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ABSTRACT 

A number of constraints have been hypothesised to have affected avian evolutionary history. 

Testing these hypotheses is key to understanding the causal processes behind observed patterns 

of diversity and disparity. Four topics on this theme are examined here. The first is that egg shell 

strength relative to incubator body mass limits body mass. Size variation in the giant, extinct 

flightless bird Genyornis newtoni is used to determine whether sexual dimorphism may have 

compensated for any mismatch between mass and eggshell strength in this species. Secondly, 

limits to leg bone scaling are tested for using quadratic regressions of leg bone measurements 

from 58 species of flightless birds. Comparisons with non-avian theropods are made to see 

whether patterns of scaling seen in birds demonstrate limits to leg bone allometry in birds. 

Thirdly, the evolution of leg bone proportions in 38 species of flightless birds is explored. Factor 

analyses are used to quantify changes in proportions from ancestral morphologies modelled on 

volant relatives. Multiple regressions are used to see if these changes are related to shifts in body 

size, the amount of time since loss of flight, and the size of the land area upon which each lineage 

evolved. In Chapter 4, the hypothesis of competition between Mesozoic birds and pterosaurs 

during the Mesozoic is investigated using multivariate analysis of functionally analogous traits. 

The results of these studies provide support to hypotheses of constrained leg bone allometry, with 

increases in femur length relative to girth being restricted, related to posture in birds and of 

ecological separation rather than competition between Mesozoic birds and pterosaurs. It is also 

shown that the evolution of the leg bones after the loss of flight is not limited by any universal 

selection pressures, with changes in the proportions of these bones showing no consistent patterns 

through avian phylogeny. Together, these studies provide new insights into the potential 

constraints that have affected avian evolution for the past 160 million years.   
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Introduction 

 
Birds are the most diverse group of living tetrapods, with approximately 10,000 species found in 

every environment and distributed globally (Gill, 2007; Jetz et al., 2012). Unsurprisingly, there 

has been much interest in the fossil record and evolution of this clade in the palaeontological 

community for over 200 years (Mlíkovský, 1996). During this time, research questions have 

broadened from the narrow question of bird origins (Huxley, 1868; 1870; Ostrom, 1973; 1976) 

into a wide array of topics including the evolution of powered flight (Ostrom, 1979; Rayner, 

1988; Senter, 2006), the nature and timing of the radiation of modern birds (Cracraft, 2001; 

Fedducia, 2003; Lee et al., 2014a), trends in body size evolution (Hone et al., 2008; Butler & 

Goswami, 2008; Benson et al. 2014a; Lee et al., 2014b; Puttick et al., 2014), and patterns of 

morphological and biomechanical evolution (Jenkins, 1993; Hutchinson, 2001; Hutchinson & 

Allen, 2009; Benson & Choiniere, 2013; Dececchi & Larsson, 2013; Brusatte et al., 2014; Puttick 

et al., 2014).  

One area of interest is the nature and effects of constraints on morphological and 

ecological evolution through time. Knowledge of constraints is important for understanding the 

causal processes behind observed patterns of taxonomic and morphological diversity (Ruta et al., 

2006). Intrinsic constraints may result from limitations to physiological processes (e.g. metabolic 

rate, thermal tolerance of proteins), developmental pathways, or the biomechanical structure of a 

particular body plan (Gould, 1989; Biewener, 1991; West et al., 1999; Hulsey & Wainwright, 

2002; Ricklefs & Wikelski, 2002; Brakefield, 2006). These mechanisms have been used to 

explain parallel evolution, limits to body mass, and patterns of morphospace occupation (Olson, 
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1973; Alexander, 1998; Gatesy & Middleton, 1997; Middleton & Gatesy, 2000; Hulsey & 

Wainwright, 2002; Brakefield, 2006) Additionally, trade-offs in functional performance, with a 

morphological or physiological trait sometimes having opposite requirements, may restrict the 

degree of variation exhibited within a clade (Ricklefs & Wikelski, 2002; Wainwright, 2007). The 

removal or relaxation of constraints is one way in which increases in diversity and disparity can 

be instigated. One example is the easing of constraints on leg bone morphology with the 

evolution of flight in birds (Gatesy & Middleton, 1997). In the theropod ancestors of birds the 

hindlimbs were integral to locomotion, however, with the evolution of flight combined with 

changes in the mechanics of leg movement the hindlimbs of birds were freed for alternate uses 

such as perching, swimming, and prey capture (Gatesy, 1990; Gatesy & Middleton, 1997; 

Hutchinson & Gatesy, 2000; Hutchinson, 2001). This innovation led to the greater disparity of 

avian leg bone proportions compared to non-avian theropods (Gatesy & Middleton, 1997).   

 Occupation of niches by other taxa may also block a clade from diversifying 

morphologically and radiating into new niche space, meaning that it can act as an extrinsic 

constraint (Rosenzweig & McCord, 1991; Jablonski & Sepkoski, 1996). The opening of 

ecological niches by extinction of a clade provides opportunities for surviving groups to radiate 

into the vacant niche space (Benton, 1983; Rosenzweig & McCord, 1991; Alroy, 1998). As a 

result, tests of this hypothesis often examine changes in disparity and diversity across mass 

extinction events (Alroy, 1998; Brusatte et al., 2008a, b; Benton et al., 2014). 

 This thesis explores a number of topics on the theme of morphological constraints in 

birds.  The first two chapters examine potential mechanical constraints on avian body mass and 

scaling of the limb bones that support the weight of the animal. Unlike previous studies, the focus 
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here is on flightless birds. This is for three reasons. First, the largest birds are flightless, with the 

heaviest estimated to have been six times heavier than the largest ever flying bird (Amadon, 

1947, Vizcaíno & Fariña, 1999). Second, hypotheses of mass limitation in flightless birds have 

received far less attention than those put forward for flight-capable birds. This is despite the fact 

that the largest bipedal theropods had masses exceeding that of the largest flightless birds by over 

an order of magnitude (Amadon, 1947; Christiansen & Fariña, 2004; Mazzetta et al., 2004). 

Thus, flightless birds have not approached the apparent weight limits of active bipeds. Third, 

terrestrial flightless birds are an excellent group in which to examine scaling relationships of the 

leg bones because the hindlimbs are used solely for terrestrial locomotion. As such, scaling 

patterns are less subject to ecological noise caused by differences in proportions to fulfil alternate 

uses, thereby making comparison with non-avian theropods easier (see; Zeffer et al., 2003; 

Doube et al., 2012). The second general topic is the pattern of leg bone evolution in the transition 

to secondary flightlessness and factors that potentially control morphological changes. Changes 

in hindimb shape with loss of flight have received much less attention than shifts in the 

forelimbs. The third and final topic is potential competition between early birds and pterosaurs in 

the Mesozoic. Opinion in the recent palaeontological literature is divided as to whether 

competition or ecological separation occurred between these two groups (Penny & Phillips, 2004; 

Wang & Zhou, 2006; McGowan & Dyke, 2007; Prentice et al., 2011; Benson, et al., 2014b). 

Testing these hypotheses is key to understanding whether the presence of another group of flying 

vertebrates affected the early evolution of birds.    

The first chapter examines the hypothesis that a widening discrepancy between eggshell 

strength and incubator mass with increased body mass led to the extreme reverse sexual 

dimorphism seen in moa, and ultimately limits avian body mass (Birchard & Deeming, 2009; 
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Deeming & Birchard, 2009). Some species of moa exhibit extreme sexual dimorphism, which is 

reflected in high variation in leg bone size (Bunce et al., 2003; Huynen et al., 2003; Worthy et 

al., 2005; Worthy & Scofield, 2012). This dimorphism has been suggested to be a response to the 

greater likelihood of accidental damage to eggs during contact incubation with increased size 

(Birchard & Deeming, 2009; Deeming & Birchard, 2009). In Chapter 1 this hypothesis is tested 

by examining the degree of size variation in the extinct, flightless bird Genyornis newtoni (Aves: 

Dromornithidae). Mass estimates of this species are similar to Dinornis, the largest genus of moa 

(Murray & Megirian, 1998; Murray & Vickers-Rich, 2004). As such, similarly high variance in 

the leg bone dimensions of adult G. newtoni would be a good indication of extreme dimorphism 

in this species as well. The results of this study show size variation in G. newtoni leg bones to be 

three times less than that seen in Dinornis robustus, providing little evidence for extreme 

dimorphism. Additionally, the discrepancy between eggshell strength and adult body mass in G. 

newtoni is far greater than in any extant, large flightless birds.  Thus, the hypothesis that the 

relationship between eggshell strength and incubator size is a limiting factor in avian body size is 

not supported. The results of this chapter have been published in the Journal of Vertebrate 

Paleontology (Chan, 2014).  

 In Chapter 2, the scaling patterns of the femur and tibiotarsus in terrestrial flightless birds 

are compared with those of non-avian theropods. Differential scaling, whereby the bones become 

more robust at a higher rate in large species than in their smaller relatives, has been demonstrated 

in mammals and non-avian theropods (Bertram & Biewener, 1990; Christiansen, 1999a, b). 

Avian femora are positioned sub-horizontally during stance, thereby increasing the torsional 

forces applied to this bone (Gatesy & Biewener, 1991; Carrano, 1998; Carrano & Biewener, 

1999). The relatively more robust femora seen in birds compared to non-avian theropods is likely 
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a response to these increased torsional stresses (Gatesy, 1991; Carrano, 1998). Combined with 

the requirement to keep the knee under the centre of mass, this strengthens the constraints on 

femoral dimensions. Measurements of the femur and tibiotarsus were taken on 278 specimens 

representing 58 species of flightless bird. Regressions of avian femur length against 

circumference show differential scaling with little variation between different phylogenetic 

groups. This is in contrast to non-avian theropods, which show much greater phylogenetic 

variation. These results support the hypothesis that the femur of birds is more constrained 

compared to non-avian theropods due to postural differences. This manuscript is prepared for 

submission to Journal of Evolutionary Biology.  

 The focus shifts in Chapter 3 towards the evolution of hindlimb proportions in response to 

flight loss in birds. It is well documented that there was a general trend of forelimb reduction in 

which the bones of the hand were the first to shorten (Marples, 1930; Olson, 1973; Livezey, 

1992; Gatesy & Middleton, 2000; Nudds & Davidson, 2010). However, patterns of change in the 

hindlimbs have received little attention. Leg bone lengths and diameters of 334 specimens 

representing 38 flightless species and 19 volant species were measured. Differences in scores 

from factor analyses of leg bone dimensions were used to quantify transitions between volant 

ancestral models and flightless species. These values were tested for directionality and for 

association with three controlling variables: changes in body size, estimated time since loss of 

flight, and size of land mass on which the lineage evolved. In contrast to previous studies on the 

wings, no evidence for directionality in leg bone evolution was found. One apparent pattern is 

that ratites with leg bone proportions indicative of greater cursoriality evolved on larger land 

masses. However, no such patterns exist in flightless neognathous birds. This manuscript has 

been submitted to Journal of Anatomy.  
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 Chapter 4 explores the possibility for competitive interactions between pterosaurs and 

Mesozoic birds. One approach to this problem is to compare morphological characters associated 

with particular ecological traits using multivariate analyses. Previous studies compared these 

groups using measurements from homologous appendicular skeletal structures as variables (Dyke 

et al., 2006; McGowan & Dyke, 2007). However, these units are not functionally comparable and 

differences in these structures likely reflect separate ancestry rather than differences in ecology 

(Prondvai & Hone, 2008). In this study, measurements of the lower jaws, forelimbs, and 

hindlimbs were taken from published text figures and analysed using multivariate analyses. 

Unlike previous works, the wings were divided into functionally analogous units based on the 

descriptions of Prondvai and Hone (2008). The results indicate that complete separation between 

pterosaurs and Mesozoic birds does not occur on any single axis of morphospace. Instead, 

separation results from a combination of size and differences in relative lengths of the mandibles, 

brachium, and metatarsals. This conclusion differs from those of previous studies, which found 

separation between these groups on each axis of multivariate space to be due to differences in the 

relative lengths of homologous bones. These results indicate that ecological separation between 

Mesozoic birds and pterosaurs rather than being a result of any single factor was due to a 

combination of size, locomotory adaptations, and feeding strategy. Further study of feeding 

related traits in pterosaurs and birds and the inclusion of immature individuals of the former in 

future analyses is suggested as a means of testing for ecological separation between the two 

groups, and for expansion into niches previously occupied by pterosaurs by modern birds.      
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Abstract 

 

The decreasing strength of eggshell relative to the mass of the incubating parent has been 

hypothesized to constrain large body mass in flightless birds. This in turn has been used to 

explain extreme sexual dimorphism in giant moas, in which males weighed a third of the mass of 

the females, as an adaptation to reduce the risk of egg breakage. As a result, substantial 

dimorphism is also predicted in similarly large taxa. This study examines intraspecific variation 

in the Australian giant bird, Genyornis newtoni, an important component of the Pleistocene 

megafauna in the region. Specimens from the Lake Callabonna locality, South Australia were 

examined and measurements were taken of hind-limb elements that correlate strongly with body 

mass. These were compared to measurements taken from specimens of the giant moa, Dinornis, 

from North Canterbury, New Zealand. Body mass and eggshell strength of G. newtoni were also 

estimated using published regression equations and compared to large extant birds. The results 

indicate that low variation in the Lake Callabonna population, particularly when compared with 

Dinornis, does not support the presence of extreme dimorphism. In addition, the difference 

between body mass and eggshell strength in Genyornis is far greater than that seen in extant large 

ratites. The implications for the egg strength-based hypothesis for relatively small body size in 

flightless birds are discussed. 
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Some species of moa (e.g., Dinornis robustus, D. novaezealandiae, Pachyornis geranoides) 

exhibit extreme reversed sexual dimorphism (RSD), with females measuring up to three times the 

weight of the males (Bunce et al., 2003; Huynen et al., 2003; Worthy et al., 2005; Worthy and 

Scofield, 2012). Extreme dimorphism in these species has been suggested to be a response to the 

likelihood of accidental damage to eggs during contact incubation with increased size (Birchard 

and Deeming, 2009; Deeming and Birchard, 2009; however, for an alternative explanation see 

Olsen and Turvey, (2013). In this scenario, the much smaller males would have incubated the 

egg(s) in order to decrease the risk of shell breakage (Birchard and Deeming, 2009; Deeming and 

Birchard, 2009). Direct evidence for male incubation was presented in a recent study that found 

that only male DNA was present on the outer surface of Dinornis eggs, suggesting that in both 

Dinornis species the males incubated the egg(s) (Huynen et al., 2010). 

This explanation for extreme RSD is based largely upon a study examining the 

relationship of eggshell thickness and strength to body mass in birds, and the trade-off between 
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the ability of the egg to protect the developing embryo and subsequent ability of the embryo to 

hatch out of the egg (Ar et al., 1979; Birchard and Deeming, 2009). Larger birds have eggshell 

strengths that are weaker relative to their body mass; thus, the safety factor (= eggshell 

strength/incubator body mass) of the eggs decreases with increased incubator size (Ar et al., 

1979). The strength of eggshell can be estimated using the equation: 

 

Y = 1718L2.022                                                                   (1) 

 

where Y is the yield point in kg, the weight applied to the egg at the point at which the resultant 

deformation of the shell becomes irreversible, and L is eggshell thickness in cm (Ar et al., 1979). 

Data from Birchard and Deeming (2009) indicate that, in large extant ratites, the incubating bird 

has a mass 1.9–2.7 times greater than the yield point of the eggshell (Table 1). In these species, 

the incubating bird sits upon large clutches, often of 10 or more eggs (del Hoyo et al., 1992), with 

the weight of the incubating bird spread over the nest and adjacent ground. As such, the 

incubator’s weight is spread over an area wider than a single egg, reducing the risk of damage to 

the individual eggs during incubation.  

The Dromornithidae are an extinct Australian lineage of large flightless Anseriformes, the 

largest of which were comparable in size to Dinornis and the elephant birds from Madagascar 

(Murray and Megirian, 1998; Murray and Vickers-Rich, 2004). The dromornithids are currently 

classified into five genera and seven species (Nguyen et al., 2010). Of these, specimens of the 

Pleistocene Genyornis newtoni are by far the most abundant (Rich, 1979; Murray and Vickers-

Rich, 2004).  
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Here, size variation in G. newtoni is evaluated in order to test for dimorphism in this 

species. The limb bones of adult Dinornis vary widely in size due to extreme dimorphism 

(Worthy et al., 2005). Similarly, high variation in adult Genyornis would indicate a high degree 

of dimorphism in this genus as well. For this study, variation in size is assessed using 

measurements taken from hind limb bones of G. newtoni from a single locality, Lake Callabonna, 

South Australia. In addition, Genyornis eggshell safety factor is compared with that of extant 

ratites. 

