameter.

The representation includes and embed and project (ep) value which is used to look inside t

once it is known what form it takes. For example, in line 5, pattern matching on the second

argument ensures t is a pair, so when we project from t to its representation, we know it

will be x :*: y (a product value). The increment function is recursively applied to sub-

values for compound instances of t. Notice that a great deal of information about the type

of the parameter is available and we must explicitly recurse through the value looking for

the constructor that witnesses the type we are interested in. In increment we are looking

for S for salary, which witnesses the integer values in the system. This function is much

more complicated than others in this comparison because it is doing both the traversal

and the incrementing, which are separated in other systems. The fact that passing in a full

type representation allows both specific/polymorphic functions and traversal means we

will discuss it again in Section 3.3.3

Bringing types into the programming model and allowing functions to depend on

them is a significant change to the semantics of standard functional languages, but intro-

ducing a value-level equivalent is not. It changes the programming style, but needs no

new language features. However, achieving this value-level representation does require

either type classes, or GADTs, or both. These are not features of our baseline functional

compiler.

Implicit Type Manipulation

With type classes, one can make the explicit type parameter, that has been reflected from

the type-level to value-level in Listing 3.6, an implicit one. Examples of this approach

are EMGM [38, 10], regular [61] and Instant Generics [13]. This saves you from having

to create the representation in the first place and can result in some very efficient generic

programs [61]. However, it is completely dependent on type classes since it is this mecha-

nism that passes around the implicit type parameter. Thus it requires advanced language

features not present in a baseline functional compiler.

Explicit failure

We can do entirely without type representations and casts if we admit failure as a first-

class citizen of the language. This is the approach normally taken in term rewriting sys-

tems. A “fail” value is the result of applying a function to input it cannot work over. Such

fail values are also used to explain the way pattern matching in normal functional lan-
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guages can drop from top to bottom looking for a case that matches, and in extension

typing. Systems that take this approach make this failure mechanism a first-class citizen

of the language. This means that any function could return a value or failure. Paired with

this fail value is an operation, – sometimes called “left-choice”[22], sometimes called “fat-

bar”[68] – which we will denote <+3, that will call its right argument if its left emits a fail

value, and will do nothing otherwise. This allows us to try a specific function and to de-

fault to the polymorphic one if it fails. Listing 3.7 shows the increment function encoded

in Stratego [88] using this technique. The same technique also works in RhoStratego,

ELAN [7], and Kiama [81].

Listing 3.7: increment encoded in Stratego
1 rules
2 incr : S(x) -> S(<add>(x,234))
3 strategies
4 main = io-wrap(topdown(incr <+ id))

The encoding looks very similar to our final approach (given below) because the se-

mantics are very similar. There are two differences between explicit failure and the system

we use, the first is that the system we use succeeds or fails on type where the explicit fail-

ure succeeds or fails on constructors, in the same way extension typing does. The second is

that explicit failure requires that the mechanism which defers to the right hand function

(fail) is a language primitive which can escape the function, in our mechanism the failure

is encapsulated.

While explicit failure works very well for term-rewriting languages, it does not do

well on our criteria. It is a large departure from standard functional semantics as any

computation can result in a fail value. Furthermore it is not clear how to reconcile it with

a Hindley-Milner type system. One can use a boxed type, but since all values could be

fail, this is not very practical.

Summary

Table 3.1 summarises the discussion of each existing technique. We can see that none

immediately matches all our criteria. Extension typing and explicit failure are a long way

from being appropriate but there are only a few things we need to change about function

extension or either type manipulation techniques. For example, if we could find a way
3The <+ operator is also used in Stratego, RhoStratego and Kiama
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Table 3.1: Summary of appropriateness of various polymorphic functions with specific be-
haviour techniques to compilation by a baseline functional compiler

technique semantic type changes baseline
function extension   G# #
extension typing # # #  
universal repr   # #
implicit type manip   # #
explicit failure # # #  

to do theorem without type classes, or we could find a simple type class implementation

that suffice, we could use either of these. In part because of the interaction with structure

agnosticism (see next section) and in part because the implementation is simplest, we take

the approach of modifying function extension to get a solution. We will show a version

of function extension which does not require type classes (or type-safe casts) and works

with a single operator for extension.

3.3.2 Our solution: Function Extension with a Single Operator

We define a function extension operator, ◃ which takes as its right argument, a function

polymorphic in its first argument and as its left argument a non-polymorphic function

which is consistent4 with the right-hand function’s type. Listing 3.8 shows how we can

use this operation to write the increment function.

Listing 3.8: The increment function written in  using function extension
1 def incS(amt, s) = case [s] of
2 { [S(s)] -> S(s + amt)
3 } otherwise -> error ”partial definition error in incS”
4 def id(x) = x
5 def increment(amt) = incS(amt) ◃ id

This function extension operation is able to do the task of both extT and extQ because

its type inference rule is general enough. The right-hand argument is of a polymorphic

type, either a → a, or a → X for some specific type X. The left-hand argument must

be a function that either a) takes one specific type and returns the same type as the right

argument (for the specific type X), or b) a function that takes and returns the same type,

so is consistent with a → a. The return type of the extended function is the same as the

type of the right hand argument. This type ensures that the functions being passed in can

play the roles they are asked to. The right-hand argument is the fail-over, so it must be
4We define what we mean by “consistent” in Section 5.5.
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polymorphic in its first argument. The left-hand argument is the specific behaviour, so it

must have a specific type as its first argument. The final function is applied to multiple

input types, so it too is polymorphic in its first argument (i.e. increment has type a → a).

The formulation of this operator, demonstration of how it works and the algorithms for

compiling it without any advanced language features like type classes is one part of the technical

contributions of this work (Chapter 5).

3.3.3 Structure Agnosticism

Our generic functions are generic because they work over any structure. Plainly then, we

need a way to be agnostic of structure. The approaches in use are split broadly into two

styles:

• A way to see inside data. Possibly a single, universal representation of data or a reflection

mechanism.

• Defining a few functions that work over all data structures and building more com-

plex algorithms from these. One could have a set of multi-step functions designed

to cover all possibilities, or single-step functions designed to be built up themselves.

Type classes are a useful way to create such functions, albeit requiring overloading

to do so.

Universal Representation of Data

The universal representation of data which was a possible solution for polymorphic func-

tions with specific behaviour can also be used to achieve structure polymorphism. Listing

3.9 shows the generic equality function encoded in LIDG [78]5.

The first parameter to this function is a value which encodes the representation of the

second argument. This allows the geq function to bind the sub-values in the value being

inspected and branch based on the various forms that the second argument inhabits. The

fact that one representation (in this case a sum of tagged products with special forms for

pairs and built-in types) can encode all values means that no matter what the type being

worked on, a reasonably small set of case alternatives (or function definitions in this case)

can describe any data that might come along. In LIDG the type representation is encoded

at the value-level but meta-programming tools can also be used to achieve this, as with
5This example was in the code bundle which accompanies the published work.
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Listing 3.9: Generic Equality in LIDG [78]
1 geq :: Rep tT -> tT -> tT -> Bool
2 geq (RInt ep) t1 t2 = from ep t1 == from ep t2
3 geq (RChar ep) t1 t2 = from ep t1 == from ep t2
4 geq (RFloat ep) t1 t2 = from ep t1 == from ep t2
5 geq (RUnit ep) t1 t2 = case (from ep t1, from ep t2) of
6 (Unit, Unit) -> True
7 geq (RSum rA rB ep) t1 t2 = case (from ep t1, from ep t2) of
8 (Inl a1, Inl a2) -> geq rA a1 a2
9 (Inr b1, Inr b2) -> geq rB b1 b2

10 _ -> False
11 geq (RPair rA rB ep) t1 t2 = case (from ep t1, from ep t2) of
12 (a1 :*: b1, a2 :*: b2) ->
13 geq rA a1 a2 && geq rB b1 b2
14 geq (RType e rA ep) t1 t2 = geq rA (from ep t1) (from ep t2)
15 geq (RCon s rA) t1 t2 = geq rA t1 t2

Generic Haskell [36] and Generic Clean [1]. Listing 3.10 shows generic equality written

with the Generic Extension to Clean.

Listing 3.10: Generic Equality in Clean [1]
1 generic map a1 a2 :: a1 -> a2
2 instance map Int where
3 map x = x
4 instance map UNIT where
5 map x = x
6 instance map PAIR where
7 map mapx mapy (PAIR x y) = PAIR (mapx x) (mapy y)
8 instance map EITHER where
9 map mapl mapr (LEFT x) = LEFT (mapl x)

10 map mapl mapr (RIGHT x) = RIGHT (mapr x)

These meta-programming systems are amongst the most powerful of all the generic

programming tools, capable of encoding more data-type generic functions than any oth-

ers [37]. Indeed such tools are typically so advanced and well integrated into the under-

lying language that it can be difficult to discern them as meta-programming systems. For

example, Generic Haskell is able to generate interface files to maintain separate compila-

tion, a feature sometimes lost by pre-processors.

As was the case for polymorphic functions with specific behaviour, there are simi-

lar systems that use implicit type parameters (for example EMGM, regular and Instant

Generics) and which require type classes and/or GADTs. Implicit and explicit universal

data representations for structure agnosticism have the same pros and cons we identified

when discussing polymorphic functions with specific behaviour on page 38.
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A Set of Pre-defined Traversals

Term rewriting systems will typically use a set of pre-defined traversals to allow structure

agnosticism. For example, the Stratego strategy all will apply a function to all immediate

children of a given value. This can then be recursively applied to get a strategy that goes

top-down in any value. These pre-defined traversals can either be one-step, designed to

be built into more useful traversals; or multi-step, designed to cover all the traversals you

are likely to need. Listing 3.11 shows the salary updating increment function encoded

in Stratego where a single-step structure agnostic traversal all has been built into the

required multi-step traversal td6.

Listing 3.11: increment encoded in Stratego showing how to derive top-down traversal
1 rules
2 incr : S(x) -> S(<add>(x,234))
3 strategies
4 td(s) = s; all(td(s))
5 main = io-wrap(td(incr <+ id))

SYB, Stratego, ELAN, Tom [5], Kiama, S′
γ [51] and Uniplate [64] use the one-step traver-

sal approach while ASF+SDF and XQuery7 define multi-step traversals. Maude [17] takes

things even further, defining traversal to occur in one way only and requiring the rewrit-

ing rules to bend to match that. Recent work by Lämmel [55] has demonstrated that the

best approach of the three is not necessarily the most flexible one.

This approach does not require any changes to the semantics or the type system of the

language, only the addition of new primitive operations. However, these operations are

coarse grained and alternative approaches reveal more information during compilation.

Furthermore, the explicit spine that we will use is at least as expressive.

Object Reflection

Object oriented (OO) languages typically expose a model of objects at run-time and al-

low the programmer to perform run-time manipulation via this model. This model is

sometimes called the language’s reflection API. This is very similar to the universal repre-

sentation of data approach, but is typically done with very general types. For example,

while a universal representation of data system will try to keep track of what the type of

the arguments of a particular value are at compile time, a reflection system will not and
6Compare this listing to Listing 3.7 where the same function is encoded but using the library provided

definition of top-down traversal.
7Working with XML requires structure agnosticism since XML is semi-structured by design.
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will rely instead on run-time casts to get everything in the right form. Listing 3.12 shows

the equality function written using an hypothetical reflection API in a Java-like language8.

Listing 3.12: Generic equality encoded using OO-style reflection.
1 public static boolean eq(Object one, Object two){
2 Field[] oneFields = one.getClass().getFields();
3 Field[] twoFields = two.getClass().getFields();
4 boolean sofar = true;
5 for(int i = 0; i < oneFields.length; i++){
6 Field onOne = oneFields[i];
7 Field onTwo = twoFields[i];
8 sofar = sofar && ( onOne.getType() == onTwo.getType()
9 && eq(onOne.getValue(),onTwo.getValue())

10 );
11 }
12 return sofar;
13 }

The representation of data associated with reflection is a very object oriented one. For

example, you can get the fields from an object, and ask what its class name is. The data is

also accessed in a very object oriented way, the data about a value is accessed by methods

of that value. However, OO-style reflection is not restricted to OO languages. F# [24]

is a functional language which interacts with objects via Microsoft’s common language

runtime. In F# structure agnosticism can also be achieved with an OO-view on data via

reflection [9].

This approach requires a full model of data to be added, but that can be done via

a library so it does not necessarily modify the semantics of the language. However, this

approach does require a significant weakening of the type system since the types of values

can’t be known at compile time and it is up to the programmer to include appropriate run-

time type checks with fail-over code if the type found is not the desired one.

The Explicit Spine View

Consider again the universal representation of data approach. This approach requires

defining a scheme by which any value in the language can be described. There are as many

such approaches as there are programming languages, and even if we restrict ourselves to

algebraic data-types, there are a number of different possibilities. However, there is one

particular view of data which distinguishes itself by being very simple and applicable in

many approaches. To view data as nested tuples associating to the left is simpler than any

other view of data used in generic tools but still suffices to describe any algebraic data
8Writing the function in valid Java introduces unhelpful complexity.
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Table 3.2: Examples of the difference between the fully applied constructor view of data
and the spine view of data

fully applied constructor view spine view
Just(5) (Just,5)
Cons(5,Nil()) ((Cons,5),Nil)
MkString(Cons(’c’,Nil())) (MkString,((Cons,’c’),Nil))

type. We now describe how this view works before exploring where and how it is used

in existing generic tools9.

This has been termed the spine view of data by Hinze [38, 39] but we call it the explicit

spine view to distinguish it from approaches that use it implicitly in pre-defined traversal

operations (like SYB)10[38].

We define a mapping from algebraic data type values to tuples of constructors and

literals which allows us to see any data as a tuple. For example, Table 3.2 shows a spine

view of three example constructed values (all in  syntax). It compares the spine view

against the view of data that functional programmers traditionally use, a fully applied

constructor view.

A feature of this approach is that it takes no account of types - it is driven by the values

themselves. Even though algebraic datatypes are sums of products, each individual value

can only be a product. Consider the List algebraic datatype.

adt list(a) = Cons(a, list(a)) | Nil()

Each value of this type can only be either Cons(a, b) or Nil(), not both. Thus a

universal representation of data need only deal with product values. All such data is

headed by either a constructor or a primitive value (in which case there are no arguments).

Thus, the following mapping suffices

(C)

∀i.(di ≡spine d′i)

C(d1, d2, . . . , dn) ≡spine (. . . (C, d′1), d′2), . . . ), d′n)

(L)

l ≡spine l

The difference between the fully applied constructor view and the spine view is per-

haps easier to see in diagrammatic form. Figure 3.1 shows one value of a list datatype
9We describe this approach in more detail since it is the one we will adopt in .

10Before Hinze’s work was published we referred to it as the tuple-view for obvious reasons but we think
Hinze has found a better name.
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Figure 3.1: Fully Applied Constructor View (left) v.s. Spine View (right) for Cons(1,Cons
(2,Nil()) (i.e. [1,2])
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in both fully applied constructor view and explicit spine view

A system that explicitly uses the spine view will not only view data in this way, but

will have facilities for the programmer to access data by this view. Three systems that do

this are the pattern calculus, bondi and RhoStratego. In the pattern calculus and bondi,

an explicit view of data by the spine view is one benefit of having first-class patterns. We

will demonstrate with some bondi code. Listing 3.13 shows the generic equality function

used in bondi’s prelude (version 1.9)[45]. Line 2 demonstrates a pattern which can pull

apart the spine view. The arguments to equal come in as a pair, but the pattern asks if

the first can match against x1 x2 (and the second against y1 y2) where both x1 and x2

are variables. This will match against any structured value, i.e. any value that is not a

constructor by itself or a primitive value, and will bind each half of the tuple to one of the

variables.

Listing 3.13: Generic Equality in bondi
1 let ext (equal : a * b -> Bool) =
2 | (x1 x2,y1 y2) -> equal (x1,y1) && (equal(x2,y2))
3 | (x as _array,y as _array) ->
4 let n = lengthv x in
5 if (lengthv y) eqcons n
6 then
7 let res = Ref True in
8 ∀ 0 (n minusint 1)
9 (fun i -> res = !res &&

10 equal(!(entry(x,i))
11 ,!(entry(y,i))
12 ));
13 !res
14 else False
15 | (x,y) -> x eqcons y
16 ;;

RhoStratego uses the same technique. Listing 3.14 shows generic equality in RhoStrat-
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Table 3.3: Summary of appropriateness of various structure agnosticism techniques to com-
pilation by a baseline functional compiler

technique semantic type changes baseline
universal rep  # # #
defined traversals     
reflection  #   
spine view # # # #

ego [22].

Listing 3.14: Generic Equality in RhoStratego [22]
1 == = c x -> d y -> ˆ((c == d) && (x == y))
2 <+ x -> y -> primOp ”p_primeq”;

Again a pattern of two variables is used to access the spine view (c x), binding each

half of the tuple to a variable which can be used in the body of the function. We will

expand on exactly how this works when we discuss our own solution in Section 3.3.4.

Hinze shows how to encode the explicit spine view in Haskell, first using an encoding

that does not need type classes [39] but which can’t be abstracted in a library and requires

GADTs, and another encoding which can be used as a generic library but which requires

type classes [40].

At first glance, the explicit spine view looks like a poor candidate for us. It changes the

semantics of the language because, as we will see in Section 3.3.4, constructors that have

been stripped of their arguments are now values. It is also not clear how a pattern match

such as c x should be typed in a Hindley-Milner system. Adding a whole new pattern

type brings each phase of the compiler into play because we have a new source language

construct. However, despite our initial skepticism, we show that this approach fits very

well in a baseline functional compiler.

Summary

Table 3.3 summarises the discussion of each existing technique. Object oriented reflection

looks appealing in the table, but the loss of type safety is too great a price to pay. We

would like very much to avoid requiring type classes. Not only do these not exist in all

functional languages, but their interaction with existing features (like equality types in

ML) is not clear. Changes that are orthogonal to other functional features would be more

desirable. Thus we will not use a (non-spine) universal view of data.
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Defined traversals seem to be a clear choice but there are significant benefits to using

an explicit spine view. For example, Lämmel notes in [52] that pattern matching on two

arguments is an alternative to the curried folds he uses in that paper. Hinze argues for

the explicit spine view, despite the fact that the implicit view (i.e the defined traversals in

SYB) is “equally expressive”, on the basis that it “makes the definitions of some generic

functions easier” [39]. Our experience is that the explicit spine view supports a useful

style of generic programming (see Section 7.1). Thus, all other things being equal, we

would prefer to use the explicit spine view over defined traversals. The summary table

3.3 seems to indicate that all other things are not equal and that defined traversals have a

significant advantage over the explicit spine view in terms of implementation effort and

effects on the baseline language. However, in this thesis we show that relatively few and

relatively simple changes to a baseline functional compiler can support the explicit spine

view without large changes to the type inference mechanism or the semantics of the base

language. Our contribution in this area is to show solutions to the apparent problems

with the explicit spine view and to describe and demonstrate these algorithms.

3.3.4 Our Solution: Compiling Explicit Spine View

This thesis will show how to compile the explicit spine view. In all existing systems where

it is used it is interpreted. Furthermore, the algorithms that do this will be simple and easy

to include in a baseline functional compiler.

The explicit spine view is an alternative way to view data. Pattern matching in stan-

dard functional languages supports the fully applied constructor view and we extend this

pattern matching to support the explicit spine view. More precisely, the fully applied con-

structor view of data is that, within a datatype, data is tagged with one of a known set of

constructors and that each constructor is applied to a known number of arguments. The

drop-down semantics of pattern matching supports the different possible constructors

and each pattern is a constructor with patterns for each of its arguments. There is also a

variable pattern for when the constructor does not need to be inspected.

The explicit spine view of data is that each datum is either an atom or a pair of datums

(which we call compound data, structured data or constructed data), thus to support it we need

one pattern corresponding to atoms and one pattern corresponding to compound data.

The single variable pattern from the algebraic datatype view suffices for atoms, we only

need to introduce a pattern for accessing compound data.

We add to the set of patterns, one variable applied to another, which matches against

any compound data, we call these application pattern matches. All data that is not a literal or
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Table 3.4: Binding data with application pattern matches

Data c a
Maybe 5 Maybe 5
Cons 5 Nil Cons 5 Nil
MkString (Cons 5 Nil) MkString Cons 5 Nil

a zero-arity constructor is compound data. The first variable is bound to the constructor

and all but one of its arguments (the last) and the second variable is bound to the last

argument.

As an example, a case branch using this capability might be (where f is some function

that can work on any data)

c(a) -> f(a)

Table 3.4 shows what value is bound to each variable for the examples we showed a

little earlier.

You will notice that this approach allows for partially applied constructors (like Cons(5))

to be bound to variables. This is a significant departure from the standard approach for

languages with pattern matching but actually poses no great difficulty if we construct the

type rules of the language appropriately. Even more interesting is that lonely construc-

tors are now more like first-class values. There are two reasons these new semantics are

relatively easy to deal with:

• Lonely (or partially applied) constructors are used only in accumulating values or

traversing terms, they are not the end result of a computation.

• The type system we build keeps lonely (or partially compiled) constructors from

appearing in any other place, for example, you don’t need to perform algebraic

datatype pattern matching against them.

Extending this work to make lonely constructors and partially applied constructors more

extensively first-class citizens of the source language is an interesting idea, but not one we

address here.

Generic show, Listing 3.15, most clearly demonstrates this. The input parameter is

checked to see if it is a compound or an atom. If it is a compound, recursive calls to gshow

are made, if it is an atom then bishow is called. The bishow function must be able to

show any of the atoms. This means all built in types plus lonely constructors. Thus you

see a fail-over on line 12 which converts these lonely constructors to strings. This extra
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Listing 3.15: Generic Show Function
1 def gshow(a) :: (a) -> String
2 = case [a] of
3 { [c(p)] -> gshow(c) ++ ”(” ++ gshow(p) ++ ”)”
4 ; [z] -> bishow(z)
5 } otherwise -> error ”partial definition error in gshow”
6

7 def bishow() :: (a) -> String
8 = let si(x) = show_int(x)
9 and sc(x) = show_char(x)

10 and sb(x) = show_bool(x)
11 and ss(x) = if (x s== ””) then x else x
12 and ds(x) = show_constr(x)
13 in si ◃ sc ◃ sb ◃ ss ◃ ds

ability must be built into the compiler as a new primitive (in this case called show_constr

). At first glance this could be an onerous requirement but we are actually only adding

one new primitive operation where there are already four. We need a show operation for

all our primitives, we are just adding lonely constructors to the set of primitives. This

turns out to be a very neat way to lift lonely constructor to more first-class values of the

language. Once we have written these extra primitives, we don’t need to make any other

changes. Most notably, we don’t make any (other than those already outlined for spine

view) changes to the semantics of the language.

Note that this view of data does not require us to encode data in this way at run-time.

We only need a sensible way to convert between this view and whatever we choose for en-

coding. In fact, since we will compile the explicit spine view to three primitive operations;

kar, kdr and ispair (Chapter 6), we only need implementations of those three functions.

It turns out to be quite easy to layer these on the data representation in our run-time and

the same will be true for many other run-time data representations.

This approach first become known to us via the pattern calculus and RhoStratego. It is

also used in SYB Reloaded and Revolutions [38, 39]. In Revolutions it is extended to add

type information to the spine view, which we think could also be done with our system

(see Section 10.4.1 ). Our contribution over these systems is that we show how to compile

such a representation and give a new account of its typing (Chapter 6).

3.4 Summary

Of the myriad existing options for encoding generic functions, we have chosen a unique

combination: function extension with a single primitive, and the explicit spine view. We

have chosen these because they are sufficient to describe the generic functions we are
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concerned with, are very simple and, as we shall show later, they are most appropriate

for compilation in a baseline functional language compiler.

51



52



Chapter 4

A Baseline Functional Language Compiler

In this chapter we define a baseline functional compiler. We describe the internal lan-

guages of the compiler and describe the algorithms used during compilation.

This thesis has (at least) two audiences:

1. Those who want to build a compiler which can compile generic functions (or see

how to do it, or be convinced it can be done).

2. Those who want to extend some other compiler with the ability to compile generic

functions (or to see how to do it, or be convinced it can be done).

Those in this first group may ask to see a full compiler built from scratch. On the other

hand, those in the second group may only be interested in understanding the difference

between this generics compiler and a (mythical) standard functional language compiler.

To cater to both groups we start by presenting a full compiler without the ability to

compile generic functions and then show how to extend it to have this ability. Thus in this

chapter we ignore the presence of application pattern matches and the function extension

operator; we cover them in Chapters 6 and 5 respectively.

We allow our compiler’s architecture, as a series of transformations from one language

to another, to determine the structure of our presentation here. Creating functional lan-

guage compilers as a series of transformations is not new [3, 71, 73, 69, 74, 50, 21] but we

have achieved a particularly concise description of our whole compiler by being absolutely

faithful to this idea. Figure 4.1 shows our compiler as a series of transformations from a

source language to a target language, via two other languages C and SC, in

five phases. Where there are concurrent translations they are defined on non-overlapping

parts of the grammar so there is no ambiguity.



Figure 4.1: A Functional Language Compiler

S C

C

C SC C// ))55

++

NN // //






 

 

Pattern Compilation () Simplify all the patterns removing any nesting, literals and vari-

ables, etc, so that the resulting expression is essentially a switch statement. This

translation is described in Section 4.1.

Dependency Analysis () Introduce as much polymorphism as possible by way of a

dependency analysis. This translation is described in Section 4.2.

Type Inference () The type inference step. We remain in the C language and fill the

program with inferred types. This translation is described in Section 4.3.

Lambda Lifting () Lift all lambdas to the top level removing any nested scopes. Also

convert the “essentially switch statements” into actual switch statements. This trans-

lation is described in Section 4.4.

Imperative () Named for the target language, which is imperative. Fix the evalua-

tion order and perform other small tasks needed to make the code imperative. This

translation is described in Section 4.5.

Let Lifting () and Type Environment Creation () Are book-keeping transformations

which reconcile the different abstract syntaxes of S and C. The  trans-

lation converts the top-level definitions of S into a single letrec expression

in C. The  translation converts the algebraic datatype definitions in S

into an environment of constructor definitions in C. ,  and  are done in

parallel and are independent of each other.  works only on algebraic datatype

definitions, which neither of the other translations touch. The  translation only

works on the top-level of definitions, it is not recursive, and does not interact at all

with .

Along the way we encounter three “simple applicative languages” [18]:

Source S which we met in Chapter 2, represents a desugared source language. It

has all the standard features of applicative languages (function abstraction, function

application, let binding, recursive lets), and also has case expressions which match
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those in Haskell and ML for expressivity, notably working over a list of scrutinees

and a list of patterns to emulate the equational style of writing functions. S is

the abstract syntax which corresponds to the concrete syntax () we introduced

in Section 2.2.

Core C’s task is to support type inference, thus it has much simpler case expressions

and allows type annotations on any expression.

SuperComb SC is the final step before we convert to imperative form. Its pri-

mary characteristics are the lack of nested binding expressions and a switch state-

ment rather than a case expression.

We also use one imperative language, which is C in our implementation.

4.1 Pattern Compilation

Pattern compilation translates the case expressions of S into the case expressions of

C. Figure 4.2 shows the grammar of C. Any expression in C can be annotated

with its inferred type, but we leave this out of the grammar for convenience, we only

show the programmer type annotations that are passed through untouched from S.

Literals remain unchanged between S and C (except that the expressions within

them become C expressions). Note also that S and C restrict the scrutinee of

a case expression to be a variable. This invariant is vital to the correctness of the final

compiler, for example it is necessary for type inference of the explicit spine view (see

Section 6.4).

We see the following differences in patterns compared to S (Figure 2.1), which

pattern compilation must resolve:

• S has single variable patterns but C does not.

• S has literals in patterns but C does not.

• S has constructor patterns which can contain other patterns, in C, the con-

structor arguments must all be variables.

• S has a list of patterns for each alternative, C has only a single pattern.

• S has application pattern matches, C does not. We defer discussion of these

until Chapter 6.
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Figure 4.2: The abstract syntax of C

e ::= x (variable)
| K e (constructed value)
| e e′ (application)
| λx.e (anonymous function)
| let x ot = e in e′ (let binding)
| letrec x ot = e in e′ (recursive let binding)
| case x of p → e otherwise e′ (case expression)
| l (literal value)
| lo (built in operation)
| ∅ (error)

p ::= K x1 · · · xn (pattern)
l ::= char (literal)
| number

lo ::= e (+ | − |=|̸=|<|>|6|>) e
ot ::= τ | ϵ (optional type annotation)

Notice also that C case expressions have only a single scrutinee, rather than the list of

scrutinees in S patterns.

Case expressions are pervasive and very common in functional code, thus for min-

imal run-time of the compiled executable it is very important is that they can easily be

converted into a jump table (i.e. a C switch statement or assembly language jumps). Since

we are compiling to C and the integers on which we are branching are densely populated,

compiling to a switch statement is equivalent to a jump table. From this point on we will

use the phrase “switch statement” to indicate a target language construct that results in a

jump table. To convert a C case expression to a switch requires converting each con-

structor pattern argument into a projection operation (which extracts the ith argument) on

the scrutinee variable. In  this is done during lambda lifting (see Section 4.4). When

we show how to compile structure agnosticism, we will use a new type of pattern. Being

able to compile this pattern into a form of C case expression that can still be easily

converted to a switch is thus an important achievement.

The remainder of this section is concerned with describing each discrepancy between

S patterns and C patterns in turn. For each one we describe the algorithm that

resolves it. When taken as a whole they define the pattern compilation phase of the com-

piler. The pattern compilation algorithm, which we denote se ⇒pc e, converts a S

expression into a C expression. The rules below only define its operation for S
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case expressions. For all other S expressions ⇒pc is recursively called on all subex-

pressions.

4.1.1 Variable Patterns

First, a little notation

head pattern S case expressions have a list of scrutinees, and a list of patterns to

match them against. The head pattern in a case alternative is the pattern at the head

of that list, it is being matched against the head of the list of scrutinees.

If all the head patterns in a case expression are variables, then we can dispatch them

all by replacing the variable in the right-hand-sides with the scrutinee corresponding to

them, for example.

1 case [v1,v2] of
2 { [x,p1] -> foo(x)
3 ; [y,p2] -> foo(y)
4 } otherwise -> error ”err”

≡

1 case [v2] of
2 { [p1] -> foo(v1)
3 ; [p2] -> foo(v1)
4 } otherwise -> error ”err”

This only works if variables are unique within patterns. This is a constraint on the

form of S expressions that is not enforced by the grammar in Figure 2.1. Instead it

is enforced here where a side condition prevents pattern compilation if there are repeated

variables in a pattern. This leads to the following pattern compilation rule for variable

headed patterns.

(V)

∀i.∃x, se, sp2 · · · spn.(alti ≡ x sp2 · · · spn → se ∧

alt′i = sp2 · · · spn → [x/x1]se ∧

x /∈ FV(sp2, . . . , spn))

case x2 · · · xn of alt′1 · · · alt′m otherwise s f ⇒pc e′

case x1 x2 · · · xn of alt1 · · · altm otherwise s f ⇒pc e′

4.1.2 Constructor Patterns

If all the head patterns in a case expression are constructors, then we dispatch them all

by:

1. Grouping them by constructor (no re-ordering allowed)
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2. Taking each group at a time:

(a) create one alternative for that constructor with all its arguments set to fresh

variables, and

(b) create a case expression to match these new variables with the previous con-

structor arguments (and all the others).

For example

1 case [v1,v2] of
2 { [K1(p_a,p_b),p1] ->

foo()
3 ; [K1(p_a,p_c),p2] ->

bar()
4 ; [K2(p_a), p3] ->

foo()
5 ; [K1(p_a,p_d), p4] ->

bat()
6 } otherwise -> error ”

err”

≡

1 case [v1] of
2 { [K1(x_a,x_b)] -> case [x_a,x_b,v2] of
3 { [p_a, p_b, p1] -> foo()
4 ; [p_a, p_c, p2] -> bar()
5 } otherwise -> error ”err”
6 ; [K2(x_a)] -> case [x_a,v2] of
7 { [p_a,p3] -> foo()
8 } otherwise -> error ”err”
9 ; [K1(x_a,x_d)] -> case [x_a,x_d,v2] of

10 { [p_a, p_d,p4] -> bat()
11 } otherwise -> error ”err”
12 } otherwise -> error ”err”

Notice that we have maintained the invariant that all the scrutinees of all the case

expressions must be variables. We have also ensured that the outer case expression has

only one scrutinee (i.e. is able to become a S case expression once the inner cases

are all compiled). This leads us to a rule which creates these inner case expressions, com-

piles them, then constructs the final C expression. In this rule, an alternative group

ag is the maximal group of patterns headed by the same constructor, i.e. the case alter-

natives are grouped into alternative groups partitioning them according to the value of

the constructor in the head patterns. Each pattern in an alternative group is the head pat-

tern (Ki spi) and the remaining patterns (sp′i). For each alternative group we require a set

of fresh variables x which is the same length as the argument list of the constructor in

question (spj).
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(C)

∀i, j.∃spj, sp′j, s f j. (ag ≡ (K sp1) sp′1 → s f1 · · · (K spp) sp′p → s fp

∧ x new

∧



case x x2 · · · xn of

sp1 sp′1 → s f1

...

spp sp′p → s fp

otherwise sde f


⇒pc f

∧ alt ≡ K x → f )

sde f ⇒pc de f

case x1 x2 · · · xn of ag1 · · · agm otherwise sde f ⇒pc case x1 of alt1 · · · altm otherwise de f

The resulting case expression is a C case expression since it has only one scrutinee,

and each of its case alternatives are a constructor with variables for arguments rather than

possibly nested patterns.

4.1.3 Literal Patterns

Instead of looking at literals in a group, as we did for variables and constructors, we only

consider how to compile a case with one alternative that has a literal as its head pattern.

Code entering the pattern compiler is rarely in this form but the heterogeneous patterns

rule we will soon see will create them for us.

To compile away literals, we pull them out of the case expression entirely and turn

them into a surrounding if expression.

(L)

alt ≡ l sp2 · · · spn → se

alt′ ≡ sp2 · · · spn → se case x2 · · · xn of alt′ otherwise s f ⇒pc e′ s f ⇒pc f ′

case x1 x2 · · · xn of alt otherwise s f ⇒pc if (l = x1) then e′ else f ′

Using = to test the equality of the literal (l = x1) is a simplification since exactly

what equality we use here is dependent on the type of the literal in question. However,
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individual literals have only one possible type and that information is available in the

parsed source, so no type inference is needed to make this work.

4.1.4 Heterogenous Patterns

The above rules all take away undesirable patterns if they are in a suitable form. Variables

could only be removed if all head patterns were variables, similarly for constructors, and

literals could only be removed when a literal-headed pattern was the only alternative

present.

In the process though, each of those rules dispatched one element from the list of

scrutinees. Thus, to remove all lists of scrutinees, converting them to single scrutinees,

we need:

• one rule that will take alternatives in any form and make them suitable for one of

the above rules, and

• rules to deal with an empty list of alternatives.

We describe the first in this section and the second in the next. Our first job is to define the

pattern class relationship, which we denote p ≡c p′. Any pair of variable-headed patterns

are in the same class, as are any pair of constructor-headed patterns (regardless of the

equivalence of the constructors or the constructor arguments).

x sp2 · · · spn ≡c x′ sp′2 · · · sp′n (4.1)

(K sp) sp2 · · · spn ≡c (K′ sp′) sp′2 · · · sp′n (4.2)

Using this definition we can define a rule to split an heterogenous case expression into

one that will fit one of the above rules. We do this by extracting from the top of the list

of case alternatives, all those in the same pattern class (re-ordering is not permitted) and

deferring all the others to the case default. For example,

1 case [v1,v2] of
2 { [K(p),K(p)] -> foo

()
3 ; [K(p),y] -> bar

()
4 ; [y, (K(p)] -> foo

()
5 ; [K(p)), y] -> bat

()
6 } otherwise -> error ”

err”

≡

1 case [v1,v2] of
2 { [K(p),K(p)] -> foo()
3 ; [K(p),y] -> bar()
4 } otherwise (case [v1,v2] of
5 { [y, (K(p)] -> foo()
6 ; [K(p)), y] -> bat()
7 } otherwise -> error ”err”
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The first case expression is now ready for application of the C rule and the

remainder can be processed by another application of the H rule.

A rule that performs this algorithm recursively is:

(H)

ag ≡ (sp1 → se1) · · · (spm → sem) sp1 ≡c · · · ≡c spm spm ̸≡c spm+1

f ′ ≡ case x1 · · · xn of alt otherwise f case x1 · · · xn of ag otherwise f ′ ⇒pc e′

case x1 · · · xn of ag alt otherwise f ⇒pc e′

4.1.5 Empty Patterns

To complete the removal of multiple scrutinees/patterns, we now need to define what to

do for an “empty” case expression. In other words, one that has either no scrutinees or no

patterns in each alternative, or has no alternatives at all. If we have corresponding empty

lists (denoted []), the result will be the first body expression, since case alternatives are

checked top to bottom and empty patterns match trivially. If this is not the case, then the

result is the default expression.

(E S)

se1 ⇒pc e1

case [] of ([] → se1) · · · ([] → sem) otherwise f ⇒pc e1

(M S)

s f ⇒pc f

case [] of alt otherwise s f ⇒pc f

(M A)

s f ⇒pc f

case se of [] otherwise s f ⇒pc f

(M P)

s f ⇒pc f

case se of ([] → se1) · · · ([] → sem) otherwise s f ⇒pc f

4.1.6 Related Work

Pattern compilation is as old as equational style programming itself [12, 41]. Two ap-

proaches have most commonly been used, decision trees and backtracking automata. Deci-

sion tree algorithms convert the case expression into a series of tests, at each test one part

of the scrutinee is inspected and all possible values for it are checked. Based on which

value it matches with, you follow a branch to a subtree and repeat the process. Backtrack-

ing automata algorithms are very similar but do not guarantee that once you inspect one

61



part of the scrutinee, you won’t have to inspect it again. Although they generate a tree,

a certain part of the scrutinee might be checked at more then one level of the tree. The

algorithm we present here is a backtracking automata.

The main advantage of backtracking automata is that the size of the resulting case is

fixed and small, however the resulting code may inspect a value more than once before

ultimately deciding which branch to take. The advantage of decision trees is that each

value is examined only once, although the resulting tree can be unreasonably large [62]

and the compilation algorithms are more complex. Compounding this complexity are

questions regarding the heuristics which can guide the compilation [80].

The backtracking automata approach is most clearly given by Wadler and Barrett [89,

6] but LeFessant’s treatment, which includes some very useful optimisations [56] is also

an excellent description. There exists a very large number of papers discussing the de-

cision tree approach. Maranget’s paper describing some improvements to the standard

approach [62] is a good place to start because it includes a nice description of the standard

algorithm and an example of the kinds of heuristics employed to try and improve on it.

We have chosen a backtracking approach largely for simplicity. However, we also

think the tradeoff between examining values more than once and unrestrained worst case

behaviour falls on the side of backtracking automata when the “examination” is a C switch

on a single tag (i.e. a very efficient operation).

4.2 Dependency Analysis

In later stages of the compiler, any set of definitions bound in the same letrec are treated

as mutually recursive, even if they are not strictly so. Thus we need a phase (dependency

analysis) that can ensure that any definitions left in a letrec expression are known to be

mutually recursive, giving the type inferencer the best chance of doing its job.

The result is a nested sequence of let and letrec expressions where any definitions

in a let are known not to be mutually recursive and any in a letrec are known to be

mutually recursive.

While this phase takes no specific account of polymorphic recursion, it does minimise

the chance it will exist by minimising the definitions that are treated as mutually recursive.

4.2.1 Polymorphic Recursion

We give a specific definition of polymorphic recursion because the existing literature is

somewhat confused and contradictory. We contend that there are two factors creating
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this confusion.

• In languages where dependency analysis is left to the programmer, functions that

are not polymorphic recursive can look as if they are [31]. For example in ML, the

compiler will treat all definitions in a letrec expression as if they are all mutually

recursive when often they are not.

• We have found very few examples of necessarily polymorphic recursive code being

used in non-experimental contexts. The only example we have found in standard

functional programs is due to Peyton Jones [67] and even then the problem was re-

solved with some judicious refactoring. Only in generic functions (generic traversal

in particular) do you regularly see programs which rely on polymorphic recursion.

For example, the apply2all function in bondi [45], which is used for generic traver-

sal, is a very small function which relies completely on polymorphic recursion. The

function below is a slightly simplified version of the one found in bondi’s prelude.

1 let ext (apply2all : (all a. a -> a) -> b -> b) f z = f ((
2 | x y -> (apply2all f x) (apply2all f y)
3 | x -> x)
4 z)
5 ;;

The apply2all f function has type b → b and that function is applied to two dif-

ferent arguments in the body of the first pattern alternative. x y is bondi’s syntax

for application pattern matches, so x and y have different types. To apply the poly-

morphic function apply2all f to two different types in the body of that pattern

alternative requires polymorphic recursion.

A definition of polymorphic recursion

A function (with type ∀a.T(a)) is polymorphic recursive if calling it with instan-

tiated type T(A) results in another call to it with a different instantiated type

T(B), either from the body of that function or from some function with which

it is mutually recursive.

where

Two functions are mutually recursive if each can cause a call to the other, even

if via some intermediary functions.
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Figure 4.3: The S algorithm used in dependency analysis

(S)

given a = letrec (x1 = e1) . . . (xn = en) in f
and TS(SC(DG(x1 = e1, . . . , xn = en))) evaluates to {g1, . . . , gm}

then split(a) ≡ let(rec) g†
1 in . . . let(rec) g†

m in f

4.2.2 Dependency Analysis Algorithm

Definitions are grouped using three standard algorithms. Firstly we create the depen-

dency graph for each definition (DG) and from this dependency graph we calculate the

strongly connected components (SC). Lastly, we topologically order these components

(TS).

The dependency transformation, which we denote e ⇒dep e′, is the result of applying

split (Figure 4.3) to all letrec expressions in e.

The dependency graph for a letrec expression has nodes for each variable bound in

the definitions and an edge to any variable whose body uses that variable. By calculating

the strongly connected components of this graph, we are finding maximal mutually re-

cursive sets of definitions. The remaining dependencies between these strongly connected

components indicate when a binding must be defined within another letrec since it is

dependant on its bindings. Thus we topologically sort the graph whose vertices are the

strongly connected components where there are edges between two strongly connected

components if there is a edge between any two of their members. The result is a sorted

list of strongly connected components ({g1 . . . gn}) where each variable in gi is depen-

dent on all the other variables in gi and on at least one in {g1 . . . gi−1}. We denote the set

of definitions (binding variable with its right hand side) that corresponds to the strongly

connected components g as g†. The SC algorithm tags groups as either singleton groups

indicating that this definition is not mutually dependent on anything, components with

more than one element indicating mutually recursive definitions, or self-referential, in-

dicating a normal recursive function. Each component is then put in a let or letrec

expression which binds all the definitions in the group and has the let(rec) resulting

from the groups after it as its body. Singletons get a let, while multiple definition and

self-referential components get letrec expressions.
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4.2.3 Related Work

Dependency analysis is relatively simple and, as such, this is a process which doesn’t

support competing implementation decisions in practice. Our algorithm is derived from,

and equivalent to, the algorithm presented in [68].

It was Henglein who first discovered that type inference for polymorphic recursion

was undecidable [34]. Henglein also explained why you can still achieve type inference

in practice most of the time. This is something that compilers can exploit, for example

Mercury [33] uses iteration with an upper limit to calculate polymorphic recursive types

[76, 85]. We will discuss in Section 6.5 our own approach to dealing with the polymorphic

recursion that remains after dependency analysis.

4.3 Type Inference

4.3.1 FCP

Our type inference algorithm is based on FCP [49] which is, in-turn, based on algorithm

W [20]. This is not a common choice for language implementors, but we have greatly

enjoyed working with this particular extension of basic Hindley-Milner type inference.

FCP has a number of characteristics that recommended it to us:

• FCP has explicit construction and destruction of data. This makes it easy to add

algebraic data types and pattern matching functions on them. We have extended the

FCP destruction expression to a multi-branched case expression without having to

alter the underlying FCP inference algorithm.

• Its support for existential types has been invaluable. The very simple way in which

existential types are provided in FCP is used in Section 6.4 to infer types for the

explicit spine view.

• Its support for universally quantified type variables has been sufficient to supported

higher ranked types and polymorphic recursion, two type system features we re-

quire.

FCP extends Hindley-Milner by having constructors witness higher rank types (i.e.

types with universal and existential quantifiers within them). It does this by extending

unification to respect a set of constant variables (we will call these fixed for unification vari-

ables) which can’t be substituted for (V), and adding construction and destruction rules
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Figure 4.4: Unification in FCP (and in )

τ
id∼ τ mod V (id)

α
[τ/α]∼ τ mod V

τ
[τ/α]∼ α mod V

 α /∈ V ∪ TV(τ) (var)

τ
U∼ v mod V Uτ′ U′

∼ Uv′ mod V

(τ → τ′)
UU′
∼ (v → v′) mod V

(fun)

for data which include side conditions to ensure quantified type variables don’t escape

their scope. FCP uses the modified unification algorithm shown in Figure 4.4. It checks

the fixed for unification variables when it performs the occurs-check, but beyond that it

is standard unification.

4.3.2 Algorithm

Figure 4.5 shows our FCP type inference rules. They differ from those in [49] in four ways:

1. Rather than break data with a “pattern matching lambda”, we use a single-alternative

case expression. The only difference is that the case expression includes the expres-

sion to which a pattern matching lambda would be applied (the scrutinee). We do

this because C has case expressions rather than pattern matching lambdas.

2. Our M rule includes a different side condition which corrects an error in the

original paper.

3. We introduce a letrec expression and an associated type inference rule.

4. We provide a set of inference rules for primitive operations, exemplified here by two

specific rules P and IE. The type inference rules for − and ∗ follow the same

pattern as P and the rules for < and > follow the same pattern as E.

You will notice that the term language in Figure 4.5 does not match C exactly, it is

something approaching a subset of C. In particular constructors in this system have

only one argument. Presenting the type inference rules for all of C is prohibitively

expensive in terms of pages and our reader’s attention. We present here all the features

that are needed to understand the type inference algorithm as it grows throughout the

thesis. In Chapter 9 we provide a soundness proof for the type system underlying this in-
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ference algorithm. We present here only the type inference algorithm (not the type checking

relation) because we are focussed on the implementation of the type system.

Our type inference algorithm, denoted TA ⊢ e : τ mod V, takes A (the environment),

e (the expression we are inferring the type for) and V (the set of fixed for unification vari-

ables) as input and returns T (the set of newly discovered substitutions) and τ (the cal-

culated type for e) as outputs. We use Ax, x : τ to represent the environment where

any existing binding for x has been replaced with a binding of x to τ. The notation

σK = ∀γ.(∀α.∃β.τ) → τ′ denotes the process of looking up the constructor K in a con-

structor environment (populated from abstract datatype definitions) and substituting all

quantified variables with new variables. [α/τ] indicates the type variable α is substituted

with the type τ. Gen(A, τ) is the generalisation of τ in the environment A, that is, all

variables free in τ and not free in the environment are explicitly universally quantified.

When types are calculated for a let binding, they are put into the environment in a fully

generalised form. When they are extracted from the environment with the V rule, we

create fresh instances of these type schemes by substituting all quantified type variables

with fresh type variables. The A rule guesses a type for the bound variable and puts

that guess in the environment (un-generalised) before calculating the type of e. The A

rule first calculates the type of each expression, then calculates the unification necessary

to get them in the right shape, using a new variable (α) for the unknown type.

The L rule first calculates the type of e before fully generalising it. The environment

is updated with this type scheme and the type of f is calculated under this updated envi-

ronment. The LR rule is very similar but it first guesses a type for the binding since it

may be present in its own definition. The guess is unified with the calculated type before

calculating the type of f . The L and LR rules are the source of polymorphism in

this system. Notice that the optional type annotations are ignored at this stage. We will

consider them in Sections 5.8 and 6.5.1.

The M rule tells us how to create programmer defined data types from information

in a constructor environment. We look up this environment and get a fresh instance of

the type for K. We calculate the type of e and ensure it unifies with the type we obtained

from the constructor environment. The type variable α denotes the universally quantified

variable obtained from the constructor environment and thus these must become fixed

for unification and can’t be allowed to escape this instance of the M rule. We have

corrected an error in the original FCP algorithm by adding Uτ′ to the set of types to check

for free instances of α. The original FCP algorithm had the side condition α /∈ FV(UTA)
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Figure 4.5: The heart of ’s type inference algorithm

Type Language

σ ::= ∀α.σ τ, ρ ::= α

| τ | τ → ρ

| Int | Bool

Term Language e, f ::= x
| e f
| λx ot.e
| K e
| let x = e in f
| letrec x ot = e in f
| case y of (K x) → e

Type Inference

(V)
(x : ∀α.τ) ∈ A β new

A ⊢ x : [α/β]τ mod V

(A)
T(Ax, x : α) ⊢ e : τ mod V α new

TA ⊢ λx ot.e : Tα → τ mod V
(A)

TA ⊢ e : τ mod V T′TA ⊢ f : τ′ mod V T′τ
U∼ (τ′ → α) mod V α new

UT′TA ⊢ e f : Uα mod V
(L)
TA ⊢ e : τ mod V σ = Gen(TA, τ) T′(TAx, x : σ) ⊢ f : ρ mod V

T′TA ⊢ (let x = e in f ) : ρ mod V
(LR )

T(Ax, x : α) ⊢ e : τ mod V

Tα
U∼ τ mod V σ = Gen(UTA, Uτ) T′(UTAx, x : σ) ⊢ f : ρ mod V

T′UTA ⊢ (letrec x ot = e in f ) : ρ mod V
(M)

σK = ∀γ.(∀α.∃β.τ) → τ′

α, β, γ new TA ⊢ e : ρ mod V ρ
U∼ τ mod (V ∪ {α}) α /∈ TV(UTA, Uτ′)

UTA ⊢ (K e) : Uτ′ mod V
(B)

σK = ∀γ.(∀α.∃β.τ) → τ′ α, β, γ new T(Ax, x : τ) ⊢ e : τe mod (V ∪ {β})
β /∈ TV(TA, τe, Tα) T′TA ⊢ y : τy mod V T′(Tτ′ → τe)

U∼ τy → δ δ new
UT′TA ⊢ (case y of(K x) → e) : Uδ mod V

(P)

TA ⊢ e : τ mod V τ
U∼ Int T′UTA ⊢ e′ : τ′ mod V τ′ U′

∼ Int
U′T′UTA ⊢ e + e′ : Int mod V

(IE)

TA ⊢ e : τ mod V τ
U∼ Int T′UTA ⊢ e′ : τ′ mod V τ′ U′

∼ Int
U′T′UTA ⊢ e = e′ : Bool mod V
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which is not enough to prevent ill-typed expressions from being allocated types.

The original FCP B rule uses a pattern matching lambda expression which breaks

its input if and only if it is the right constructed value. We replace this with a single

alternative case expression which has the same semantics. A single branch like this is

not sufficient for C since it precludes pattern compilation, but the type inference rules

for the multi-branched case expression are too complex to include here and the full rule

contains nothing of substance beyond the content of the single branch rule presented here.

For our single branch version, we look up the constructor environment and create a fresh

instance of this constructor’s type. We use its input type as the assumed type for x in the

environment when calculating the type of e. To ensure that any existentially quantified

variables don’t escape from the scope of this case clause, which they might since this

rule pulls the potentially higher rank type from within a constructed value, β is added to

the set of fixed for unification variables when calculating the type of e. Any existentially

quantified variables remaining free in TA, τe or Tα are an error.

4.3.3 Related Work

There were any number of type inference algorithms we could have used in . Start-

ing from the original Damas-Milner algorithm W [20], through versions with better error

messages [57] to algorithms able to implement common functional programming exten-

sions [83]. In fact there exists dozens of different W-inspired type inference algorithms

in the literature. We have chosen FCP because it occupies common ground between all

modern functional compilers, i.e. algorithm W extended with type constructors. By building

from this starting point we make our work as widely applicable as possible. Furthermore,

FCP is a particularly simple algorithm compared to other inference algorithms capable of

higher ranked types, which we will require.

4.4 Lambda Lifting

Executing a program in the presence of nested environments is more complicated than

executing one without them. Thus we would like to get rid of any language characteristic

that causes this. In C it is the presence of nested λs, lets and letrecs that create nested

environments.

To remove these, we translate to a language (SC) where there is only a sin-

gle, top-level letrec-equivalent. For this to work, each of the definitions in the letrec-

equivalent need to contain no free variables. Thus lambda lifting is the process of taking
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λs, lets and letrecs, making their free variables into bound variables and lifting them to

a single top-level letrec-like expression.

4.4.1 Lifting Cases

The other feature we compile away at this stage is the case expression. Although there

is an equivalent expression in SC, it is a switch statement which is semantically

equivalent to a C switch statement. In pattern compilation we removed most of the com-

plexity in the S case and in lambda lifting we complete the job.

Case alternatives operate somewhat like λ-bindings in that they bind variables and

cause the execution of the body with those bound variables in scope. Thus it is natural to

ask whether we need to lift the alternatives in case expressions as well. In fact we do not.

We could rely on the surrounding λ-binding (as there must be one) to do the hard work

and then use a simple scheme to ensure the newly bound variables are where we expect

them to be. It is difficult to determine exactly the algorithm used in other compilers, but

at least one similar functional compiler [60] takes this approach and it is also the solution

given in [72].

In this work however, we take an alternative approach. We choose to lift each case

alternative to the top-level letrec. We do this for two reasons:

• Combined with our algorithm for converting to C it makes the passing of parame-

ters bound in the pattern more explicit.

• It allows the switch in SC to be exactly a C switch statement. We feel this

makes the transformation from functional to imperative code more explicit. In par-

ticular, it makes the compilation of pattern matching into a switch statement abso-

lutely clear and this is of prime concern for us. An early potential casualty of the

addition of generic capabilities is this compilation to switch statements. One of our

claims is that we support generic code while maintaining the compilation to switch

for normal patterns, something we want to make as clear as possible.

Once we are convinced that removing nested λs, lets and letrecs plus further simplify-

ing cases is a good idea, the best way to see where we are going is to look at a language

with these characteristics. In this compiler, that is SC. The grammar for S-

C is presented in Figure 4.6

A program is a list of mutually recursive definitions (super-combinators) plus a “main”

expression. This is the (implicit) top-level letrec. Each super-combinator is a name (kn),
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Figure 4.6: The abstract syntax of SC

kp ::= kd in ke
kd ::= kn x = ke
ke ::= x

| K ke
| ke ke
| kn x

| kei

| switch x of K → ke otherwise ke
| l
| lo
| ∅

a set of formal parameters (x) and a definition (ke). All defined names must be defined

here and none of these can have free variables (although this is not enforced in the above

grammar). This leaves us with only variables (x), constructors (K ke), applications (ke ke′),

literals (l), literal operations (lo), errors (∅), super-combinator names (kn x, which we ex-

plain below), and switch expressions. Each switch alternative is a constructor symbol only

and an expression to run if that alternative is fired, plus a distinguished default expression

to run if none of the others others work. For all these switch alternatives, the expression

to run must be a super-combinator name applied to all its arguments (although that is

not enforced in the grammar either). Finally, we add a projection expression (kei) which

allows us to pull the arguments from a constructed value, which is necessary since S

lacks binding operations that can pull constructor expressions apart.

The differences between C and SC are:

switch rather than case As discussed above.

No lets, letrecs or λs As discussed above

New projection expression. We add a new type of expression, projection kei. This pulls

the ith argument from the expression if it is a constructed value and is undefined

otherwise.

Program is a list of expressions Actually a list of super-combinator name/expression pairs.

This is the top-level letrec-like expression we have referred to.

Super-combinator name expression We need a way to identify a call to a super-combinator.
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Since all super-combinators are named, we introduce a new expression for calling

super-combinators and passing in their arguments, kn x.

We will show how to reconcile all these differences with the lambda lifting algorithm.

Note that the constructor environment used in typing is passed through lambda lifting,

we need it when we add the extension operation, but it is not part of SC.

4.4.2 Algorithm

The lambda lifting algorithm, kd | e ⇒l kp, converts a C expression into its equivalent

SC program. It accepts as input a so-far accumulated list of super-combinators

kd plus a C expression e and returns a complete SC program kp. To lift a

C expression we seed the algorithm with an empty list of so-far accumulated super-

combinators. Note that we omit the optional type annotations from the C expressions

for simplicity.

Lambdas represent anonymous functions, we want to promote each to a top-level def-

inition. In its place we will put the newly created super-combinator, applied to all the

arguments it needs.

(L)

kd0 | e ⇒l kd in ke v ≡ f v(ke) kn new

kd0 | λx.e ⇒l kd (kn v x = ke) in kn v

We would also like to promote any name defined in a let to a top-level definition.

We don’t need to discover its free variables because the bottom-up application of other

rules will ensure there are none. However, the name may be used in the body to refer

to this definition, so we need to change all such instances to the name of the new super-

combinator. The L rule works on one definition at a time and is applied to the remaining

let until there are no definitions left.

(L)

kd0 | let (x2 = e2) · · · (xn = en) in [x1/kn]e ⇒l kd in ke

kd | e1 ⇒l kd′ in ke′ kn new

kd0 | let (x1 = e1) · · · (xn = en) in e ⇒l kd′ (kn = ke′) in ke

letrecs are lifted in exactly the same way as lets except that the substitution of the

new super-combinator name for the old definition name needs to occur on the bodies of
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all sibling definitions (those in the same letrec).

(LR)

kd0 | let (x2 = [x1/kn]e2) · · · (xn = [x1/kn]en) in [x1/kn]e ⇒l kd in ke

kd | [x1/kn]e1 ⇒l kd′ in ke′ kn new

kd0 | let (x1 = e1) · · · (xn = en) in e ⇒l kd′ (kn = ke′) in ke

Our aim in lifting case expressions is to remove the binding that occurs in the pattern

match. Since case expressions only have very simple patterns (a constructor and one

variable for each of its arguments) our job is to pass each of these constructor arguments

to the body of an alternative and to transform the body into a form that expects arguments.

We could do this in two steps, first converting the body to a λ expression that explicitly

takes in each argument bound in the pattern and then applying each projected argument

to that λ expression. The second step would then be to lift this λ expression. Instead

we do both steps in one. The projection expression introduced in SC is applied

to the scrutinee to pull out each argument (the pattern match is gone). Each of these

is applied in-turn to a super-combinator generated from the body. If we use the binding

variable names from each alternative as the parameter names for the corresponding super-

combinator, free variables in the body of each alternative will still refer to the exact same

values as they originally did.

When all case branches are done, the scrutinee and the default branch are lifted. The

result is a switch statement that has the new branches plus the lifted scrutinee and default

branch.

(C)

∀i.(alti ≡ Ki xi → ei ∧

alt′i ≡ Ki → kni (∀j.es
j) ∧

kni new ∧

kdi−1 | ei ⇒l kdi in kei)

kdn | es ⇒l kds in kes kds | ed ⇒l kdd in ked

kd0 | case es of alt1 · · · altn otherwise ed ⇒l

kdd (kn1 x1 = ke1) · · · (knn xn = ken) in switch kes of alt′1 · · · alt′n otherwise ked

4.4.3 Related Work

There are a few variants of lambda lifting, the most celebrated of which is fully lazy

lambda lifting [68]. Our ground rules (page 9) state that we are building on a baseline
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functional compiler, which calls for a relatively simple lambda lifter. However it is clear

that all of the other lifters of which we are aware could be extended to handle the lifting of

case alternatives and thus could act as a suitable replacement for our lifter. The algorithm

we present above was derived from the descriptions in [48, 68, 72] extended to handle the

lifting of case alternatives. While we have not found articles describing the lifting of case

alternatives in this situation, it would be surprising to find it has never been done.