Institutional Abbreviations—AM, Australian Museum, Sydney, New South Wales, Australia; 

MNZ, Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand; NMV, Museum 

Victoria, Melbourne, Victoria, Australia; SAM, South Australian Museum, Adelaide, South 

Australia, Australia. 

MATERIALS AND METHODS 

Size Variation 

Least circumference of tibiotarsi and length and midlength circumference of 

tarsometatarsi were measured for specimens of G. newtoni from Lake Callabonna, South 

Australia. One specimen measured (NMV P.207016) was a cast from a tarsometatarsus found at 

Lake Callabonna because the original specimen (SAM P.17024) could not be located. Lengths 

and circumferences of the leg bones are often strongly correlated with body mass and therefore 

have been used to estimate the size of extinct animals (Prange et al., 1979; Anderson et al., 1985; 

Campbell and Marcus, 1992; Campione and Evans, 2012).  

Femoral measurements are generally used for size estimation. However, few femoral 

specimens of G. newtoni are complete enough to be able to measure total length or to measure 

circumferences in the same place in different specimens. For this reason, distal tibiotarsal and 
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tarsometatarsal measurements were used instead. Examination of complete and near-complete 

tibiotarsi (SAM P.18434 and P.17033) indicated that least circumference is located towards the 

distal end of the diaphysis, thereby allowing measurements of least circumference to be taken 

from those distal portions of tibiotarsi in which that section of the diaphysis was preserved. 

Length measurements were taken using 300 mm digital callipers; lengths longer than 300 mm 

were measured using a measuring tape. Circumference was measured using thin twine wrapped 

round the bone. The point where the two ends met was marked with an ultrafine pen, and the 

marked length of string was then measured using callipers. All measured leg bone specimens of 

Genyornis from Lake Callabonna are from adult individuals. Adults were identified by the 

complete fusion, without trace of the symphyses, of the elements that form these two compound 

bones. 

Measurements were taken on a total of 17 distal tibiotarsi and 14 tarsometatarsi that were 

deemed sufficiently intact to yield accurate measurements (Supplementary Data, Tables S1 and 

S2). Coefficients of variation were calculated for bones from the right side (nine tibiotarsi and 

eight tarsometatarsi) in order to avoid counting an individual more than once. Measurements 

were also taken from 13 Dinornis robustus tibiotarsi from the Bell Hill and Pyramid Valley 

localities, North Canterbury, New Zealand (Supplementary Data, Table S1). From this sample the 

coefficient of variation was calculated for nine left tibiotarsi of D. robustus, again to avoid 

including the same individual twice. In addition, 95% bootstrap confidence intervals (CIs) were 

calculated for each coefficient using R 2.14.0 (R Development Core Team, 2011; see 

Supplementary Data). Although an equation for estimating body mass of avians from tibiotarsal 

least circumference is available (Campbell and Marcus, 1992), this was not used to calculate size 

variance. Genyornis was substantially larger than Struthio camelus, the largest extant bird 
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(Murray and Vickers-Rich, 2004). As such, mass estimates of Genyornis using regression 

equations will have high error margins due to extrapolation beyond the range of the data used 

(Schmidt-Nielsen, 1984). This makes such estimates unsuitable for calculations of size variation 

in a population. 

 

Eggshell Safety Factor 

Williams (1981) reported average eggshell thicknesses of 0.12 cm (N = 278) for shell attributed 

to G. newtoni. Yield point of the eggshell was calculated using Equation 1.Body masses were 

estimated using the following equation from Campbell and Marcus (1992): 

 

log10M = 2.424log10LCT + 0.076      (2) 

 

where M is mass in g and LCT is least shaft circumference of the tibiotarsus in mm. A range of 

masses was calculated using all measured tibiotarsi from Lake Callabonna (Supplementary Data, 

Table S1). In addition, least shaft circumferences of five femora from Lake Callabonna (SAM 

P.13878, P.13864, P.17001, P.17002, and P.17004) were measured. These were also used to 

estimate body mass using the equation: 

 

log10M = 2.411log10LCF − 0.065     (3) 

 

in which LCF is least shaft circumference of the femur in mm (Campbell and Marcus, 1992). 
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TABLE 1. Maximum shell thickness (L), yield point (Y), incubator, and average incubator mass 

of three ratite genera and Genyornis. 

 

 
 

 

 

 

Fem and Tbt, estimates based on femoral and tibiotarsal least shaft circumferences, respectively. Ratite 

egg shell thickness and incubator mass values taken from Birchard and Deeming (2009), Genyornis shell 

thickness taken from Williams (1981). Incubator indicates which sex typically incubates the clutch (S, 

shared; M, male; ?, unknown). Y = 1718L2.022 (Ar et al., 1979). 

 
 
 
 
TABLE 2. Summary statistics for measurements used to calculate coefficients of variance. 
 

 

 

 

 

Abbreviations: CI, confidence interval; Cleast, least circumference; Cmid, midshaft circumference; CV, 

coefficient of variance; L, length; SD, standard deviation; Tbt, tibiotarsi; Tmt, tarsometatarsi. 

 

 

Genus L (cm) Y (kg) Incubator Incubator Mass (kg) 

Struthio 0.19 59.8 S 115.0 

Rhea 0.09 13.2 M 35.2 

Dromaius 0.10 16.3 M 33.3 

Genyornis 0.12 23.6 ? 326.8–443.8Fem 

167.7–253.2Tbt 

 N Mean (mm) SD CV 95% CI CV 

Genyornis Tbt Cleast 9 144.6 7.2 5.0 2.8–6.4 

Genyornis Tmt L 8 349.7 19.0 5.4 1.7–6.6 

Genyornis Tmt Cmid 8 134.4 8.1 6.0 3.4–7.2 

Dinornis Tbt Cleast 9 128.5 21.4 16.7 6.9–19.0 
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RESULTS 

Size Variation 

Measurements of tibiotarsal least circumference, tarsometatarsal length, and 

tarsometatarsal midshaft circumference all passed Jarque-Berra tests for normality (P = 0.845, 

0.622, and 0.691, respectively). Dinornis tibiotarsal least circumferences also passed a Jarque-

Berra test (P = 0.545). Tibiotarsal least circumference of D. robustus had a coefficient of 

variation more than three times higher than that of Genyornis, with no overlap of the 95% CIs 

(Table 2). Coefficients of variation and 95% Cis were similar for all three measurements of 

Genyornis (Table 2).  

Eggshell Safety Factor 

Using the equation given by Ar et al. (1979), a thickness of 0.12 cm yields an estimated 

yield point of 23.6 kg for Genyornis eggshell (Table 1). Estimated mass of Genyornis using 

tibiotarsal least circumferences ranged from 167.7 to 253.2 kg, whereas masses estimated from 

femoral least circumferences ranged from 326.8 to 443.8 kg (Table 1). Mass estimates from 

tibiotarsal measurements give a range of 7.1–10.7 times the difference between adult mass and 

eggshell strength; for femoral-derived estimates, the mass range is 13.8–18.8 times eggshell 

strength. Measurements of two femora (SAM P.13878, P.13864) and a tibiotarsus (SAM 

P.18434) from a single individual produced estimates of 434.3 and 253.2 kg, respectively. 

DISCUSSION 

The estimated strength of Genyornis eggshell is at least seven times lower than estimates 

of adult body mass. In contrast, eggshell strength in large extant ratites is less than three times 

lower than average incubator mass (Table 1). Could Genyornis have overcome this difference 
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through extreme dimorphism? Variation in the circumferences of Genyornis newtoni tibiotarsi is 

substantially lower than that of Dinornis, with no overlap of confidence intervals of the 

coefficients of variation. The amount of variation found in tibiotarsal circumference in the D. 

robustus sample is similar to that found in a larger sample of femoral lengths from Bell Hill 

(Turvey and Holdaway, 2005). Additionally, Worthy et al. (2005) reported similar variances for 

Dinornis femoral and tibiotarsal measurements from the Canterbury region, indicating that size 

variance in these bones is comparable. This suggests that despite the small sample size, the range 

covered is a good representation of the intraspecific variation found at this site. 

The low variation in G. newtoni found at Lake Callabonna may either be a true biological 

signal or an artefact of preservational bias towards individuals of a particular size. This is 

plausible given that the terrestrial vertebrates found in the same deposits as Genyornis are all 

large-bodied animals that appear to have become entrapped in a clay mud (Wells and Tedford, 

1995). However, the presence of Dromaius novaehollandiae in the deposit (Wells and Tedford, 

1995) indicates the potential for the preservation of smaller individuals of Genyornis. 

Interestingly, measurements of additional specimens from Cuddie Springs, New South Wales 

(tibiotarsi: AM F.33402, AM E.12; tarsometatarsi: AM F.130161, AM F.112330, AM F.4481) 

and Lancefield, Victoria (tarsometatarsus: NMV P.41827) all fall within the range of the Lake 

Callabonna sample (Fig. 1; Supplementary Data, Table S1).  

Alternatively, the absence of smaller individuals at Lake Callabonna may be due to a 

biologically biased sex ratio. Such a bias might have resulted from differential mortality, with the 

smaller sex experiencing higher levels of preadult mortality due to costs associated with 

reproduction, or due to behavioral differences. Another possibility is that the larger sex was 

territorial, leading to the smaller sex being excluded from the area. For example, larger female  
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FIGURE 1. Frequency histograms of A, tibiotarsus circumference; B, tarsometatarsus 

circumference; and C, tarsometatarsal length. Open bars, Dinornis; hatched bars (diagonal 

lines), Lake Callabonna Genyornis; hatched bars (vertical lines), Genyornis from Cuddie 

Springs and Lancefield. 
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cassowaries (Casuarius casuarius) have been reported to scare off smaller males outside of the 

breeding season (Crome, 1975). Alternatively, the smaller sex may have been occupied with 

incubation or taking care of young, and so may have inhabited other habitats during the dry 

season when it is likely that most animals were entrapped at Lake Callabonna (Wells and 

Tedford, 1995).  

A study by Allentoft et al. (2010) found that a large sample of D. robustus from Pyramid 

Valley, an area of seasonally dry forest surrounding a lake, exhibits a highly skewed adult sex 

ratio of 1:19 in favor of females. This provides a possible model for the Lake Callabonna 

Genyornis population. In the case of Pyramid Valley, mass-biased taphonomy can be ruled out by 

the presence of taxa smaller than D. robustus males, and a hypothesis of an uneven sex ratio in 

the source population can be discarded due to the much more even sex ratios at the nearby (<6 

km) Bell Hill Vineyard site (Allentoft et al., 2010). The female biased sex ratio at Pyramid Valley 

has been suggested to have been caused by segregation of males and females (Worthy et al., 

2005; Allentoft et al., 2010). This separation may have been caused by territorial exclusion from 

the area by dominant females or by males caring for the young in a more closed environment 

(Worthy et al., 2005; Allentoft et al., 2010). All of the scenarios that can be used to explain the  

absence of smaller individuals at Lake Callabonna are based on the following assumptions: (1) 

that substantially smaller adults of the opposite sex were present in the original population; 

(2) that all of the individuals found at Lake Callabonna are of the same sex; and (3) that the 

hypothesis of eggshell strength constraining body mass in flightless birds is correct. However, if 

it is accepted that the low size variation of G. newtoni is not a preservational artifact, then this 

would lead to the conclusion that this species was not sexually size dimorphic. 
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A partial femur with the distal and proximal ends heavily eroded from Baldina Creek, 

SouthAustralia (SAM P.17102), was attributed to G. newtoni (Stirling and Zietz, 1896a, 1896b, 

1900). If this specimen does belong to an adult individual of G. newtoni, then variation in this 

species would appear to be greater than that seen from specimens from Lake Callabonna, and it 

may represent a member of the smaller sex. The estimated body mass of this specimen based on 

measurement of the least circumference (185 mm) and Equation 3 is 251.9 kg. Mass estimates 

based on femoral circumferences are 1.8 times higher on average than estimates based on 

tibiotarsal circumference (Table 1), which in this case would give a mass of ∼139.2 kg. This is 

still 5.9 times greater than the estimated yield point for Genyornis eggshell. It should 

also be noted that the Baldina Creek locality is located ∼400 km from Lake Callabonna and 

geographic or temporal variation cannot be ruled out as potential causes for the difference in size 

between the specimens from these two localities. 

The discrepancy between the size of Genyornis and the estimated 

yield point of Genyornis eggshell poses a problem for the hypothesis that the relationship 

between incubator mass and eggshell strength limits body mass in flightless birds. Unlike the 

large moas, there is currently no clear evidence for extreme sexual dimorphism that would lessen 

the difference between incubator mass and eggshell yield point to levels seen in extant ratites. 

It remains to be seen whether adult individuals of much smaller size, either of Genyornis or other 

large dromornithids, will be discovered in the future. 

As the most productive locality for G. newtoni, Lake Callabonna provides the best 

opportunity to test for extreme sexual dimorphism in dromornithids and body mass constraints 

associated with reproductive traits in flightless birds (Rich, 1979). Further discoveries of G. 
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newtoni at this locality are required in order to make a more comprehensive assessment of size 

variation in Genyornis newtoni. 

Furthermore, it is proposed that greater investigation of the hypothesis of eggshell 

strength limiting size in flightless birds is required. Currently, this hypothesis does not consider 

whether total incubator mass is a true reflection of the pressures placed on each egg during 

incubation. Several factors may affect the stresses placed upon the eggshell, including the number 

of eggs, the brooding posture (which influences how much weight is placed upon the ground or 

nest as well as the eggs), and behavior, which influences the likelihood of accidental impact 

between neighboring eggs and/or between the eggs and the incubator. Further study to determine 

the actual pressures placed upon the eggs during incubation is required in order to examine 

whether total incubator mass is an adequate measure of the external forces experienced by the 

egg during incubation. 

CONCLUSION 

The difference between eggshell strength and adult body mass in Genyornis newtoni is 

much higher than that of extant, large flightless birds. The low variance in G. newtoni leg bone 

measurements precludes the presence of extreme dimorphism that would overcome this. 

Therefore, the current evidence indicates that the discrepancy between eggshell strength and body 

mass was not countered by smaller individuals of one sex incubating the eggs, as has previously 

been suggested for the similarly sized Dinornis. This calls into question the hypothesis that the 

relationship between eggshell strength and incubator size is the limiting factor in flightless bird 

body size. 
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Abstract 

The robusticity of the weight-bearing limbs of large terrestrial animals is expected to increase at a 

more rapid rate than in their smaller relatives. This scaling enables large species to maintain 

stresses in the limb bones that are similar to those seen smaller ones. Differential scaling has 

previously been found in mammals and non-avian theropods but has not been demonstrated in 

terrestrial, flightless birds. In this study, polynomial regressions of leg bone length and 

circumference in flightless birds were carried out to test for a similar relationship to that seen in 

non-avian theropods. Flightless birds exhibit differential scaling, with the femora of large taxa 

becoming thicker relative to their lengths at a greater rate than in smaller taxa. Contrary to 

previous studies, no evidence was found for differential scaling in the leg bones of non-avian 

theropods. There is instead phylogenetic variation in limb bone scaling between taxonomic 

groups, with tyrannosaurs in particular scaling differently to other groups. Phylogenetically 

corrected quadratic regressions and separate analyses of taxonomic groupings found little 

phylogenetic variation in flightless birds. It is suggested here that the non-linear scaling seen in 

avian femora is due to the need to maintain the position of the knee under a more anterior centre 

of mass. The femur of non-avian theropods is not so constrained, so the scaling of this bone is 

linear with greater variability between clades.  Phylogenetic variation in limb bone scaling further 

broadens the confidence intervals for mass-predictive scaling equations based on limb bone 

measurements of non-avian theropods. 
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Introduction 

Aves is the most diverse tetrapod class with approximately 10,000 extant species ranging in size 

from the bee hummingbird (~0.002kg) to the ostrich (~110kg) (Gill, 2007; Dunning Jr., 2008; 

Jetz et al., 2012). There is now an abundance of evidence indicating that birds are a derived group 

of theropod dinosaurs (Huxley, 1868, 1870; Ostrom 1973, 1976; Padian & Chiappe, 1998). A 

gradual accumulation of the traits that today distinguish Aves occurred throughout the evolution 

of Theropoda (Padian & Chiappe, 1998; Brusatte et al. 2014). Much attention is paid to changes 

directly related to the evolution of powered flight, including shifts in the orientation of the bones 

of the pectoral girdle (Jenkins 1993; Senter, 2006), changes in forelimb proportions (Middleton 

& Gatesy, 2000; Benson & Choiniere, 2013; Dececchi & Larsson 2013), and body size reduction 

(Turner et al. 2007; Novas et al. 2012; Dececchi & Larsson 2013; Benson et al. 2014; Lee et al. 