4.5 Conversion to Imperative

Translating SC programs to C programs is yet another relatively complex job. We

will not describe this phase in the same detail as the others, because:

Less-standard There exists far less common-ground amongst the approaches to this phase

described in the literature than for the other phases. This makes any standard algo-

rithm we might try to present less convincing and less applicable to existing com-

pilers.

Simpler changes The modifications we will make to this phase are relatively simple.

For these reasons there is little to be gained from adopting the approach we have taken

to describing the earlier phases of the compiler. Instead we describe this phase in general

terms and do the same for the modifications we will require to it.

We take as our starting point, the super-combinator compiler Epic, which was created

as part of the Idris project [8]. Epic (suitably customised) takes each super-combinator

definition in SC and converts it into a C function. Each primitive-operation is

converted into a call to a function defined in a C run-time. Epic links the run-time with

the compiled code to create the final program. Epic does not use any particular reduction

machine and is strict by default, although it does provide a mechanism for lazy evaluation.

Epic is a reasonably efficient and relatively simple super-combinator compiler that we

have found simple to use, appropriate for our needs and easy to extend.

4.6 Summary

In this chapter we have described a complete functional language compiler. It contains

valuable features like an inferencing type system, compilation to C via super-combinators

plus compilation of pattern matching. This compiler could compile a full functional lan-
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guage as it is, and known techniques could be used to expand it to compile Haskell-like

or ML-like languages.

We have described in detail pattern compilation, dependency analysis, type inference

and lambda lifting. The next two chapters will add novel compilation techniques for poly-

morphic functions with specific behaviour and structure agnosticism, modifying pattern

compilation and type inference to do so. We will not need to make any modifications to

dependency analysis or lambda lifting. It is an important characteristic of this work that

these algorithms are unaffected by our changes.
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Chapter 5

Compiling and Typing Polymorphic

Functions with Specific Behaviour

In this chapter we show how to compile the function extension operation, ◃, our solution

to polymorphic functions with specific behaviour. We will add a new phase to the com-

piler which converts it (using type information) to a simpler primitive operation (typeOf).

We then show how to implement this simpler operation in C. To effectively use ◃, we need

rank-2 types, which we describe. We also give the type inference rule for ◃.

When extending existing compilers, it is simplest to implement new features in a way

that does not interact with any other parts of the compiler. For example, we can add a new

built-in type and some operators for it with small atomic additions through the compiler.

However, ◃ has a few features which prevent us from implementing it in this way.

It is type-driven The choice of which function to call is dependent on the type of both

the specialising function and of the data it will eventually work on.

It generates a function a ◃ b is a function built from two other functions. It takes the

argument that would have gone to a or b and inspects it before passing it on to one

of them.

This limits our options. There are no types before type inference and we have converted

functions to super-combinators by the time we get to SC. One could work out

what the equivalent super-combinator for the function is and then ensure generated type

information is passed around to the right super-combinators, but this approach is un-

necessarily complex. If we need types and functions, we should deal with ◃ in the place

where we have both of these. This place is between C and lambda lifting, thus we need

to add a new phase to the compiler that sits in here and which compiles ◃ into features



that do exist later in the compiler.

As an aside, the lambda lifting algorithm we presented in Section 4.4 works from the

bottom up and thus can’t be extended to do this extra step. By the time the lambda-lifter

sees a ◃ b, a and b are both super-combinators and sufficiently divorced from the code

that originally defined them as to make dealing with ◃ more complex than we would like.

A top-down lambda-lifter would solve this problem but to our knowledge no top-down

lambda lifter has been described in the literature.

5.1 Overall Journey

We have an expression (◃) in S, which we have ignored to this point. It is also present

in C and it we will compile it away before we reach SC, i.e. we compile it away

as soon as we have calculated types. We compile it into an expression that uses a low-level

primitive called typeOf which simply returns the type of whatever is passed to it. The

bulk of the work dealing with ◃ is in inferring its type and describing how to convert it

into typeOf. The transformation which does this (extension elimination, ) is a precursor

to lambda lifting, creating an C expression with no extension operations and with a

new primitive operation typeOf. C without ◃ and with typeOf is strictly a new internal

language but we don’t include this slight variant of C in our diagram for the sake of

simplicity. In the actual implementation of , C contains both ◃ and typeOf in its

definition. Up until  there are no instances of typeOf and after , there are no instances

of ◃.

S C

C

C

C

SC C// ))55

++

NN

11

�� //






 





inference
rules for ◃

add rank-2 types

new translation
to compile ◃ addition of typeOf

definition
of typeOf

The functions built with the extension operator are often used in situations where

they are applied to two different types in the body of one expression, thus they are less

useful without rank-2 types. Hence we add rank-2 types to the type inference algorithm

of Chapter 4.
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There are two forms of extension we want to capture with ◃, type preserving transfor-

mations and accumulators. In SYB for example, there are two separate functions to achieve

the two forms of extension, extT and extQ. We will show that there is a very simple and

natural type inference algorithm that captures both behaviours.

Extension Terminology

The right-hand function in the extension operation can be thought of as either a fail-over

which prevents errors or a default that performs the normal behaviour, depending on the

context in which it is used. The left-hand function can be thought of as a special case of the

default or as a function which can fail and hence needs a fail-over. From this point on we

will refer to the left-hand function as the specific function and to the right-hand function

as the general function. When we need to refer to the result of the extension operation, it

will be called the synthesised generic function.

5.2 Type Preserving Transformations

The increment function from our salary update snippet (shown in Listing 5.1) is a type

preserving transformation.

Listing 5.1: Part of the salary update snippet
1 def incS(amt, s) = case [s] of
2 { [S(s)] -> S(s + amt)
3 } otherwise -> error ”partial definition error in incS”
4 def id(x) = x
5 def increment(amt) = incS(amt) ◃ id

Its general function is the trivially type preserving function id and its specific behaviour

is a function which takes in a salary and returns a salary.

5.3 Accumulators

If the general function has a specific return type, we can use ◃ to build up an accumula-

tor. The check_it function (shown in Listing 5.2) from the name analysis snippet is an

example of an accumulator.

The general function will return a pair of string and boolean and thus the synthesised

generic function will also. In this case two specific functions are added, the right-most
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Listing 5.2: Part of the name analysis snippet
1

2 def check_it(strbool) :: (pair(list(string),bool), a) -> pair(list(string),bool)
3 = check_comm(strbool) ◃ check_intexp(strbool) ◃ fun(a) = strbool

first, each also having a return type of a pair of string and boolean. We can chain together

as many of these as we like. Function extension must be right associative for this to work

since the general function (the right-hand argument) needs to always be a polymorphic

function.

5.4 Deriving type inference rules

In three places in this work we derive new type inference rules from existing ones. This is

done to develop an intuition for why the resulting type inference rules are correct. It is not

done to prove their correctness. This is done via an inductive soundness proof in Chapter

9. The process of deriving a new type inference rule from existing ones is enlightening,

but also very complex. Thus we take some time to demonstrate the process with a simple

example.

As our example, we will derive a type inference rule for a double-binding let expression

from the existing FCP type inference rules in Figure 4.5. The first step is to formulate

the new expression in terms of existing expressions. In this case we have a very precise

formulation of the meaning of a double-binding let expression:

(let x = e, y = e′ in f ) ≡ (let x = e in let y = e′ in f )

To develop an intuition for what a type inference rule for double-binding let looks

like, it is sufficient to expand the type inference tree for the equivalent FCP term until

its assumptions are all terms which have atomic type inference rules in Figure 4.5. In

this simple example, this happens quickly and without us needing to introduce new as-

sumptions. However, it is valid for developing an understanding of the rule to dispatch

inference steps with either existing type inference rules, or new assumptions from the

equivalence formulation. By the rules in Figure 4.5, the first expansion of the derivation

tree for let x = e in let y = e′ in f is:
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(L)
TA ⊢ e : τ mod V σ = Gen(TA, τ) T′(TAx, x : σ) ⊢ let y = e′ in f : ρ mod V

T′TA ⊢ let x = e in let y = e′ in f : ρ mod V

A and V are inputs, but T, T′, σ, τ and ρ must be calculated. There is a type inference

rule in Figure 4.5 for let y = e′ in f so we can expand this part of the type inference tree.

Before we do this however, we label the calculated values so they don’t clash with those

in the next level of the tree:

(L)

Tx A ⊢ e : τx mod V

σx = Gen(Tx A, τ) T′
x(Tx Ax, x : σx) ⊢ let y = e′ in f : ρx mod V

T′
xTx A ⊢ let x = e in let y = e′ in f : ρx mod V

Then expanding T′
x(Tx Ax, x : σx) ⊢ let y = e′ in f : ρx mod V gives:

(L)

(L)

Ty A ⊢ f : τy mod V

σy = Gen(Ty A, τy) T′
y(Ty(Tx Ax, x : σx)y, y : σy) ⊢ f : ρy mod V

TyT′
y(Tx Ax, x : σx) ⊢ let y = e′ in f : ρy mod V

σx = Gen(Tx A, τ) Tx A ⊢ e : τx mod V

TxT′
yTy A ⊢ let x = e in let y = e′ in f : ρy mod V

Notice that in expanding this tree we have been able to calculate T′
x in terms of Ty and

T′
y and to calculate that ρx is ρy. This type inference tree has only assumptions which are

atomic in the FCP type inference rules (Figure 4.5). If we gather up these assumptions and

ignore the intermediate step, we have a possible type inference rule for double-binding

let expressions (and we name it double let).

(DL)

Ty A ⊢ f : τy mod V

σy = Gen(Ty A, τy) T′
y(Ty(Tx Ax, x : σx)y, y : σy) ⊢ f : ρy mod V

σx = Gen(Tx A, τ) Tx A ⊢ e : τx mod V

TxT′
yTy A ⊢ let x = e in let y = e′ in f : ρy mod V

Not only have we derived a likely inference rule which we can test with a soundness

proof, we have developed an intuition for why this is likely to be the correct rule. Even in an

example as simple as this, doing the derivation by expanding a type inference calculation

has helped us calculate the right order for substitutions to apply to each other and in more
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complex examples it is very important in generating correct and sufficient side conditions.

5.4.1 Notation

Most type inference rule derivations will be too large to see at once. Instead we will need

to inspect small parts of a derivation tree. We adopt a notational convention to signify

how parts of a derivation tree should be reassembled. Double-stroke letters are used to

label parts of a derivation tree and when a labelled assumption needs to be expanded,

we will show only the expanded part of the tree, putting the label in the result to show

where this fits in the larger tree. For example, in the derivation of double-let above, the

first expansion would include a label on the assumption for let y = e′ in f

(L)

Tx A ⊢ e : τx mod V

σx = Gen(Tx A, τ) (A) T′
x(Tx Ax, x : σx) ⊢ let y = e′ in f : ρx mod V

T′
xTx A ⊢ let x = e in let y = e′ in f : ρx mod V

We could then show the expansion of that part of the tree without repeating the remainder

of the tree

(L)

Ty A ⊢ f : τy mod V

σy = Gen(Ty A, τy) T′
y(Ty(Tx Ax, x : σx)y, y : σy) ⊢ f : ρy mod V

(A) TyT′
y(Tx Ax, x : σx) ⊢ let y = e′ in f : ρy mod V

The (A) indicates that this result corresponds to the location of (A) in the previous ex-

pansion. In this case, seeing the two expansions separately makes more obvious the fact

that T′
x is actually T′

yTy, so we have also gained some clarity.

5.5 Deriving a type inference rule for ◃

The function extension operator is a hybrid of the two function extension operations in

SYB (extT and extQ) and the extension typing of the pattern calculus (see Section 3.3.2).

In this section we show how to derive a single type rule for ◃ from these existing mech-

anisms. In fact we derive our rules entirely from the equivalent SYB rules because the

constructor focus of the pattern calculus extension typing pushes it too far from our final

implementation, which is very concerned with what it can know about types.
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Table 5.1: Types of extT and extQ as reported by GHC version 6.21.1

extT : (Typeable a, Typeable b)=> (a -> a)-> (b -> b)-> (a -> a)
extQ : (Typeable a, Typeable b)=> (a -> q)-> (b -> q)-> (a -> q)

5.5.1 extT and extQ

We claim that a single operator, ◃ can substitute for the two SYB operators extT and extQ.

Thus ◃ should possess a type rule that works identically to the type rules for the two SYB

operations. Table 5.1 shows the types of extT and extQ reported by GHC version 6.21.1

The type constraints Typeable a, Typeable b tell us that the general function and the

specific function must both take in an argument that is a member of the Typeable type

class. In SYB, this type class contains the definition of typeOf, thus it is equivalent to

saying “all types that can have typeOf called on them”. Putting aside this constraint for

now – we will return to it soon – let’s see what assuming these typing rules would do

to ◃. We will do a derivation for ◃ assuming it has the same type as extT, then repeat

the process assuming instead it has the type of extQ. We will see that the resulting rules

(modulo the type constraint above) can be combined. After we have done this we will

return to the type constraint and resolve how to emulate it in our rule. Note that the SYB

operations take their arguments in the reverse order to ◃; we will base the derivation on

SYB type rules with the argument types reversed.

Recall that our type inference algorithm TA ⊢ e : τ mod V takes A (the environment),

e (the expression we are inferring the type for) and V (the set of fixed for unification vari-

ables) as input and returns T (the set of newly discovered substitutions) and τ (the cal-

culated type for e) as outputs. We will often subscript the returned values (T and τ) to

indicate which inference rule they were calculated in. For example, calculating the type

of f will result in a set of substitution Tf and a type τf .

If we take the existence of a prefix function ◃ with type (α → α) → (β → β) →

(β → β), i.e. the type of extT, as assumptions and otherwise only use our existing type

inference rule we get the following type derivation fragment for ((◃f)g) (i.e. the prefix

version of our previously infix ◃ operator).
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(A)

(A)

(A)
A ⊢ ◃ : (α → α) → (β → β) → (β → β) mod V

Tf A ⊢ f : τf mod V

Tf ((α → α) → (β → β) → (β → β))
U f∼ τf → α1

α1 new

U f Tf A ⊢ ◃ f : α1 mod V Tg(U f Tf A) ⊢ g : τg mod V

Tg(α1)
Ug∼ τg → α2

α2 new

UgTgU f Tf A ⊢ ((◃ f ) g) : UgTgU f Tf α2 mod V

There is some redundant information we can remove from this derivation. α1 must

be (β → β) → (β → β) and (given α1 cannot be in τf ), it is the unification of τf and

α → α which gives the substitution U f . Applying these insights once removes α1 from

the derivation, replacing it with (β → β) → (β → β). We can follow the same process a

second time to remove α2, giving the following derivation.

(A)

(A)

(A)
A ⊢ ◃ : (α → α) → (β → β) → (β → β) mod V

Tf A ⊢ f : τf mod V

Tf ((α → α))
U f∼ τf

U f Tf A ⊢ ◃ f : U f (β → β) → (β → β) mod V Tg(U f Tf A) ⊢ g : τg mod V

TgU f Tf (α → α)
Ug∼ τg

UgTgU f Tf A ⊢ ((◃ f ) g : UgTgU f Tf (β → β) mod V

If we remove our assumptions and all intermediate steps we get the final rule for ◃

(emulating only extT)

(T )
Tf A ⊢ f : τf mod V Tf ((β → β))

U f∼ τf TgU f Tf A ⊢ g : τg TgU f (α → α)
Ug∼ τg

UgTgU f Tf A ⊢ ((◃ f ) g : UgTgU f Tf (β → β) mod V

If we repeat the whole of this process with extQ in place of extT we get a very similar
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rule

(Q )

Tf A ⊢ f : τf mod V

Tf ((β → γ))
U f∼ τf TgU f Tf A ⊢ g : τg mod V TgU f (α → γ)

Ug∼ τg

UgTgU f Tf A ⊢ ((◃ f ) g : UgTgU f Tf (β → γ) mod V

In fact, we are happy to be even more prescriptive about what the type of τg can be,

by insisting that it must syntactically be either α → α or α → γ. This removes a little

complexity from our rules and allows us to combine them into one rule. After this change,

the only differences between the two rules are what we unify τf with and what the final

type is. However, in both cases that type is the same as τg (if we ensure α is freshened).

Thus the following single rule is able to emulate the behaviour of both extT and extQ.

(∼FE)

Tf A ⊢ f : τf mod V TgU f Tf A ⊢ g : τg mod V

(α → γ) = τg τ′
g = [α/α′]τg α′ new Tf (τ

′
g)

U f∼ τf

UgTgU f Tf A ⊢ ((◃ f ) g : UgTgU f Tf (τg) mod V

5.5.2 Emulating the Type Constraints

We now consider the type constraints on extT and extQ which come from the use of

Haskell’s type classes. The above inference rule is not actually sufficient for our purposes

because it ignores those constraints. For example, we could extend one identity function

by another identity function and the ∼FE type inference algorithm would work. To

fully understand why this is a problem we need to jump ahead and look at what ◃ is com-

piled into. We cover this more fully in Section 5.9 but for now we can say that, at run

time, the input type of each specific function is inspected and that type is checked against

incoming data to decide if it is appropriate for this application. If the specific function is

the identity there is no canonical type to check against. We store only datatype construc-

tor and built-in type information at run time. There are no type variables in the stored

value and arrow types are labelled “unmatchable”. This means that the argument to all

specific functions must be a non-arrow type with no free variables1. In SYB, the fact that

there are no arrow types in Typeable takes care of the second restriction and the first is

enforced by the behaviour of type constraints [89]. Each type constraint is representative

of a dictionary of functions. Which dictionary is used in any function is determined by the

type that function eventually gets used at. However, if type variables in type constraints
1We consider the possibility of relaxing these restrictions in Chapter 10.
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Figure 5.1: Type inference rules for ◃

(FE)
Tf A ⊢ f : τf mod V Tg(Tf A) ⊢ g : τg mod V

(α → γ) = τg τ′
g = [α/α′]τg α′ new Tf (τ

′
g)

U f∼ τf
U f τf = τf 1 → τf 2 FTV(τf 1) = ∅ τf 1 does not include arrow types

A ⊢ ((◃ f ) g : TgU f Tf (τg) mod V

can’t be resolved into types, the right dictionary can’t be chosen. In all instances where a

free type variable remains in the type of the specific function, the type constraint for that

variable can never be resolved. This occurs because the type variable is left “dangling”, in

other words it does not occur in either the input or output types of the resulting function,

so can’t ever be resolved to anything else.

Consider an attempt to extend one identity with another. Using the type for extT

shown in Table 5.1 we will unify α → α (the type of the first identity) to b -> b and we

will unify β → β (the type of the second identity) to a -> a. The result of the extension id

‘extT‘ id is then Typeable a => a -> a. The type variable a is still able to be resolved

later on, but the type variable b has been obliterated without ever being resolved to a

ground type. Haskell does not allow this and gives an error if we try to compute id ‘

extT‘ id.

It is exceptionally neat that the (very general) type class mechanism can fulfil this quite

specific requirement. We must encode this into our rule for ◃. Doing so is not particularly

onerous we simply need a side condition that does not allow type variables in the final

type of τf . Since we have not considered what it means for a specific function to work on

arrow types, we disallow occurrences of arrow types anywhere in the type of the input

parameter of τf . Adding these constraints as side conditions to our ∼FE rule gives

us our final type inference rule for function extension, shown in Figure 5.1.

5.6 Discussion

Rule FE infers the type of an extension function that is able to create the two types of

polymorphic functions with specific behaviour that we require: type preserving transforma-

tions and accumulators. The type inference algorithm is a minimal common generalisation

of the rules for extT and extQ and we prove the soundness of the underlying type relation

in Chapter 9.
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By ensuring that the types of each argument to ◃ must unify, we ensure that a type

preserving general function can only be extended with a type-preserving specific func-

tion. The type of the general function constrains the type of any specialising function

sufficiently to ensure run-time type safety. There is only one type preserving general

function, the identity function. This can be successfully extended with any other function

that transforms a value to another value of the same type.

The type inference algorithm only requires the first argument of the general function

to be polymorphic. Thus accumulator general functions will pass through the same rule.

The unification of the types of the arguments to ◃ ensures that any specific function must

return the same type as the general function, ensuring that regardless of whether the

specific function or the general function is used, the result is the same type.

5.6.1 Comparison to extQ and extT

The extT and extQ functions from SYB are more specific versions of ◃. With ◃ we can

emulate both of these combinators. Thus ◃ is a more general mechanism and we benefit

by having only one operation to compile rather than two. This would be a false economy if

the type inference algorithm for the combined extension operator was very complex, but

it is very simple and falls naturally from the desired behaviour of the operator. We have

been able to achieve this because we have more control over our type system than SYB

does. SYB is restricted to using Haskell’s type system which prevents a single operator

from having a type flexible enough to do both jobs.

5.6.2 Comparison to Extension Typing

Consider a function that will increment a salary (as an integer), increments any other

integer and returns 0 for any other value. Figure 5.3 shows how to encode this function

with ◃ and Listing 5.4 shows how to encode it in bondi (using extension typing).

Listing 5.3: A strange salary incrementer with ◃

1 def increment(i) =
2 (fun i = case [i] of {[S(s)] -> s + 600} otherwise error ”e1”)
3 ◃ (fun i = case [i] of {[i] -> i + 600} otherwise error ”e2”)
4 ◃ (fun x = 0)

Leaving aside the syntactic conciseness of the bondi encoding, it looks as if there is a

one-to-one translation between the two encodings. However, they actually work differ-
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Listing 5.4: A strange salary incrementer in bondi
1 let increment i = S(s) -> s + 600
2 | i:Int -> i + 600
3 | x -> 0

ently. The bondi encoding is discriminating on constructors while the ◃ encoding is choos-

ing the specific branch to take by inspecting the type of the value to which it is applied.

The error clauses in Figure 5.3 cannot ever be triggered because the patterns for each case

are exhaustive, there is only one salary constructor and the pattern i will match on all

input. However, if salary were to have another constructor, say W(int) for wages as in

Listing 5.5, an error expression would be the result of applying increment to a salary built

with that constructor, i.e. increment(W(5)) would return error ”e1”. Contrast this with

the bondi version which would return 0. bondi’s approach is a neat mechanism, how-

ever it brings two downsides with it. Firstly you can’t factor your specific functions out

of your extension definition. So we can’t encode check_it in bondi, for example, without

having every possible specific function (and the general function) defined within the one

function definition.

Listing 5.5: Expanded salary datatype
1 data salary = S(int)
2 | W(int)

More importantly for us though, the bondi approach is a significant departure from

the semantics of existing functional languages. A function such as that in Listing 5.6 is no

longer a function over a single data-type. The presence of a catch-all pattern makes it a

function over all data-types. Thus it would have type a -> int in bondi, but salary ->

int in existing functional languages.

Listing 5.6: A strange salary and wage incrementer in bondi
1 def increment(i) = S(s) -> s + 600
2 | W(w) -> w + 600
3 | x -> 0

These semantics are both fascinating and useful, but they are also too great a departure

from, for example the FCP algorithm, for us to claim such changes are “largely orthogonal

to the original compiler” as we do in this thesis.

Many functions we can encode this way in bondi can also be encoded with ◃ but this
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translation is not completely trivial since we have to convert a demarcation by constructors

into a demarcation by types.

5.7 Higher Rank Types

Polymorphic functions with specific behaviour are often used as higher-ranked polymor-

phic arguments. For example, in the bottom-up generic query (repeated here in List-

ing 5.7 for convenience), the first argument needs to be applied at two different types in

the body of the function. Thus it needs to have a rank-2 type, as the type signature for

generic_query_bu clearly shows. In practice, it is very likely that it will be a polymorphic

function with specific behaviour that will be the actual parameter to match this formal

one.

Listing 5.7: A bottom-up (left-to-right) generic query
1 def generic_query_bu(f,start,dat) :: (∀ a . (r,a) -> r, r, b) -> r =
2 case [dat] of
3 { [c(z)] -> f(generic_query_bu(f,generic_query_bu(f,start,z),c),dat)
4 ; [o] -> f(start,o)
5 } otherwise -> error ”partial definition error in generic_query_bu”

Consequently we need to add higher rank types to our type system before we can

actually apply our polymorphic functions with specific behaviour to good effect.

Higher rank types cannot be inferred in a classical Hindley-Milner type system, so

we must use a certain amount of type annotation to assist the type inference mechanism.

The primary difference between the various kinds of higher ranked Hindley-Milner algo-

rithms is the level of annotation required. Less onerous annotation burden is bought at

the expense of more complex inference algorithms. We use the type annotation facility

that we have in S and C to collect this information from the programmer and

pass it on to type inference. We ignored these type annotations in Chapter 4, it is here

that we show how to deal with them.

Higher rank types are explicitly quantified, and so far annotations can only be monomor-

phic types. We fix that by modifying the grammar for type annotations in Figures 2.1 and

4.2 (recall that σ denotes universally quantified types, also known as type schemes, and

was defined in Figure 4.5).

ot = ϵ | σ
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We will derive our final type inference rules for higher-ranked types using only the

facilities already in our type system.

5.8 Deriving a Higher Rank Mechanism from FCP

FCP is capable of encoding System F [49] which it does by replacing System F type ab-

straction with (possibly higher-ranked) data constructors and replacing System F type

applications with selector functions. A selector function uses a case expression2 to pull

arguments from their constructors (i.e. a selector reverses the effect of a constructor).

In effect, FCP uses constructors to witness types which are in System F but not in the

Hindley-Milner system. Since FCP can encode all of System F, we know we can encode

any higher ranked functions in our existing type inference system (Figure 4.5) if we are

willing to add extra witnessing constructors. In this thesis we are trying to work “with

the grain” of common functional compiler techniques and thus would prefer to use type

annotations to witness higher ranked types. In this section we show how to derive higher

ranks types with annotations from higher rank types with witnessing constructors (stan-

dard FCP). Throughout the derivation we will denote values that we are in the process of

calculating as ◦. For example, if we are part-way through a derivation of a type and we

don’t yet know the final substitution and type, we denote them ◦ until their values are

known.

Consider a higher ranked lambda abstraction applied to its argument (with annota-

tion)

(λ(x : ∀α.∃β.τ).e) f

This is equivalent to the FCP expression

(let unK = λ(K x).x in λ f .[ f /(unK f )]e) (K f )

if K : ∀∅.(∀α.∃β.τ) → τK. Notice that we have an empty set of universally quantified vari-

ables in the outer scope. This is because higher-ranks only require generalisation of the

inner quantified types. If we quantify all free variables in the equivalent FCP expression

we will get more polymorphism than we expect. The constructor K is introduced to wit-

ness the higher rank type and it is extracted from such constructed values in a let binding

to ensure it is fully generalised in the body of the original function. We can generalise
2Actually, a pattern matching lambda binding in the original paper. Recall we have replaced these with

case expressions (page 65).
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this to definitions of higher ranked functions separate from uses of that function with the

following equivalence

λ(x : ∀α.∃β.τ).e ≡ let unK = λ(K x).x in λ f .[ f /(unK f )]e if K : ∀∅.(∀α.∃β.τ) → τK

e f ≡ e′ (K f ) if e′ : τk → ρ and K : ∀∅.(∀α.∃β.τ) → τK

Thus the FCP inference rule for let unK = λ(K x).x in λ f .[ f /(unK f )]e given K :

∀∅.(∀α.∃β.τ) → τK is the same as the rule we want for higher ranked functions wit-

nessed by annotations, and the FCP inference rule for e (K f ) given e : τk → ρ and K :

∀∅.(∀α.∃β.τ) → τK is the rule we want for higher ranked function application.

The inference rule for λ(x : ∀α.∃β.τ).e needs to be derived since it is made up of a

number of FCP terms. Lets work backwards from the FCP expression until we reach

inference rules that don’t include unK or K in their assumptions.

(L)

(B)

(x : τ) ⊢ x : τ mod (V ∪ {β})

β /∈ TV(A, τ, α)

A ⊢ λ(K x).x : τK → τ mod V

σ = Gen(τK → τ) ◦(unX : σ) ⊢ λ f .[ f /(unK f )]e : ◦ mod V

◦A ⊢ let unK = λ(K x).x in λ f .[ f /(unK f )]e : ◦ mod V

At this point it looks like we might have exhausted our options, but some careful re-

consideration will allow us to advance. The premise of the B rule requires that x get

the type τ but restricted to those types that do not have β in their free variables. The only

way this can happen is if β is the empty set. So we will modify the side condition to say

this more clearly. The free variables of (τK → τ) must be those that were originally bound

in α, so we can replace Gen(τK → τ) with ∀α.(τK → τ) and now we can expand things

further

(L)

(B)

(x : τ) ⊢ x : τ mod V

β = ∅

A ⊢ λ(K x).x : τK → τ mod V

σ = ∀α.(τK → τ)
(L)

Te(unK : ∀α.τK → τ, f : α2)A ⊢ [ f /(unK f )]e : ◦

Te(A, unK : ∀α.τK → τ) ⊢ λ f .[ f /(unK f )]e : ◦

Te A ⊢ let unK = λ(K x).x in λ f .[ f /(unK f )]e : ◦ mod V
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Now have an expression for which there is no FCP inference rule ([ f /(unK f )]e). How-

ever, with some careful consideration we can go further. The substitution tells us that all

instances of f will become unK f . We know that unK has type ∀α.τK → τ so as long as

the type of f (which is α2) can unify with τK we can use τ for the type of unK f - i.e. for

f in the unmodified e. Well, the type for f will be τK since our transformation converts all

arguments to this function from e′ to K e′. So lets allow ourselves a new rule

(S)
(unK : ∀α.τK → τ, f : ∀α.τ)A ⊢ e : τ mod V

(unK : ∀α.τK → τ, f : α2)A ⊢ [ f /(unK f )]e : τ mod V

With this new rule, and removing the redundant σ = ∀α.(τK → τ), we can complete

our derivation back to expressions that we can otherwise process.