2014; Puttick et al. 2014). However, a number of key changes also occurred in the pelvic girdle 

and limbs (Gatesy & Middleton, 1997; Hutchinson 2001; Hutchinson & Allen, 2009). One of 

these is the shift in femoral orientation from a near vertical position to a sub-horizontal one, with 

the long axis running cranio-ventrally (Gatesy, 1990, 1991; Hutchinson & Allen, 2008).  

 The change in femoral orientation is associated with a more craniad centre of mass in 

birds compared to non-avian theropods. It is due either to the reduction in the tail and associated 

musculature (Gatesy, 1990), an increase in the relative size of the pectoral girdle (Allen et al., 

2013), or a combination of the two. The sub-horizontal orientation of the femur allows the knee 

to be placed under the centre of mass (Gatesy, 1990, 1991). A major implication of this 

construction is that the loading regime of avian femora is dominated by torsion due to the ground 

reaction force (GRF) crossing the long axis of the bone (Carrano, 1998; Carrano & Biewener, 
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1999; Main & Biewener, 2007). Although the degree to which torsion is greater than other strains 

varies during the step cycle, it is only superseded by bending strain at the end of of it, prior to 

push-off of the foot when the femur is at its most vertical (Carrano, 1998; Carrano & Biewener, 

1999). As bone is less resistant to twisting than to axial compression or bending strains, avian 

femora are required to be more robust to torsional strain (Gatesy 1991; Biewener & Dial, 1995; 

De Margerie et al. 2005). These different factors likely impose greater constraints on femoral 

morphology in birds compared to non-avian theropods. 

Several studies have shown that avian femora become more robust with increasing size. 

Specifically, diameter and the maximum second moment of area scale with positive allometry 

relative to femoral length (Gatesy, 1991; Carrano, 1998; Doube et al., 2012). Comparisons with 

non-avian theropods indicate that avian femora are also relatively more robust than those of their 

non-avian counterparts (Gatesy, 1991; Carrano, 1998; Campione et al. 2014). However, the 

datasets used in these studies often contain large numbers of flying species (Carrano, 1998). In 

other cases, a separate analysis of the flightless or “ground” component of the dataset is 

predominantly focused on palaeognathous birds (Gatesy, 1991; Doube et al., 2012). The former 

is an issue because flying birds often make alternative uses of the hind-limbs (e.g. prey capture, 

perching) that are associated with differences in femoral dimensions (Zeffer et al., 2003; Doube 

et al., 2012). These adaptations potentially make the regression slope a composite of scaling 

relationships from different functional groups.  On the other hand, a palaeognath-dominated 

terrestrial data set makes it difficult to tell whether differences in scaling are due to functional or 

phylogenetic differences. Studies with such datasets overlook the large amount of data which 

could be added by including flightless Gruiformes and other avian taxa which have independently 

evolved a terrestrial flightless condition. 
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If the function of the avian femur does limit body mass, then regressions of femoral 

length versus circumference should exhibit a curvilinear pattern with large taxa scaling with a 

lower exponent than small taxa, i.e., there should be differential scaling between large and small 

taxa in log-log space. A previous study found that interspecific differential scaling occurs in non-

avian theropods between femoral and tibial lengths and their respective circumferences with 

exponents decreasing in larger theropods (>300kg) (Christiansen, 1999a). Such a scaling pattern 

has been interpreted as a feature which enables larger taxa to maintain similar stresses in the 

bones to smaller taxa despite their increased size by having relatively more robust leg bones 

(Bertram & Biewener, 1990; Carrano, 2001). This relationship between leg bone length and 

circumference has also been found in mammals (Bertram & Biewener, 1990; Christiansen, 

1999b, c). Although maintaining similar stresses to smaller species in large mammals during 

stance can be achieved through linear allometric patterns, e.g. elastic similarity (McMahon, 1973, 

1975), such a relationship alone may not be sufficient to maintain those stresses during 

locomotion (Alexander, 1977). However, a recent study of allometric patterns in extant 

quadrupeds found no difference in the scaling coefficient of body mass against femoral 

circumference in different size classes of mammals (Campione & Evans, 2012). Differences 

between size classes were found in regressions of femur circumference and length (Campione & 

Evans, 2012). This would suggest that the previously observed pattern of scaling between 

femoral circumference and length in mammals was driven by variation of the latter, rather than 

by changes in the relationship between circumference and body mass. 

Given the greater constraints placed upon avian femora it is expected that the scaling 

curve of femoral circumference (x) and length (y) should exhibit a lower inflection point than that 

seen in non-avian theropods. The additional constraints on avian leg bones outlined here only 
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apply to the femora. As a result, curvilinear scaling of the tibiotarsus of terrestrial birds is not 

expected, particularly given that few avian species have attained a body mass approaching the 

300 kg cut-off point between small and large theropods used by Christiansen (1999a) (Amadon, 

1947; Nguyen et al. 2010). These predictions are tested here using a large, phylogenetically broad 

sample of terrestrial flightless birds fit to be compared with non-avian theropods. 

 

Materials and methods 

Femoral length and least circumference measurements were taken for 58 species of terrestrial 

flightless birds. Of these, 17 species represented the Palaeognathae and 23 represented the “core-

Gruiformes” (here referred to as Gruiformes). The dataset also included species of 

Columbiformes, Psittaciformes, Galliformes, and Anseriformes. Length was measured from the 

tip of the femoral trochanter to the distal-most point of the lateral condyle. Tibiotarsal length and 

least circumference measurements were taken from 54 species. Due to the frequency of damage 

to the cnemial crest in fossil and sub-fossil specimens, tibiotarsal length was measured from the 

interarticular area to the distal-most point of the distal condyles. Length was measured to the 

nearest 0.01mm using 300mm digital callipers and rounded to the nearest 0.1mm. A small 

number of specimens were measured using 150mm dial callipers to the nearest 0.1mm (Appendix 

S1). Distances over 30cm were measured to the nearest 1mm using a tape measure. 

Circumferences were measured with cotton twine wrapped tightly around the bone shaft and 

marked at the end with ultra-fine marker pen; the length of the marked section was then measured 

using 300mm callipers. For bones with a diameter less than 7mm, individual strands of twine 

were used. All measurements were repeated twice and the average was used for analysis. In 
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addition, measurements of the phorusrhacid, Psilopterus lemoinei were provided by Federico 

Degrange (personal communication 2013). Tibiotarsal length for P. lemoinei was measured from 

the area interarticularis to the sulcus intercondylaris (Degrange personal communication 2013). 

 Only adult specimens were measured. These were identified by the following 

characteristics: femur exhibiting a fully formed intercondylar bridge, patella fully fused to the 

tibia with no trace of patellar-tibial symphysis, tibiale and fibulare fully fused to the tibia with no 

evidence of symphysis, and a completely formed supratendinal bridge (when present).  

 Non-avian theropod femoral lengths and circumferences were taken from the literature. 

The core of the dataset was provided by Carrano (PhD thesis 1998) and Christiansen (1999a) 

with additional measurements for 15 taxa added from more recent literature (Appendix S2). The 

former author used mid-shaft circumferences whilst the later used least circumferences. A one-

way paired t-test of log10 circumference measurements from specimens used in both datasets 

indicated that the Christiansen (1999a) measurements were significantly lower (t= -2.47, DF= 21, 

p= 0.011) than the corresponding measurements taken by Carrano (PhD thesis1998). Linear 

regression of the difference between corresponding measurements against the Carrano (PhD 

thesis 1998) measurements found no significant relationship between these variables (multiple 

R2= 0.058; adjusted R2= 0.011; p= 0.282), indicating that the difference between measurements 

from the two sources did not increase with size of measurement. A simple transform function was 

therefore added to make the two data sets compatible. It involved calculating the difference 

between log10 mid-shaft circumference and log10 least circumference in specimens present in both 

data sets. The mean of the differences was then subtracted from mid-shaft circumferences to give 

an estimated least circumference. Species averages were used except when specimens were listed 
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as indeterminate members of a particular genus, family, or the clades Tetanurae or Theropoda. 

These specimens were treated as separate data points. Taxa which have since been found to be 

nomina dubia where removed and any synonyms were merged. This protocol yielded a sample 

size of 76, with 54 of these being identified to species level.  

Tibiotarsal length and least circumference measurements for non-avian theropods were 

mostly taken from Christiansen (1999a) and Carrano (PhD thesis 1998) with additional data 

added from Benson (2010). As with the femoral data, Christiansen (1999a) used least shaft 

circumferences and Carrano (PhD thesis1998) used mid-shaft circumferences. The same 

procedure as outlined for femoral measurements was used to make the two data sets compatible. 

As with the femora, a linear regression of the differences between log10 circumferences of 

specimens in both data sets against the equivalent Carrano (PhD thesis1998) measurements found 

no significant relationship between the differences and increased circumference (multiple R2 = 

0.011; adjusted R2 -0.065;  p= 0.706). The total sample size was 51, with 42 identified to species 

level. 

 Quadratic regressions were used to test for a curvilinear relationship between femoral 

length and circumference and between tibiotarsal length and circumference using R.3.01.0 (R 

Core Development Team, 2014). All data were log10 transformed and centred on the mean prior 

to analysis. Centring of the data was carried out in order to reduce multicollinearity between the 

predictor variables (Kraemer & Blasey, 2004). The second-order variable was produced by 

squaring the centred circumferences. Ordinary least squares was then used to regress length (y) 

against circumference (x) plus the second-order variable against length (y), i.e., to test a quadratic 

model. Quadratic models were compared with linear models using Akakie’s Information 
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Criterion corrected for small sample size (AICc) (Akaike, 1973; Hurvich & Tsai, 1989). AICc 

weights were generated using the “aictab” function in the R package “AICcmodavg” (Mazerolle, 

2015). Higher AICc weights indicate that a greater likelihood that the model fits the data better 

than other candidate models (Mazerolle, 2006). For the avian data set, species averages were used 

for regression, with the exception that several subspecies were treated as separate data points 

because they exhibited substantial differences in size. These were Dromaius novaehollandiae 

ater (Heupink et al., 2011), Dromaius novaehollandiae baudinianus (Worthy et al., 2013), 

Euryapteryx curtus curtus (Worthy & Scofield, 2012), Euryapteryx curtus gravis (Worthy & 

Scofield, 2012), Gallirallus australis australis, and Gallirallus australis scotti. 

 Whether relatedness between taxa affects the significance of the quadratic term was tested 

in non-avian theropods using phylogenetic generalized least squares (PGLS). Phylogenetic trees 

were constructed using matrix representation parsimony (MRP) (Baum, 1992; Ragan, 1992) in 

the programme PAUP 4.0 by means of a heuristic search (see Appendix S3 for source trees). All 

theropods in the dataset were included with the exception of those listed as Theropoda or 

Tetanurae indeterminate. Specimens listed as family indeterminate were coded so that they were 

free to be placed anywhere within the family specified. Due to the high number of permutations 

caused by a number of individuals being listed as family or genus indeterminate, the number of 

trees generated was limited to 100,000. Of these, 1000 trees were selected randomly without 

replacement and dated using age ranges from the Paleobiology Database. The trees were time-

scaled using the “timePaleoPhy” function in the “paleotree” package in R (Bapst, 2012) with 

minimum branch lengths set to 1 million years. Quadratic PGLS regressions were carried out on 

femoral and tibiotarsal data for each tree using the default “pgls” function assuming a Brownian 

motion model of evolution in the “caper” package (Orme et al. 2013) and the p-values stored. To 
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account for multiple comparisons, the p-values were adjusted using the Benjamini-Hochberg 

correction (Benjamini & Hochberg, 1995).   

 A modified version of this analysis was carried out using the avian dataset. Prior to tree 

generation, taxa of uncertain affinity and/or lacking in dating information were excluded. This 

protocol trimmed the dataset to 47 taxa. The dromornithids, Genyornis newtoni and Dromornis 

stirtoni, and Diatryma were coded as “?” for nodes representing the basal split of Galloanserae 

and the base of Anseriformes (see Murray & Vickers-Rich, 2004; Mayr, 2011). As a result, 52 

trees were generated. These trees were timescaled in the same way as the non-avian theropod tree 

with the exception that the dates used were a combination of molecular divergence dates and 

stratigraphic ranges due to the former being unavailable in a number of cases. In the case of 

extant taxa, first appearance dates were set to the date of molecular divergence and last 

appearance dates to the present. To account for the fact that molecular divergence dates do not 

necessarily indicate the presence of the extant species but instead to the origination of the lineage 

leading to that species, “timePaleoPhy” was set to add terminal ranges so that tips corresponded 

to last appearance dates rather than first appearances. 

In order to test for differences between avian phylogenetic groups separate standard major 

axis (SMA) regressions for the ratites (n= 20), Dinornithiformes (n= 8) Galloanserae (n= 12), 

Gruiformes (n= 24), and Rallidae (n= 22) in the avian femoral dataset were carried out using the 

“lmodel2” package (Legendre, 2013). The 95% confidence intervals (CI) for the intercepts and 

slope coefficients were compared for overlap between groups.  For the non-avian theropod 

femoral dataset SMA regressions were carried out using Allosauroidea (n= 9), Tyrannosauroidea 

(n= 15), Tyrannosauridae (n= 11), Ornithomimidae (n= 9) Maniraptora (n= 16), and 
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Oviraptorosauria (n= 10). For the tibial dataset SMA regressions were carried out using the 

Tyrannosauroidea (n= 10), Tyrannosauridae (n= 8), Ornithimimidae (n= 8), and Maniraptora (n= 

9). In addition pair-wise comparisons of slope coefficients using the “slope.com” function in the 

“smatr” package (Warton et al. 2012) in R were carried out to test whether SMA regressions 

shared a common slope. SMA intercepts were compared using two-tailed t-tests using an R 

function that prevents the alteration of the true slopes that occurs in standard t-tests of intercepts 

(Campione & Evans, 2012). Benjamini-Hochberg corrections (Benjamini & Hochberg, 1995) 

were applied to p-values of pairwise tests to account for multiple comparisons. 

 

Results 

Flightless avian femora 

Quadratic regression of femoral least circumference versus length of femur in flightless birds 

found a significant negative shift in the slope coefficient with the addition of the second order 

polynomial (Table 1, Fig. 1). AICc weights of the linear and quadratic models indicate a 100% 

probability that the quadratic model provides a better fit to the data (Table 1). 

 Prior to adjustment of p-values the quadratic term in the phylogenetic generalized least 

scores (PGLS) regressions indicated a negative shift in the coefficient and was always significant 

(< 0.05) regardless of the tree used, with p-values varying between 0.020 and 0.045. After 

adjustment, all p-values were marginal (0.046).  Quadratic regression of the trimmed dataset used 

for PGLS without phylogenetic correction also found a marginally significant, negative quadratic 

term (p= 0.045). These PGLS results should be interpreted with caution due to the combination 

of minimum and maximum dates used to timescale the tree. As a result, the different branch 
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lengths may not accurately reflect true divergence dates for a number of species. In addition, a 

sufficiently long period of evolutionary separation has occurred between certain lineages for 

covariance to have become minimal. For example, the closest relative of the flightless parrot, 

Strigops habroptilus, in the dataset is a cariamiform (Psilopterus lemoinei). These lineages have 

likely been separated since the Palaeocene (Mayr, 2014). Thus in these cases PGLS may have 

overestimated co-variation between taxa.  However, in other parts of the tree lineages have been 

separated for relatively short periods of time. For instance, several of the flightless rallids may 

have diverged from their volant relatives within a few hundred thousand years (Kirchman, 2012). 