(L)

(B)

(x : τ) ⊢ x : τ mod V

β = ∅

A ⊢ λ(K x).x : τK → τ mod V

(L)

(S)

Te(A, unK : ∀α.(τK → τ), f : ∀α.τ)

⊢ e : τe mod V

Te(A, unK : ∀α.(τK → τ), f : α2)

⊢ [ f /(unK f )]e : τe mod V

Te(A, unK : ∀α.(τK → τ))

⊢ λ f .[ f /(unK f )]e : τK → τe mod V

Te A ⊢ let unK = λ(K x).x in λ f .[ f /(unK f )]e : τK → τe mod V

If we remove all the intermediate and trivially correct steps we get a simple rule for

inferring the type of let unK = λ(K x).x in λ f .[ f /(unK f )]e under the assumptions that

K : ∀∅, (∀α, ∃β.τ) → τK and f : τK.

(S)

T(A, unK : ∀α.(τK → τ), f : ∀α.τ) ⊢ e : τe mod V β = ∅

TA ⊢ let unK = λ(K x).x in λ f .[ f /(unK f )]e : τK → τe mod V

This is a very nice, simple rule which can easily be translated into the rule for the

annotation witnessed version. With the introduction of annotations we dispense with unK

terms, so we remove that from the environment; τK is acting as the proxy for ∀α.∃β.τ, so

we replace it with that type, in which β must be empty. Applying these considerations to

the above rule gives the final rule for lambda abstractions with a higher-ranked argument,

shown in Figure 5.2.
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Figure 5.2: Type inference algorithm for lambda abstractions with type annotations

(HL)
T(A, f : ∀α.τ) ⊢ e : τe mod V

TA ⊢ λ( f : ∀α.τ)e : ∀α.τ → τe mod V

Of course we must also derive the rule for applying such functions to an argument.

The derivation of e (K f ) under the constraints that e : τk → ρ and K : ∀∅.(∀α.∃β.τ) → τK

is

(A)

Te A ⊢ e : τK → ρ mod V
(M)

Tf (Te A) ⊢ f : τf mod V

τf
U f∼ τ mod V ∪ {α}

α /∈ TV(U f Tf Te A)

U f Tf Te A ⊢ (K f ) : U f τk mod V

U f Tf (τK → ρ)
U∼ (τK → δ) δ new

UU f Tf Te A ⊢ e (K f ) : Uδ mod V

Removing the intermediate steps gives us a single rule for e (K f ), which we call K-A,

under the given constraints

(K-A)

Te A ⊢ e : τK → ρ mod V Tf (Te A) ⊢ f : τf mod V

τf
U f∼ τ mod V ∪ {α} α /∈ TV(U f Tf Te A) U f Tf (τK → ρ)

U∼ (τK → δ) δ new

UU f Tf Te A ⊢ e (K f ) : Uδ mod V

We can remove the τKs from the unification leaving us with only one τK. In this place

τK is acting as the proxy type for our higher-ranked type so we replace it with that type,

giving the rule for e f with annotations instead of witnessing types

(A)

Te A ⊢ e : (∀α.τ) → ρ mod V Tf (Te A) ⊢ f : τf mod V

τf
U f∼ τ mod V ∪ {α} α /∈ TV(U f Tf Te A) U f Tf ρ

U∼ δ δ new

UU f Tf Te A ⊢ e f : Uδ mod V

We can further simplify by removing the unification of U f Tf ρ with the fresh variable

δ since that unification can’t tell us anything we don’t already know and removing β since

we know that must be empty. This gives us the final rule for higher ranked function
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Figure 5.3: Type inference algorithm for function application with type annotations

(HA)
Te A ⊢ e : (∀α.τ) → ρ mod V

Tf (Te A) ⊢ f : τf mod V τf
U f∼ τ mod V ∪ {α} α /∈ TV(U f Tf Te A)

UU f Tf Te A ⊢ e f : U f Tf Teρ mod V

application shown in Figure 5.3.

5.8.1 Discussion

Our solution for rank-2 types is extremely simple. In this respect it compares favourably

with other systems like the “practical” system of Jones et. al. [75]. That algorithm is more

complex but also more general and more useful because it results in better error messages.

In our case the simplicity has been achieved by re-using the first-class polymorphism

mechanism in FCP. Instead of witnessing higher-rank types with constructors, we witness

them with type annotations but use the same mechanisms from that point on. Comparing

our algorithm with Leijen’s HMF [58] is also interesting. Although that algorithm is able

to provide impredicativity, which we don’t address here, the mechanisms share some

interesting similarities. Both use a restriction on the process of unification to deal with

quantified types.

5.9 Translating ◃ to typeOf

The description of ◃ leads us directly to its definition

Function extension, ◃, creates a function which is identical its left-hand argu-

ment if applied to a value of the type the left-hand argument is defined over,

and identical to its right-hand argument otherwise.

Up to this point we have ignored the fact that C expressions are all tagged with a

type. Before type inference this tag is empty and after type inference it is populated with

an inferred type. We denote an expression and its inferred type tag as e : τ. We require

an operation, typeOf, which can determine the type of a value. Once we have that, the

translation (Figure 5.4) is straightforward.

The simplicity of this rule testifies to the neatness of our approach. We use a single

operator (◃) to take care of all the work needed to extend polymorphic functions with
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Figure 5.4: Eliminating the function extension operator from C

(EE)
a ≡ e : τ → ρ TV(τ) = ∅

a ◃ b ⇒xe λd.if (typeOfd = τ) then a d else b d

specific cases and compiling it to a lower level form is still exceedingly simple. The type

system ensures our side condition is never triggered, but we include it here for clarity.

5.10 Definition of typeOf

typeOf is a function that extracts a canonical representation of the type of a value from

that value at run time. This means that at run time we need;

1. to tag all values with their type, but that type is never used, except by

2. an operator, typeOf which can extract the type from a value.

The implementation of typeOf is shown in Figure 5.8. All values in the runtime are of

type VAL and there are numerous macros defined which allow us to extract information

from a VAL. The GETTY macro extracts what kind of value this is; either a constructor (CON),

one of the built-in types (INT, STRING, CHAR, BOOL), or a closure. To support typeOf, the def-

inition of VAL is supplemented with a new field for type information, making all run-time

values slightly larger, and the TYCON macro created to extract this string representation

of the type of a constructed value. The new built-in operation, typeOf, is created to pull

this type from any value. Both these tasks are very easy in our run time system, Epic,

and we expect they are relatively easy in many other run-times. The value extracted with

typeOf will be checked for equality with the input type of the specific function, so there

cannot be any type variables in that type. If there were, we would need something more

complicated than mere equality. Happily, this restriction is assured by the type system.

Note that this is naive encoding used for clarity and widespread applicability. We have

chosen an unoptimised approach because we want our benchmarks of this system (see

Chapter 8) to be indicative of the maximum cost that would be encountered when these

techniques are use to extend existing compilers.

typeOf is not a S operation and can only be created in the compilation of ◃.

Thus runtime types are a space cost for all code, but only a time cost for code that uses
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Listing 5.8: C definition of typeOf
1 void* typeOf(VAL one){
2 switch(GETTY(one)){ // GETTY will get the type field of a VAL
3 case CON:
4 return MKSTR(TYCON(one));
5 case INT:
6 return MKSTR(”#int”);
7 case STRING:
8 return MKSTR(”#string”);
9 case CHAR:

10 return MKSTR(”#char”);
11 case BOOL:
12 return MKSTR(”#bool”);
13 default:
14 return MKSTR(”#unmatchable”);
15 }
16 assert(0); // we should not have been given any other type of closure
17 }

extensions. As we will show below, this time-cost is unavoidable and the memory cost is

minimal.

5.10.1 Discussion of the Semantics of typeOf

By-passing static type checks can only be safely done if there is some equivalent to, for

example, Java’s instanceOf which allows one to inspect the run-time type of a value. This

is an identical mechanism to typeOf but making it available in the source language means

it can appear anywhere. Type-safe casting can be done in Haskell98 (which has no run-

time type information) with type classes, but these replace the type information with a

dictionary of functions.

5.10.2 Discussion of Time and Space Cost

Of the approaches to polymorphic functions with specific behaviour that we saw in Chap-

ter 3 only explicit failure and extension types do not use type classes or run-time types.

Instead they require per-program unique constructor names because you need to be able

to check any two values from the whole program to see if they have the same constructor.

In traditional functional languages, the run-time only needs to differentiate between two

constructors of the same type. We now explain why per-program constructors will have

an equivalent memory cost and a greater run-time cost than the solution we are suggest-

ing3. To store a constructor and a type, as we do, requires the minimum bits to distinguish

this constructor from the others in its type plus a longer, per-program unique, identifier
3Unfortunately there are no system on which we can run empirical tests to show this, so we must content

ourselves with a theoretical investigation.
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for the type, perhaps using namespaces to ensure uniqueness in the presence of separate

compilation. The alternative of storing the per-program unique constructor requires that

the constructors themselves use the longer form, again using something like namespaces

if necessary. This long form must be at least as long as the form you would use to store

just the pre-program unique type. Hence one can, at most, save a few bits of memory by

not storing the constructor separately. However, constructor analysis will now need to be

done on a large value (the per-program unique constructor) instead of a small value (a few

bits for the constructor). When we compile to C for example, using per-program unique

constructors means we can’t compile our case expressions into switch statements. This

will potentially cost huge amounts of run-time4.

We have not had the opportunity to benchmark all the relevant approaches to storing

type information at run-time, it is far beyond the scope of this work. However, we we

can see that, without type classes, some run-time cost needs to be paid either by keeping

type information at run-time or by moving to per-program unique constructors. In this

way we have argued that adding type information to each value and a function to inspect

it is at least competitive with alternative techniques. In fact, it is likely to be the most

efficient since we are using the run-time representation, keeping exactly what we need,

and nothing more, to do the job.

5.11 Summary

We have shown that ◃ can be compiled into a simple primitive operation. We have shown

a small extension of Hindley-Milner which can infer a type for this operator and we have

shown that implementing typeOf requires only modest changes to the language runtime.

With ◃ we have achieved an version of function extension which, unlike SYB’s version,

does not need type-safe casts or type classes. We will later show that it is also significantly

faster. We have also achieved a version of extension typing that is compatible with existing

functional languages. It does not require any new types and does not change the existing

semantics or the inferred type of existing code. We also demonstrated a simple way to

add higher-rank types to a baseline functional compiler using only existing FCP features.

4We say potentially because we have not been able to test this empirically.
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Chapter 6

Compiling and Typing Structure

Agnosticism

Recall that in Chapter 3 (page 45) we described how structure agnosticism can be achieved

with an explicit spine view of data such that:

1. All data is a tuple of: the constructor and all the arguments but the last, and the last

argument to the constructor.

2. Tuples can be pulled apart by application pattern matches which are case patterns x(y

) where x is bound to the constructor and all arguments but the last and y is bound

to the last argument.

The examples in Chapter 2 show how this explicit spine view of data can encode

generic functions. In this chapter we show how we can remove these patterns in the pat-

tern compilation translation, converting them to simple primitive operations. We also

show how to attribute types to these primitive operations and how to encode them in C.

We include an implementation of polymorphic recursion since none of our generic exam-

ples can work without it.

The types we attribute to x and y require no underlying extensions to FCP, only careful

use of existing features. Thus this chapter shows exactly how application pattern matches

can be incorporated into a baseline functional compiler. Application pattern matches also

give an identity to partially applied constructors and in this chapter we describe the small

extensions to the run-time which are required to take advantage of this. Note that we

restrict ourselves to a very small set of additions that don’t amount to making partially

applied constructors first-class values, but which provide enough capability to support

our generic functions.



6.1 Overall Journey

We describe how to resolve application pattern matches into simple, typed language prim-

itives, kar/kdr/ispair. Application pattern matches are already present in S al-

though we ignored their existence in Chapter 4. We use the pattern compilation transla-

tion to compile these into new primitive operations, thus application pattern matches are

not present in C.

S C

C

C

C

SC C// ))55

++

NN

11

�� //






 





compile x y to
kar/kdr/ispair

inference rules for
kar/kdr/ispair

add polymorphic
recursion

definitions of
kar/kdr/ispair

application of
partially applied

constructor

However, these new primitive operations are in C, and we need to describe the type

inference rules for them. Furthermore, application pattern matches are very commonly

used in conjunction with polymorphic recursion, so we modify our type inference algo-

rithm to support this feature. Extension elimination and lambda lifting are not effected

by these new primitives, we only need to define their operation at run-time with new C

functions.

Application pattern matching can give an identity to partially applied constructors.

Our type rules ensure that they are always re-applied to their missing arguments but this

does not prevent us from requiring an implementation of this re-application in the run-

time.

6.2 An Unresolved Source Detail

The discussion of pattern compilation presented in Chapter 4 is complete in all but one

respect. Specifically it fails to account for the compilation of one significant feature of the

pattern system of S, that being the application patterns which we introduced on page

22.
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p ::= · · ·

| x(y)

It is important to note that in order to implement the compilation of application pat-

terns we make no changes to the underlying analysis and translation of the case expres-

sions of C themselves. In particular they maintain all the characteristics that made

them simple to convert into switch statements.

6.3 Converting x(y) to kar, kdr and ispair

As we saw in Chapter 4 (page 71), pattern matching is compiled to switch statements,

whose chief characteristic is that they branch on the integer representing the constructor

of the input. An x(y) pattern cannot be compiled directly into this form simply because

it provides the compiler with no specific constructor information. While the variable x

may become bound to some constructor it may also become bound to a compound sub-

expression (as shown in Table 3.4). Furthermore, even if it is bound to a constructor, this

pattern alone will not determine the identity of that constructor. For this reason, x(y)

patterns are not compiled into C case expressions. They are instead compiled into

three primitive operations which suffice to describe their semantics. These primitives are:

kar d which retrieves the left part of the datum d when the datum is viewed as a tuple,

and

kdr d which retrieves the right part of the datum d when the datum is viewed as a tuple,

and

ispair d t e which evaluates to the expression t if the datum d is a tuple and evaluates to

the expression e if it is not.

This approach to encoding the spine view is well known in untyped functional lan-

guages, indeed we use the name kar for pulling off the front of a value since this operation

is very much like the lisp car operation. Similarly, we name kdr for cdr. However, stati-

cally inferring types for expressions like these is not done in any languages we are aware

of. Barry Jay [44] has shown that x(y) patterns can be encoded with statically typed ver-

sions of the kar/kdr/ispair primitives and our solution is an extension of his work. We
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have been able to achieve simpler and more practical type rules than Jay because our com-

piler pipeline maintains a very useful invariant, that kar and kdr can only appear within

a witnessing ispair expression.

To implement this functionality we add the following primitive functions to those

available in C

lo ::= · · ·

| kar e

| kdr e

| ispair e e e

| · · ·

The actual conversion from x(y) patterns to these new built-in operations occurs in the

pattern compilation translation phase (⇒pc). The addition of these primitives and the

associated rules for compiling application pattern matches does not require us to change

any of the existing pattern compilation rules discussed in Chapter 4. So, in principle, all

we need to do in order to process application patterns is to add a single new rule to our

pattern compilation algorithm which processes these new patterns to kar/kdr/ispair

expressions. However, before we do that we should ask ourselves two questions:

1. Is it better to process such patterns in batches or on their own?

2. Exactly what expressions should we generate when we process each batch of appli-

cation patterns?

Batch or Singleton?

Application pattern matches can be compiled in batches like variables and constructors.

Thus we need to tell our pattern compilation algorithm to slurp up as many as it can from

the top of our set of patterns when applying the H rule (page 61).

In fact, any time there are more than one in a row, all but the first are ignored. It is

impossible to get a failure on one application pattern match but a success on a later one

since the only way they can vary is in the names of the variables they bind. By processing

them in batches, the pattern compilation algorithm removes dead code for us, with no

extra effort. If we break them up into singletons then we will end up generating nested

ispairs within which it is much harder to find such dead code. Indeed, were we to do
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Figure 6.1: Pattern compilation for application pattern matches

(A P)
∀i.(alti ≡ xi(yi) spi → sei ∧ alt′i ≡ spi → [xi/kar(x1), yi/kdr(x1)]sei)

case z of alt′ otherwise d ⇒pc e′ d ⇒pc d′

case z1 z of alt otherwise d ⇒pc ispair z1 e′ d′

this, we would probably need to introduce a separate phase simply to analyse and remove

this superfluous code.

To support batch processing of these patterns, we need to modify the definition of

pattern classes (p ≡c p′) we gave in Section 4.1. So we extend the relation definition in

equation 4.1 (page 60) to the one given by the following set of equations, in which the last

line is new.

x p2 · · · pn ≡c x′ p′2 · · · p′n

(K p) p2 · · · pn ≡c (K′ p′) p′2 · · · p′n

x(y) p2 · · · pn ≡c x′(y′) p′2 · · · p′n

This indirectly changes the definition of the H rule (page 61), but this is the

only change to the rules in the original pattern compilation algorithm we described in

Chapter 4.

Figure 6.1 shows the pattern compilation algorithm which applies when all head pat-

terns are application pattern matches. All application pattern matches in the head pattern

resolve to a single ispair check. If this succeeds, then the remaining case (with one less

scrutinee and one less pattern in each alternative), where xi is replaced by kar of the scru-

tinee and yi is replaced by kdr of the scrutinee, is the result. If it fails, the default is the

result.

Notice that this compilation scheme results in the kar/kdr of a matched term be-

ing re-evaluated at every point where the variables bound in the application pattern are

used. It might be better to replace the term [xi/kar(x1), yi/kdr(x1)]sei with let xkar =

kar(x1)and xkdr = kdr(x1) in [xi/xkar, yi/xkdr]sei. However, we have not implemented

this in  so the rule in Figure 6.1 is a more accurate representation of what  ac-

tually does. Furthermore, none of the examples in this thesis would benefit greatly from

the change. We can see that  is quite naive with regards to optimising the generated

executable, something we discuss more fully in Chapter 8.
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So, we have managed to completely remove x(y) patterns in pattern compilation, re-

placing them with three carefully chosen primitives. Lets now see how to get these primi-

tives through the rest of the compiler, eventually formalising their behaviour in C. We will

start off looking at the type rules for kar, kdr and ispair and then see why polymorphic

recursion is necessary and how to implement it.

6.4 Type Inference Rules for kar, kdr and ispair

Our starting point is the following question

Given x has type X, and assuming x is a tuple, what are the types of kar(x)

and kdr(x)?

If x is a tuple, it is a constructor applied to some arguments, kar(x) is the constructor

with all the arguments but the last, so it could have the type of a function that if given

that last argument, will return a value of the original type, i.e. argtype -> X. kdr(x) is

exactly the argument that was peeled off, so its type is argtype. However, we don’t know

anything about argtype. Since we only know x has type X, we can say nothing about its

last argument, we only know that there is one. We might be tempted then to make it a

variable, giving kar x the type α-> X and kdr(x) the type α. However, this variable would

be implicitly universally quantified and since kar(x) and kdr(x) will appear separately,

we lose the fact that the two αs represent the same something. The solution to this problem

is existential types.

The addition of pattern matching for application patterns amounts to proposing the

existence of the retraction function breakτ for all types τ where (τ | ρ is notation for a sum

type with τ “in-left” and ρ “in-right”)

breakτ : τ → (∃ρ.(ρ → τ, ρ) | τ)

makeτ : (∃ρ.(ρ → τ, ρ) | τ) → τ

makeτ (breakτ e) = e

In other words, we propose that, for every type τ, we have some operation breakτ which

can separate compound values of that type into two parts and which returns atoms un-

changed. Furthermore, for each type τ, there is a function makeτ which can put the sepa-

rated parts back together. We cannot claim the other half of the make/break isomorphism,

i.e. we can’t say that

breakτ (makeτ e) = e
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because the choice of existentially quantified type is lost by makeτ and cannot be recov-

ered. In functional programming languages, makeτ is a function we can build for any

type since its definition is fixed for all types. For the left-hand side of the input sum-type,

makeτ takes a triple (ρ, f : ρ → τ, g : ρ) and its body is always f g. For the right-hand side

of the input sum type, makeτ is the identity function. Function application takes the role

of makeτ in , though a special syntax is often used to aid parsing it (see page 16). By

re-using an existing mechanism we reduce the distance between existing functional lan-

guage compilers and the solution we present in this thesis, making our techniques easier

to implement.

The definition of breakτ can be informally stated using ispair, kar and kdr (where

inl injects a value into the left-hand side of a sum-type and inr injects a value into the

right-hand side of a sum-type)

breakτ x = ispair x (inl(ρ, kar(x), kdr(x))) (inr(x)) where ρ is unique

We will show in Section 6.6 how to write ispair, kar and kdr in our run-time, i.e. how to

write one definition for each primitive that works on all τ. All that is left is to devise a type

inference algorithm for these primitives which reflects our observations about breakτ.

Previous attempts to give types to kar and kdr in this context, for example the com-

pound calculus [44], have failed because kar and kdr are language primitives in those

systems. We are in a better situation. The kar and kdr primitives are not language primi-

tives which can appear anywhere, they are the result of pattern compilation. Our pattern

compilation algorithm ensures that all instances of kar and kdr are inside the left branch of

an ispair expression. Since every instance of kar or kdr is associated with a specific en-

closing ispair, this latter construct becomes the ideal site at which to introduce a fresh

existentially quantified type variable to constrain the use of these unpairing operations.

The addition of existentially quantified variables to an existing functional language

compiler might seem like it would require significant type system changes. In our case

we are using a variant of FCP which already comes equipped with existential type quan-

tification. However, it turns out that we can provide typing rules for kar/kdr/ispair

without having to provide a complete implementation of existential typing. Specifically,

all we need to do is ensure that any new existential variables introduced by ispair are

treated like constants for the purposes of unification. To do this we need to keep track of

which variables in the environment must be handled in this way and to use the simple
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Figure 6.2: Type Inference for ispair

(IP)
TA ⊢ c : τc mod V T′T(A, c : (β → τc, β) ⊢ t : τt mod (V ∪ β)

T′′T′TA ⊢ e : τe mod V τt
U∼ τe mod V β new β /∈ TV(UTA, Uτt)

UT′′T′TA ⊢ ispair c then t else e : Uτe mod V

variant of the usual unification algorithm deployed by Jones in his FCP paper [49].

τ
id∼ τ mod V (id)

α
[τ/α]∼ τ mod V

τ
[τ/α]∼ α mod V

 α /∈ V ∪ TV(τ) (var)

τ
U∼ v mod V Uτ′ U′

∼ Uv′ mod V

(τ → τ′)
UU′
∼ (v → v′) mod V

(fun)

This version of unification reduces to normal unification when the set V is empty, so only

a few extra empty sets are needed in other parts of the compiler.

Figure 6.2 shows the type inference rule for ispair. This ispair rule first calculates

the type of the expression being tested (c), this is used as the basis for the type of the

conditional in the first branch. We store two types for c in the environment. The first

(β → τc) is the type for kar(c) anywhere in the body of the branch and the second (β) is

the type for kdr(c). When we are typing the first branch, we ensure that β is treated as

an existential type variable by adding it to the set of fixed for unification variables. In this

environment we calculate the type for the first branch. This is all the hard work done and

we use standard techniques to get the type for the second branch and to unify that type

with the type we got for the first branch.

Notice that when we add the new mapping for c to the environment, we leave the old

one in. The new mapping is to a pair of types and so can be distinguished from the other

mapping, which is to a single type scheme. Only the type rules for kar and kdr will ever

go looking for this pair. Note also that c needs to be a variable if we are to put anything in

the environment for it. You will notice that C requires scrutinees to be variables and

since the conditional of the ispair always comes from such a scrutinee, it will always be

a variable. The restriction of scrutinees to variables in C is there for other reasons, for

example it allows scrutinees to be let-bound to avoid recalculating them, so this technique

is likely to work in many core languages. We have had to extend the capabilities of our type
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Figure 6.3: Type Inference Rules for kar and kdr

(K)
(x : (β → τ, β)) ∈ A

A ⊢ kar(x) : β → τ mod V

(K)
(x : (β → τ, β)) ∈ A

A ⊢ kdr(x) : β mod V

environment, but the changes are minor. Previously, variables mapped to type schemes,

now they map to a type scheme and an optional pair of type schemes which is completely

ignored in all other type inference rules.

With this done, the type inference rules for kar and kdr are very simple (Figure 6.3).

Both these rules just look in the type environment for the type that the ispair rule left for

them. The type variable β is already in the set of fixed for unification variables.

These type inference rule ensure that the existentially quantified type variable only

exists within the first branch of an ispair operation. Because the existentially quantified

type variable can’t be accessed in the second branch of an ispair and the types of the two

branches need to be unified, there is no way the existentially quantified type variable can

escape the scope of its quantification.

6.5 Polymorphic Recursion

Although we have now done enough to ensure appropriate types for kar and kdr, we are

still in no position to do much with these operations. The vast bulk of generic traversals do

their work by calling themselves recursively on the kar or kdr (or both) of their inputs. To

see how this works in practice consider the bottom-up generic traversal we saw in Chapter

2.

Listing 6.1: A bottom-up generic traversal
1 def apply_to_all(f,g) :: (∀ a . (a) -> a, b) -> b =
2 case [g] of
3 { [c(a)] -> f(@apply_to_all(f,c)(apply_to_all(f,a)))
4 ; [o] -> f(o)
5 } otherwise -> error ”partial definition error in apply_to_all”
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The first recursive call to apply_to_all instantiates the type variable a to b -> a’

while the second recursive call instantiates it to b. Thus we are recursively calling a func-

tion at different types in its own body. This is the purest form of polymorphic recursion

and one that dependency analysis has no hope of removing for us. Thus we need to add

support for polymorphic recursion to our type system.

As we mentioned in Section 4.2, while it can be possible to infer the type of a poly-

morphic recursive function, it is not always possible. Pure un-annotated type inference

is formally undecidable for a language that requires polymorphic recursion. The most

commonly used solution, and the one we will adopt, is to require type-annotations on

polymorphic recursive functions [70], and to use these annotations to guide the inference.

We used the same technique for rank-2 types in Section 5.7. Since we already have type

annotations on terms from our work in Section 5.7, we are left with the job of using these

annotations effectively for letrec-bound expressions.

Type inference for polymorphic recursion thus amounts to type inference for the fol-

lowing form of letrec expression

letrec x1 ot1 = e1 in e

where ot designates that the type annotation is optional. This means that each binding is

either x1 or x1 σ.

6.5.1 Deriving Polymorphic Recursion from FCP

FCP allows first class polymorphism for constructor arguments, witnessing all higher

ranks by equivalent constructors (page 90). Since Jones describes a mapping from Sys-

tem F types (which includes all polymorphic recursive types) to FCP [49], we must be

able to encode polymorphic recursion in our existing type system if we are willing to use

witnessing constructors. As was the case with higher ranked types, our starting point of

a baseline functional compiler encourages us to work with the grain of current functional

languages. Thus we want polymorphic recursion using type annotations instead of wit-

nessing constructors. In this section we explain how to achieve polymorphic recursion

using type annotations from FCP’s polymorphic recursion with witnessing constructors.

Our first job is to take the /C expression (with type annotations) which we

wish to infer the type of and to formulate an equivalent FCP (with witnessing construc-
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tors) expression. For single-binding letrec, our task is to calculate the type of

letrec x : ∀α.∃β.τ = e in f (6.1)

where x may occur free in e and f . The equivalent FCP expression witnesses the type

∀α.∃β.τ with a constructor K and extracts it with a selector unK. Informally speaking, the

corresponding FCP expression eliminates the need for type annotations by τ′ = ∀α.∃β.τ

by replacing definitions of expressions e with type τ′ with K e and replaces uses of expres-

sions of this type x with unK x. We define the constructor K in the standard way for

FCP, in other words we give it the type σK = ∀γ.(∀α.∃β.τ) → τK with new α, β, and γ.

We need to include the definition of the selector function unK in a let-binding to ensure

the unpacked value is given a polymorphic type. An FCP expression using witnessing

constructors which is equivalent to (6.1) is

let unK = λ(K f ). f in letrec x′ = K ([x/unK x′]e) in [x/unK x′] f (6.2)

Now our approach will be to apply the FCP type inference algorithm (from the original

FCP publication [49]) to this term and elaborate its operation by hand just far enough to

eliminate all references to K and unK in the assumptions at the leaves of the resulting in-

ference proof. Once we have done that, we can summarise that entire calculation in the

form of a corresponding single inference rule couched entirely in term of the type anno-

tation expression (6.1). In other words, we can calculate a type inference rule for the type

annotation expression (6.1) using only the rules required for the constructor witnessing

expression (6.2).

This derivation is far too large to fit into one diagram, instead we need to look at small

parts of the derivation tree at any one time. We will label all calculations which require

exposition with a double-stroke character. Where there are labeled calculations in the

conclusion of an inference rule, it means that entire inference rule should be substituted

for the labelled calculation in a larger inference calculation.

We first apply the L rule to remove the outermost let binding.

(L)

(A) TunK A ⊢ λ(K f ). f : τunK mod V σunK = Gen(TunK A, τunK)

(B) TiTunK AunK, unK : σunK ⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V

TiTunK A ⊢ let unK = λ(K f ). f

in letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V
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We proceed by trying to calculate all the substitutions (T, U) and types (τ, ρ) in the premises.

Firstly, we need to calculate TunK and τunK via (A).

(B)
σK = ∀γ1.(∀α1.∃β1.τ1) → τK

1 A f , f : τ1 ⊢ f : τ1 mod V ∪ {β1} β1 /∈ TV(A, τ1, α′)

(A) A ⊢ λ(K f ). f : τK
1 → τ1 mod V

The only way to satisfy β1 /∈ TV(A, τ1, α′) is if β1 is empty (which only happens if β is

empty). The other two assumptions in this rule are trivially true, so the result of this

calculation are that the modified side condition β = ∅ plus the results, TunK = ∅ and

τunK = τK
1 → τ1, replace (A).