With these considerations in mind, the similarity between phylogenetically corrected and 

uncorrected regressions suggests that reduced significance of the quadratic term in the former is 

due to reduced sample size rather than the phylogenetic effects. This interpretation is supported 

by removal of Rallidae from the sample. The rails occupy the lower end of the x-axis (Fig. 2.), so 

to test whether differential scaling was caused by differences between the smaller rallids and 

other taxa uncorrected quadratic regression was repeated with this group removed. Despite 

removal of 22 data points the quadratic term remained significant, albeit at a weaker level (Table 

1). 

 Confidence intervals for slope coefficients and intercepts from SMA regressions overlap 

for the majority of the phylogenetic groups (Table 2). The only exception was the non-

overlapping 95% CIs of the slope coefficients for Rallidae and Ratitae, with Rallidae scaling with 

a higher slope coefficient (0.873 compared to 0.700). Pair-wise comparisons found the Rallidae 

coefficient to be significantly different to both the ratite and Galloanserae slopes after Benjamini-

Hochberg (BH) correction of p-values (Table 3). The Gruiformes and Ratitae slopes were also 

found to be significulty different from each other (Table 3).  These results are likely due to rails 



  Chapter 2 
 

47 
 

occupying the lower end of the x-axis (Fig. 2) and therefore scaling with a higher coefficient than 

the larger ratites.  

 The linear component and overall avian SMA regression indicates that femoral length 

scales with negative allometry (b < 1) with respect to least shaft circumference. 

 

Non-avian theropod femora 

Quadratic regression of femoral least circumference (x) and length (y) of non-avian theropods 

found no significant change in slope coefficient with the addition of the second order polynomial 

(Table 1). AICc weights indicate that the linear regression model has a greater liklihood of fitting 

the data better than the quadratic model (Table 1). 

 Prior to adjustment, p-values for slope changes in PGLS quadratic regressions were found 

to be significant in 775 out of 1000 cases. Thus, significance depended on the patterns of 

divergences in the tree. After Benjamini-Hocberg (BH) corrections of p-values, slope changes in 

PGLS quadratic regressions were significant (p <0.05) for 258 out of 1000 regressions. However, 

all p-values were marginally significant with none being less than 0.043.  

SMA regressions show that tyrannosauroids and tyrannosaurids scale with lower slope 

coefficients and higher intercepts than all other theropod groupings (Fig. 3, Table 4). These two 

groupings exhibit similar slope and intercept values, with the tyrannosaurids exhibiting broader 

confidence intervals for both values, which is likely to be due to a decrease in sample size (from 

16 to 11). The Ornithimimidae are the only group for which the 95% confidence intervals of the 

slope coefficients and intercept overlap with tyrannosauroids. However, the confidence intervals 
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are extremely broad for ornithomimids (Table 4). The allosauroid regression also has broad 

confidence intervals for the slope. In both cases this breadth is likely to be due to small sample 

sizes (n = 9). After BH corrections, pair-wise comparisons found the Maniraptoran slope to be 

significantly different from the tyrannosauroid and tyrannosaurid slope, and the allosauroid slope 

to be significantly different from the tyrannosauroid slope (Table 5). 

 The tyrannosauroid slope combines a substantially higher intercept and a slower increase 

in length with circumference compared to other non-avian theropods. In other words, smaller 

tyrannosauroids appear to have longer femora compared to other taxa with similar femoral 

circumferences, but as femoral circumference increases this situation is reversed with 

tyrannosauroids having relatively shorter femora compared to other taxa. 

 The phylogenetic position of a small of number of taxa in the dataset is currently 

disputed. Timimus, which here is included as a tyrannosauroid based on the latest description by 

Benson et al (2012), has previously been assigned to Ornithomimidae (Rich & Vickers-Rich, 

1994) and Maniraptora (Agnolin et al., 2010). Removal of Timimus from the Tyrannosauroid 

regression produced a slope (0.699, 95% CI = 0.622–0.781) similar to that of Tyrannosauridae. 

There is also some doubt as to the placement of two species within the Allosauroidea femoral 

dataset. Chilantaisaurus tashiukouensis was regarded as a tetanuran of uncertain placement by 

Novas et al. (2013), whilst Fukuiraptor kitadenensis was found to be a tyrannosauroid in the 

same study (Novas et al., 2013). Both of these taxa were here included in Allosauroidea based on 

the results of Carrano (2012), and Zanno & Makovicky (2013). Inclusion of Fukuiraptor within 

Tyrannosauroidea resulted in coefficients of 0.622 (95% CI = 0.588–0.743) and 0.727 (95% CI = 

0.650–0.811) with the presence and absence of Timimus in the same dataset respectively. Despite 
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this uncertainty in all cases the tyrannosauroid coefficient remains significantly (p < 0.05) lower 

than the maniraptoran coefficient even after BH correction of p-values.   

 In a plot of log10 least circumference (x) versus log10 length (y) the maniraptoran data 

points fall at the lower end of the x-axis with the exception of Gigantoraptor erlianensis, which 

plots a considerable distance away from the next largest species, Deinonychus antirrhopus (Fig. 

3). Given the disproportionate effect of points at the ends of the regression line and the 

substantial distance between G. erlianensis and the remaining maniraptorans, both the 

maniraptoran and oviraptorosaur major-axis regressions were repeated with G. erlianensis 

removed. Removal of G. erlianensis led to a slight reduction in slope coefficients and a 

broadening of confidence intervals. This led to the confidence interval of the oviraptorosaur slope 

coefficient overlapping with that of the tyrannosauroids. The absence of G. erlianensis also had 

little effect on the maniraptoran slope intercept (Table 4). However, the confidence interval for 

the oviraptorosaur intercept broadened considerably (from 0.278–0.771 to 0.022–1.026). 

Therefore, the gross proportions of the femur of G. erlianensis appear to have been attained 

through continuation of a linear relationship between femoral length and circumference in 

smaller maniraptorans. 

Regression coefficients indicate that in general, the length of non-avian theropod femora 

scales with negative allometry with respect to femoral circumference (Table, 4). Compared to the 

flightless avians this relationship is closer to geometric similarity (b = 1). Thus, femoral 

circumference relative to length increases more rapidly in flightless birds than in non-avian 

theropods.  
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Table 1 Quadratic regressions of length versus least circumference for avian and non-avian 

theropod (N-aT) femora and tibiotarsi; b1, linear coefficient; b2, coefficient for 2nd order 

polynomial; AICc Wt, Akakie weight. Significance level of coefficients is indicated with asterisks; 

*, 0.05; **, 0.01; ***, 0.001. 

 

 

Table 2 Standard major axis regressions of femoral dimensions for avian groupings including 

95% confidence intervals for intercepts (a) and slopes (b). 

 

 

 

 

 

 

 

 

 

 N Linear Quadratic 

b1 AICcWt b1 b2 AICcWt 

Aves femora  62 0.742*** 0.00 0.739*** -0.100*** 1.00 

Aves femora not including 

Rallidae 

40 0.723*** 0.20 0.715*** -0.154* 0.80 

N-a Theropoda femora 76 0.872*** 0.59 0.868*** -0.064 0.41 

Aves tibiotarsi 59 0.840*** 0.76 0.840*** 0.001 0.24 

N-a Theropoda tibiotarsi 51 0.753*** 0.15 0.721*** -0.169* 0.85 

 a 2.5%CI 97.5%CI b 2.5%CI 97.5%CI 

Aves (n=62) 0.848 0.807 0.889 0.748 0.723 0.774 

Ratitae (n=20) 0.931 0.731 1.106 0.709 0.621 0.809 

Galloanserae (n=12) 0.831 0.684 0.963 0.739 0.666 0.819 

Gruiformes (n=24) 0.756 0.696 0.812 0.832 0.785 0.882 

Rallidae (n=22) 0.711 0.641 0.780 0.874 0.817 0.936 
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Fig.1 Femoral scaling of flightless birds (A) and non-avian theropods (B), “b1” is the linear 

coefficient, “b2” is the quadratic coefficient. The p-values given are for the significance of the 

quadratic coefficient. 

 

 

Table 3 P-values from pair-wise compraisons of standard major axis regression coefficients 

(bold) and intercepts (italics) corrected for multiple comparisons using Benjamini-Hochberg 

correction (Benjamini & Hochberg, 1995).  
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 Ratitae Galloanserae Gruiformes Rallidae 

Ratitae - 0.603 0.049 0.022 

Galloanserae 0.376 - 0.055 0.022 

Gruiformes 0.117 0.302 - - 

Rallidae 0.080 0.125 - - 
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Table 4 Standard major axis regressions of femoral dimensions for non-avian theropod 

groupings including 95% confidence intervals for intercepts (a) and slopes (b). 

 

 

 

 

 

Table 5 P-values of pair-wise comparisons of standard major axis regression coefficients and 

intercepts after Benjamini-Hochberg correction for multiple comparisons (Benjamini & 

Hochberg, 1995). 

 

 Allo. Tyrannosauroid. Tyrannosaurid. Orni. Mani. 
Allosauroidea - 0.004 0.070 0.983 0.523 
Tyrannosauroidea 0.004 - - 0.467 <0.001 
Tyrannosauridae 0.071 - - 0.565 0.015 
Ornithomimidae 0.962 0.259 0.598 - 0.940 
Maniraptora 0.645 <0.001 0.020 0.786 - 

 

 

 

 a 2.5%CI 97.5%CI b 2.5%CI 97.5%CI 

N-a Theropoda (n=76) 0.746 0.667 0.821 0.885 0.850 0.921 

Allosauroidea (n=9) 0.752 0.456 1.014 0.883 0.780 1.000 

Tyrannosauroidea (n=15) 1.336 1.161 1.493 0.645 0.580 0.717 

Tyrannosauridae (n=11) 1.166 0.854 1.431 0.713 0.606 0.838 

Ornithimimidae (n=9) 0.775 -0.684 1.588 0.888 0.495 1.594 

Maniraptora (n=16) 0.623 0.478 0.758 0.941 0.869 1.019 

Maniraptora not inc.  

Gigantoraptor (n=15) 

0.694 0.497 0.870 0.900 0.803 1.009 

Oviraptorosauria (n=10) 0.540 0.282 0.767 0.981 0.863 1.115 

Oviraptorosauria not inc.  

Gigantoraptor (n=9) 

0.587 0.059 0.994 0.956 0.719 1.240 
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Fig. 2 Femoral (A) and tibiotarsal (B) scaling of flightless birds from three phylogenetic groups. 

Fitted lines are based on MA regression results (see Table 2).  

 

Table 6 Standard major axis regressions of tibiotarsal dimensions for avian groupings including 

95% confidence intervals for intercepts (a) and slopes (b). 

 

 

 

 

 

 

 

 a 2.5%CI 97.5%CI b 2.5%CI 97.5%CI 

Aves (n=59) 0.938 0.893 0.981 0.847 0.819 0.877 

Ratitae (n=21) 0.774 0.572 0.956 0.935 0.839 1.042 

Galloanserae (n=8) 1.005 0.871 1.126 0.787 0.711 0.870 

Gruiformes (n=24) 0.946 0.883 1.005 0.844 0.793 0.899 

Rallidae (n=22) 0.912 0.838 0.985 0.878 0.816 0.946 
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Table 7 P-values of pairwise comparisons of standard major axis reression coefficients (bold) 

and intercepts (italics) after Benjamini-Hochberg correction for multiple comparisons 

(Benjamini & Hochberg, 1995). 

 

 

 

 

Flightless avian tibiotarsi 

Quadratic regression of tibiotarsal least circumference versus length found no significant change 

in slope with the addition of the second order polynomial (Table 1). AICc weights indicate a 76% 

probability that the linear model fits the data better than the quadratic regression. Quadratic 

phylogenetic least squares regressions also found the quadratic term to be non-significant 

regardless of the tree used. The 95% CIs for slope coefficients and intercepts of SMA regressions 

exhibit overlap between all phylogenetic groupings with no significant differences found between 

slopes after BH correction of p-values from pair-wise comparisons (Tables 6, 7).  

The scaling of tibiotarsal length against circumference is negatively allometric. However, 

the slope coefficient is closer to geometric similarity than the one generated for avian femora 

(Table 1, 2, 4). 

 

 

 

 Ratitae Galloanserae Gruiformes Rallidae 

Ratitae - 0.086 0.171 0.334 

Galloanserae 0.201 - 0.241 0.161 

Gruiformes 0.201 0.439 - - 

Rallidae 0.231 0.285 - - 
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Fig. 3 Femoral scaling of non-avian theropod groups. Fitted lines based on results of MA 

regressions (see Table 3). 

 

Non-avian theropod tibia 

Quadratic regressions of tibiotarsal least circumference versus length indicate a significant 

negative shift in slope coefficient with the addition of the second order polynomial (Table 1). 

AICc weights indicate a probability of 85% that the quadratic regression is a better model than 

the linear regression. However, of the 1000 PGLS regressions only 22 found the shift in slope to 

be significant. This count was reduced to zero after Benjamani-Hochberg correction of p-values. 

Results of SMA regressions of the different phylogenetic groups suggest different scaling 

relationships in different taxa, with tyrannosaurids scaling with a higher intercept and lower slope 

coefficient than the ornithomimids and maniraptorans. However, confidence intervals for both 

intercepts and slope coefficients were extremely broad (Table 8). Pair-wise comparisons of SMA 

regression coefficients found no significant differences between slopes, even prior to BH 
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correction. Despite 8 out of 10 of the tyrannosauroids being also tyrannosaurids, the regression of 

the former indicated a lower intercept and higher slope coefficient than the latter, with some 

overlap of confidence intervals. This result was created by a single species, Calamosaurus foxi, a 

possible basal tyrannosauroid (Naish & Martill, 2007) which is the smallest tyrannosauroid in the 

dataset and falls a considerable distance away from the remaining ones. Removal of 

Calamosaurus from the tyrannosauroid dataset produces an intercept and slope coefficient 

similar to that of Tyrannosauridae with closely matched confidence intervals (Table 5).  

Regression coefficients show that tibiotarsal length scales with negative allometry with 

respect to circumference in non-avian theropods (Table 1, 6).  

 

 

 

Table 8 Standard major axis regressions of tibiotarsal dimensions for non-avian theropod 

groupings including 95% confidence intervals for intercepts (a) and slopes (b). 

 

 

 

 

 

 

 a 2.5%CI 97.5%CI b 2.5%CI 97.5%CI 

N-a Theropoda (n=51) 1.035 0.919 1.144 0.776 0.724 0.831 

Tyrannosauroidea (n=10) 0.850 0.500 1.148 0.861 0.733 1.010 

Tyrannosauroidea not inc. 

Calamosaurus (n=9) 

1.626 1.057 2.022 0.541 0.377 0.776 

Tyrannosauridae (n=8) 1.643 1.023 2.062 0.535 0.362 0.791 

Ornithomimidae (n=8) 1.288 0.410 1.823 0.681 0.416 1.116 

Maniraptora (n=9) 1.089 0.739 1.366 0.753 0.595 0.953 
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Table 9 P-values of pairwise comparisons of standard major regression coefficients (bold) and 

intercepts (italics) after Benjamini-Hochberg correction for multiple comparisons (Benjamini & 

Hochberg, 1995) 

 

 Tyrannosauroid. Tyrannosaurid. Orni. Mani. 

Tyrannosauroidea - - 0.490 0.490 

Tyrannosauridae - - 0.490 0.490 

Ornithomimidae 0.441 0.441 - 0.681 

Maniraptora 0.441 0.441 0.658 - 

 

Discussion 

With the addition of the quadratic component the already negative allometric relationship 

between femoral length and circumference becomes even more pronounced. This shift indicates 

that not only do avian femora become more robust with increased size but that length increases at 

a lower rate with respect to circumference in larger taxa. It is suggested here that the anterior 

centre of mass and the associated sub-horizontal orientation of the femur constrains the rate of 

femoral length increase in larger birds in order to maintain the position of the knee under the 

centre of mass whilst circumference continues to increase. This conclusion is supported by 

experimental manipulation of the centre of mass by adding artificial tails to growing chickens 

(Grossi et al., 2014). The more posterior centre of mass caused by the addition of the artificial tail 

led to a more vertical orientation and a lengthening of the femur compared to non-altered 

individuals and to individuals which had additional weight, equivalent to the mass of the artificial 

tail, added near the natural centre of mass (Grossi et al., 2014). The slower rate of increase in 

femoral length with increased size combined with variation related to leg function (Zeffer et al. 
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2003; Doube et al. 2012) provides an explaination as to why femoral length performs worse than 

circumference as a predictor of avian body mass (Field et al. 2013; Campione et al. 2014). 

Femoral length in non-avian theropods also scales with negative allometry with respect to 

circumference, indicating an increase in femoral robusticity with increased size. However, in 

contrast to flightless avians little support was found for a curvilinear relationship in femoral 

scaling in non-avian theropods (contra Christiansen 1999a). A quarter of the phylogenetically 

corrected regressions found only marginal support for differential scaling. It is possible that the 

finding of the previous study was caused by scaling differences between phylogenetic groups. 

Tyrannosaurids dominate the largest body size class of Christiansen’s (1999a) data set. As shown 

by this study (Fig. 3; Table 5), tyrannosaurid femora increase in robusticity at a higher rate than 

other non-avian theropods. Thus, the prior report of curvilinear scaling of femoral proportions in 

non-avian theropods is likely to have been caused by the different femoral scaling in tyrannosaurs 

and a predominance of tyrannosauroids in the largest body class sample. 

This difference between avian and non-avian theropods is probably due to the more 

posterior centre of mass in the latter, which would not have required the femur to re-orientate in 

order to reposition the knee (Gatesy, 1990, 1991). Thus, the more robust femur of large theropods 

was achieved simply through continuation of a linear, negatively allometric relationship between 

length and circumference. The restricted femoral length of birds compared to non-avian 

theropods means that rotation of the femur contributes much less to stride length in birds than 

was likely in non-avian theropods (Carrano 1998; Rubenson et al. 2007). In addition to 

lengthening and more vertical orientatation of the femur in experimental chickens, Grossi et al. 

(2014) found a concurrent increase in femoral rotation during walking. The more anterior centre 



  Chapter 2 
 

59 
 

of mass, shortened femur, and low degree of femoral rotation during locomotion seen in extant 

birds therefore appear to be inextricably linked to each other. The differences between avian and 

non-avian theropods found here support the conclusion of previous studies that the scaling 

patterns in the former do not apply to the latter (Carrano 1998; Novaset al. 2014). As such the 

extrapolation of the scaling relationships between leg bone proportions and body mass of birds is 

unlikely to produce accurate estimates of body mass in non-avian theropods (Campione et al. 

2014). Given the gradual changes in posture, morphology, and the position of the centre of mass 

through theropod phylogeny (Gatesy 1990, 1991; Hutchinson, 2001; Hutchinson & Allen, 2008; 

Allen et al. 2013) and the distinction between the scaling relationships between avian and non-

avian members of this clade (Campione et al. 2014); testing whether early avians and basal 

neornithies fit better within the avian or non-avian scaling trends is an interesting avenue for 

further research. 

There is no support for a curvilinear relationship between length and circumference in 

flightless avian tibiotarsi. This finding supports the prediction that tibiotarsal scaling is not 

constrained in the same way as femora. The lack of evidence for curvilinear scaling in non-avian 

theropods is contrary to the pattern of differential scaling between size classes found by 

Christiansen (1999a). Although a significant shift in slope was detected in the quadratic 

regression, the loss of significance after phylogenetic correction indicates this result was affected 

by the degree of relatedness between species.  

Studies finding curvilinear scaling between limb bone length and circumference in 

mammals suggested that this feature allows larger species to maintain similar levels of stress on 

the bones as in smaller taxa (Bertram & Biewener, 1990; Christiansen, 1999b, c; Carrano 2001). 
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Mammals and non-avian theropods show a straightening of limb posture with increasing body 

size, leading to a decrease in bending strains, an increase in the effective mechanical advantage of 

the extensor muscles in the legs, and a decrease in the relative muscle mass required for 

locomotion (Biewener, 1989; Gatesy & Biewener, 1991; Carrano, 2001; Hutchinson, 2004). 

These changes act in combination with a reduction in locomotor performance (i.e. reduced speed 

and mobility) to reduce stresses placed upon the long bones so that larger species maintain 

similar stresses during locomotion to those seen in smaller taxa (Biewener, 1982, 1990). 

Straightening of the limb bones can only occur to a certain point, after which an increase in the 

robustness of the limb bones through an increase in thickness or a decrease in bending moment 

arms through shortening of the bones is required to maintain a constant safety factor (i.e., the 

yield point of a structure divided by the force it encounters) (Biewener, 1990; Bertram & 

Biewener, 1990; Christiansen, 1999a). The lack of support for curvilinear scaling between limb 

bone circumference and length in non-avian theropod leg bones found here contradicts the 

hypothesis of size differential scaling in the case of these animals.  

A previous study found increased femoral eccentricity and decreased femoral curvature in 

non-avian dinosaurs with increasing size (Carrano, 2001). These features in combination with a 

linear trend of increasing reative robusticity and decreased locomotor capability may have been 

sufficient to prevent increased stress on the femur during locomotion in larger theropods. 

The differences between femoral scaling in tyrannosauroids and other non-avian 

theropods may be due to differences in the quality of sampling. Along with the oviraptorosaurs, 

tyrannosauroids are the most heavily sampled group in this study and this clade includes smaller 

basal taxa such as Timimus (Benson et al., 2012) and Xiongguanlong (Li et al., 2010) as well as 
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large, derived tyrannosaurids (Appendix S2, S3). This combination of smaller, gracile forms and 

gigantic, robust forms within the same clade is the probable cause of the higher intercept and 

lower slope coeffieicent in the MA regression. On the other hand, the allosauroid grouping 

consists of a smaller sample of mostly large forms spread across four families: 

Metriacanthosauridae, Allosauridae, Neovenatoridae, and Carcharodontosauridae (Carrano et al., 

2012). Two of the taxa in this dataset, Chilantaisaurus and Fukuiraptor, have been placed in 

alternative regions of the theropod tree in a different study (contra Carrano et al.) (Novas et al., 

2013). Maniraptora group also exhibits uneven sampling, with 10 of the 15 data points identified 

to genus level belonging to Oviraptorosauria (Senter, 2007; Longrich et al., 2010). Four of the 15 

along with an additional specimen listed as “Dromaeosauridae indet.” fall within 

Deinonychosauria, and one species is included from Alvarezsauridae (Senter, 2007). Additional 

femoral circumference data from basal tyrannosauroids, allosauroids, and more even sampling of 

maniraptorans would help to elucidate the patterns seen here.  

Curvilinear scaling of limb bone dimensions within separate phylogenetic groups has 

been found in mammals (Christiansen, 1999b, c; Carrano, 2001; Campione & Evans, 2012). For 

example, size differential scaling in leg bone length and diameter has been identified in Carnivora 

and Bovidae (Bertram & Biewener, 1990). It remains possible that the different phylogenetic 

groupings of non-avian theropods exhibit their own size differential scaling relationships. 

However, greater sample sizes for each grouping are required in order to test this hypothesis. Leg 

bone lengths and circumferences are often used to produce body mass-predicting regression 

equations, which are generally applied to all non-avian theropods (Anderson et al., 1985; 

Christiansen & Fariña, 2004; Campione et al. 2014). Further investigation of the changes in 

scaling relationships between clades and identifying these transitions within theropod phylogeny 
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has the potential to improve the accuracy of body mass estimates for non-avian theropods. It 

would also be of interest to test whether these shifts co-occur with changes in body size through 

the theropod tree (Novas et al. 2012; Benson et al. 2014). 

The interpretation of the results presented here partially relies on an assumption that 

external circumference is a reliable measure of bone robustness. A number of studies indicate that 

both femoral diameter and the maximum second moment of area scale with positive allometry 

relative to femoral length in birds (Gatesy, 1991; Carrano, 1998; Doube et al., 2012). For a given 

amount cross sectional area of bone, avian femora show greater second and polar moments of 

area (indicative of increased resistance to twisting and bending) due to the distribution of bone 

farther from the central axis compared to mammals (Doube et al. 2012). As a result, leg bone 

external circumference and diameter relative both to bone length and body mass is greater 

(Carrano, 1998; Campione et al. 2014). This is an effective and efficient way to increase strength 

without increasing the amount of bone. In addition, femoral eccentricity increases with body size 

in bipedal non-avian dinosaurs, which indicates that the femora of large non-avian theropods are 

not as resistant to torsion as those of birds which have a circular cross section (Carrano, 2001; 

Margerie et al. 2005). However, it should be noted that variation in bone density and cross-

sectional shape within both non-avian theropods and Aves may affect interpretations of 

robusticity based on circumference within these groups. These considerations do not detract from 

the observation that the lengths of avian femora are constrained by the position of the centre of 

mass and the resultant postural changes compared to non-avian theropods. 
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Conclusion 

Curvilinear scaling of femoral length in terrestrial flightless birds leads to a more rapid relative 

shortening of the femur with increased size than a simple linear relationship would imply. It is 

suggested here that this pattern results from the femur being constrained to maintain the knee 

under the more anterior centre of mass. This requirement in turn restricts the length of the bone. 

The absence of curvilinear scaling in the tibiotarsus confirms that these restrictions only affect 

the proximal leg bone. On the other hand, the lack of a curvilinear relationship between femoral 

length and circumference in non-avian theropods indicates that the length of this bone was not so 

constrained in this group. Both the femur and tibia of tyrannosauroids appear to scale differently 

to those of other theropod taxa. However, better sampling of non-avian theropods is required to 

confirm these patterns.  

All flightless avians are secondarily flightless, and it may be that the retention of a posture 

associated with the evolution of powered flight more strongly restricted mass than was the case 

with the ancestrally flightless non-avian theropods. 
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Abstract 

Loss of flight in birds is associated with clear, patterns of change in the proportions of wing 

bones. However, the changes that occur in the hindlimbs have been less well studied. 

Measurements of the leg bones of 38 species of flightless birds and 19 of their closest volant 

relatives were taken. Changes in proportions from volant ancestral models to individual flightless 

species were quantified using differences in scores from factor analyses. These models were used 

instead of more conventional phylogenetic methods due to the difficulty of reconstructing traits 

associated with flightlessness in a small but phylogenetically broad subset of Aves. The changes 

in scores were tested for directionality and association with differences in body size, inhabited 

area of land mass, and estimated time since loss of flight using step-wise multiple regressions. No 

evidence was found for trends either in the directionality or degree of change in the evolution of 

leg bone proportions across flightless species as a whole. Splitting the dataset into palaeognaths 

and neognaths indicates that ratites (= flightless palaeognaths) with cursorial proportions tend to 

inhabit larger land masses. Contrastingly, neognaths exhibit no general patterns in leg bone 

evolution. The trajectories of change in leg bone proportions are far more complex than those 

seen in the wings, and in the case of the neognaths may reflect variation in ecology rather than 

any universal selection pressure. 
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Introduction 

Flight has been lost multiple times in avian evolutionary history, with the majority of these losses 

occurring in terrestrial lineages (Roff, 1994). A variety of different hypotheses have been 

proposed to explain the evolution of flightlessness, including absence of predators, selection for 

large body size, year-round habitability of environments removing the need for migration, and 

adaptation of the forelimbs for uses other than flight (McCall et al.1998). These hypotheses are 

not necessarily mutually exclusive, and different sets of adaptive pressures could easily apply to 

different flightless taxa (Nudds & Davidson, 2010). 

 Despite the lack of a unified theory, a number of features are common to flightless 

species. Both aquatic and terrestrial taxa have reduced wing lengths relative to their volant 

relatives (McCall et al. 1998; Livezey, 2003; Nudds & Davidson, 2010) with the latter also 

exhibiting reduced sternal carina, atrophied pectoral musculature (Owen, 1882; Livezey, 1992, 

1993, 2003; McNab, 1994; Worthy & Olson, 2002; Maxwell & Larsson, 2007), and enlarged 

pelvic bones and musculature (Livezey, 1992, 1993; Worthy & Olson, 2002). However, wing-

propelled swimming birds such as penguins and steamer ducks retain well-developed pectoral 

muscles and sternal carina (Livezey & Humphrey, 1986; McNab, 1994; Ponganis et al. 1997). 

Changes in feather structure or loss of flight feathers are also apparent in many flightless species 

(Livezey, 1989, 1992, 1993, 2003; McGowan, 1989). 

Regarding the proportions of the limb bones, avian families containing flightless species 

tend to have shorter wings relative to body mass than families containing no flightless taxa 

(McCall et al. 1998; Nudds & Davidson, 2010). In flightless species the manus is the part of the 

wing most responsible for relative shortening (Marples, 1930; Livezey, 1992, 2003; Middleton & 
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Gatesy, 2000; Nudds & Davidson, 2010). Humeral length is greater relative to the lengths of the 

forearm and manus compared to volant relatives (Livezey, 1992, 1993; Middleton & Gatesy, 

2000). It seems, therefore, that the bones of the manus are the first to reduce during loss of flight, 

followed by the more proximal wing bones (Middleton & Gatesy, 2000; Nudds & Davidson, 

2010).  

Directionality in the evolution of the avian hind-limbs is examined in this study. Unlike 

the forelimbs, changes in hindlimb proportions relative to volant relatives or putative ancestors 

have generally been studied in individual lineages rather than throughout Aves as a whole (e.g., 

Livezey, 1992, 1993). 

The relative proportions of the leg bones reflect habitat use (Zeffer et al. 2003) and in the 

case of terrestrial species have often been used to infer the degree of cursoriality (Gatesy & 

Middleton, 1997; Carrano, 1999). In functional terms, cursorial animals are considered to be 

those with specific morphological adaptations for either rapid running or traversing long 

distances (Gregory, 1912; Carrano, 1999). Increases in the lengths of the distal leg bones, in 

particular the tarsometatarsus, are associated with faster walking and running speeds, larger home 

ranges, and higher relative stride frequencies in terrestrial birds and mammals (Garland & Janis, 

1993; Janis & Wilhelm, 1993; Bennett, 1996; Abourachid & Renous, 2000). It is important to 

note that cursoriality is but one end of a locomotory spectrum with graviportality, adaptations 

that decrease speed but potentially improve weight support, at the other end (Gregory, 1912; 

Carrano, 1999). Increased cursoriality with loss of flight is likely to have been advantageous on 

continental land masses. Specifically, the presence of mammalian predators and greater land area 

for dispersal are possible selection pressures that may lead to increased cursoriality in continental 
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flightless birds. In addition to predation pressures, a species living on a continental land mass has 

a greater amount of area available for dispersal. Greater dispersal ability is potentially 

advantageous in reducing intraspecific competition between individuals within populations. To 

be able to cover larger distances, a continental flightless bird may have more cursorial 

proportions than a similarly sized island species. Oceanic island taxa, on the other hand, often 

evolve flightlessness in the total absence of mammalian predators and with land based dispersal 

restricted. 

Differences in proportions between volant and flightless relatives may also be due to 

changes in body size. Previous studies indicate that femoral length increases with body mass at a 

lower rate than tibiotarsal and tarsometatarsal length (Gatesy, 1991; Olmos et al. 1996; Doube et 

al. 2012). This allometry, combined with the limited rotation in the parasagittal plane of the 

femur, decreases the femur's importance in increasing stride length relative to the tibiotarsi and 

tarsometatarsi (Carrano & Biewener, 1999; Reilly, 2000; Smith et al. 2010; Grossi et al. 2014). In 

addition, larger species with less crouched postures increase their speed of locomotion by 

increasing step frequency whereas smaller species with crouched hind-limbs do so by increasing 

stride length (Abourachid & Renous, 2000; Abourachid, 2001). Thus, the importance of greater 

distal leg bone length for achieving higher speed of locomotion appears to increase with body 

mass. 

 Alternatively, the degree of change in proportions since loss of flight may simply reflect 

the length of history of flightlessness.  In this study 1) changes in body mass, 2) area of the land 

mass where flight was lost and, 3) inferred amount of time since loss of flight are used to predict 

the trajectories of change in leg bone proportions from volant ancestral models to flightless 
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descendants. Aquatic flightless species were not included because the selection pressures acting 

on the hind-limb proportions of these taxa are quite different and likely to combine requirements 

for both aquatic and terrestrial locomotion (Cubo & Casinos, 1997; Zeffer & Norberg, 2003; 

Zeffer et al. 2003). Given the repeated, independent losses of flight that have occurred in both the 

palaeognaths and rails, as well as a few other terrestrial taxa, the number of occurrences of flight 

loss far exceeds that seen in lineages of swimming birds (Livezey, 2003; Phillips et al. 2010; 

Kirchman, 2012).  