(L)

β = ∅ σunK = Gen(A, τK
1 → τ1)

(B) Ti AunK, unK : σunK ⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V

Ti A ⊢ let unK = λ(K f ). f in letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V

We know that Gen(A, τK
1 → τ1) must be ∀γ1.τK

1 → (∀α1.τ1), so we can replace σunK with

that type.

(L)

β = ∅

(B) Ti AunK, unK : ∀γ1.τK
1 → (∀α1.τ1) ⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V

Ti A ⊢ let unK = λ(K f ). f in letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V

We now calculate the values of Ti and τi via (B). This requires an application of the LR

rule.

(LR)

(C) Tx′ AunK,x, unK : : ∀γ1.τK
1 → (∀α1.τ1), x′ : α2 ⊢ K [x/unK x′]e : τx′ mod V

Tx′α2
Ux′∼ τx′ σx′ = Gen(Tx′ A, Ux′τx′)

(D) Tf Ux′Tx′ AunK,x, unK : ∀γ1.τK
1 → (∀α1.τ1), x′ : σ ⊢ [x/unK x′] f : τf mod V

(B)
T′UTAunK, unK : ∀γ1.(∀α1.τ1) → τK

1

⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V

Again we need to calculate the premises individually. Lets first calculate Tx′ and τx′ via
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(C).

(M)

σK = ∀γ2.(∀α3.τ3) → τK
3

(E) Te AunK,x, unK : ∀γ1.(∀α1.τ1) → τK
1 , x′ : α2 ⊢ [x/unK x′]e : τe mod V

τe
Ue∼ τ2 mod V ∪ {α3} α3 /∈ TV(UeTe AunK, unK : ∀γ1.(∀α1.τ1) → τK

1 )

(C) Tx′ AunK,x, unK : : ∀γ1.τK
1 → (∀α1.τ1), x′ : α2 ⊢ K [x/unK x′]e : τx′ mod V

We use the S rule we created for deriving higher rank types (page 92) to calculate (E)

(S)
Te AunK,x, unK : ∀γ1.τK

1 → (∀α1.τ1), x : ∀α4, γ4.τ4 ⊢ e : τe mod V

(E) [α2/τ4]Te AunK, unK : ∀γ1.τK
1 → (∀α1.τ1) ⊢ [x/unK x′]e : τe mod V

We have converted (E) into a premise without K or unK in the expression for which we

are calculating the type. We replace (E) with this premise and propagate the calculated

values to the M rule in which (E) is a premise.

(M)

σK = ∀γ2.(∀α3.τ3) → τK
3

[α2/τ4]Te AunK,x, unK : ∀γ1.τK
1 → (∀α1.τ1), x : ∀α4, γ4.τ4 ⊢ e : τe mod V

τe
Ue∼ τ2 mod V ∪ {α3} α3 /∈ TV(UeTe AunK, unK : ∀γ1.(∀α1.τ1) → τK

1 )

(C) Tx′ AunK,x′ , unK : ∀γ1.τK
1 → (∀α1.τ1), x′ : α2 ⊢ K [x/unK x′]e : τK

3 mod V

We can simplify this a little since we know unK can’t be in e and α3 can’t be in ∀γ1.τK
1 →

(∀α1.τ1). Plus we can calculate the value of Tx′

(M)

σK = ∀γ2.(∀α3.τ3) → τK
3 [α2/τ4]Te Ax, x : ∀α4, γ4.τ4 ⊢ e : τe mod V

τe
Ue∼ τ2 mod V ∪ {α3} α3 /∈ TV(UeTe A)

(C) [α2/τK
4 ]TeUe AunK,x′ , unK : ∀γ1.τK

1 → (∀α1.τ1), x′ : α2 ⊢ K [x/unK x′]e : τK
3 mod V

The unresolved premises of this rule now replace (C) in the LR rule

(LR)

σK = ∀γ2.(∀α3.τ3) → τK
3

[α2/τK
4 ]Te Ax, x : ∀α4, γ4.τ4 ⊢ e : τe mod V τe

Ue∼ τ2 mod V ∪ {α3}

α3 /∈ TV(UeTe A) [α2/τK
4 ]Teα2

Ux′∼ τ3 σx′ = Gen([α2/τ4]Te A, Ux′τ
K
3 )

(D) Tf Ux′ [α2/τ4]Te AunK,x, unK : ∀γ1.τK
1 → (∀α1.τ1), x′ : σ ⊢ [x/unK x′] f : τf mod V

(B)
T′UTAunK, unK : ∀γ1.τK

1 → (∀α1.τ1)

⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V
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[α2/τ4]Teα2 and τ3 differ only in the names of their free variables, so we can disregard this

unification and continue using either (lets choose τK
3 ). σx′ must then be ∀γ3.τ3.

(LR)

σK = ∀γ2.(∀α3.τ3) → τK
3 [α2/τK

4 ]Te Ax, x : ∀α4, γ4.τ4 ⊢ e : τe mod V

τe
Ue∼ τ2 mod V ∪ {α3} α3 /∈ TV(UeTe A)

(D) Tf [α2/τK
4 ]Te AunK,x′ , unK : ∀γ1.τK

1 → (∀α1.τ1), x′ : ∀γ1.τK
3 ⊢ [x/unK x′] f : τf mod V

(B)
T′UTAunK, unK : ∀γ1.τK

1 → (∀α1.τ1)

⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τi mod V

We apply the S rule to resolve the expression-level substitution in (D) and calculate

Tf and τf .

(S)
Tf [α2/τK

4 ]Te AunK,x, unK : ∀γ1.τK
1 → (∀α1.τ1), x : ∀α5, γ5.τ5 ⊢ f : τf mod V

(D) Tf [α2/τK
4 ]Te AunK,x′ , unK : ∀γ1.τK

1 → (∀α1.τ1), x′ : ∀γ1.τK
3 ⊢ [x/unK x′] f : τf mod V

We can now calculate T′UT and τi from the LR rule

(LR)

σK = ∀γ2.(∀α3.τ3) → τK
3 [α2/τ4]Te Ax, x : ∀α4, γ4.τ4 ⊢ e : τe mod V

τe
Ue∼ τ2 mod V ∪ {α3} α3 /∈ TV(UeTe A)

Tf [α2/τK
4 ]Te AunK,x, unK : ∀γ1.(∀α1.τ1) → τK

1 , x : ∀α5, γ5.τ5 ⊢ f : τf mod V

(B)
Tf [α2/τ4]Te AunK, unK : ∀γ1.τK

1 → (∀α1.τ1)

⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τf mod V

And finally we can return to the L rule to calculate Ti and τi. They are Tf [α2/τK
4 ]Te and

τf respectively. Because we have removed K and unK from all expressions in the premises,

we can also remove any K and unK bindings from the environments in those premises.

Taking all remaining assumptions and non-trivial side conditions we get our final rule for

the polymorphic recursive emulating FCP term with witnessing constructors (6.2).

(∼PR)

σK = ∀γ1.(∀α1.τ1) → τK
1

Te Ax, x : ∀α4, γ4.τ4 ⊢ e : τe mod V τe
Ue∼ τ1 mod V ∪ {α3} α3 /∈ TV(UeTe A)

σK = ∀γ2.(∀α2.τ2) → τK
2 Tf [α2/τK

2 ]Te Ax, x : ∀α5, γ5.τ1 ⊢ f : τf mod V β = ∅

Tf [α2/τ4]Te AunK, unK : ∀γ1.τK
1 → (∀α1.τ1)

⊢ letrec x′ = K ([x/unK x′]e) in [x/unK x′] f : τf mod V
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Figure 6.4: Type inference for polymorphic recursion by type annotations

(PR)

Te Ax, x : ∀α.τ ⊢ e : τe mod V τe
Ue∼ τ1 mod V ∪ {α3}

α3 /∈ TV(UeTe A) Tf [α2/τ2]Te Ax, x : ∀ατ ⊢ f : τf mod V β = ∅

Tf [α2/τ4]Te A ⊢ letrec x : ∀α.∃β.τ = e in f : τf mod V

Since the type annotation expression (6.1) and the constructor witnessing expression

(6.2) are equivalent, this rule can be translated into a type inference rule for polymorphic

recursion via type annotations by swapping (6.1) for (6.2) in the conclusion (shown in

Figure 6.4).

6.6 Definitions of kar, kdr and ispair

As we have seen, the matching of application patterns compiles to expressions which in-

volve the primitives kar, kdr and ispair. However, to this point we’ve said little about

how these constructs are to be evaluated at run-time. So in this section we will consider

how their behaviour is implemented in the  runtime. Later, in Chapter 9, we will

complete this story by giving a more formal presentation of their behaviour as a com-

ponent of the overall formal operational semantics of our language. Recall the informal

definitions we gave earlier:

kar d which retrieves the left part of the datum d when the datum is viewed as a tuple,

and

kdr d which retrieves the right part of the datum d when the datum is viewed as a tuple,

and

ispair d t e which evaluates to the expression t if the datum d is a tuple and evaluates to

the expression e if it is not.

6.6.1 The Epic Runtime

Recall that we use Epic [8] as a super-combinator compiler and a runtime. To understand

our implementation of kar/kdr/ispair we need to know a little bit more about how Epic

works.

1. All runtime values are designated as VALs and constructed data is a special kind of

VAL.
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2. Constructed data is stored as a structure of

• a tag for the constructor (extracted with the TAG macro),

• a type string used by typeOf (extracted with the TYCON macro),

• the arity of this constructor (extracted with the ARITY macro), and

• an array of values for each argument to this constructor (extracted with the

ARGS macro).

3. We construct data with the CONSTRUCTOR macro, which takes all the required infor-

mation for a constructed value and builds a VAL.

Support for kar, kdr and ispair requires no change at all to the way data is stored in

the run-time. These primitive operations act as an abstraction over the actual run-time

data representation to make it look like the spine view when we require it.

Listing 6.2: kar in the Epic/ runtime
1 VAL kar(VAL one){
2 return (CONSTRUCTOR(TAG(one), TYCON(one), ARITY(one)-1, ARGS(one)));
3 }

Listing 6.2 shows kar in the  runtime. The CONSTRUCTOR macro will only take as

many args from ARGS(one) as it needs to, based on the arity we passed in, which is one

less that the original. Thus this code is creating a new constructed datum with all the

original arguments except the last.

Listing 6.3: kdr in the Epic/ runtime
1 VAL kdr(VAL one){
2 con cc = (con)one->info;
3 return (cc->args[ARITY(one) - 1]);
4 }

Listing 6.3 shows kdr in the  runtime. This function returns the last argument in

the argument array. It is already a VAL so there is nothing more to do.

Listing 6.4 shows ispair in the  runtime. The ispair function is capable of work-

ing on any data whatsoever, so it first looks up the VAL-type of its input (which is an ef-

ficient switch statement). If it has a constructed datum, it returns true for arity > 0 and

false otherwise. It will return false for any input that is not a constructed datum (such as

integers and other primitive values).
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Listing 6.4: ispair in the Epic/ runtime
1 bool isPair(VAL one){
2 switch(GETTY(one)){
3 case CON:
4 return (ARITY(one) > 0)
5 break;
6 default:
7 return false;
8 }
9 }

6.7 Application of Partially Applied Constructors to Values

We now need to define what happens when a partially applied constructor is applied to

something, i.e. we need to define makeτ from page 104. This application can occur because

the x(y) pattern gives the partially applied constructor x an identity (it is bound to a

variable which we can then use in the body of the case alternative). As in apply_to_all

(page 121), we most often want to re-attach it to its missing argument (suitably modified).

This is not difficult change in Epic, but you may find things work differently in your run-

time. The code for applying one thing to another already has a switch in it, so we simply

add a new branch that tells us what to do if the left argument to the application is actually

constructed data. Listing 6.5 shows the code that runs for that switch case.

Listing 6.5: Applying a datum to an argument in Epic/
1 int arityxin = ARITY(xin);
2 int arityout = arityxin + 1;
3 void** argspace = EMALLOC(arityout*sizeof(VAL));
4 memcpy((void*)(argspace), (void*)(ARGS(xin)), arityxin*sizeof(VAL));
5 memcpy((void*)(argspace + arityxin), (void*)block, sizeof(VAL));
6 VAL x = CONSTRUCTORn( TAG(xin)
7 , arityout
8 , argspace
9 );

This code will create a new constructor with all the arguments of the first argument,

xin, and with the second argument (which must be a single VAL) added to the end. The

arity is updated appropriately.

The mechanisms described in this chapter do cause generic code to use more memory

than the equivalent polymorphic code, we measure this and discuss this in more detail in

Chapter 8.
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Figure 6.5: Type Inference for Lonely Constructor Primitives

(CE)
A ⊢ e === f : α → β → Bool

(CS)
A ⊢ constr show e : α → String

6.8 A Prescription for Lonely Constructors in the Runtime

Regardless of the value of x, kar(x) is not a data value in the traditional functional setting.

By giving it the type ρ → τ where ρ is existentially quantified, our type system ensures

we only use it in ways that are safe. We are able to define most of our generic functions

without giving partially applied constructors first-class status. However, as yet, we can’t

write generic show or generic equality (page 24). To complete the capabilities we require,

we need to lift lonely constructors closer to “first-class” status. To be clear, we will only

reify lonely constructors in this section, partially applied constructors (with at least one at-

tached argument) will not be given any extra affordances. It is a simple matter to differ-

entiate lonely constructors from partially applied constructors since lonely constructors

are atoms. In effect, we will show how to treat lonely constructors like any other built-in

value (integers, characters, etc).

In the same way we have built-in operations for built-in types (like ord to get the value

of a character), we should have built-in functions on lonely constructors. So, we want to

add two new built-in operations on lonely constructors: ===which is constructor equality,

and show_constr which converts a constructor to a string. It is a simple matter to define

new literal operations in our internal languages, they pass through the compiler without

effecting any of the compilation algorithms except for type inference.

We must define type inference rules for these new operations, but it is a straight-

forward affair. Firstly we note that lonely constructors can have many types, for exam-

ple Cons :: (a, list(a))-> list(a) while Pair :: (a, b)-> pair(a,b). Thus these

new primitive operations need to have polymorphic input types. The result type for each

is self-evident. This we want to infer the following types for these two new primitive

operations

=== : α → β → Bool

constr show : α → String

We don’t require any new techniques, we only need to formulate type inference rules

which reflect the desired types. Figure 6.5 shows these type inference rules.
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It is only left to define these operations in Epic (’s runtime system). Both these

functions can take in any input, thus we need to build some run-time checks into the

definitions to cope with input of undesirable values. It is up to the compiler writer to

define the operation of these functions on input that is not lonely constructors, we have

chosen to return false and the empty string for equality and show respectively. Listings

6.6 and 6.7 show our definitions of constructor show and equality.

Listing 6.6: Constructor Show in the  Runtime
1 char* constrToStr(Closure* cl){
2 if(ISCON(cl)){
3 con* c = (con*)(cl->info);
4 char* str = c->tycon;
5 char* buf = EMALLOC((4+strlen(str))*sizeof(char));
6 sprintf(buf,”[%d,%s]”, c->tag & 65535, c->tycon);
7 return buf;
8 }
9 else

10 char* str = ””;
11 char* buf = EMALLOC((4+strlen(str))*sizeof(char));
12 sprintf(buf,”%s”, str);
13 return buf;
14 }

Listing 6.7: Constructor Equality in the  Runtime
1 int constreq(Closure* one, Closure* two){
2 switch(GETTY(one)) {
3 case CON:
4 if( (GETTY(two) == CON)
5 && (TAG(one) == TAG(two))
6 && (strcmp(TYCON(one),TYCON(two)) == 0)
7 ){
8 return MKINT(1);
9 }

10 else{
11 return MKINT(0);
12 }
13 break;
14 }
15 return MKINT(0);
16 }

Arbitrary values in Epic are Closures which we can inspect to find out what form

of closure (either with GETTY or with a specific IS* macro). Boolean values are stored

as integers in the runtime, hence string equality returns an integer. Constructor show

builds a string representation for the constructor from its type and its tag. This is not

the “pretty printing” that Haskell’s show function performs, it is a simpler method but it
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still gives a unique identifying string for each constructor. Constructor equality needs to

check both the equality of the constructor’s tags (its identity within its type) and that the

two values come from same type. We could test only the tag if constructor equality had

type α → α → Bool rather than the type it has, α → β → Bool. We address this matter in

more detail in Section 7.3.1.

The downside of this approach is that the built-in functions on atoms must be pro-

vided by the compiler. However, we consider this a small burden since compiler writers

would already do this for other atoms (integers, characters, etc). The only extra work is to

include constructors without arguments as one of these atoms, a relatively small addition

to creating all the required built-in functions. It is easy to determine what built-in opera-

tions should be provided for lonely constructors. Any built-in that is defined for all other

primitive types should be provided for lonely constructors as well.

This raises the status of lonely constructors to values of the language rather than just

tags for other values. Note that we have found a very simple way to give them this status.

As we have seen, we have not had to make wholesale changes to the run-time to achieve

this.

In summary, our prescription for lonely constructors is to include polymorphic op-

erations which work on lonely constructors, one for each of the operations that are over-

loaded for all the other built-in types. Performing this relatively simple task, combined

with function extension and application pattern matching, allows one to expand a func-

tion with definitions for all the built-in types into one that works for all types in the language,

as we have done with generic equality and generic show.

6.9 Summary

We have shown that structure agnosticism can be achieved with modest changes to a base-

line functional compiler via application pattern matches. Application pattern matches

can be removed with a small extension to the pattern compilation algorithm. The result-

ing primitives can be typed using FCP plus a small extension to the type environment.

Finally, the new primitives can be realised in the run-time without any changes to how

values are stored at run-time. We also described how to supply built-in primitive opera-

tions on lonely constructors to expand the set of generic functions to include operations

like equality and show.

We have now described everything required to compile generic functions. These tech-

niques have been implemented in  and we now use that implementation to evaluate

them.
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Chapter 7

Evaluating Expressiveness

In this chapter we examine the extent to which our language, , provides enough

of a foundation upon which to build generic functional compilers. Specifically we do

this by demonstrating that it is expressive enough to support a very wide repertoire of

admissible generic program types. We look well beyond our initial group of eight example

snippets to see the full capabilities (and limitations) of using the explicit spine view and a

single function extension operator. We also show that these two mechanisms are powerful

enough to emulate the slightly different spine view used in SYB and the computation style

of strategic rewriting [86, 88]. The latter of these topics encompasses a data transformation

style which is often (although not always [81]) supported by specifically designed domain

specific languages. In our case, however, we demonstrate that  is expressive enough

to support full strategic rewriting in a library.

To show the full capabilities of the mechanisms we have developed, and to demon-

strate that our type system is accepting and rejecting the right programs we:

• revisit the five kinds of generic functions we introduced in Chapter 2,

• describe variants of the generic functions which illuminate the extent of the capa-

bilities we have introduced,

• encode strategic rewriting in , and

• explain the limitations of these techniques.

We have placed the full source of the compiler online and have exposed a working

instance of the compiler at the URL dgen.science.mq.edu.au. Interested readers can

compile and run any tests at that URL.



7.1 Five Kinds of Generic Programs

Our first task is to demonstrate that we can compile and run all the generic functions

outlined in Chapter 2. When we introduced these functions we, in effect, assumed the

presence of appropriate function extension and application pattern match capabilities. In

the chapters since, we have shown how these capabilities can be added to a baseline func-

tional compiler. In this section we show that the mechanisms we built in Chapters 5 and 6

are capable of performing the roles we intended for them. We will do this by highlighting

the relevant part of each snippet from Chapter 2 and giving a brief commentary explain-

ing how our function extension and application pattern matches fulfil the roles required

of them.

7.1.1 Generic Update

Listing 7.1: Part of the salary update snippet
1 def incS(amt, s) = case [s] of
2 { [S(s)] -> S(s + amt)
3 } otherwise -> error ”partial definition error in incS”
4 def id(x) = x
5 def increment(amt) = incS(amt) ◃ id
6 def generic_update(func, dat) :: (∀ a . (a) -> a, b) -> b = apply_to_all(func,dat)

Listing 7.1 shows the relevant part of the salary update snippet from Listing 2.3. The

incS function is defined by case analysis on values of type salary. The type inference

mechanism can infer this because the case pattern is a constructor of the salary type.

Thus the inferred type for incS is (int, salary())-> salary(). We want this function

to be passed into generic_update, which will apply its first argument throughout the

structure of its second argument. Thus we need to construct a function with type ∀ a .

(a)-> a, but which has the behaviour of incS.

Function extension allows us to specialise a generic function with incS in exactly the

way we require. The synthesised generic function incS(amt)◃id will have type ∀ a . (a

)-> a and will behave exactly as incS does when applied to values of type salary.

The type system will accept this extension because it allows the type of id (i.e. (a)

-> a) in the right hand side of the function extension operation and it will successfully

unify that type against the type of incS(amt) (i.e. (salary())-> salary()). Furthermore,

salary() is a ground, arrow-less type so the side conditions in the type inference rule for

function extension (see page 86) are not triggered. At runtime, function extension has
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been converted into a typeOf operation (see page 94) in such a way that any value with

type salary() (which is exactly those values constructed with the S constructor) will be

applied to incS as desired and all other values will be applied to id (see page 95).

7.1.2 Generic Query

Listing 7.2: Part of the name analysis snippet
1 def check_it(strbool) :: (pair(list(string),bool), a) -> pair(list(string),bool)
2 = check_comm(strbool) ◃ check_intexp(strbool) ◃ fun(a) = strbool
3

4 def decl_before_use(comm) = snd(generic_query(check_it,Pair([],true),comm))

Listing 7.2 gives the relevant part of the name analysis snippet from Listing 2.4. The

check_it function requires the ability to string together specific functions with the func-

tion extension operator and have whichever is appropriate apply when the synthesised

generic function is applied to a value. Furthermore, it requires that these functions can

have a known return type (in this case pair(list(string),bool)), values of which will

be threaded through the generic_query function.

Function extension is able to support both these requirements. Firstly, function ex-

tension is right associative (see page 80), for example f ◃ g ◃ h, is more explicitly stated as

f ◃ (g ◃ h). Thus we can string together as many extension operations as we require.

Function extension supports known types as the result type of synthesised generic

functions because it only checks the input type for polymorphism (see page 86). Further-

more, the unification of the types of the specific and generic functions ensures that the

known return type is the same for all functions in the chain.

7.1.3 Generic Traversal

Listing 7.3: A bottom-up generic traversal
1 def apply_to_all(f,g) :: (∀ a . (a) -> a, b) -> b =
2 case [g] of
3 { [c(a)] -> f(@apply_to_all(f,c)(apply_to_all(f,a)))
4 ; [o] -> f(o)
5 } otherwise -> error ”partial definition error in apply_to_all”

We will use the bottom-up generic update, repeated for convenience in Listing 7.3, to

represent all the generic traversal snippets since it includes all the relevant requirements.
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The apply_to_all function assumes the presence of:

1. Polymorphic recursion to allow two calls to apply_to_all at two different types in

its own body.

2. Rank-2 types to allow two different calls to f, with arguments of different types, in

the body of apply_to_all.

3. The ability to pull anonymous (i.e. we can’t identify how it was constructed) values

into two pieces.

4. The ability to transform these extracted pieces using a type preserving function.

5. The ability to “re-assemble” the transformed pieces.

We have extended our type system to support polymorphic recursion (see page 113)

and rank-2 types (see page 93) so the first two requirements are satisfied. Application pat-

tern matches allow us to disassemble any value into two pieces, so the third requirement

is satisfied. The values that come from this extraction are given the types ρ → τ and ρ

where τ is the type of the original value and ρ is a unique, existentially quantified type

variable. The only restriction on these types is that ρ can only unify with itself. Specifi-

cally, we can pass values of type ρ to functions that expect type ρ (of which there are none

since ρ does not exist outside of the existential scope) or which are polymorphic. The type

preserving function in this example is polymorphic in its input type, so we can pass both

parts of the original value to it for transformation, satisfying our fourth requirement. Fur-

thermore, since the transformation is type preserving, the resulting values have the same

types as they did when they were originally split. Since ρ can be unified with itself, we

can re-assemble the transformed parts, satisfying the final requirement.

7.1.4 Generic Equality and Generic Show

These two snippets required only one extra capability, polymorphic built-in functions on

lonely constructors. In Section 7.2.3 we will expand upon ’s support for the nested

function extension used in generic equality so we will defer discussion of that feature until

then. On page 116 we gave a prescription for adding primitive functions on lonely con-

structors to a run-time and giving the required polymorphic types to them. Because these

primitives have polymorphic types, they can be the generic function in a function exten-

sion. In other words, we can safely use them as the final function in a chain of function

extension operations, as shown in Listings 7.4 and 7.5.
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Listing 7.4: Part of Generic Equality
1 def g_str_eq() :: (a,b) -> Bool =
2 (fun(a) = (fun(b) = a s== b)
3 ◃
4 (fun(b) = false)
5 )
6 ◃ (fun(a) = (fun(b) = a === b))
7

8 def g_int_eq() :: (a,b) -> Bool =
9 (fun(a) = (fun(b) = a i== b)

10 ◃
11 (fun(b) = false)
12 )
13 ◃ g_str_eq()
14

15 def g_char_eq() :: (a,b) -> Bool =
16 (fun(a) = (fun(b) = a c== b)
17 ◃
18 (fun(b) = false)
19 )
20 ◃ g_int_eq()
21

22 def g_bool_eq() :: (a,b) -> Bool =
23 (fun(a) = (fun(b) = a b== b)
24 ◃
25 (fun(b) = false)
26 )
27 ◃ g_char_eq()
28

29 def bi_eq(x,y) :: (a,a) -> Bool
30 = g_bool_eq(x,y)

Listing 7.5: Part of Generic Show
1 def bishow() :: (a) -> String
2 = let si(x) = show_int(x)
3 and sc(x) = show_char(x)
4 and sb(x) = show_bool(x)
5 and ss(x) = if (x s== ””) then x else x
6 and ds(x) = show_constr(x)
7 in si ◃ sc ◃ sb ◃ ss ◃ ds

7.2 Variants

We now turn our attention to exploring the extent of what we have achieved with the

explicit spine view and function extension.

7.2.1 Structure Modification (with Type Preservation)

As long as we maintain the type of each node, we can do anything with generic updates.

Listing 7.6 shows an alternative to updating salary in the same datatype as the salary

update snippet (and Listing 7.7 shows the output of this program). In this example we
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wish to “flatten” a sub-unit, identified by its name. It is a port to  of an example in

[53].

Listing 7.6: Program for flattening sub-units
1 def flatten(n,c) = let g_flatD(n) = flatD(n) ◃ id
2 in everywhere(g_flatD(n),c)
3

4 def flatD(n,c) = case [c] of
5 { [D(n’,m,us)] -> D(n’,m,concatMap(unwrap(n),us))
6 } otherwise -> error ”partial definition error in flatD”
7

8 def unwrap(q,su) :: (string, sub_unit()) -> list(sub_unit())
9 = case [su] of

10 { [DU(D(d’,M(m),us))] -> if (q s== d’)
11 then Cons(PU(m),us)
12 else [su]
13 ; [u] -> [u]
14 } otherwise -> error ”partial definition error in unwrap”
15

16 // setup
17 def gen_com() = let ralf() = E(P(”Ralf”, ”Amsterdam”), S(8000))
18 and joost() = E(P(”Joost”, ”Amsterdam”), S(1000))
19 and marlow() = E(P(”Marlow”, ”Cambridge”), S(2000))
20 and blair() = E(P(”Blair”, ”London”), S(100000))
21 and terrence() = E(P(”Terrence”, ”Ottowa”), S(3000))
22 and phillip() = E(P(”Phillip”, ”Montreal”), S(3000))
23 and dion() = E(P(”Dion”,”Quebec”), S(10000))
24 in C([ D(”Research”, M(ralf), [ PU(joost)
25 , PU(marlow)
26 , DU(D(”Hijinx”, M(dion), [ PU(terrence)
27 , PU(phillip)]
28 ))
29 ])
30 , D(”Strategy”, M(blair), [])
31 ]
32 )
33

34 main = do_all([ put_string(”--- Before ---\n”)
35 , put_string(show_company(gen_com))
36 , put_string(”\n--- Can’t flatten top level department ---\n”)
37 , put_string(show_company(flatten(”Research”, gen_com)))
38 , put_string(”\n”)
39 , put_string(”--- Can flatten sub units ---\n”)
40 , put_string(show_company(flatten(”Hijinx”, gen_com)))
41 , put_string(”\n”)
42 ])

We are able to use the same generic_update function to traverse the datatype but

instead of looking for salaries to update, we look for departments to flatten. When we

find a department (any department), we check its sub units to see if the department we

want to flatten is in there (unwrap). If it is, we demote its manager to a normal employee

and move all its normal employees (and sub-units) to the surrounding department. We

are changing the structure of the data, but as long as we are maintaining the type, it is
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safe (and passes ’s type inference).

Listing 7.7: Output of flattening sub-units
1 --- Before ---
2 Company[ Department: Research, Ralf<Amsterdam, 8000>,
3 [ Joost<Amsterdam, 1000>
4 , Marlow<Cambridge, 2000>
5 , Department: Hijinx, Dion<Quebec, 10000>, [ Terrence<Ottowa, 3000>
6 , Phillip<Montreal, 3000>
7 ]
8 ]
9 and Department: Strategy, Blair<London, 100000>, []

10 ]
11 --- Can’t flatten top level department ---
12 Company[ Department: Research, Ralf<Amsterdam, 8000>,
13 [ Joost<Amsterdam, 1000>
14 , Marlow<Cambridge, 2000>
15 , Department: Hijinx, Dion<Quebec, 10000>, [ Terrence<Ottowa, 3000>
16 , Phillip<Montreal, 3000>
17 ]
18 ]
19 and Department: Strategy, Blair<London, 100000>, []
20 ]
21 --- Can flatten sub units ---
22 Company[ Department: Research, Ralf<Amsterdam, 8000>,
23 [ Joost<Amsterdam, 1000>
24 , Marlow<Cambridge, 2000>
25 , Dion<Quebec, 10000>
26 , Terrence<Ottowa, 3000>
27 , Phillip<Montreal, 3000>
28 ]
29 and Department: Strategy, Blair<London, 100000>, []
30 ]

However, the traversal order can affect the correctness of an operation like this one.

Once we start changing the structure of the data we are working over, we need to ensure

that the traversal we are employing to find elements is working in the order we expect.

Otherwise we might find that a structure we are looking for has been removed further up

(or down) the tree. In this case, the top-down traversal of generic_query is perfect.

7.2.2 Datatype Aware Traversals with no “Boilerplate”

The name analysis snippet is only possible because generic_query does traversal in the

way that the problem requires. The ability to write our own generic traversals means

that if the right traversal is not available in the libraries, we can always write our own.

However, splitting the job of traversal from the computation required can be very awkward.

Sometimes it is just simpler to do the traversal with monomorphic functions on the types

in question. If you do this though, you are normally committed to update these functions
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every time you extend the datatypes. In this section we will see how application pattern

matches free you from this burden and as such makes another small dent in the expression

problem [91].

Listing 7.8: An alternate algorithm for name analysis
1 def check_comm(lst, expr) :: (list(string),comm()) -> bool =
2 case [expr] of
3 { [CDecl(v,z,e)] -> decl_before_use(Cons(v,lst),e)
4 ; [CAssign(v,z)] -> elem(fun(p,q) = p s== q,v,lst)
5 ; [c(a)] -> decl_before_use(lst,c) & decl_before_use(lst,a)
6 ; [z] -> true
7 } otherwise -> error ”partial function error in check_comm”
8

9 def check_intexp(lst,expr) :: (list(string), int_exp()) -> bool =
10 case [expr] of
11 { [IUse(v)] -> elem(fun(p,q) = p s==q,v,lst)
12 ; [c(a)] -> decl_before_use(lst,c) & decl_before_use(lst,a)
13 ; [z] -> true
14 } otherwise -> error ”partial function error in check_intexp”
15

16

17 def check_other(lst, a) :: (list(string), a) -> bool =
18 case [a] of
19 { [c(a)] -> decl_before_use(lst,c) & decl_before_use(lst,a)
20 ; [z] -> true
21 } otherwise -> error ”partial function error in check_other”
22

23 def decl_before_use(lst) :: (list(string), a) -> bool = check_comm(lst) ◃ check_intexp(lst)
◃ check_other(lst)

Listing 7.8 shows a version of the name analysis code which is less generic than List-

ing 2.4 (on page 21) because it is “datatype aware”. We have written one method for

each interesting type (comm() and int_exp() as before) but this time we traverse into the

children explicitly instead of leaving that job to generic_query. This means that each

function needs to have case alternatives for all possible constructors. Without applica-

tion pattern matches, this would mean enumerating all constructors (since we need to

recurse into constructor arguments). This would force an update to the function every

time the associated datatype changed. With application pattern matches we can cover all

“uninteresting” constructors with one application pattern, and all atoms with one vari-

able pattern. This not only makes the initial definition more concise, it means extensions

to comm() or int_exp() only force changes to check_comm and check_intexp if the new

constructor has some interesting behaviour in that function.

For example, Listing 7.9 shows expanded algebraic datatype definitions that were cre-

ated with no corresponding changes to the code for name analysis. We were able to add new
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Listing 7.9: An expanded comm() algebraic datatype
1 adt comm() = CAssign(string, int_exp())
2 | CDecl(string, int_exp(), comm())
3 | CSkip()
4 | CSeq(comm(), comm())
5 | CWhile(bool_exp(), comm())
6 | CPut(int_exp())
7 | CUntil(bool_exp(), comm())
8 | CFor(int_exp(), int_exp(), int_exp(), comm())
9

10 adt int_exp() = IUse(string)
11 | ILit(int)
12 | IPlus(int_exp(), int_exp())
13 | IMinus(int_exp(), int_exp())
14 | IMultiply(int_exp(), int_exp())
15 | IDiv(int_exp(), int_exp())
16 | IMod(int_exp(), int_exp())
17

18 adt bool_exp() = BTrue()
19 | BFalse()
20 | BEq(int_exp(), int_exp())
21 | BNEq(int_exp(), int_exp())
22 | BAnd(bool_exp(), bool_exp())
23 | BOr(bool_exp(), bool_exp())

integer primitive operations (IMinus, IMultiply, IDiv and IMod) and new control flow

structures (CUntil and CFor) without changing any of the code to perform the name anal-

ysis check.

The style of traversal we have described in this section is similar to the type safe traver-

sal functions of A+S [86]. A+S is a term-rewriting system that supports traversal

functions with which one can define the traversal scheme for a particular rewrite rule.

Normal rewrite rules are used to define the interesting behaviour of the traversal while

a more generic traversal function defines how the traversal should visit the tree. Thus

A+S supports a split of duties similar to that in Listing 7.8. Furthermore, A+S

and  support a similar level of type safety for the defined traversals. One important

difference between the two systems is that A+S uses traversal parameters, which are

passed to traversal functions, to customise the traversal behaviour whereas in  the

developer does the traversal by hand using the explicit spine view of data. The A+S

approach is simpler while the  approach is more flexible.

7.2.3 Function Extension with Multiple Arguments

Although each instance of the function extension operator (◃) chooses which function

to run based on only a single argument, we can nest them to discriminate on multiple

arguments. Listing 7.10 shows a polymorphic function that returns None() for input that
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is not two integers, and Some(a+b) for two integer inputs a and b.

Listing 7.10: Choosing functions based on two arguments
1 def plus(x,y) = Some(x+y)
2 def noneInt(b) = if (true) then None() else Some(5)
3 def noneIntInt(a,b) = if (true) then None() else Some(5)
4

5 def plus_or_none() :: (a,b) -> some(int) =
6 (fun(a) = (fun(b) = plus(a,b))
7 ◃
8 (noneInt)
9 )

10 ◃ (noneIntInt)

The plus_or_none function defines an inner, single-argument function, which discrimi-

nates on the second argument, adding it to the first if it is an integer. This is nested inside

a similar function which runs the inner one if the first argument is an integer and defers to

the default (None()) if not. The definitions of these defaults are complicated by the need

to get the types right without the benefit of general type annotations. However, it is a

simple task to extend  with such annotations.

7.2.4 Generic Zip-With

Implicitly using the spine view (as is done in SYB) can make traversals over two or more

structures quite awkward. The discussion of the encoding of a generic zip-with function

in [52] is indicative of this. Our approach of exposing the spine view via pattern matching

significantly ameliorates this problem. Listing 7.11 encodes a generic zip-with function

whose sheer simplicity clearly demonstrates the utility of the explicit spine view in this

context. A generic zip-with function takes in two structures and traverses each in parallel.

For each pair of atoms it finds, it combines them using the provided zip function (fn). Its

result is a list of all the zipped values that it discovered along the way.

Listing 7.11: A generic zip-with function
1 def gzipwithq(fn, a, b) :: (∀ x, y. (x, y) -> r,a,b) -> list(r) =
2 case [a,b] of
3 { [c1(z1), c2(z2)] -> append(gzipwithq(fn,c1,c2),gzipwithq(fn,z1,z2))
4 ; [p,q] -> [fn(p,q)]
5 } otherwise -> error ”partial definition error in gzipwithq”

One difference between this encoding and the one in [52] is that constructors are in-

cluded as atoms in the  version. This means that the resulting list will include zip-
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values for each constructor discovered along the way. This behaviour is both anticipated

and to be desired since partially applied constructors are valid values in . SYB works

in Haskell, where partially applied constructors are functions. Listing 7.12 shows an ex-

ample of using gzipwithq and the result of that example.

Listing 7.12: Using gzipwithq (some code elided for space)
1 main = ... put ... gzipwithq(plus_or_none, [1],[2])))
2 ... put ... gzipwithq(plus_or_none, [10,20,30],[1,2,3])))
3 ...
4 // output
5 [None(),Some(3),None()]
6 [None(),Some(11),None(),Some(22),None(),Some(33),None()]

In this example we have used a polymorphic function with specific behaviour that

works on two arguments (plus_or_none from Section 7.2.4) as the polymorphic input and

each constructor in the input structures is represented by None() in the output list. This

list could then be filtered to have just the valid integers if desired.

7.2.5 SYB Primitive Operations

As shown with generic zip-with, ’s spine view does not necessarily coincide with that

in SYB. In this section we show that we can recover the SYB behaviour with encodings of

the gmapT and gmapQ functions from [53]. In SYB, these functions (or the functions they

rely on) are written either once for each datatype that we need to process generically, or

are derived by the compiler. With  they can be written once as library functions and

will automatically work on all datatypes.

The function gmapT is a generic update function which only works on the immediate

arguments of a constructed value (rather than recursively finding all children as generic

update does). It also treats the constructor differently by not attempting to apply the poly-

morphic function with specific behaviour to it. Listing 7.13 shows the  encoding of

gmapT. It walks the spine of the value it has been given, applying the updating function

to each argument as it encounters them and pasting the value back together once this is

done.

The only atom encountered on the left of an application pattern match during a walk

of the spine is the constructor. We use this fact to identify the constructor (in the second

case alternative – line 4) and return it unchanged.

The function gmapQ, shown in Listing 7.14, is a generic query which also works only on
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Listing 7.13:  encoding of gmapT
1 def gmapT(fn,a) :: (∀ x . (x) -> x, a) -> a
2 = case [a] of
3 { [c(z)] -> @gmapT(fn,c)(fn(z))
4 ; [z] -> z
5 } otherwise -> error ”partial definition error in gmap”

the immediate children of a value. Instead of updating values and pasting them back into

the original structure (as gmapT does), gmapQ accumulates the transformed values in a list.

This allows it to work with a type transforming function rather than a type-preserving

one as gmapT and generic update require. Again we use the fact that a spine traversal can

identify the constructor to avoid including its transformation in the list of returned values

(line 6).

Listing 7.14:  encoding of gmapQ
1 def gmapQ(fn,a) :: (∀ x . (x) -> r, a) -> list(r)
2 = reverse(gmq(fn,a))
3 def gmq(fn,a) :: (∀ x. (x) -> r, a) -> list(r)
4 = case [a] of
5 { [c(z)] -> Cons(fn(z), gmq(fn,c))
6 ; [z] -> Nil()
7 } otherwise -> error ”partial definition error in gmq”

7.2.6 Expanding the Set of Built-In Operations

In Section 6.8 we saw how to create built-in equality and conversion to string (show) for all

values by adding primitives for lonely constructors. We can repeat this process as many

times as we want. For any operation we wish to do generically, we can define how to do

it for each atomic value (including constructors with no arguments) and then build-up

a function that can work on any value from these. A compiler writer just needs to take

care that the type inference rule for built-in operations on lonely constructor are given

polymorphic types since they will be used as the ultimate default function in (probably a

string of) function extensions.

Generic Encode is a single function which can encode, as a bitstring, any value of any

type (Listing 7.15).

Although it looks much more complicated than generic show, it works in the same

way. A built-in operation on lonely constructors is used as the base to build up a bitstring

function that can work for any atoms (bibitstring). Note that ’s parser requires
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Listing 7.15: Generic Encode (bitstring function)
1 def bitstring_int(i) :: (int) -> list(bit())
2 = letrec bsi_help(bt, it) = case [bt] of
3 { [0] -> error ”invalid input to bsi_help”
4 ; [1] -> case [it] of
5 { [0] -> [Zero()]
6 ; [1] -> [One()]
7 } otherwise -> error ”wrong remainder”
8 } otherwise -> letrec g() = it / bt
9 and p() = it - g * bt

10 in case [g] of
11 { [0] -> Cons(Zero(), bsi_help(bt / 2, p))
12 ; [1] -> Cons(One(), bsi_help(bt / 2, p))
13 } otherwise -> error ”pfe in bsi_help”
14 in bsi_help(1048576, i)
15

16 def bitstring_char(c) :: (char) -> list(bit())
17 = bitstring_int(ord_char(c))
18

19 def bitstring_str(s) :: (string) -> list(bit())
20 = letrec bss_help(togo, ss) = if (togo i== 0)
21 then bitstring_char(char_at(ss,0))
22 else append(bss_help(togo-1,ss), bitstring_char(char_at(

ss,togo)))
23 in bss_help(str_len(s),s)
24

25 def bitstring_bool(b) = if (b) then [One()] else [Zero()]
26

27 def bitstring_constr(c) :: (a) -> list(bit())
28 = bitstring_int(ord_constr(c))
29

30 def gbitstring(a) :: (a) -> list(bit())
31 = case [a] of
32 { [c(p)] -> append(gbitstring(c), gbitstring(p))
33 ; [z] -> bibitstring(z)
34 } otherwise -> error ”partial definition error in gbitstring”
35

36 def bibitstring() :: (a) -> list(bit())
37 = let bsi(x) = bitstring_int(x)
38 and bsc(x) = bitstring_char(x)
39 and bsb(x) = bitstring_bool(x)
40 and bss(x) = bitstring_str(x)
41 and bsd(x) = bitstring_constr(x)
42 in bsi ◃ bsc ◃ bsb ◃ bss ◃ bsd

functions, not built-in operations, to be the arguments to ◃, so we need locally bound ver-

sions of each built-in operation. This would not be necessary with a more capable parser.

A case expression is used to discriminate between compounds and atoms, applying the

previously built-up operation for atoms and using recursion to dispatch one level of the

structured data (gbitstring). The extra complexity comes from converting each type into

a relatively efficient bitstring version. However, that algorithm is entirely standard.

131



7.2.7 Strategic Rewriting

As a final example of just how much we can achieve with these features, we give an en-

coding of strategic rewriting in . A strategic rewriting language (or library) typically

provides a few primitive “strategy combinators” and allows the developer to build up

more complex strategies from these. The canonical example is the Stratego programming

language [88].

Strategic Rewriting Terminology

• A rewrite rule is a function which transforms a value into another form. It is defined

as a left hand side which describes the term to rewrite and a right hand side which

describes the transformed value. Function definition by pattern matching case ex-

pressions is sufficient to encode rewriting rules.

• A primitive strategy lifts one or more rewrite rules from working on one value to

working on any value. Thus any encoding of primitive strategies must take account

of the fact that a rewrite can fail (i.e. be applied to a value which can’t match the

right hand side of any underlying rewrite rule(s)).

• A higher order strategy is a function which takes a strategy as a parameter. Its result

is a new strategy which uses the same lifted rewrite rule(s) but traverses values in a

different way.

Our first task is to encode rewriting failure. We do this with an option/maybe type

available in the  libraries, adt some(a)= Some(a)| None(). A strategy is then a func-

tion from a to some(a).

Listing 7.16 shows five primitive strategy combinators, which are taken from Stratego,

encoded as functions in .

The left_plus function tries the first strategy and if that fails (returning None()) it

applies the second strategy. The left_star function is similar but only runs the second

strategy if the first succeeds. The one function will run the given strategy on the first

appropriate child of the given value. A “child” in this context is an immediate argument

of the constructed value (one fails trivially for atomic values like integers). The value is

pulled apart with the first case expression and one is recursively applied. This ensures

that we try from the first argument to the last, in a way that matches the semantics of the

corresponding Stratego combinator. If this (onesc) fails, then we try the current argument
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Listing 7.16: <+, <*, one, id and fail encoded in 
1 //basic
2 def left_plus(s,t,d) = let sd() = s(d)
3 in case [sd] of
4 { [None()] -> t(d)
5 ; [Some(r)] -> Some(r)
6 } otherwise -> error ”partial defn error in left_plus”
7

8 def left_star(s,t,d) = let sd() = s(d)
9 in case [sd] of

10 { [None()] -> None()
11 ; [Some(r)] -> t(r)
12 } otherwise -> error ”partial defn error in left_star”
13

14 def one(s,d) :: (∀ a. (a) -> some(a), a) -> some(a)
15 = case [d] of
16 { [c(a)] ->
17 let onesc() = one(s,c)
18 in case [onesc] of
19 { [None()] -> let sa() = s(a)
20 in case [sa] of
21 { [None()] -> None()
22 ; [Some(r)] -> Some(@c()(r))
23 } otherwise -> error ”partial defn error in one

[I]”
24 ; [Some(r)] -> Some(@r()(a))
25 } otherwise -> error ”partial defn error in one [II]”
26 ; [o] -> None()
27 } otherwise -> error ”partial definition error in one”
28

29 def sid(d) = Some(d) // needs s prefix to avoid name clash with normal id
30 def fail(d) = if (true) then None() else Some(d)
31 // the if is needed to force the type to be a -> some(a)

(a). In the event of success, either with onesc or sa, we reconstruct the original data but

with the transformed argument. The one function requires that the strategy be a rank-2

argument since it is applied to all immediate children of the given value and we have no

knowledge about what their types may be. We certainly have no guarantee that they are

the same (under which circumstances we would not need the higher ranked argument).

The sid and fail functions trivially succeed and fail respectively.

Listing 7.17: attempt, oncetd, srepeat and outermost encoded in 
1 def attempt(s) = left_plus(s, sid)
2 def oncetd(s) :: (∀ a . (a) -> some(a), b) -> some(b)
3 = left_plus(s, one(fun(g) = oncetd(s,g)))
4 def srepeat(s) :: (∀ a . (a) -> some(a), b) -> some(b)
5 = attempt(left_star(s,fun(g) = srepeat(s,g)))
6 def outermost(s) :: (∀ a . (a) -> some(a), b) -> some(b)
7 = srepeat(oncetd(s))
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From these we can build higher order strategies, including strategies that traverse the

whole value (not just the immediate children). Listing 7.17 shows encodings of four such

strategies. These are direct translations of the definitions in Stratego with the exception

of the enforced thunks in oncetd and repeat. These are required to stop the call by value

semantics of  from executing an infinite loop when expanding either of these. The

attempt function (which is called try in Stratego, we use the Kiama [81] name since this

code is ported from Kiama) creates a strategy that tries the strategy s and which will leave

the input unchanged if that fails. The oncetd function will create a strategy that will try

s on the top-most value and then, if that fails, try again on one of the children. It repeats

this process until it finds some value to which it can be successfully applied. The srepeat

function (which is called repeat in Kiama and Stratego, a name which clashes with a list

function in ) will repeatedly apply s until it fails. In other words, this strategy will

be re-applied if it succeeds, until there is failure. The outermost function uses the above

strategies to construct one that will will repeatedly apply s from the top of a value down.

This means that if s succeeds anywhere in the value, it will be applied repeatedly, until it

fails.

We demonstrate this strategic-rewriting module with an example, again ported from

Kiama, which evaluates lambda calculus expressions with explicit substitutions [79] (List-

ings 7.18 and 7.19 and 7.20).

Listing 7.18: Datatype definition for a lambda calculus with explicit substitutions
1 adt exp() = Num(int)
2 | Var(string)
3 | Lam(string, exp())
4 | App(exp(), exp())
5 | Sub(exp(), string, exp())

Evaluation proceeds as constant iteration of the next possible small-step, applying the

small-step rules to the outermost available reducible expression on each iteration. The

one_step function encodes the small-step rules and eval encodes the iteration. The it-

eration uses the strategy combinators to first apply the small-step rules to the top-most

reducible expression - creating a new expression - then repeating this process until there

are no more reducible expressions.

The outermost function uses one, so it too has a higher-ranked argument. This re-

quires us to extend the (monomorphic) small-step rule with one of the polymorphic strate-

134



Listing 7.19: One step of evaluating a lambda expression with explicit substitutions
1 def one_step(e) :: (exp()) -> some(exp())
2 = case [e] of
3 { [App(Lam(x,e1),e2)] -> Some(Sub(e1,x,e2))
4 ; [Sub(Var(x),y,n)] -> if (x s== y)
5 then Some(n)
6 else Some(Var(x))
7 ; [Sub(Lam(x, m),y,n)] -> Some(Lam(x,Sub(m,y,n)))
8 ; [Sub(App(m1, m2),y,n)] -> Some(App(Sub(m1,y,n),Sub(m2,y,n)))
9 ; [Sub(m,x,n)] -> if (elem(string_equality,x,fv(m)))

10 then None()
11 else Some(m)
12 } otherwise -> None()
13

14 def fv(t) = case [t] of
15 { [Num(x)] -> []
16 ; [Var(x)] -> [x]
17 ; [Lam(x,e)] -> remove(string_equality, x, fv(e))
18 ; [App(m,n)] -> append(fv(m),fv(n))
19 ; [Sub(m,x,n)] -> append(remove(string_equality, x, fv(m)),fv(n))
20 } otherwise -> error ”partial definition error in fv”

Listing 7.20: Evaluating a lambda expression to normal form
1 def g_one_step() = one_step ◃ fail
2 def eval(d) = outermost(g_one_step,d)

gies (in this case fail) to get a polymorphic strategy we can try on the whole expression.

This is an example of our type system flexing its muscles. Since case expressions (and

functions built entirely from them) are defined on only one datatype, we must tell the

compiler what function to run on other types. In a typical strategic programming system,

an attempt to process an unknown type (or constructor) causes a fail value to be emitted.

Our type tells us there are actually two choices, failure or success. Our type system en-

forced that we make this decision, and function extension (◃) allowed us to choose either

option depending on our requirements.

7.3 Limitations

7.3.1 Can’t Give Best Possible Type to geq

We have had to give generic equality the type (a,b)-> Boolwhen we would prefer to give

it (a,a)-> Bool since it can never have the value true for values of different types. We

can’t give it the preferred type because there is no universal relationship between a type

and the type of values stored in constructed values of that type. For example, knowing

that x is of type tree(a) (where we have defined adt tree(a)= Branch(a,tree(a),tree
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(a)) | Leaf(a)) tells us that kar(x)’s type could either be (tree(a))-> tree(a) or (a

)-> tree(a). We can’t know which. We can’t even make broader statements about the

type of kar(x). For example, given the datatype declaration

1 adt either(a,b) = Left(a) | Right(b)

and x of type either(a,b) plus y of type either(a,b), we cannot say that the type of kdr(x

) and kdr(y) are the same. One may be awhile the other is b, or vice versa. Thus a generic

function like generic equality can make no assumptions about the potential relationships

between the types of its two arguments. This forces the recursive calls to generic equality

to be of type (a,b)-> Bool which forces the overall type to be (a,b)-> Bool.

This same problem appears in related systems such as SYB [52] and in dependent

type theory where equality with the type (a,b)-> Bool is called John Major’s equality[63].

The nomenclature is a joke referencing former British Prime Minister John Major’s idea of

social equality where the working class are allowed to believe they might become equal

to the upper class in the absence of any mechanism by which that could happen.

7.3.2 Can’t Encode Generic Map

Many authors have studied language features to provide a generic variant of mapping

over each element of a list. Such a function would map over each element in any structure,

applying a function at every node. The difference between this generic map and generic

update is that generic map produces outputs which are structurally identical to the input

data structures but which differ from them in the types of values stored at the nodes.

Generic update produces output which are the same structure as the inputs and have the

same types at all values. For example, one might like to change every character to its

integer representation, which requires a change of type at each node. For this to be type

safe, generic map needs to have a signature like

1 gmap(f,v) :: (a -> b, s a) -> s b
2 = ...

Notice that the type constructor s is a variable in the type definition. For example, s might

be list for one application of gmap and set for another. Many datatype generic tools are

capable of doing this, but  is not. We can’t do this because the universal representa-

tion of data that we are using (the spine view) cannot support it [39]. The problem arises

because the generic function f must apply at all nodes of the structure. For this to be safe,

the polymorphic part (recall this is the right hand argument to the function extension op-

eration) must be identity. This forces the type type of f to be α → α, making it impossible
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to define gmap. One possible approach to correcting this is to enable another view on data

(one which can support type variables) and to create a new type of case expression to

discriminate upon it. This is the approach taken in bondi (section 14.4 [43]). Another pos-

sible approach is the “lifted spine view” [38] which instead supplements the spine view

with the information required to encode more datatype generic examples.

7.3.3 Can’t Encode Generic Read

A generic read function is one that can consume serialised data and turn it into a value for

any datatype. It is the reverse of generic show. As it currently stands, the spine view of

data we are using is not expressive enough to allow us to write a generic read operation.

The same techniques that show promise for solving the generic map problem look likely

to solve this problem as well. In particular, the “type spine view” of [38] has already been

shown to allow encoding of generic producers like generic read.

7.4 Summary

In this chapter we have seen that  is able to compile a great variety of generic pro-

grams, including strategic-rewriting and many datatype generic programs as well as our

original eight snippets. We have also shown that the explicit spine view gives another

front upon which to tackle the expression problem. We also noted that the specific spine

view we are using is unable to compile a few commonly desired datatype generic func-

tions. We noted earlier that, although the explicit spine view is used in a few other sys-

tems, our is the first compiled account of it. To our knowledge this chapter is the most

comprehensive survey of what can be encoded with the explicit spine view, further con-

tributing to the literature on this technique.
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Chapter 8

Evaluating Compilation

In this chapter we demonstrate how successfully  has achieved our goal of being

a generic function compiler. We do this by evaluating three primary characteristics of the

 compiler, these being: the speed of compiled programs, the memory use of compiled

programs, and the opportunities for optimisations. The first two are done by comparing

the generic function overhead in  to the same overhead in other generic function

tools. We will show that  performs significantly better than SYB, which is the most

closely related generic functional library available for functional language compilers. To

demonstrate optimisation opportunities we will implement one simple optimisation and

discuss how to implement an existing optimisation from another compiler. In this chapter

we also quantify the memory overhead that our encoding of kar/kdr introduces to generic

programs.

8.1 A Note About our Benchmarks

The benchmarking of programming language compilers is an art which requires careful

experimental design. To that end we have designed our benchmarks in an incremental

fashion, to avoid problems that arise from direct comparisons of technically incomparable

compilers. For example, GHC generates much faster non-generic code than  does,

so any naive approach to making direct performance comparisons between their generic

facilities is doomed to failure. So we must adopt a method for making these assessments

which allows us to faithfully compare results measured against different baseline scales.

Specifically, we measure the percentage slowdown experienced when moving from a non-

generic piece of code to an equivalent generic program, as compiled by the same compiler,

and then compare these relative results from one compiler/toolset to the next. Secondly,



we benchmark on more than one type of generic program since different generic programs

have different performance characteristics.

Thirdly, a certain input value could have a short-cut to the result in some generic pro-

grams, so we test each benchmark on multiple inputs. We choose to use differently sized

inputs because an interpolation line between them will give a clear idea of performance

for many different inputs. Finally, to avoid inadvertent selection of favourable inputs,

all input values are randomly generated. While this last decision does introduce some

residual noise into our experimental results, this inconvenience is more than outweighed

by the reassurance provided by this approach. As we shall see, the signal-to-noise ra-

tio is more than good enough to allow us to clearly identify the trends revealed by our

experiments.

8.2 Compiled Speed

Our primary concern regarding speed of compiled programs is to determine the overhead

of using generic code in comparison to monomorphic or (standard) polymorphic code. It

has been shown [61, 94] that generic functions can have a significant overhead. One of the

claims of this thesis is that we have significantly reduced this overhead in our implemen-

tation, primarily by implementing the most costly parts of the process in the compiler and

run-time, where there is maximum information about the program and more opportuni-

ties to customise behaviour.

8.2.1 Maintaining Compilation to switch Statements.

Discriminations with case expressions are everywhere in functional code. In large part

they drive the computation forward, indeed it can be said that they are the only source of

evaluative impetus in lazily evaluated languages. Efficient compilation of these expres-

sions is absolutely vital to quickly executing functional programs.

Such expressions are compiled into very fast discrimination, or branching, constructs

in the target language. For example, if the target language is C, they are compiled into

switch statements. If the target language is some machine code, they will probably be

compiled to jumps. Compilation to such efficient code is only possible because of a few

characteristics of the case expressions in the internal languages of the compiler (as op-

posed to those in the source language):

• Constructors are small integers. Using such a small value for a constructor is only
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possible when constructors are unique per-datatype. If they needed to be unique

per-program, we would need a more complex encoding.

• The case expressions only discriminate on constructors. Thus patterns that dis-

criminate on something else (i.e. the structure of the value as in application pattern

matches) can’t be part of these case expressions.

By carefully choosing and constructing our solutions for polymorphic functions with

specific behaviour and for structure agnosticism we have maintained these characteristics

in ’s internal languages (C and SC). We will see that there is a small cost to

be paid when using generic functions, but had we not maintained the above characteristics

in our compiler, there would have been a great cost to be paid in all code. As things stand,

our primary weapon against slow code, compilation to switch, has been maintained. Of

course, we have not been able to do this without making a few trade-offs, most notably we

had to exclude the option of extension typing (see Section 3.3.1). In its place we created

the extension operator, making it general enough to replace that mechanism. We also

used careful compilation and novel typing rules to allow application pattern matches to

be converted into non-case expressions (i.e. ispair, kar and kdr).

8.2.2 Generic Libraries Cause Slowdown

We follow the methodology of Magalhães [61], which is sufficiently similar to Rodriguez

[94] that his results are also enlightening. We define a generic function and a monomor-

phic version of that function for a specific data type. The two programs perform the same

computation, and traverse values in the same way, but the monomorphic version uses the

language’s fastest mechanism (pattern matching on constructors) while the generic ver-

sion uses the facilities provided by generic programming tools. In our case the facilities

comprise application pattern matches and function extension.

The most appropriate comparison for this work is with SYB, which runs between 600%

and 8600% the speed of the monomorphic version [61, 94]. As we will soon see, 

achieves between 290% and 310% of monomorphic speed.