 

Methods 

Measurements of the lengths (L), of the femur (F), tibiotarsus (Tb), and tarsometatarsus (Tm), 

were taken for 38 species of flightless birds along with caudo-cranial (Dcc) and mediolateral 

(Dml) diameters at midshaft of the tibiotarsus (Tb) and tarsometatarsus (Tm) (Supporting 

Information 1). These species represent a minimum of 23 independent losses of flight (Fig. 1). 

For tibiotarsi, the length measurements did not include the cnemial crest as it was often damaged 

in fossil specimens. Instead, length was measured from the interarticular area at the proximal end 

to the distal-most point of the condyles. For femora and tarsometatarsi, greatest lengths were 

measured. The point at mid-shaft was found by dividing the length of the bone by two. 

Measurements were taken to the nearest 0.01 mm using 300 mm digital callipers and rounded to 

the nearest 0.1 mm. Distances greater than 300 mm were measured to the nearest 1 mm using a 

tape measure. All measurements were repeated twice and the average was used for analysis. Only 

adult specimens were measured. These were identified by the following characters: femur 
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exhibiting an intercondylar bridge connecting the lateral and medial condyles, cnemial crest fully 

fused to the tibia with no trace of a symphysis, tibiale and fibulare fully fused to the tibia with no 

trace of a symphysis, and a completely formed supratendinal bridge on the tibia (when present). 

Femoral circumference was also measured using cotton twine wrapped tightly around the femur 

at mid-shaft and marked where the two ends met with ultra-fine marker pen. The length of the 

marked section was then measured using a 300 mm digital calliper. For bones with a diameter 

less than 7 mm individual strands of twine were used. Nineteen of the nearest volant relatives of 

the flightless species in the dataset were measured in the same way (Fig.1). These species were 

chosen based on published molecular phylogenies (Supporting Information 2). Morphological 

phylogenies were avoided because their topologies may be affected by homoplasy due to the 

parallel evolution of flight loss in multiple lineages (Livezey 1998, Parish 2013: p. 339). In the 

case of one species pair (Chenonetta finschi/C.jubata) a morphological study providing strong 

evidence for close relationships was used (Worthy and Olson, 2002).   

To make all measurements size independent, separate regressions were carried out for 

each linear measurement against femoral circumference. Femoral circumference was used instead 

of body mass as the majority of the flightless taxa in the dataset are extinct (Supporting 

Information 1) and body masses were unavailable.  The diameter of the glenoid facet has been 

shown to be a reliable predictor of body mass in volant neorthine birds (Field et al. 2013). 

However, this methodology cannot be applied to flightless taxa due to the relative reduction of 

the pectoral girdle in these species (McCall et al.1998; Livezey, 2003; Nudds & Davidson, 2010). 

This is especially the case for moa, in which both the humerus and its articular facet with the 

scapulocoracoid are absent (Owen, 1866; Worthy and Scofield, 2012). Allometric regressions 

containing multiple predictor variables have been used to estimate body masses in extinct avian 
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taxa. However, these included a number of measurements from the forelimb and so suffer the 

same issue as the use of glenoid diameter (Serrano et al. 2015). Femoral circumference is often 

used in allometric equations for estimating body mass in avians (Anderson et al. 1985; Campbell 

& Marcus, 1992; Field et al. 2013; Campione et al. 2014), and has low percentage prediction 

error (Field et al. 2013; Campione et al. 2014). As a result, it can be considered as a reliable 

indicator of body mass in flightless birds. Masses were not calculated for each species using 

allometric equations utilising femoral circumference in order to avoid extrapolation beyond the 

known range of the datasets used, as would be necessary for calculating the masses of the largest 

extinct ratites. Residuals from each regression for all species were then subjected to a factor 

analysis with varimax rotation using the “factanal” function in R.3.01.0 (R Core Development 

Team, 2014) set to produce Thompson’s scores. Chi-squared statistics showed that in all cases 

one factor was sufficient to fit the data (p < 0.05). Therefore, factanal was set to extract a single 

factor. Like principal components analysis (PCA), factor analysis reduces the number of 

variables. However, unlike PCA factor analysis only computes the shared variance of the 

variables rather than generating a model to account for total variance (Widaman 1993). Each 

factor is a representation of the underlying structure of the data that accounts for the shared 

variance between variables. As such the amount of variance in the data explained by factor 

analysis will always be lower than PCA. Factor analysis was preferred to PCA as the loadings of 

variables on principal componentents may inflate the saliency of variables which would 

otherwise load moderately or weakly (Widaman 1993; Fabrigar et al. 1999).  

In order to quantify changes in limb bone proportions between ancestral volant forms and 

flightless descendants the differences (∆) in factor scores between each flightless species and its 

nearest relative were calculated (Fig. 2). In cases where multiple volant species have been 
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suggested to be equally closely related to a flightless species the average factor score of the 

volant species was used. This rule assumes gradual evolution of the hindlimb bone proportions of 

the flightless species from a volant ancestor intermediate in form between the nearest flight-

capable relatives. Given the links between leg bone proportions and locomotion in extant birds 

and mammals, non-random evolution of the leg bones of each flightless taxon was also assumed 

(Garland & Janis, 1993; Janis & Wilhelm, 1993; Bennett, 1996; Abourachid & Renous, 2000; 

Zeffer et al. 2003). 

 Ideally, the true ancestor of each flightless taxon would be used to quantify relative 

changes in morphology since loss of flight. However, putative ancestors cannot be identified for 

the majority of species in this analysis as the non-continuous nature of the avian fossil record 

precludes confident identification of ancestor-descendent relationships even when potential 

candidates exist (see Foote, 1996). Although methods exist for reconstruction of ancestral 

morphologies based on data from the tips of phylogenies, such methods face particular 

difficulties in mapping trait evolution in flightless birds (Phillips et al. 2010; Garcia-R et al. 

2014a). In clades which contain a few volant taxa nested within an otherwise flightless group, 

such as the rail genus Gallirallus, these methods result in the last common ancestor being 

reconstructed as flightless with flight then being regained in some species (Slikas et al. 2002; 

Harshman et al. 2008; Kirchman, 2012; Garcia-R et al. 2014a). Given the absence of any direct 

evidence for flight being regained in any bird lineage, such a sequence of events appears 

improbable. This situation is exacerbated by the possible extinction of volant relatives for which 

there is no fossil record (Kirchman, 2012; Garcia-R et al. 2014a). The problem of spurious 

implied reversion to a flighted condition is not only an issue with methods based on the principal 
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of parsimony because the artefact has also been seen in studies utilising maximum likelihood 

approaches to trait mapping on trees (Phillips et al. 2010; Garcia-R et al. 2014a).  

For the ratites in the dataset, an ancestral morph was generated using the average  factor 

score for two species of tinamou, Crypturellus soui and Eudromia elegans, which respectively 

represent forest and open country inhabiting forms (Bertelli & Porzecanski, 2004; Bertelli & 

Chiappe, 2005), and three lithornithid species, Lithornis plebius, L. promiscuus, and 

Paracathartes howardae. The Lithornithidae are an extinct group of volant palaeognaths found 

from the late Paleocene to the middle Eocene in North America and Europe (Houde, 1988). 

Combined analysis of morphological and genetic data found lithornithids and tinamous to form a 

monophyletic group nested within the flightless palaeognaths, thereby rendering “Ratitae” 

paraphyletic (Mitchell et al. 2014). The same pattern was found in a morphological study 

including additional cranial information (Johnston, 2011). This result indicates that flight was lost 

in multiple lineages within Palaeognathae (Harshman et al. 2008; Phillips et al. 2010; Haddrath & 

Baker, 2012; Mitchell et al. 2014). Unfortunately, there are no known fossil volant palaeognaths 

that fall basally to any of the ratite lineages, and so any reconstruction, regardless of methodology 

used, of the flighted ancestor/s of ratites relies heavily on the volant palaeognath clade nested 

within “Ratitae”. As there is no objective means of deciphering whether tinamous or lithornithids 

represent a closer fit to the ancestral forms, and given that they form a monophyletic group within 

“Ratitae”, an average of species from the two groups was used. The difference between this 

average factor score and the factor scores for the separate ratite species was calculated to give the 

amount of morphological change from the volant form to the flightless forms. 
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 Multiple regressions were used to test for relationships between changes in limb bone 

proportions and three potential explanatory variables: ∆ femoral circumference (as a proxy for ∆ 

body mass), time since loss of flight, and area of land mass on which the flightless species 

evolved. Models were scored using the Akaike’s information criterion corrected for finite sample 

size (AICc, Sugiura, 1978; Hurvich & Tsai, 1989) as opposed to uncorrected AIC (Akaike, 1979) 

as the former is more suitable for small sample sizes (Sugiura, 1978). AICc scores and weights 

were generated using the “aictab” function in the R package “AICcmodavg” (Mazerolle, 2015). 

Regressions were listed by AICc weights, with higher weights indicating a greater liklihood that 

the model fits the data better than the remaining models tested. Additional multiple regressions, 

scored in the same way, were also carried out to test whether these explanatory variables had any 

relationship to the magnitude of change regardless of directionality. The amount of change was 

quantified by removing the sign from negative factor scores prior to step-wise regression. 

Time since loss of flight was taken as the time since divergence of each flightless species 

from its volant relative. Admittedly, the time since divergence of two lineages does not 

necessarily reflect the time at which flight was lost within the lineage leading to an observed 

flightless species. An excellent example is of the two flightless columbiformes, i.e., the dodo 

(Raphus cuculatus) and the solitare (Pezophaps solitaria) from the islands of Mauritius and 

Rodrigues respectively. Both species are estimated to have diverged from their closest extant 

volant relative (Caloenas nicobarica) between 17.6–35.9 Ma (Shapiro et al. 2002). However, the 

volcanic islands the two flightless species inhabited are considerably younger, with the 

emergence of Mauritius dated to 7.8 Ma and Rodrigues to 1.5 Ma (McDougal & Chamalaun, 

1969). Greater relative reduction of the pectoral girdle in the dodo also suggests that it was 

flightless for a longer period of time than the solitaire (Livezey, 1993). Thus, it is likely that the 
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ancestor of these species retained flight up until at least the formation of these two islands. As a 

result, the time variable for oceanic island species was informed by the time of emergence of 

their respective islands, either as a result of volcanic and tectonic activity or decreased sea level, 

as taken from published literature (Supporting Information 2). Emergence dates were preferred to 

molecular timings of divergence if the former post-dated the latter, as flight would likely have 

been retained after divergence in order to make dispersal and colonization of these islands 

possible.  

A recent phylogenetic study by Garcia-R et al. (2014a, b) included many of the flightless 

rails and dated their divergence times. However, the deep external calibrations and absence of 

internal calibrations in this analysis may have led to overestimates of the dates of intrageneric 

splits (Hugall et al. 2007). As a result, a combination of previous rail phylogenies and island 

emergence dates was used (Supporting Information 2). Although the rail phylogenies consisted of 

subsets of Rallidae (e.g., Slikas et al. 2002; Kirchman, 2012), they were similar in topology to the 

corresponding sections of the Garcia-R et al. (2014a) phylogeny. In the case of the genus 

Porphyrio, the divergence dates from a study of the radiation of the genus (Garcia & Trewick, 

2015) were used. These dates are later than those of Garcia-R et al. (2014a) and accord with 

previous work (Trewick 1997). 

For the palaeognaths, divergence dates were taken from Mitchell et al. (2014). Current 

molecular phylogenies render the flightless ratites as a paraphyletic group with the volant 

tinamou nested within the clade, indicating that loss of flight occurred multiple times in 

palaeognath history (Phillips et al. 2010; Haddrath & Baker, 2012; Mitchell et al. 2014). 

Therefore, alternative scenarios were modelled for the timing of loss of flight in extant ratites. 
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The first scenario was that all extant ratite families lost flight early in their history (i.e., soon after 

their divergence from the rest of the palaeognaths). The second scenario was that extant ratite 

families containing more than one living or recently extinct species lost flight near the point of 

radiation for those families. Thus, using the molecular dates of Mitchell et al. (2014) the first 

scenario would have the moa lineage losing flight at ~58 Ma with all species in the group listed 

as having been flightless since that point, whereas the second scenario would have loss of flight 

occurring at ~7.7 Ma, at the time when the crown group dinornithiformes appear. In the first, 

flight was lost early in the history of these lineages and they have been resident on their 

respective land masses since then (Mitchell et al. 2014). In the second, the land masses were 

relatively recently colonised by a volant ancestor and flight was lost subsequently near the time 

the crown groups radiated. 

The use of these scenarios was informed by the fossil record where possible. Fossil 

specimens indicate that the lineage leading to extant Rheidae lost flight prior to the molecular 

date for divergence of the two extant species (Rhea americana, Pterocnemia pennata) given by 

Mitchell et al. (Tambussi, 1995). In addition, the fossil record of Casuariidae suggests that the 

last common ancestor of extant Casuarius and Dromaius was flightless (Worthy et al. 2014). As 

a result, only the first scenario was implemented for Rheidae and Casuariidae. The stem 

apterygid Proapteryx micromeros does occur prior to the estimated origin of extant kiwis. 

However, not enough material is available to tell whether this species was flightless or volant 

(Worthy et al. 2013). Remains of flightless moa have also been found which date to ~19–16 Ma 

(Tennyson et al. 2010). This date is much older than that given by Mitchell et al. (7.7 Ma) for the 

origin of crown group moa and similar to that found by a previous study (Haddrath & Baker, 

2012; 19 Ma) which included Megalapteryx didinus, the earliest-diverging moa species (Bunce et 



  Chapter 3 
 

86 
 

al. 2009). This species was not included in the molecular analysis of Mitchell et al. (2014). 

Therefore, a date of 19 Ma was used for the second scenario of loss of flight at the radiation of 

crown group moa (Fig. 3).  

Based on this additional information, separate regression analyses were carried out with 

different scenarios for timing of loss of flight in the kiwi, moa, and elephant bird lineages. For the 

lineages leading to extant Struthio, Rheidae, and Casuariidae only scenario 1 was implemented. 

Ideally, the degree of morphological change measured would have been from the ancestral 

models to the point at which flight was lost, as indicated by the fossil record. However, the 

absence of fossil forms representing the transition to the flightless condition precluded such 

computations. Dates of divergence were not available for all species, so multiple regressions 

models including a time variable contained 31 species of flightless birds in total group analyses. 

 For the land area variable, species were separated into two groups, one consisting of those 

which inhabited land masses with an area less than 100,000 km2, coded with “0”, and another 

including species living on larger land masses, coded with “1”.  This coding was used as a 

predictor variable. This simplification of a continuous variable was necessary due to the complex 

geological history of New Zealand, which has varied greatly in area since separation from 

Australia (Wallis & Trewick, 2009), making it difficult to assign a land area available for 

dispersal for New Zealand flightless birds. The cut-off point of 100,000 km2 reflects the six-fold 

greater area of the North and South Islands of New Zealand relative to the next largest land mass 

in the dataset, Halmahera, in the Maluku Islands of Indonesia.  

 The palaeognaths in the dataset are all found on old continental land masses, and 

molecular phylogenies indicate divergence dates for some lineages as far back as the late 
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Cretaceous or Paleocene (Phillips et al. 2010; Haddrath & Baker, 2012; Mitchell et al. 2014). On 

the other hand, many of the neognath species in the dataset are found on relatively recently 

formed oceanic islands and/or have diverged more recently from a volant relative. This is 

particularly the case in the many flightless species of the family Rallidae, the majority of which 

lost flight independently after colonisation of oceanic islands (Olson, 1973). In some cases, 

molecular phylogenies indicate that extant flightless species render volant species as paraphyletic 

(Trewick, 1997; Kirchman, 2012). Due to these differences, separate factor analyses and step-

wise regressions were carried out for the total dataset, palaeognaths, and neognaths in order to see 

whether the relationships between variables depend on these groupings. As all palaeognaths are 

found on land masses greater than 100,000 km2, the palaeognath-only dataset was split into New 

Zealand (“0”) and non-New Zealand (“1”) species for the land area variable. New Zealand is the 

smallest of these land masses and contains 9 of the 15 species in the dataset.  