8.2.3 dgen has Relatively Little Slowdown due to Generics

Each of the following benchmarks takes a data value of a certain size which is generated

with an algorithm that uses some randomness to ensure that each generated value is dif-

ferent to the last. The randomness also affects the shape of the generated data (i.e. some

randomly generated values will be shallow but broad, others will be deep and narrow).
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This removes the possibility that we have inadvertently chosen a favourable shape of data

for the benchmark. It runs both the generic and non-generic code over this value 10 times

and sums the run-times. To be clear, for each size of input the generic and non generic

code is run on the same value. The generator then generates the next size value and the

process is repeated. We choose to linearly increase these sizes because an accompanying

linear increase in run-times is a useful sanity check. The graph of generic run time vs

input size is superimposed on the graph of non-generic run time vs input size on a single

chart (show on the left of each figure). For each input size the generic run-time divided

by the monomorphic run time is plotted on another chart (shown on the right of each

figure). This chart shows some noise due to the random input data so we give a line of

best fit on that chart as well. We will include the details of the best fit calculations in each

section. This line of best fit is the slowdown due to generic code in  for the example

and inputs in question.

Program execution time was recorded using the unix time command and the bench-

marks were run on a MacBook Pro model 5,5 (Intel Core Duo 2.26Ghz, 4GB Memory).

We benchmarked both the salary update (a generic traversal) and the name analysis (a

generic query) snippets.

Salary Update

Figure 8.1 shows our benchmark results for the salary update snippet from Figure 2.3. We

see a slowdown a little less than 3 times (precisely, 2.92 times). The best fit was calculated

for a straight line in two dimensional space (y = m ∗ x + b) and, the best fit calculations

give a gradient of approximately 01 indicating we are recording a consistent slowdown.

Name Analysis

Figure 8.2 shows our benchmark results for the name analysis snippet from Figure 2.4.

We see a slowdown a little more than 3 times (more precisely, 3.09 times). The best fit was

calculated for a straight line in two dimensional space (y = m ∗ x + b) and, again, the best

fit calculations give a gradient of approximately 02.

8.2.4 Comparisons to Other Tools

In this section we compare the results we have collected for  with similar results

for other tools capable of processing generic functions. The ideal comparison would be
1actually, 0.000131332
2actually 2.32231e-05
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Figure 8.1: Slowdown due to generic code for salary update snippet
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Figure 8.2: Slowdown due to generic code for name analysis snippet
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between different tools running the same programs on the same machines, but there are

two reasons we don’t do this:

1. As noted by Hinze [39], not all programs are expressible in all tools. Even when

they are, the encodings can differ substantially.

2. We can make use of existing published benchmarks which give a valid point of view,

making it unnecessary for us to re-run all the benchmarks ourselves.

Thus we rely on other published benchmarks for this comparison. As we mentioned

earlier, there are two published benchmarks of generic functions which use the same

methodology we used. The first, by Rodriguez [94] is part of a comprehensive study of

datatype generic libraries for Haskell. The second is by Magalhaẽs, Holdermans, Jeur-

ing and Löh [61] and was done as part of research into optimising generic programs in
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Haskell. Ordinarily, taking results from two different benchmarks and comparing them

to a third would give meaningless results because the machines running the benchmarks

are different. However, these benchmarks measure slowdown, which is independent of

the machine’s performance. However, the following caveats apply to using these three

result sets together:

• Each uses a different compiler. Magalhaẽs tests with multiple compiler flags and

different versions of GHC. Where we have the choice, we use the results from the

latest measured version of GHC with the fewest optimisations enabled. These are

the most appropriate comparisons because  performs only one optimisation

(Section 8.4).

• Each uses different programs. This is unavoidable because we can’t encode the same

function in all tools, but in comparing different benchmarks by different authors, we

exacerbate this problem.

• Different tools are tested in different benchmarks. Some of the tools are tested in

both benchmarks, some in only one.

• Only Haskell libraries are benchmarked. We have no results for bondi, RhoStratego

or Stratego for example.

The benchmark literature ([94, 61]) shows that individual tools can have widely vary-

ing performance on different generic tasks. This means, for example, we can’t directly

compare the slowdown from a generic traversal in EMGM to the slowdown for generic

query in Instant Generics. However, every result is indicative of the performance of a par-

ticular tool. Thus we have split the recorded slowdowns due to generics that exist in the

literature into two groups, the immediately comparable results and the less comparable results.

The immediately comparable results we have found are for generic traversal in the style of

our salary update snippet. When we present the results we will show both these immedi-

ately comparable results and those that are less comparable. We do this because we have

a paucity of relevant data and can’t afford to discard any indicative data, but we want to

highlight the most relevant data.

For this comparison, we chart the range of slowdown results given in the literature

for each generic programming tool. The range is made up of two parts: a hollow section

showing the immediately comparable results to our own, and a hatched section showing

the range of less comparable results. For example, in Figure 8.4 you will see that we record

two ranges for MultiRec; the open box is the range of slowdown measurements in imme-
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Figure 8.3: Comparison of Slowdown due to Generics for  and SYB
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diately comparable benchmarks, while the hatched areas above and below show that a

greater range is recorded if we take all benchmarks into account. The result for Regular

has no hatched results because the benchmarks recorded in the literature are all imme-

diately comparable to ours. EMGM has no hatched area below the hollow area since the

lowest recorded slowdown was for a immediately comparable benchmark.

We break the comparison up into two parts. First we compare  to SYB, which is

the only benchmarked tool that works similarly to ours. Recall that our function extension

operation is somewhat like SYB’s extT and extQ and that we use an explicit spine view

similar to SYB’s implicit spine view. Secondly we compare  to tools that make heavy

use of Haskell’s type classes, sometimes explicitly to remove the overhead of generic pro-

gramming. There are a number of tools for which there is benchmark data in the literature,

but where none of that data is immediately comparable to ours. We have chosen not in-

clude these results in the analysis that follows because less comparable results are only

useful when immediately comparable results are also available to ground the analysis.

8.2.5 Comparison to SYB

Figure 8.3 compares the results we obtained for  with those in the literature for SYB.

We have excluded one outlier from the SYB data (a recorded slowdown of 8600% recorded

in [94]) because it dominates the chart (even with a logarithmic scale), making any mean-

ingful comparison impossible. There are both immediately comparable and less compa-
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Figure 8.4: Comparison of Slowdown due to Generics for , EMGM, MultiRec and
Regular
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rable results for SYB but the full range of recorded slowdowns are within the immediately

comparable results. You can see that  generated code has lower overhead for gener-

ics than SYB code for all available benchmarks (i.e ’s worst slowdown is better than

SYB’s best slowdown). This result is expected since  is, in some ways, a translation

of SYB from a library into a compiler. We have been able to use efficient techniques in the

run-time where SYB needs to use library routines. For example, our type check typeOf

is a relatively efficient run-time operation where SYB needs to attempt a cast and then

branch based on the result of that cast to achieve the same effect.

8.2.6 Comparison to Type-Class based Haskell Libraries

Generic programming libraries for Haskell use advanced type-class techniques and ex-

ploit GHC’s mature compilation algorithms to achieve very efficient generic executables3.

Using type-classes, the type system can ensure that the right function for the node in ques-

tion is readily available without requiring run-time type checks. This can significantly re-

duce the run-time overhead of generic code. We wish to show that  is able to achieve

comparable efficiency without using any advanced features and with no generic-specific

optimisations.

Figure 8.4 shows the range of slowdowns recorded in the literature for three Haskell
3SYB does use type-classes, but in a very different manner and so is not included in this group.
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generics libraries and the results we recorded for :

EMGM EMGM [38, 10] is a large and mature library for generic programming in Haskell

which uses the universal representation of data approach where datatype represen-

tations are defined in typeclasses.

MultiRec and Regular MultiRec [94] and Regular [61] are very similar Haskell libraries

for generics. They both use type families to represent the structure of datatypes.

Conspicuously missing from this list is Instant Generics [13]. We have found no di-

rectly comparable benchmarks for this library and suspect it may be faster than any of

those shown in Figure 8.4. The benchmarks that have been published [13] show that In-

stant Generics can get very close to the minimum possible slowdown (a multiplier of 1)

However, given that Regular has slowdowns very close to 1, even better results for Instant

Generics will not invalidate our analysis.

Where these tools can make the best use of type-classes we expect to see slowdown

approaching one (i.e. no slowdown) but we also expect that the extra encoding will still

have some cost for some benchmarks. Since  has a low overhead for all code we ex-

pect these tools to sometimes perform better than  and to sometimes perform worse.

Figure 8.4 shows that, in general terms, Regular generates faster code than , Multi-

Rec generates slower code and EMGM generates code of comparable speed to . These

results correspond with our expectations and validate our claim that  generates ef-

ficient generic code without type-classes or generic-specific optimisations. Recall (page

103) that  does not even optimise calls to kar and kdr in the body of a ispair. This

and many other optimisation opportunities that could speed up generic code are still to

be exploited in . All the results shown for Haskell libraries have been achieved with

the extremely sophisticated and mature compiler GHC and in most cases they use its spe-

cific extensions to Haskell98. Thus having comparable results from  validates that

the techniques we have used generate efficient code.

8.2.7 Summary of Speed Benchmarks

We have shown that using generic functions has some overhead compared to monomor-

phic encodings of the same function. We have shown that the same programs can have

significantly greater overheads when using comparable generics in libraries. Magalhães

et. al. have shown that the overhead of the library approach can be reduced for some pro-

grams with some libraries on some compilers. However  has relatively little overhead
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for any of its generic functions and the approach given in this thesis can be added to any

functional language compiler.

8.3 Memory Use due to Generics

The other performance problem that generics introduce is memory overhead. We know of

no published accounts of memory benchmarks for generic functions, but the methodology

we used for speed benchmarks is applicable. Memory is recorded by instrumenting our

program to report the maximum memory use during program execution. We are able to

do this because we generate the C code into which the program gets compiled. Although

it is beyond the scope of this thesis to perform a complete benchmark of memory use for

generic programming tools, we have replicated two of our benchmarks with GHC and

SYB to provide some context in which we can understand our own results.

The extra memory use for generic code comes from the kar operation. It replicates

the data that was passed into it to create the same data but applied to one less argument.

Were we to replicate the full input datum (a so-called deep copy) we would get memory

use polymorphic in the size of the input data. However, we only replicate the particular

constructor we are working on, filling its arguments with the same datums as were in

the input parameter. For example, given x = Cons(5, Nil), then kar(x) at run-time is,

shown diagrammatically,

x = Cons | |

** %%
5 Nil

kar(x) = Cons |

@@

Only the tagging constructor is replicated. In fact there is a little more overhead for each

tagged datum, particularly the arity and the type string are stored.

Figures 8.5, 8.6 and 8.7 give the memory overhead results for the name analysis snip-

pet, salary update snippet and generic equality respectively. For each snippet we give

a chart of the memory use for the generic and monomorphic variants and show the full

results in a table. Figure 8.8 gives a summary of the memory overhead for each example

we ran. The memory overhead for generic equality is much smaller because this function
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Figure 8.5: Memory use comparison for name analysis snippet
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Figure 8.6: Memory use comparison for salary update snippet
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126 2380.90 752.74 0.32
151 1342.66 431.94 0.32

is not pasting the data back together, an operation that also has memory overhead.

8.3.1 Comparison to SYB

The name analysis and salary update snippets were ported to SYB/Haskell, with corre-

sponding monomorphic versions, and the benchmarks were run in GHC version 6.12.1.

SYB and  are so similar that we are able to use almost identical encodings for those

two snippets, making the benchmarks we present here completely equivalent to the 

memory benchmarks above. The memory use of the program was recorded using GHC’s

profiling capabilities. The programs were compiled with profiling enabled and the -p flag

was given to the runtime system requesting basic profiling output. The memory use we

record for each program is the total memory allocation (not including profiling overhead)
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Figure 8.7: Memory use comparison for generic equality
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Figure 8.8: Memory overhead summary
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reported by the runtime. Figure 8.9 shows the memory use by the GHC-generated exe-

cutables for the name analysis snippet. The chart shows the monomorphic memory use

divided by the generic memory use.

You will notice that the chart has similar shape to those we recorded for  but

converge on a much higher multiplier. Our benchmarks show the generic code memory

multiplier converging to 140. For salary update, the results of which are shown in Figure

8.10, we again record the same shape for memory overhead due to generics and a much

larger overall overhead than we recorded for . For the salary update snippet the

benchmarks show memory use for generics converging to 24 times that of monomorphic

code.
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Figure 8.9: Memory use comparison for the name analysis snippet with GHC and SYB
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Figure 8.10: Memory use comparison for the salary update snippet with GHC and SYB
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For the benchmarks we have been able to replicate in SYB, the overhead for generics

in  is 2.7 – 3.1 times while the overhead in GHC/SYB is 24 – 125 times. These results

are for just one generic toolset on one compiler, however, they do suggest that  is

relatively efficient in its use of memory for generic code.
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8.4 Optimisation Opportunities

One of the primary reasons to prefer compilation over interpretation is that it provides

the language implementer with a more immediate opportunity to optimise the speed and

space performance of the executed code. In this thesis we don’t intend to discuss the

implementation of a great number of optimisations, instead we content ourselves with

demonstrating that our compiler is capable of supporting a full range of standard optimi-

sations in a way which does not interfere with, and indeed directly enhances, its compila-

tion of generic code. To do this, we present one simple optimisation that is made possible

by the fact that we use a super-combinator representation and we demonstrate the sig-

nificant speed gains it provides. In this section we also highlight an existing functional

compiler optimisation that one might reasonably expect to be compromised by the use

of the explicit spine view. In that case, we show that this optimisataion continues to op-

erate identically on monomorphic code emitted by  and indeed is immediately and

usefully applicable to the forms into which it compiles generic functions.

8.4.1 An Optimisation: Trivial Super-Combinator Elimination

A trivial super-combinator is one that simply calls another super-combinator as its body,

passing on – unchanged – any arguments that were passed to it. Clearly we would like to

remove trivial super-combinators since super-combinators are, broadly speaking, trans-

lated into function calls. For example, Listing 8.1 will be lifted, using the algorithm we

gave in Section 4.4, to the SC program in Listing 8.2. This optimisation will result

instead in the SC program in Listing 8.3

Listing 8.1: C expression to be lifted
1 main = \s. \x. \y. case s of {True() -> x; False() -> y}

Listing 8.2: SC into which Listing 8.1 is lifted without any optimisations
1 SC0 x = x
2 SC1 y = y
3 SC2 s x y = switch s of {True -> SC0 x; False -> SC1 y}
4 SC3 s x y = SC2 s x y
5 SC4 s x y = SC3 s x y
6 SC5 s x y = SC4 s x y
7 in
8 SC5
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Listing 8.3: SC into which Listing 8.1 is lifted with trivial super-combinator elim-
ination

1 SC0 x = x
2 SC1 y = y
3 SC2 s x y = switch s of {True -> SC0 x; False -> SC1 y}
4 in
5 SC2

The super-combinators SC5, SC4 and SC3 are trivial super-combinators and removing

them could4 speed up the program. Care must be taken however to ensure that we don’t

eliminate super-combinators that are used in an argument position. Since  has call-

by-value semantics, there is a semantic difference between (for example)

1 SC1 = SC3
2 SC3 s = SC4 s (SC5 (SC2 s))
3 SC2 s g = SC1 s g
4 ...

and

1 SC3 s = SC4 s (SC5 (SC3 s))

The obvious difference between the two is the removal of the trivial super-combinators

SC2 and SC3. However, by doing this we have changed a (potentially) terminating pro-

gram into a (certainly) non-terminating one. The call-by value semantics mean that (in

the second one) we can’t evaluate SC3 until we have evaluated all the arguments to SC4,

which involves evaluating SC3, causing an infinite loop. So we have a side-condition on

the optimisation; you can only eliminate super-combinators that never appear as an actual

parameter.

To achieve this optimisation, we add another phase to the compiler. It runs after

lambda lifting and before the conversion to imperative code.

S C

C

C

C

SC

SC

C// ))55

++

NN

11

��
NN





 






**

This translation, which we denote kd | kp ⇒opti kp, takes as inputs a set of super-

combinator definitions that may benefit from the optimisation, the program in which they

live, and will return an optimised super-combinator program. Thus we need to prime
4We say could because it depends on what optimisations are done in other phases of the compiler.
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Figure 8.11: The trivial super-combinator elimination algorithm

(E)
∅ | kp ⇒opti kp

(TSC)
kd | [kn/kn′]kp−kn ⇒opti kp′ kn /∈ ACT(kp)

(kn x = kn′ x) kd | kp ⇒opti kp′

(D)
kd | kp ⇒opti kp′

kd1 kd | kp ⇒opti kp′

the translation by passing it the un-optimised SC program and all the super-

combinators within it in a set. Note that kp−kn is the super-combinator program kp with

the definition of the super-combinator kn removed.

Figure 8.11 gives the algorithm for trivial super-combinator elimination. If the set of

super-combinators is empty, we simply return the original program. Otherwise we look

at the first super-combinator in the set to see if it matches our description of a trivial super-

combinator. If it does, we replace all calls to it in the right hand sides of super-combinators

in the program with the super-combinator it calls. The side condition states that we only

do this if the super-combinator in question is not an actual parameter in the program

(ACT(kp) is the set of all actual parameters in the program). We then recursively run the

same translation on the set with one less super-combinator in it.

While this is a very simple optimisation, it gives outstanding results. Figure 8.12 charts

the run-time of the salary update and name analysis examples on variously sized inputs,

with and without this optimisation. It shows that this optimisation consistently provides

a shorter run-time. Table 8.1 shows more detail of the results showing that the average

speedup5 due to this optimisation is significant on all the programs we have tested. The

best speedup is 50% and the worst is 0% (which occurred only on quite small inputs where

the total run-time was within the expected margin of error for our timing system). No-

tice also that this optimisation is effective on both monomorphic and generic code. The

benchmarks we have done indicate it may be more effective on generic code, but we need

more analysis to be sure of this.

It is the internal structure of the compiler that has exposed the optimisation and made

it so easy. If we had not taken the standard step of converting to super-combinator form

during compilation, getting this speed gain would have been very much harder.
5Where speedup is (u − o)/u if u is the unoptimised run-time and o is the optimised run-time.
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Figure 8.12: Speedup due to trivial super-combinator elimination algorithm
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Table 8.1: Minimum, average and maximum speedups due to trivial super-combinator
elimination in various  programs

program min speedup avg speedup max speedup
generic name analysis 0.18 0.24 0.29
monomorphic name analysis 0.00 0.07 0.17
generic salary update 0.25 0.43 0.50
monomorphic salary update 0.00 0.22 0.40
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8.4.2 A Potentially Compromised Optimisation

Jones and Santos [74] showed how a language very similar to our C6 is able to sup-

port a set of useful optimisations. We now show that one of these optimisations, case-of-

known-constructor, can be implemented in our compiler despite the potentially disruptive

influence of application pattern matches.

Changing the compilation of case expressions could easily slow down the speed at

which we can execute them. We have already shown in Section 8.2.1 that we have main-

tained compilation to switch statements and here we show that case based optimisations still

work. More precisely, we show that our modifications do not disturb the case-of-known-

constructor optimisation except on functions with generic patterns, and even then in a

minimal way.

The case-of-known-constructor optimisation [74] applies anytime the scrutinee of a

case expression is a datum known at compile time. In this circumstance we know which

branch will be taken and can replace the whole case expression with the right-hand-side

of that branch. Consider the following example from [74].

1 case x of
2 True -> case False of {True -> e1; False -> e2} otherwise error
3 False -> case True of {True -> e1; False -> e2} otherwise error
4 otherwise error

which is transformed by the optimisation into

1 case x of
2 True -> e2
3 False -> e1
4 otherwise error

Exactly the same transformation works in C because we have maintained all the

conditions necessary for it, namely:

• case works on one scrutinee,

• case patterns do no computation, and

• case patterns are fully applied constructors.

Our decision to take application pattern matches out of case expressions has paid off

again. By maintaining the usual semantics for case expressions in a core language, we

have maintained the chance to apply known optimisations.
6C does not have type abstraction and application, making it more difficult to check the correctness of

an optimisation but this does not preclude optimisations.
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However, there is a potential problem applying case-of-known-constructor to C val-

ues. Our rules for compiling away application pattern matches break up case expressions,

taking what might have been one case expression and turning it into two or more. This

will reduce the effectiveness of any application of case-of-known-constructor since a par-

ticular case may have fewer alternatives that can be removed in one application of the op-

timisation. However, case-of-known-constructor is still applicable to each of the smaller

case expressions and any compilation scheme which somehow maintains the larger case

expression will necessarily not work over fully applied constructors, destroying all oppor-

tunities to apply case-of-known-constructor.

8.5 Summary

In this chapter we have shown that our compilation techniques for generic functions can

achieve approximately 3 times slowdown on generic code, which is better than the most

similar tool and competitive with the fastest tools. Furthermore we have shown that the

same techniques require less than 350% memory overhead for generic code when the most

comparable tool requires up to 14000% overhead. We have done this while maintaining

the applicability of our approach to all programming languages. We have also shown that

these same techniques make defining optimisations easy. These achievements demon-

strate that adding these techniques to an existing compiler should not significantly affect

the performance of the programs it compiles.
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Chapter 9

Evaluating the Type System

In this chapter we will prove the soundness of the typing relation which underlies

the type inference system in . We do this for a slightly simplified language (simpler

than C) which has only single-branched lets, letrecs and cases and in which there

are no primitive types. Polymorphic recursion and higher rank types are not relevant

questions in a typing relation (they work without difficulty) and thus we have only one

form of recursive let and no type annotations. However, we include all our other novel

type system features: ispair, kar, kdr and function extension (◃).

When we gave the type inference algorithm for C in Figure 4.5 we used a language

where constructors have only one argument. We were able to do this because that simpli-

fication does not disguise any of the important features of the type inference algorithm.

However, that simplification would hide important features of the type relation we present

here. Thus for proving the soundness of the type system we use a language where con-

structors have multiple arguments, as they do in the C version we described in Figure

4.2. We begin with the definition of the language in question, shown in Figure 9.1. Fig-

ure 9.2 shows the small-step operational semantics of this language. Figure 9.3 shows the

typing rules which we wish to prove sound for this language. Note that we denote the

substitution of type variable α with the type ρ in the type τ as [α/ρ]τ and the free type

variables of type τ as TV(τ) (we can calculate the type variables of type schemes and type

environments as well). Ax, x : τ denotes the type environment A with any binding for x

updated to τ.



Figure 9.1: Modified C Language

Type Language

σ ::= ∀α.σ
| τ

τ, ρ ::= α (type variables)
| T τ1 . . . τn (constructed types)
| τ → ρ

Term Language

e, f , g ::= v (expressions)
| e f
| let x = e in f
| letrec x = e in f
| case e of (K(x1, . . . , xn)) → f
| ispair e bind (x, y) in f else g
| e ◃ f

v ::= λx.e (values)
| K(v1, . . . , vn) (constructor applied to some arguments)
| v ◃ v′

| sv
sv ::= x (semi-values)

| sv v
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9.1 The Evaluation Relation

As well as the simplifications outlined above, there are some differences between this

language and C which are necessary to allow a proof via the small-step semantics of

the language.

Values and Expressions

Expressions are split into those that can potentially be evaluated another step (e), and

values which can’t (v). Expressions that can’t be evaluated any further are split into those

that could be the result of a program (values, v) and those that are present in a partially

evaluated program only (semi-values, sv). It is preferable to have only one class of values

since semi-values are not what we would traditionally think of as values in a functional

language. If we were developing this language for its evaluation machinery, instead of

using it for a type soundness proof, we would like to prove some properties regarding

where and when semi-values can occur. For example, it would be prudent to prove that

if e closed, A ⊢ e : τ and e −→ e′ then e′ is closed and if e is closed, A ⊢ e : τ and e −→ v then v

is not a semi-value. However, we are using this language as a vehicle to show type system

soundness and in that respect we can admit semi-values as values.

Can’t Restrict Expressions to Variables

Since the evaluation of the language must be described as translations from one expres-

sion to another within the language, we must allow any term to be the scrutinee of a case

expression and the condition in an ispair expression, rather than restricting these to vari-

ables as we did in C. This leads to the next modification.

Binding IsPair

Type inference in C is done on an unevaluated expression. Due to pattern compilation,

all ispair conditions are variables and all kar and kdr operations within the scope of that

ispair take this variable as an argument. This invariant is vital to the type system. For

the type soundness proof we need this invariant to survive evaluation so that the partially

evaluated program is also well typed. To achieve this we use a binding version of ispair

so that this variable can’t become something else due to substitution during evaluation.

One possible solution is to use a slight variant of C’s ispair, ispair x′ = x in f g,

such that

ispair x f g ≡ ispair x′ = x in [x′/x] f [x′/x]g
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However, on this path is an even simpler solution which automatically binds kar(x) to a

variable and kdr(x) to another variable. I.e. the splitting of data is done as a part of the

ispair expression.

ispair e bind (x, y) in f else g

In this version of ispair, the variable x within f is bound to kar(e) and the variable y

within f is bound to kdr(e). This removes the need for kar and kdr expressions in the

language at all, significantly simplifying it. We can recover the semantics of C with

the following equivalence between C’s ispair expressions and these binding ispair

expressions.

let x = e in (ispair x bind (x′, y′) in f else g) ≡ ispair x [x′/kar(x), y′/kdr(x)] f g

We have shown that binding ispair is equivalent to C’s ispair, but we also need

to justify why we use the two different styles. Binding ispair is much simpler, particu-

larly in the type soundness proof that follows, thus we use it for proving properties of the

type system. C’s ispair accurately reflects what the  compiler actually does and

so we use it for all other parts of the thesis. Furthermore, the use of separate kar and kdr

primitives makes clearer the fact that the spine view is just a view of data, not an encoding

of data. It remains as future work to determine if the binding ispair is a better alterna-

tive for actual implementations. Its simplicity certainly recommends it, but delaying the

operation of pulling apart data can also have advantages, depending on the language’s

evaluation order, implemented optimisations and usage patterns.

9.2 The Typing Relation

The typing relation, shown in Figure 9.3 makes use of the notion of generalisation. A type

scheme σ is a generalisation of a type τ, denoted σ ≻ τ, if there is some substitution

for the bound variables of σ which gives τ. We will require the following property of

generalisation during the proof.

Lemma 9.2.1. If ∀α1 · · · αn.τ ≻ ρ and FV(τ) = ∅ then τ = ρ.

Furthermore, we can generalise a type τ to a type scheme with the Gen operation

Gen(τ, A) = ∀α1 . . . αn.τ where {α1 . . . αn} = TV(τ) \ TV(A)
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Figure 9.2: Operational Semantics (e −→ f )

(E-A1)
e −→ e′

e f −→ e′ f

(E-A2)
e −→ e′

v e −→ v e′

(E-L)
(λx.e) v −→ [x/v]e

(E-L1)
e −→ e′

let x = e in f −→ let x = e′ in f

(E-L2)
let x = v in f −→ [x/v] f

(E-LR1)
e −→ e′

letrec x = e in f −→ letrec x = e′ in f

(E-LR2)
f −→ f ′

letrec x = v in f −→ letrec x = v in f ′

(E-LR3)
x ∈ FV(v f )

letrec x = v in v f −→ letrec x = v in [x/v]v f

(E-LR4)
x /∈ FV(v f )

letrec x = v in v f −→ v f

(E-C1)
e −→ e′

(case e of (K(x1, . . . , xn)) → f ) −→ case e′ of (K(x1, . . . , xn)) → f

(E-E1)
e −→ e′

e ◃ f −→ e′ ◃ f

(E-C2)
(case (K(v1, . . . , vn)) of (K(x1, . . . , xn)) → e) −→ [x1/v1] · · · [xn/vn]e

(E-E2)
e −→ e′

v ◃ e −→ v ◃ e′

(E-E3)
A ⊢ v : τ → ρ A ⊢ v′′ : τ TV(τ) = ∅

(v ◃ v′) v′′ −→ v v′′

(E-E4)
A ⊢ v : τ → ρ A ⊢ v′′ : τ′ τ ̸= τ′

(v ◃ v′) v′′ −→ v′ v′′

(E-C1)
ej −→ e′j

K(v1, . . . , vj−1, ej, ej+1, . . . , em) −→ K(v1, . . . , vj−1, e′j, ej+1, . . . , em)

(E-C2)
K(v1, . . . , vm) e −→ K(v1, . . . , vm, e)

(E-IP1)
e −→ e′

ispair e bind (x, y) in f else g −→ ispair e′ bind (x, y) in f else g

(E-IP2)
ispair (K(v1, . . . , vm)) bind (x, y) in e else f −→ [x/K(v1, . . . , vm−1), y/vm]e

(E-IP3)
v ̸= K(v1, . . . , vm)

ispair v bind (x, y) in e else f −→ f
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Figure 9.3: Type Relation (A ⊢ e : τ)

(T-V)
x : σ ∈ A σ ≻ τ

A ⊢ x : τ

(T-A)
A ⊢ e : ρ → τ A ⊢ f : ρ

A ⊢ e f : τ

(T-L)
A ⊢ e : τ′ Ax, x : Gen(τ′, A) ⊢ f : τ

A ⊢ (let x = e in f ) : τ

(T-LR)
Ax, x : Gen(τ′, A) ⊢ e : τ′ Ax, x : Gen(τ′, A) ⊢ f : τ

A ⊢ (letrec x = e in f ) : τ

(T-L)
Ax, x : ρ ⊢ e : τ

A ⊢ (λx.e) : ρ → τ

(T-IP)
A ⊢ e : τe Ax,y, x : α → τe, y : α ⊢ f : τ A ⊢ g : τ α /∈ TV(A, τ, τe)

A ⊢ (ispair e bind (x, y) in f else g) : τ

(T-E)
A ⊢ g : τg → τ′

g A ⊢ f : τf → τ′
f Gen(τf → τ′

f ) ≻ τg → τ′
g TV(τg, τ′

g) = ∅

A ⊢ g ◃ f : τf → τ′
f

for each K : ((∀α1.∃β1.τ′
1), . . . , (∀αn.∃βn.τ′

n)) → τK where τK is unique to this K
(T-C)
∀i.(A ⊢ ei : [βi/ρi]τ

′
i ) ∀i(αi /∈ TV(A))

A ⊢ (K(e1, . . . , en)) : τK

(T-C2)
∀i ∈ 1 . . . m.(A ⊢ ei : [βi/ρi]τ

′
i ) m < n ∀i(αi /∈ TV(A))

A ⊢ (K(e1, . . . , em)) : [βm+1/ρm+1]τ
′
m+1 → (· · · → ([βn/ρn]τ

′
n → τK) · · · )

(T-C)
Ax1···xn , x1 : [α1/ρ1]τ

′
1, . . . , xn : [αn/ρn]τ

′
n ⊢ e : τe ∀i.(βi /∈ TV(A, τe, ρi)) A ⊢ f : τK

A ⊢ (case f of(K(x1, . . . , xn)) → e) : τe

9.3 Soundness Proof

We take the approach of Wright and Felleisen [93] and develop a proof based on the lan-

guage’s small-step operational semantics. Our proof hinges on two main results:

Progress If A ⊢ e : τ then e −→ e′ or e is a value.