 The residuals from all regression models were tested for normaility using Jarque-Berra 

tests (Jarque & Berra, 1980) in the R package “moments” (Komsta & Novomestky, 2015), and 

for equal variance using Breusch-Pagan tests (Breusch & Pagan, 1979) in the R package “lmtest” 

(Zeileis & Hothorn, 2002). 

 To test for directionality in ∆ factor scores, Wilcoxon rank-sum tests were used to show 

whether the medians were significantly different from zero. This was also done for ∆ femoral 

circumference to test for directionality in body size change from the ancestral models. 
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Results 

Total group analyses 

Total variance explained by factor analysis of residuals from the complete dataset amounted to 

39.1%. Tibiotarsus and tarsometatarsus length loadings were strong (> ±0.8) and positive (Table 

1). Femur length and tibiotarsal craniocaudal diameter had moderate, positive loadings (> 0.5, ≤ 

0.8), with all other variables loading weakly. Only tarsometatarsus mediolateral diameter had a 

negative loading.  

Under the early loss of flight scenario for kiwi, moa, and elephant birds the best fitting 

model (AIC weight 0.28) included both ∆ femoral circumference and land area were retained in 

the regression model, with each having positive and negative relationships respectively (Table 2). 

Therefore, relatively increased leg bone length and mediolaterally narrower tarsometatarsi 

compared to ancestral forms is associated with increased size, whereas species evolving on 

smaller land masses tended to have the opposite relationship with shorter leg bones and broader 

tarsometatarsi. However, only the relationship between ∆ femoral circumference and ∆ factor 

scores was significant (p < 0.05). The next best model had an AIC weight of 0.22 and included 

land area and time since loss of flight as variables with the relationships with ∆ factor scores 

being significantly negative and positive respectively (Table 2). All multiple regressions had low 

adjusted R2 values (<0.13) indicating poor model fitting to the data. 

When loss of flight for kiwi, moa, and elephant birds was timed more recently, land area 

and estimated time since loss of flight were included in the most likely of the regression models 

(AIC weight 0.56). A positive relationship with estimated time since loss of flight indicates that 
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species with a longer evolutionary history of flightlessness tend to have longer leg bones and a 

narrower tarsometatarsus relative to their volant relatives. AICc weights of the other models are 

substantially lower (Table 2). 

The best fitting regressions using sign-less factor scores under both timing scenarios 

either included time since of loss of flight and ∆ femoral circumference, or only ∆ femoral 

circumference as variables (Table 3). In all cases the relationships between independent variables 

and ∆ factor score were non-significant (p >0.05). An additional set of regressions was carried 

out for a larger data set including taxa with no available information for time since loss of flight. 

In this case, the result was similar to that under the first time scenario for the original ∆ factor 

scores with ∆ femoral circumence and land incorporated in the best fitting model (Table 2), 

whereas no significant relationships with ∆ factor score for the models using sign-less scores 

(Table 3). All regression residuals were normally distributed (Jarque-Berra test p-values > 0.05) 

and had equal variances (Breusch-Pagan test p-values >0.05). 

Wilcoxon signed-rank tests of ∆ factor scores and femoral circumference indicated that 

the median of the former was not significantly different from zero, whereas the median of the 

latter was significantly greater than zero. Therefore, there is no overall directionality in the 

changes to size-independent proportions of the leg bones from flying to flightless forms. There is 

a general directionality towards greater body mass, but Gallirallus wakensis and G. modestus are 

exceptions to this rule. 
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Table 1 Factor loadings of each variable from factor analyses of regression residuals for the 

total group (n=57), palaeognaths (n=20), and neognaths (n=37). Residuals were taken from 

regressions of each variable against femoral circumference.  

 

 

 

 

 

 

Tbt, tibiotarsus; Dcc, craniocaudal diameter; Dml, mediolateral diameter; Tmt, tarsometatarsus. 

 

 

 

 

 

 

 

Variable Total group Palaeognaths Neognaths 

Femur Length 0.642 0.841 0.621 

Tbt Length 0.905 0.856 0.994 

Tbt Dcc 0.725 0.913 0.636 

Tbt Dml 0.168 0.679 0.616 

Tmt Length 0.892 0.864 0.890 

Tmt Dcc 0.281 0.462 0.188 

Tmt Dml -0.284 -0.560 0.000 

Proportion variance 0.391 0.576 0.426 
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Fig. 1 Composite phylogeny of taxa included in this study constructed using matrix 

representation parsimony (Baum 1992; Ragan, 1992). Names of flightless species are in bold 

italics. A hypothetical outgroup was used to root the tree. A list of source trees can be found in 

Supporting Information 2 
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Table 2. Multiple regressions of ∆ factor 1 (∆F1) scores with ∆Cf, land area, and estimated time 

since loss of flight for flightless, terrestrial birds. Models ranked by AICc weight. Time scenarios 

(S) are for loss of flight early in the stem of the moa, elephant bird, and kiwi lineages (S1) or for 

loss of flight at the point of radiation for these groups (S2). Where time is included n = 32, 

otherwise n = 38. Cf, femoral circumference; Coeff, coefficient; Adj R2, adjusted R2; AICcWt, 

Akaikie weights. Land area was coded in binary (<100,000km2 = 0, >100,000km2 =1). 

 

 

Models for ∆F1 ∆Cf Land Time S1  

Coeff. p Coeff. p Coeff. p Adj R2 p AICc

Wt 

∆Cf+Land 1.861 0.022 -0.908 0.076 NA NA 0.120 0.059 0.28 

Land+Time S1 NA NA -1.259 0.045 0.737 0.029 0.107 0.074 0.22 

∆Cf 1.096 0.114 NA NA NA NA 0.050 0.114 0.18 

∆Cf+Land+Time 

S1 

1.236 0.203 -1.284 0.040 0.438 0.271 0.128 0.078 0.14 

Time S1 NA NA NA NA 0.257 0.283 0.006 0.283 0.09 

Land NA NA -0.264 0.560 NA NA -0.021 0.560 0.06 

∆Cf+Time S1 1.172 0.253 NA NA -0.035 0.918 0.018 0.292 0.05 

Land+Time S2 NA NA -1.341 0.014 1.008 0.003 0.224 0.009 0.56 

∆Cf+Land+Time 

S2 

0.791 0.377 -1.409 0.011 0.816 0.040 0.218 0.019 0.21 

∆Cf+Land 1.891 0.022 -0.908 0.076 NA NA 0.120 0.059 0.08 

Time S2 NA NA NA NA 0.480 0.074 0.073 0.074 0.07 

∆Cf 1.096 0.114 NA NA NA NA 0.050 0.114 0.05 

∆Cf+Time S2 0.442 0.649 NA NA 0.358 0.347 0.048 0.187 0.02 

Land NA NA -0.264 0.560 NA NA -0.021 0.560 0.01 

∆Cf+Land 1.679 0.015 -0.766 0.068 NA NA 0.123 0.038 0.59 

∆Cf 1.107 0.074 NA NA NA NA 0.061 0.073 0.33 

Land NA NA -0.284 0.468 NA NA -0.013 0.468 0.08 
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Table 3. Multiple regressions of sign-less ∆ factor 1 scores (∆DF1) with ∆CF, land area, and 

estimated time since loss of flight for flightless, terrestrial birds ranked by AICc weight. Models 

ranked from lowest to highest AICc weight.Time scenarios (S1 or S2) as described in Table 1. Cf, 

femoral circumference; Coeff, coefficient; Adj R2, adjusted R2. Land area was coded in binary 

(<100,000km2 = 0, >100,000km2 =1). 

 

 

Models for ∆DF1 ∆Cf Land Time S1  

Coeff. p Coeff. p Coeff. p Adj R2 p AICc

Wt 

∆Cf+Time -1.028 0.064 NA NA 0.287 0.124 0.054 0.169 0.25 

∆Cf -0.410 0.279 NA NA NA NA 0.007 0.279   0.25 

Land NA NA 0.070 0.774 NA NA -0.030 0.774 0.14 

Time S1 NA NA NA NA 0.031 0.810 -0.031 0.810 0.14 

∆Cf+Land -0.663 0.144 0.300 0.298 NA NA 0.011 0.324 0.12 

∆Cf+Land+Time 

S1 

-1.032 0.067 0.078 0.820 0.259 0.257 0.022 0.315 0.06 

Land+Time NA NA 0.058 0.871 0.009 0.961 -0.066 0.959 0.04 

∆Cf+Time S2 -1.047 0.050 NA NA 0.349 0.092 0.070 0.133 0.30 

∆Cf -0.410 0.279 NA NA NA NA 0.007 0.279 0.22 

Time S2 NA NA NA NA 0.058 0.697 -0.028 0.697 0.13 

Land NA NA 0.070 0.774 NA NA -0.030 0.774 0.12 

∆Cf+Land -0.663 0.144 0.300 0.298 NA NA 0.011 0.324 0.11 

∆Cf+Land+Time 

S2 

-1.074 0.051 0.108 0.733 0.314 0.178 0.041 0.252 0.08 

Land+Time S2 NA NA 0.015 0.964 0.052 0.793 -0.063 0.927 0.03 

∆Cf -0.230 0.516 NA NA NA NA -0.016 0.516 0.44 

Land NA NA 0.094 0.668 NA NA -0.022 0.668 0.38 

∆Cf+Land 0.205 0.413 -0.383 0.342 NA NA -0.025 0.578 0.18 
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Table 4. Multiple regressions of ∆ factor 1 (∆F1) scores with ∆CF, land area, and estimated time 

since loss of flight for flightless palaeognaths listed in order of AICc weight. Time scenarios (S) 

are for loss of flight early in the stem of the moa, elephant bird, and kiwi lineages (S1) or for loss 

of flight at the point of radiation for these groups (S2). Land coded in binary (New Zealand = 0, 

>New Zealand = 1). N = 15. Cf, femoral circumference; Coeff, coefficient; Adj R2, adjusted R2; 

AICcWt, Akakie weight. 

 

 

 

 

 

Models for ∆F1 ∆Cf Land Time S1  

Coeff. p Coeff. p Coeff. p Adj R2 p AICc 

Land NA NA 0.904 <0.001 NA NA 0.595 <0.001 0.75 

∆Cf+Land 0.117 0.897 0.902 <0.001 NA NA 0.562 0.003 0.11 

Land + Time S1 NA NA 0.918 0.007 -0.412 0.942 0.561 0.003 0.11 

∆Cf+Land+Time 

S1 

0.196 0.855 0.938 0.012 -1.033 0.879 0.523 0.011 0.01 

Time S1 NA NA NA NA 12.09 0.037 0.239 0.037 0.01 

∆Cf+Time -0.876 0.508 NA NA 13.63 0.036 0.206 0.099 0.00 

∆Cf 0.309 0.826 NA NA NA NA -0.073 0.827 0.00 

Land NA NA 0.904 <0.001 NA NA 0.595 <0.001 0.42 

Time S2 NA NA NA NA 2.609 <0.001 0.575 <0.001 0.29 

∆Cf+Time S2 -1.185 0.211 NA NA 2.889 <0.001 0.598 0.002 0.12 

Land+Time S2 NA NA 0.549 0.287 1.136 0.447 0.583 0.002 0.09 

∆Cf+Land 0.116 0.897 0.902 <0.001 NA NA 0.562 0.003 0.06 

∆Cf+Land+Time 

S2 

-0.938 0.501 0.184 0.805 2.337 0.326 0.564 0.007 0.01 

∆Cf 0.309 0.826 NA NA NA NA -0.073 0.826 0.00 
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Fig. 2 Plot of factor 1 scores against factor 2 scores. Volant and flightless species are 

represented by squares and circles respectively. An example of ∆ factor scores is given using the 

flightless Porphyrio hochstetteri (filled circle) and its nearest volant relative, P. porphyio (filled 

square). ∆ Factor 1 is indicated by the solid line and ∆ femoral circumference by the dashed line.  
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Fig. 3 Example of alternate timing scenarios using a cladogram of moa species included in this 

study. Cladogram is based on phylogenies of Bunce et al. (2009), Haddrath and Baker (2012), 

and Mitchell et al. (2014). Strikes represent alternative timings of loss of flight, with scenario 1 

(single strike) being loss of flight after divergence from tinamous (represented by Crypturellus 

soui) and scenario 2 (double strike) being loss of flight at the base of the crown group. The age of 

the oldest remains of flightless moa was used to time the latter (Tennyson et al. 2010). 

 

Palaeognath-only analyses 

Factor analysis of the palaeognath data explained 57.6% of variance. Loadings of all leg bone 

lengths and tibiotarsal craniocaudal diameter were strong and positive, with other dimensions 

loading moderately. Tarsometatarsal mediolateral diameter was the only variable to have a 

negative loading (Table 1).   

The best fitting regression model using earlier dates of flight loss in moa, kiwi, and 

elephant birds only included land area as a predictor variable (AICc weight 0.75, Table 3). The 

next three models all included land area as a significant predictor with the relationship between ∆ 

factor one scores and other variables being non-significant. Land area had a strong positive 

relationship with ∆ factor scores, indicating that species from land masses larger than New 

Zealand tend to have relatively longer leg bones, a larger craniocaudal diameter of the tibiotarsus, 

and a mediolaterally narrow tarsometatarsus compared to the ancestral model. Under the second 

time scenario land was the sole independent variable in the best fitting model (AICc weight 

0.42). Time since loss of flight had a significant, positive relationship with ∆ factor scores in the 

next two models in order of AICc weight, thus species that have a longer history of flightlessness 

tend to have relatively long leg bones and mediolaterally narrow tarsometatarsi. The best models 
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in both time scenarios had adjusted R2 values that were substantially higher than in the total group 

dataset, indicating that explanatory variables were better able to explain variance in ∆ factor 

scores than in the total dataset  (Tables 2 and 4).  No predictor variables were found to be 

significant in regression models using sign-less regression scores, regardless of time scenario 

used (Table 5).  

All regression residuals were normally distributed (Jarque-Berra test p-values > 0.05) and 

had equal variances (Breusch-Pagan test p-values >0.05). 

As in the total group analysis, a Wilcoxon signed-rank test of ∆ factor scores found the 

median score to be not significantly different from zero.  
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Table 5. Multiple regressions of sign-less ∆ factor 1 scores (∆DF1) with ∆CF, land area, and 

estimated time since loss of flight for flightless palaeognaths listed by AICc weight. Time 

scenarios are as described in Table 4. Land coded in binary (New Zealand = 0, >New Zealand = 

1). N = 15. Cf, femoral circumference; Coeff, coefficient; Adj R2, adjusted R2; AICcWt, Akaike 

weight . 

 

 

 

 

Models for ∆DF1 ∆Cf Land Time S1  

Coeff. p Coeff. p Coeff. p Adj R2 p AICc

Wt 

∆Cf -0.857 0.265 NA NA NA NA 0.025 0.265 0.40 

Time S1 NA NA NA NA 1.331 0.706 -0.065 0.706 0.21 

Land NA NA 0.025 0.890 NA NA -0.075 0.890 0.19 

∆Cf+Time S1 -1.148 0.178 NA NA 3.351 0.372 0.014 0.364 0.10 

∆Cf+Land -0.864 0.281 0.035 0.846 NA NA -0.053 0.540 0.06 

Land+Time S1 NA NA -0.044 0.868 1.925 0.708 -0.151 0.921 0.02 

∆Cf+Land+Time 

S1 

-1.353 0.149 -0.179 0.502 6.153 0.285 -0.030 0.489 0.01 

∆Cf -0.857 0.265 NA NA NA NA 0.025 0.265 0.42 

Land NA NA 0.025 0.890 NA NA -0.075 0.890 0.20 

Time S2 NA NA NA NA 0.048 0.928 -0.076 0.928 0.20 

∆Cf+Time S2 -1.004 0.238 NA NA 0.285 0.611 -0.033 0.482 0.07 

∆Cf+Land -0.864 0.281 0.035 0.846 NA NA -0.053 0.540 0.06 

Land+Time S2 NA NA 0.063 0.893 -0.122 0.930 -0.164 0.987 0.03 

∆Cf+Land+Time 

S2 

-1.915 0.126 -0.681 0.298 2.328 0.257 -0.017 0.461 0.02 
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Table 6. Multiple regressions of factor 1 scores (∆F1) with ∆CF, land area, and estimated time 

since loss of flight for flightless, terrestrial neognaths listed by Akakie weight. Where time is 

included n = 17, otherwise n = 23. Land was coded in binary (<100,000km2 = 0, >100,000km2 

=1). Cf, femoral circumference; Coeff, coefficient; Adj R2, adjusted R2; AICcWt, Akakie weight. 