Preservation If A ⊢ e : τ and e −→ e′ then A ⊢ e′ : τ

If both progress and preservation are proven then the type system is sound.

Theorem 9.3.1 (Progress). If A ⊢ e : τ then e −→ e′ or e is a value.

Proof. The proof proceeds by induction on the length of the type deduction for A ⊢ e : τ,

with one case for each possible final deduction rule.
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Case T-V Immediate since x is a value.

Case T-A If the final deduction rule is T-A and A ⊢ e f : τ then we have

A ⊢ e : ρ → τ (9.1)

A ⊢ f : ρ (9.2)

By the inductive hypothesis we know either e −→ e′ or e is a value. If e is not a value

(i.e. e −→ e′) , by E-A we have e f −→ e′ f . If e is a value (say ve), then we need to

consider the possible forms for f . From (9.2) and the induction hypothesis we have

either f is a value or f −→ f ′. If f is not a value (i.e. f −→ f ′) then by E-A2 we

have ve f −→ ve f ′. If both e and f are values, say f is v f , then we need to consider

all the possible forms of ve:

ve is λx.g Then by E-L we have (λx.g) v f −→ [x/v f ]g.

ve is K(v1, . . . , vn) Then by E-C2 we have K(v1, . . . , vn) v f −→ K(v1, . . . , vn, v f )

ve is (v ◃ v′) Either the type of v f is the type of the domain of v, in which case by

E-E3 we have (v ◃ v′) −→ v v f , or it is not, in which case by E-E4 we have

(v ◃ v′) −→ v′ v f .

ve is a semi-value Immediate since ve v f is a value, by virtue of being a semi-value.

Case T-L If the final deduction rule is T-L and A ⊢ (let x = e in f ) : τ then we have

A ⊢ e : τ′. By this and the inductive hypothesis we have that e −→ e′ or e is a value.

If e is a value (say v), then by E-L2 we have let x = v in f −→ [x/v] f . If e is not

a value (i.e. e −→ e′), then by E-L1 we have let x = e in f −→ let x = e′ in f .

Case T-LR If the final deduction rule is T-LR and A ⊢ (letrec x = e in f ) : τ

then we have Ax, x : Gen(τ′, A) ⊢ e : τ′ and Ax, x : Gen(τ′, A) ⊢ f : τ′. By these and

the inductive hypothesis we have e −→ e′ or e is a value; plus f −→ f ′ or f is a

value. If e is a value (say ve) we need to prove the proposition for:

f −→ f ′ Then by E-LR2 we have letrec x = e in f −→ letrec x = e in f ′.

f is a value and x ∈ FV( f ) By E-LR3 we have letrec x = ve in f −→ letrec x =

ve in [x/v] f

f is a value and x /∈ FV( f ) By E-LR4 we have letrec x = ve in f −→ f .

If e is not a value (i.e. e −→ e′) then by E-LR1 we have letrec x = e in f −→

letrec x = e′ in f
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Case T-L Immediate since λx.e is a value.

Case T-IP If the final deduction rule is T-IP and A ⊢ (ispair e bind (x, y) in f else g) : τ

we have

A ⊢ e : τe (9.3)

This with the induction hypothesis gives either e is a value or e −→ e′. Further-

more, if e is a value, it is either a constructed value (K(v1, . . . , vn)) or it is not. These

possibilities give rise to the following cases:

e is not a value By e −→ e′ and E-IP1 we have ispair e bind (x, y) in f else g −→

ispair e′ bind (x, y) in f else g.

e is a constructed value Say e is the constructed value K(e1, . . . , en). By E-IP2 we

have ispairK(v1, . . . , vn) bind (x, y) in f else g −→ [x/K(v1, . . . , vn−1), y/vn] f .

e is a value, but not a constructed value Say e is the non-constructed value ve. By

E-IP3 we have ispair ve bind (x, y) in f else g −→ g.

Case T-E If the final deduction rule is T-E and A ⊢ e ◃ f : τf → τ′
f then we have

A ⊢ e : τe → τ′
e (9.4)

A ⊢ f : τf → τ′
f (9.5)

From (9.4) and the induction hypothesis we have that either e is a value or e −→ e′.

If e is not a value (i.e. e −→ e′), then by E-E1 we have e ◃ f −→ e′ ◃ f . For e is

a value, say ve, the inductive hypothesis and (9.5) give us that either f is a value or

f −→ f ′. If f is not a value (i.e. f −→ f ′), then by E-E2 we have ve ◃ f −→ ve ◃ f ′.

If f is a value, say v f , then ve ◃ v f is a value.

Case T-C If A ⊢ K(e1, . . . , en) : τ, and all ei are values, then K(e1, . . . , en) is a value.

If A ⊢ K(e1, . . . , en) : τ, and one of ei is not evaluated (say ej), then by T-C, A ⊢

ej : [β j/ρj]τ
′
j . Hence by the induction hypothesis ej −→ ej and K(e1, . . . , ej, . . . , en) −→

K(e1, . . . , e′j, . . . , en)

Case T-C2 Similar to T-C case above.

Case T-C If the final deduction rule is T-C and A ⊢ (case f of (K(x1, . . . , en)) →
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e) : τ then we have

A ⊢ f : τK (9.6)

K : ((∀α1.∃β1.τ′
1), . . . , (∀αn.∃βn.τ′

n)) → τK (9.7)

From (9.6) and the induction hypothesis we have that either f is a value or f −→ f ′.

If f is not a value (i.e. f −→ f ′) then by E-C1 we have case f of (K(x1, . . . , xn)) →

e −→ case f ′ of (K(x1, . . . , xn)) → e. If f is a value then by (9.7) and Lemma 9.3.5

we have that f is K(v′1, . . . , v′n) for some v′1, . . . , v′n. By this and E-C2 we have

(case K(v′1, . . . , v′n) of (K(x1, . . . , xn)) → e) −→ [x1/v′1] · · · [xn/v′n]e

Theorem 9.3.2 (Preservation). If A ⊢ e : τ and e −→ e′ then A ⊢ e′ : τ

Proof. The proof proceeds by induction on the depth of the evaluation tree, with one case

for each possible final reduction e −→ e′.

Case E-A1 If e f : τ and e f −→ e′ f then, by T-A we have

A ⊢ e : ρ → τ (9.8)

A ⊢ f : ρ (9.9)

By (9.8) and the inductive hypothesis we have e′ : ρ → τ. Combining this with (9.9)

and T-A gives e′ f : τ.

Case E-A2 This case is done in the same way as E-A1, we won’t repeat the argument.

This argument also works for E-L1, E-LR1,E-LR2, E-C1, E-E1, E-

E2, E-IP1 and T-C1.

Case E-L If (λx.e) v −→ [x/v]e and A ⊢ (λx.e) v : τ, by T-A we have

A ⊢ (λx .e) : ρ → τ (9.10)

A ⊢ v : ρ (9.11)

From (9.10) and T-L we have

Ax, x : ρ ⊢ e : τ (9.12)

By (9.11), (9.12) and Lemma 9.3.1 we have A ⊢ [x/v]e : τ.
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Case E-L2 If let x = v in f −→ [x/v] f and A ⊢ (let x = v in e) : τ , by T-L we have

A ⊢ v : τ′ (9.13)

Ax, x : Gen(τ′, A) ⊢ f : τ (9.14)

Since Gen(τ′, A) is ∀α1 . . . αn.τ where {α1 . . . αn} = TV(τ) \ TV(A); by (9.13), (9.14)

and Lemma 9.3.1 we have [x/v] f : τ.

Case E-LR3 If letrec x = v in f −→ letrec x = v in [x/v] f and A ⊢ letrec x =

v in f : τ, by T-LR we have

Ax, x : Gen(τ′, A) ⊢ v : τ′ (9.15)

Ax, x : Gen(τ′, A) ⊢ f : τ (9.16)

From (9.16) and Lemma 9.3.3 we have

Ax, x : Gen(τ′, A), y : Gen(τ′, A) ⊢ [x/y] f : τ (9.17)

by Lemma 9.3.1 and (9.17) we have

Ax, x : Gen(τ′, A) ⊢ [y/v][x/y] f : τ (9.18)

Since y is fresh it is not in the free variables of v and [y/v][x/y] = [x/v], thus we

have

Ax, x : Gen(τ′, A) ⊢ [x/v] f : τ (9.19)

By (9.19), (9.15) and T-LR we have A ⊢ letrec x = v in [v/x] f : τ

Case E-LR4 If letrec x = v of f −→ f and A ⊢ letrec x = v of f : τ we have

Ax, x : Gen(τ′, A) ⊢ f : τ (9.20)

x /∈ FV( f ) (9.21)

By these and Lemma 9.3.2 we have A ⊢ f : τ.

Case E-C2 From A ⊢ (case (K(v1, . . . , vn)) of (K(x1, . . . , xn) → e) : τe and T-C we
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have

Ax1,...,xn , x1 : [α1/ρ1]τ
′
1, . . . , xn : [αn/ρn]τ

′
n ⊢ e : τe (9.22)

A ⊢ K(v1, . . . , vn) : τK (9.23)

∀i(β /∈ TV(A, τe, ρi)) (9.24)

By (9.23) and T-C we have

∀i.(A ⊢ ei : [βi/ρ′i]τ
′
i ) (9.25)

∀i.(αi /∈ TV(A)) (9.26)

Since ∀i(βi /∈ TV(A, τe, ρi)), we can generalise (9.22) to

Ax1,...,xn , x1 : [α1/ρ1][β1/ρ′1]τ
′
1, . . . , xn : [αn/ρn][βn/ρ′n]τ

′
n ⊢ e : τe (9.27)

It must be the case, since all α are variables bound by an inner universal quantified

in a constructor type, that no α is free in any τK. By this, Lemma 9.3.6, (9.25) and

(9.26) we have

∀i.(A ⊢ ei : [αi/ρi][βi/ρ′i]τ
′
i ) (9.28)

By (9.27), (9.28) and a multi-substitution generalisation of Lemma 9.3.1 have that

A ⊢ [x1/v1] · · · [xn/vn]e : τe as required.

Case E-IP2 If ispair (K(v1, . . . , vm)) bind (x, y) in f else g −→ [x/K(v1, . . . , vm−1), y/vm] f

and A ⊢ ispair (K(v1, . . . , vm)) bind (x, y) in f else g : τ, by T-IP we have

A ⊢ K(v1, . . . , vm) : τ′ (9.29)

Ax,y, x : α → τ′, y : α ⊢ v′ : τ (9.30)

where α is unique. From (9.29) and T-C2 we have

∀i ∈ 1 . . . m.(A ⊢ vi : [βi/ρi]τ
′
i ) (9.31)

By (9.31) and T-C2 again (this time in the opposite direction) we have

A ⊢ K(v1, . . . , vm−1) : [βm/ρm]τ
′
m → τ′ (9.32)

Note also that (9.31) includes the fact that A ⊢ vm : [βm/ρm]τ′
m. This with (9.32),
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(9.30) and Lemma 9.3.4 gives A ⊢ [x/K(v1, . . . , vm−1), y/vm)] f : τ as required.

Case E-IP3 If ispair v bind (x, y) in f else g −→ g and

A ⊢ ispair v bind (x, y) in f else g : τ, by T-IP we have A ⊢ g : τ as required.

Case E-E3 If A ⊢ (v ◃ v′) v′′ : τ, by T-A we have

A ⊢ (v ◃ v′) : ρ → τ (9.33)

A ⊢ v′′ : ρ (9.34)

By (9.34) and E-E3 we have

TV(ρ) = ∅ (9.35)

By (9.33) and T-E we have

A ⊢ v : τα → τ′
α (9.36)

Gen(ρ → τ) ≻ τα → τ′
α (9.37)

TV(τα) = ∅ (9.38)

ρ has no type variables, hence τ has no type variables, hence Gen(ρ → τ) = ρ → τ

and

ρ → τ ≻ τα → τ′
α (9.39)

By (9.39) we have

ρ ≻ τα (9.40)

τ ≻ τ′
α (9.41)

By (9.41) and Lemma 9.2.1 we have τ = τ′
α. By (9.40) and Lemma 9.2.1 we know

τ′ = τα. These equalities, with (9.34), (9.36) and T-A, give A ⊢ v v′′ : τ.

Case E-E4 If (v ◃ v′) v′′ −→ v′ v′′ and A ⊢ (v ◃ v′) v′′ : τ, by T-A we have

A ⊢ (v ◃ v′) : ρ → τ (9.42)

A ⊢ v′′ : ρ (9.43)

170



From A ⊢ (v ◃ v′) : ρ → τ and T-E we have

A ⊢ v′ : ρ → τ (9.44)

By (9.43), (9.44) and T-A we have A ⊢ v′ v′′ : τ as required.

Case T-C2 By A ⊢ K(v1, . . . , vm) e : τ and T-A we have

A ⊢ K(v1, . . . , vm) : ρ → τ (9.45)

A ⊢ e : ρ (9.46)

By (9.45) and T-C2 we have A ⊢ K(v1, . . . , vm) : [βm+1/ρ′m+1]τ
′
m+1 → ([βm+2/ρ′m+2]τ

′
m+2 →

· · · → τK) Hence τ = ([βm+2/ρ′m+2]τ
′
m+2 → · · · → τK) and ρ = [βm+1/ρ′m+1]τ

′
m+1.

These equalities with (9.6), (9.7) and T-C2 give A ⊢ K(v1, . . . , vm, e) : τ as re-

quired.

Lemma 9.3.1 (Substitution). If Ax, x : ∀α1 . . . αn.τ ⊢ e : τ′, x /∈ Dom(A), A ⊢ v : τ and

{α1 . . . αn} ∩ TV(A) = ∅ then A ⊢ [x/v]e : τ′

Proof. The proof is by induction on the length of the type deduction for Ax, x : ∀α1 . . . αn.τ ⊢

e : τ′, with one case for each possible final deduction rule.

Lemma 9.3.2 (Unused Variable). If Ax, x : σ ⊢ e : τ and x /∈ FV(e) then A ⊢ e : τ

Proof. The proof is by induction on the length of the type deduction for Ax, x : σ ⊢ e : τ,

with one case for each possible final deduction rule.

Lemma 9.3.3 (Weakening). If A ⊢ e : τ and x : σ ∈ A and y /∈ FV(e, A) then A, y : σ ⊢

[x/y]e : τ

Proof. The proof is by induction on the length of the type deduction for A ⊢ e : τ, with

one case for each possible final deduction rule.

Lemma 9.3.4 (Existential Instantiation). If Ax,y, x : α → τ′, y : α ⊢ e : τ and α /∈ TV(A, τ, τ′, ρ′)

and A ⊢ v′ : ρ′ → τ′ and A ⊢ v′′ : ρ′ then A ⊢ [x/v′, y/v′′]e : τ for any ρ′.

Proof. The proof is by induction on the length of the type deduction for Ax,y, x : α →

τ′, y : α ⊢ v : τ, with one case for each possible final deduction rule.
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Lemma 9.3.5 (Constructor Types). If A ⊢ v : τK and K : ((∀α1.∃β1.τ′
1) → · · · → (∀αn.∃βn.τ′

n)) →

τK then v is K(v1, . . . , vn) for some v1, . . . , vn

Proof. The proof relies on the fact that τK is unique for each K.

Lemma 9.3.6 (Generalisation). If A ⊢ e : τ, ∀K.(α /∈ TV(τK)) and α /∈ TV(A) then A ⊢

e : [α/ρ]τ

Proof. The proof proceeds by induction on the length of the type deduction for A ⊢ e : τ,

with one case for each possible final deduction rule.

Case T-V By A ⊢ x : τ and T-V we have

x : σ ∈ A (9.47)

σ ≻ τ (9.48)

Since σ ∈ A and α /∈ A, α /∈ TV(σ). However α could be in the free type variables of

τ. If α ∈ TV(τ), since σ ≻ τ, it must be possible to substitute a bound type variable

in σ for α to get τ. Hence, we can substitute that bound variable with ρ to get [α/ρ]τ.

Hence

σ ≻ [α/ρ]τ (9.49)

By (9.47) and (9.49) and T-V we get A ⊢ x : [α/ρ]τ.

If α /∈ TV(τ) then [α/ρ]τ = τ and σ ≻ [α/ρ]τ. By this and (9.47) we have A ⊢

x : [α/ρ]τ.

Case T-A By A ⊢ e f : τ and T-A we have

A ⊢ e : τ′ → τ (9.50)

A ⊢ f : τ′ (9.51)

By (9.50), and the induction hypothesis we have

A ⊢ e : [α/ρ]τ′ → [α/ρ]τ (9.52)

By (9.51), and the induction hypothesis we have

A ⊢ f : [α/ρ]τ′ (9.53)

By (9.52), (9.53) and T-A we have A ⊢ e f : [α/ρ]τ.

172



Case T-L, T-LR and T-C The proof is similar to the T-A case above.

Case T-L If A ⊢ (λx.e) : τ′ → τ then by T-L we have Ax, x : τ′ ⊢ e : τ. If α /∈ TV(τ′)

then α /∈ Ax, x : τ′ and by the inductive hypothesis Ax, x : τ′ ⊢ [α/ρ]τ. Further-

more, since α /∈ TV(τ′), [α/ρ]τ′ = τ′ and Ax, x : [α/ρ]τ′ ⊢ [α/ρ]τ. This gives

A ⊢ (λx.e) : [α/ρ](τ′ → τ) as required. If α ∈ TV(τ′), then by Lemma 9.3.7 we

have Ax, x : [α/ρ]τ′ ⊢ [α/ρ]τ. This gives A ⊢ (λx.e) : [α/ρ](τ′ → τ) as required.

Case T-IP If A ⊢ (ispair e bind (x, y) in f else g) : τ, T-IP gives

A ⊢ e : τe (9.54)

Ax, x : β → τe, y : β ⊢ f : τ (9.55)

Ax ⊢ g : τ (9.56)

By the same argument we used in the T-L case, from Ax, x : β → τe, y : β ⊢ f : τ

and the fact that α cannot be in TV(β) we have

Ax, x : β → [α/ρ]τe, y : β ⊢ f : [α/ρ]τ (9.57)

By (9.56) and the induction hypothesis we have

A ⊢ g : [α/ρ]τ (9.58)

By (9.54), (9.57), (9.58) and T-IP we have A ⊢ (ispair e bind = (x, y) in f else g) : [α/ρ]τ

as required.

Case T-E Our initial assumptions are

A ⊢ g ◃ f : τf → τ′
f (9.59)

α /∈ TV(A) (9.60)

∀K.(α /∈ TV(τK)) (9.61)
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By (9.59) and T-E we have

A ⊢ g : τg → τ′
g (9.62)

A ⊢ f : τf → τ′
f (9.63)

Gen(τf → τ′
f ) ≻ τg → τ′

g (9.64)

TV(τg) = ∅ (9.65)

By (9.63) and the induction hypothesis we have

A ⊢ f : [α/ρ](τf → τ′
f ) (9.66)

which gives

A ⊢ f : ([α/ρ]τf → [α/ρ]τ′
f ) (9.67)

By (9.62) and the induction hypothesis we have

A ⊢ g : [α/ρ](τg → τ′
g) (9.68)

which gives

A ⊢ g : ([α/ρ]τg → [α/ρ]τ′
g) (9.69)

(9.65) immediately gives

TV([α/ρ]τg) = ∅ (9.70)

Lemma 9.3.8 tells us that if α ∈ TV(τf , τ′
f ) there is also a derivation which gives

different τf , τ′
f which don’t have α ∈ TV(τf , τ′

f ). Hence we continue under the as-

sumption that α /∈ TV(τf , τ′
f ).

From Gen(τf → τ′
f ) ≻ τg → τ′

g, TV(τg, τ′
g) = ∅ and α /∈ TV(τf , τ′

f ), we have

Gen([α/ρ]τf → [α/ρ]τ′
f ) ≻ [α/ρ]τg → [α/ρ]τ′

g. Finally, by this, (9.67), (9.69), (9.70)

and T-E we have

A ⊢ f ◃ g : [α/ρ]τf → [α/ρ]τ′
f (9.71)

and hence

A ⊢ f ◃ g : [α/ρ](τf → τ′
f ) (9.72)

as required.

Case T-C By the assumptions of this case we have that A ⊢ (K(e1, . . . , en)) : τK and that

α /∈ TV(τK). Since α /∈ TV(τK) then [α/ρ]τK = τK and A ⊢ (K(e1, . . . , en)) : [α/ρ]τK
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as required.

Case T-C2 Similar to the T-C case.

Lemma 9.3.7 (Double Substitution). If Ax, x : τ′ ⊢ e : τ, α /∈ TV(A) and α ∈ TV(τ′) then

Ax, x : [α/ρ]τ′ ⊢ e : [α/ρ]τ.

Proof. Proof is by induction on the length of the type deduction of Ax, x : τ′ ⊢ e : τ.

Lemma 9.3.8 (Equivalence of Free Type Variables). If A ⊢ e : τ, α /∈ TV(A) and β /∈

TV(A, τ) then A ⊢ e : [α/β]τ.

Proof. Proof uses Lemma 9.3.6 and Lemma 9.3.7.

9.4 Summary

We have proven the soundness of the typing relation which underlies the type inference

done by C. We have done this by proving progress and preservation theorems for a

representative subset of C using the techniques of Wright and Felleisen [93]. Included

with this proof is a small-step operational semantics for this subset of C which fur-

ther illuminates, via a binding ispair, the operation of kar, kdr, ispair; and which also

clarifies the ◃ operation.
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Chapter 10

Conclusion

10.1 A Type-Safe Function Extension Mechanism

Of the available techniques for creating polymorphic functions with specific behaviour,

we discovered that none were entirely suitable for compilation in a baseline functional

compiler. We created our own using features from Scrap Your Boilerplate (and its precur-

sors) and the pattern calculus. The end result is a single function extension operator which

is able to create both type preserving transformations and polymorphic accumulators. To

accompany this new source language facility, we have defined new type inference rules

which are able to capture, in one simple rule, both possible behaviours of function exten-

sion. Furthermore we showed that function extension can be converted to a very simple

run-time operation which requires only type information to be added to the run-time,

not pervasive type inspection. The end result is a mechanism for polymorphic functions

with specific behaviour that is simple to incorporate in a baseline functional compiler and

only checks run-time type information when absolutely necessary. When combined with

a compilation scheme and type inference algorithm for application pattern matches, this

shows that it is possible to add generics to a baseline functional compiler without requir-

ing advanced language features and in a way which is type-safe.

10.2 A Compilation Scheme and a Type Inference Algorithm for Applica-

tion Pattern Matches

We have created the first compiled implementation of the explicit spine view approach

to structure agnosticism. This particular universal view of data has been used implicitly

or interpreted in other systems but ours is the first compiled instance of it. We contribute



to the literature on the spine view by giving a new account of static type inference for

it. Our solution is more explicit than those used for implicit spine views and is simpler

than that used in bondi and the pattern calculus. Again we show how we can compile

this mechanism to very simple run-time operations which are easy to add to a baseline

functional compiler. We also gave an account of dealing with so-called lonely construc-

tors in the run-time. Again, this solution is simple to add to a baseline compiler and it

is powerful enough to admit generic show and generic encode. In particular, it allowed

 to compile these two snippets without making partially applied constructors first-

class citizens of the source language. When combined with a type-safe function extension

mechanism, our application pattern matches show that it is possible to add generics to a

baseline functional compiler without requiring advanced language features and in a way

which is type-safe. Furthermore, the mechanism we have described for function extension

and application pattern matches are simple and work with the basic structures of func-

tional language compilers, showing that is is possible to make the addition of type-safe

generics a simple task for language implementors.

10.3 Demonstration of Techniques

This unique combination of techniques was investigated for its expressiveness and ef-

ficiency of compiled code. We demonstrated that we can implement our eight example

snippets and a great deal more. We showed that the run-time performance of generic pro-

grams compiled with  is excellent in comparison to the performance of non-generic

programs compiled with , demonstrating that the techniques we describe cause rel-

atively little slowdown or memory overhead. Thus we demonstrates that it is possible to

have a type-safe generics mechanism for baseline functional languages generate efficient

target code relative to other generics techniques. Finally, we have proven the soundness

of the typing relation by which all these new features are realised in a statically typed

functional programming language.

10.4 Future Work

We plan to use the compiler we have created for further investigations, particularly we

want to study the following areas.
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10.4.1 More Expressive Spine Views

Hinze et. al. [39, 38] have laid out two possible extensions to the basic spine view that

we currently use in . Implementing and experimenting with these could expand the

set of admissible functions enough to include all canonical datatype generic functions.

For example, in Chapter 7 we noted that more expressive spine views could allow generic

read and generic map. The simple spine view we are using is able to be compiled into very

simple underlying mechanisms and discovering whether or not this is still possible with

a more expressive spine view would be very interesting. If it is not possible, we would

like to extract the minimal cost to accompany the improved expressiveness.

10.4.2 Object Oriented Application Pattern Matching

Scala [65] is a language with very expressive pattern matching where pattern compilation

can be supplemented by library authors [27, 26]. We want to investigate whether the

pattern compilation techniques we used for application pattern matches can be translated

to that system. F# [24] has a very similar feature called active patterns [84]. They are used

not just to perform pattern matching on Objects, but also on any abstract data type. We

would also like to investigate building application pattern matches with active patterns

in F#.

10.4.3 Integration Into Other Compilers

We have made a compelling case that our techniques (function extension and application

pattern matches) could be used in most functional programming languages. To demon-

strate this one needs to actually extend an existing compiler. OCaml [35] would be the

most interesting target because Haskell already has many generic programming tools.

However, this would be a significant project because OCaml does not have either poly-

morphic recursion or rank-2 types, although there is work that could inform these exten-

sions [28]. The mechanisms we described for rank-2 arguments and polymorphic recur-

sion rely on just a single mechanism not in standard Hindley-Milner, the set of fixed-for-

unification type variables. Thus there is a good chance our techniques could be adapted

to work in OCaml.

An implementation in a Haskell compiler would also be enlightening. It would then

be possible to implement our solution and the generics libraries like Regular and Instant

Generics in the same system, allowing us to make more accurate comparisons between

our approach and those that use type classes to achieve minimal slowdown for generic
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code. We could also extract data illuminating to what extent the speed of these libraries is

a result of GHC’s sophisticated implementation and how much is inherent to using type

classes.

10.4.4 Extending Support for the Pattern Calculus

Throughout this thesis we have referred to the pattern calculus as a source of results about

the explicit spine view and for its use of extension typing (from which our function ex-

tension drew inspiration); and to bondi (an implementation of the pattern calculus) as

interpreted implementation of techniques related to ours. However, there are still many

ideas in the pattern calculus and in bondi that we have not implemented. Specifically we

would like to answer the following questions:

• How well can we enable extension typing with a single function extension operator?

• Can we encode the pattern calculus account of objects with our techniques?

• Can we support free variables in patterns as we did application pattern matches?

• Can we extract and use linearity constraints (required for free variables in patterns)

from algebraic data type definitions?

10.4.5 Function Extension with Fewer Restrictions

We have enforced that the function extension operator only extend with non-arrow types

which have no free type variables in them. This helped us avoid a number of tricky sit-

uations. However, it may be that there is room for useful behaviour in the things we are

restricting. For example, why not allow type unification to happen at run-time? It would

introduce some run-time cost, but how much? What new programs become expressible?

We have not entirely convinced ourself that there is no reasonable behaviour for functions

taking arrow types either. There is no extensional equality for these values, but we are

only concerned with type safety, so perhaps type equivalence is sufficient.

10.4.6 Failure as Trivial Success

We have shown an encoding of term rewriting using an option type (some) to encode

failure. Without this extra layer, the only possible generic function for a generic update

(as the term-rewriting traversals are) is the trivial success function, identity. We would

like to investigate whether the failure mechanism used in term rewriting can be emulated

with function extension and identity (or vice versa).
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10.4.7 Optimisation of Generic Programs

It would be interesting to measure how different optimisations affect generic programs.

Instant generics [13] is a generics library which works with GHC’s optimisations and we

have shown that DGEN avoids breaking standard optimisations. However, the optimisa-

tion profile (how much benefit one gets from particular optimisations) may be different

and there are new optimisations which may be effective. For example, Cunha and Visser

[19] show how to transform generic programs, including converting generic programs

into non-generic programs.

10.4.8 Direct Comparison with Type-Class Based Approaches

If we were to add a type-class mechanism to , we could more directly compare our

work with the type-class based generics solutions from Haskell. This would require not

just a type-class implementation for , but also strict,  versions of the generics

libraries and so is a large undertaking.

10.4.9 Contributing to the Rewrite Engine Competition

Since  is capable of term-rewriting we would like to include it in the “rewrite engines

competition”[25]. This would give an even clearer measure of our success in terms of

expressiveness and speed of compiled programs.
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