 

 

 

 

 

 

 

 

 

Models for ∆F1 ∆Cf Land Time  

Coeff. p Coeff. p Coeff. p Adj R2 p AICc

Wt 

∆Cf 2.380 0.129 NA NA NA NA 0.090 0.129 0.37 

Time NA NA NA NA 0.488 0.357 -0.006 0.357 0.16 

Land+Time NA NA -0.538 0.106 1.227 0.078 0.112 0.171 0.14 

Land NA NA -0.145 0.574 NA NA -0.044 0.574 0.12 

∆Cf+Land 2.650 0.102 -0.225 0.365 NA NA 0.082 0.215 0.11 

∆Cf+Time 2.142 0.228 NA NA 0.180 0.752 0.032 0.312 0.07 

∆Cf+Land+Time 1.769 0.298 -0.488 0.142 0.905 0.222 0.123 0.207 0.04 

∆Cf 2.174 0.103 NA NA NA NA 0.080 0.103 0.58 

∆Cf+Land 2.353 0.082 -0.173 0.311 NA NA 0.083 0.162 0.24 

Land NA NA -0.132 0.455 NA NA -0.020 0.455 0.18 
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Table 7. Multiple regressions of signless ∆ factor 1(∆DF1) scores with ∆CF, land area, and 

estimated time since loss of flight for flightless, terrestrial neognaths listed by Akakie weight. 

Where time is included n = 17, otherwise n = 23. Land was coded in binary (<100,000km2 = 0, 

>100,000km2 =1). Cf, femoral circumference; Coeff, coefficient; Adj R2, adjusted R2; AICWt, 

Akakie weight. 

 

 

 

 

 

 

 

 

Models for 

∆DF1 

∆Cf Land Time  

Coeff. p Coeff. p Coeff. p Adj R2 p AICc

Wt 

∆Cf -0.763 0.443 NA NA NA NA -0.024 0.444 0.31 

Time NA NA NA NA 0.165 0.618 -0.049 0.618 0.25 

Land NA NA 0.037 0.815 NA NA -0.063 0.815 0.23 

∆Cf+Time -1.211 0.282 NA NA 0.338 0.358 -0.031 0.486 0.09 

∆Cf+Land -0.839 0.424 0.063 0.703 NA NA -0.086 0.699 0.06 

Land+Time NA NA -0.027 0.902 0.202 0.659 -0.122 0.880 0.04 

∆Cf+Land+Time -1.258 0.286 -0.062 0.778 0.431 0.394 -0.103 0.688 0.01 

∆Cf -0.562 0.530 NA NA NA NA -0.028 0.530 0.49 

Land NA NA -0.015 0.897 NA NA -0.047 0.897 0.40 

∆Cf+Land -0.556 0.548 -0.006 0.963 NA NA -0.079 0.824 0.11 
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Neognath-only analyses 

Factor analysis of the neognath data explained 41.6% of variance. As in the total group analysis, 

tibiotarsal and tarsometatarsal length both load strongly and positively. Femoral length and 

tibiotarsal diameters had moderate positive loadings, whilst tarometatarsal diameters had weak or 

neutral loadings (Table 1). 

All regression models for neognaths performed poorly with no variable having a 

significant relationship with ∆ factor scores and uniformly low (<0.13) (Table 6). This was also 

the case in the expanded dataset including taxa without available timing information for loss of 

flight and when sign-less scores were used as the y-variable (Tables 6, 7).  

All regression residuals were had equal variances (Breusch-Pagan test p-values >0.05). 

Residuals were normally distributed (Jarque-Berra test p-values >0.05), with the exception of the 

land area only model for sign-less ∆ factor scores in the expanded dataset  (Jarque-Berra test p-

value 0.031). For the sake of completeness this model was included in the regression table (Table 

7). 

Wilcoxon signed-rank tests for ∆ factor scores and femoral circumference showed only ∆ 

femoral circumference to be significantly different from zero. 
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Discussion 

Total Group 

The two models that best fitted the data were a combination of vairables including either land 

area and ∆ femoral circumference or land area and time since loss of flight. Both models had 

similar AICc weights and R2 values, thus neither model can be said to be preferred here. Land 

area performed poorly when used as the sole predictor with no significant relationship with ∆ 

factor 1 scores and this regression ranked fifth on the table based on AICc weight (Table 2). 

Likewise both time since loss of flight and ∆ femoral circumference had none significant 

relationships with ∆ factor scores when included as the only predictor. Thus, the significance of 

the variables in the higher AICc weight models is likely due to interactions between predictor 

variables. With kiwi, moa, and elephant birds estimated to have lost flight more recently, time 

since loss of flight and land area were significant predictors in the best fitting model. This reflects 

the relatively shorter, mediolaterally broad tarsometatarsi of these birds compared to other ratites, 

and the substantial differences in timing between the two scenarios for loss of flight in these 

lineages. For example, the first scenario had the kiwi lineage losing flight at the time of 

divergence from elephant birds at 50 Ma, whereas the second timed loss of flight at the basal split 

within the genus Apteryx at 8.6 Ma (Mitchell et al. 2014). For elephant birds, the difference in 

timing was 32.8 Ma (Mitchell et al. 2014), and in moa it was 39 Ma (see methods). This 

combination led to time being a significant predictor under the second time scenario, with taxa 

with relatively longer, narrower tarsometatarsi and longer tarsometatarsi estimated to have lost 

flight earlier. Unfortunately, the lack of unambiguous fossils of the three lineages dating between 

the two sets of ages means that neither of these scenarios can be ruled out at present. The 
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instability of land area and ∆ femoral circumference as predictors despite neither of these 

variables changing between the two separate analyses indicates that interaction between variables 

in the multiple regressions had an effect on significance. 

The absence of any significant relationship between predictor variables and the 

magnitudes of differences in factor scores between ancestral models and flightless taxa suggests 

that other factors not taken into account here may be at work. One possibility is whether there are 

differences in habitat preference between ancestors and descendants, for instance, whether there 

was shift from a closed to open habitat (e.g. forest to plains) or if the habitat remained the same. 

The absence of any overall directionality in ∆ factor scores also indicates that differences in 

selection pressures act on the leg morphology of different species. However, a trend towards 

increased body size was detected, with ∆ femoral circumferences being significantly greater than 

zero. 

Palaeognaths 

Land area as the sole predictor was found to be the best model for explaining variation in ∆ factor 

scores. Among ratites there is a spectrum of leg bone proportions independent of size. Moa and 

kiwi tend to have short long bones and medio-laterally wide tarsometatarsi, reflected by their 

more negative factor scores. On the other hand the ostriches, rhea, emus, and cassowaries have 

relatively long leg bones, and narrow tarsometatarsi, shown by their more positive factor scores. 

This variation is in spite of many moa having similar femoral circumferences to ratites 

considered to be cursorial (Supporting Information 1). The dichotomous pattern of morphology is 

reflected in the distributions of the two different groups. Moa and kiwi both evolved on a smaller 

land mass, New Zealand, in the absence of mammalian predators, and tend to have relatively 
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short and broad tarsometatarsi indicating a low degree of cursoriality (Alexander, 1983; Brassey 

et at. 2013). On the other hand, the other lineages (rheas, ostriches, casuariids) are present on 

larger land masses and have longer, narrower tarsometatarsi. This pattern is not phylogenetic as 

recent studies have found kiwi to be the sister group of elephant birds and more closely related to 

cassowaries and the emu than to moa (Philllips et al. 2010; Haddrath & Baker, 2012; Mitchell et 

al. 2014). The one species of elephant bird included in this study, Mullerornis agilis, was the only 

non-New Zealand ratite to have a negative factor 1 score. This variation in tarsometatarsal 

proportions is the likely the reason that no directionality was found in the ∆ factor scores.  

 

Neognaths 

 Multiple regressions found no significant relationship between any of the predictors and 

∆ factor scores, regardless of whether or not the ∆ factor scores were sign-less. This suggests that 

the relationship between ∆ factor scores and ∆ femoral circumference in the total dataset was the 

result of differences between neognaths and palaeognaths, with the latter having relatively longer 

tibiotarsi and shorter femora, and not due to trends within either group. In addition, as was the 

case in the total dataset and the palaeognath subset, no directionality was found in ∆ factor 

scores. Directionality was found in body size changes with ∆ femoral circumferences 

significantly greater than zero. It is likely that rather than a broad overarching factor such as size 

driving the evolution of hindlimb morphology in flightless neognaths, the life-habits of individual 

species may have a greater influence. Additional studies testing for a relationship between leg 

morphology and ecology in flightless terrestrial neognaths within a fully phylogenetic framework 

would be able to confirm or deny this hypothesis. A previous study comparing the overall 
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morphology of flighted and flightless rails found that the relative reduction of the forelimbs in 

relation to body mass was the most reliable predictor of whether a species was flightless, whereas 

differences in leg bone proportions tended to be more variable (Livezey, 2003). The results of the 

current study indicate that this variability extends to neognaths as a whole, with neither a trend in 

directionality nor magnitude of change in leg bone proportions being apparent. An alternative 

interpretation is that the evolution of leg bone proportions in flightless neognaths is random 

rather than the result of multiple adaptations of varying directionality in different lineages. 

However, given the close relationship between hindlimb morphology and locomotion and that 

use of the legs is the sole method of transport in terrestrial flightless birds, this interpretation is 

not favoured here   (Garland & Janis, 1993; Janis & Wilhelm, 1993; Bennett, 1996; Abourachid 

& Renous, 2000; Zeffer et al. 2003). 

An alternative approach to that taken here would be to reconstruct nodal values for leg 

bone proportions using a phylogeny including only volant birds using maximum likelihood 

approaches. By combining values calculated for the most recent common ancestor of the volant 

lineages and the flightless taxa in question with any of a number of evolutionary models (e.g. 

Brownian Motion, Ornstein-Uhlenbeck, Adaptive Peak) it may be possible to reconstruct nodes 

at the base of flightless lineages. This method would require greater sampling of volant species 

throughout avian phylogeny, particularly in cases where individual flightless lineages are widely 

separated in the tree, in order to be confident of ancestral reconstruction of volant lineages. The 

uncertainity of ancestral reconstructions for some lineages will potentially remain substantial for 

two reasons. Firstly there is evidence to indicate that the proportions of the limb bones can evolve 

rapidly. An extreme example is provided in a morphological study of Chenonetta jubata which 

demonstrated a 10% reduction in the length of the wing bones in the space of ~10,000 years 
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(Worthy, 1988). Secondly, the gaps in the fossil record of some flightless lineages are on the 

order of tens of millions of years, e.g. the divergence of the Strutio lineage from paleognaths is 

estimated to have occurred 70–97 million years ago (Phillips et al. 2010; Haddrath & Baker, 

2012; Mitchell et al. 2014) whilst the oldest undisputed fossil of this lineage is ~20 million years 

old (Mourer-Chauviré et al. 1996). This combination of high rates of evolution and long branch 

lengths is likely to increase the uncertainty of some ancestral reconstructions (Schulter et al. 

1997). Due to the relatively small sample of volant species in the dataset this method could not be 

examined here and as such this remains an area for future investigation.  

A number of terrestrial flightless neognaths were not included in this study simply due to 

the absence of well-resolved phylogenies and/or volant sister taxon candidates. These taxa range 

from island-inhabiting rails such as Mundia elpenor from Ascension Island to the large adzebills 

(Aptornis) of New Zealand and the giant dromornithids (Dromornithidae) of Australia. In many 

of these cases, it is likely that the volant ancestors and/or closest relatives of these species are 

also extinct. Further ancient DNA analyses are required to illuminate the evolutionary history of 

recently extinct species and new fossil discoveries are needed to elucidate the relationships of 

more ancient lineages. In turn, these will further improve our understanding of the changes in 

functional morphology of the hindlimbs with the loss of flight. 
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Conclusion 

It is clear that the patterns of change in leg bone proportions in terrestrial, flightless birds are 

generally more complex than those exhibited in the bones of the forelimbs, with few clear trends, 

particularly within Neognathae. Close examination of ratite and neognath birds indicates that the 

patterns seen in the total group of extant Aves are merely a result of differences between the two 

groups. 

Palaeognaths outside of New Zealand have medio-laterally narrower tarsometatarsi 

compared to both New Zealand species and ancestral models. This finding agrees with previous 

observations of leg bone morphology and cursoriality in ratites. On the other hand, flightless 

neognaths exhibit no obvious relationship between changes in leg bone morphology and the size 

of the land area inhabited. Therefore, the variation in the directionality of leg bone evolution 

found in both neognaths and palaeognaths most likely reflects the variability of selection 

pressures and differences in life habits.  
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Abstract 

The late Mesozoic saw the origin and subsequent radiation of birds in the presence of pterosaurs. 

Opinion is divided as to whether these two groups competed or were ecologically separated 

during the Cretaceous. Comparing ecologically meaningful morphological characters using 

multivariate analyses is one means of testing for competitive interactions between extinct groups. 

Previous comparisons of Mesozoic birds and pterosaurs used measurements of homologous 

skeletal structures. However, these characters are not always functionally comparable and may 

reflect differing ancestries rather than ecologies. Here, the results from multivariate analyses of 

forelimb, hindlimb, and lower jaw measurements for pterosaurs and Mesozoic birds are 

presented. The wings were divided into three functionally analogous units; the brachium, 

antebrachium, and distal wing. Results of these analyses show separation of the two groups due 

to interaction between size and shape axes. Pterosaurs had relatively longer jaws, shorter 

metatarsals, and shorter brachial region compared to birds of similar size. This indicates 

ecological separation between the two groups by a combination of differences in size, locomotory 

features, and feeding adaptations. Further study of functional differences in the jaws of pterosaurs 

and birds is a potential means of testing for expansion by modern birds into niches previously 

occupied by pterosaurs. 
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Introduction 

Birds appeared in the fossil record when another group of flying vertebrates, the pterosaurs, were 

already present. Birds and pterosaurs coexisted for at least 90 million years. Previous studies 

have suggested that these two groups competed for ecological space through the late Mesozoic, 

with birds taking over small body size niches and pterosaurs increasing in size to occupy new 

spaces [1,2]. The co-occurrence of birds and pterosaurs in Late Jurassic and Early Cretaceous 

deposits, a trend of increasing body size minima and maxima in pterosaurs from the end of the 

Jurassic, and similarity in diet have all been used to argue for long-term ecological competition 

between birds and pterosaurs [2,3].  

 On the other hand, studies of skeletal morphology have found the two groups to overlap 

little if at all [4,5]. These studies compared proportions of the skeletal elements making up the 

wings and legs, which may broadly reflect differences in locomotory function and habitat, and 

concluded that there is a lack of evidence for ecological competition between these groups due to 

their separation in morphospace [4,5].  Interestingly, the co-occurrence of birds and pterosaurs in 

Jurassic-Lower Cretaceous deposits has also been used to suggest ecological separation [6] 

Several studies comparing the fundamental aerodynamic traits of wing loading (body 

mass/wing surface area) and aspect ratio (wing span2/wing surface area) in modern birds and 

pterosaurs (estimated in the case of pterosaurs) found overlap in functional morphospace [7,8]. 

Both wing loading and aspect ratio strongly affect flight performance. Wing loading is related to 

flight speed, turning radius (manoeuverability), and turning speed (agility): high wing loading is 

associated with faster horizontal flight speeds and increased sinking speed, decreased 

manoeuvrability, and increased agility [7,9,10]. Aspect ratio affects the ability of animals to fly in 
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clustered environments and manoeuvrability, as well as the amount of bending stress on the wing 

bones [7,9,11]. High aspect ratios (long, narrower wings) reduce manoeuvrability and increase 

bending stresses, whilst a longer wing restricts the ability to fly in closed spaces [9,11]. Although 

a number of Mesozoic avians have been found with preserved feathers (e.g. Archaeopteryx 

lithographica, Confuciusornis sanctus, Hongshanronis longicresta), many others are not so 

exquisitely preserved. As the wings of birds have no posterior skeletal attachments, unlike 

pterosaurs [12–14], wing area is difficult to estimate in specimens with only skeletal elements 

preserved. This fact either constrains morphospace studies to include only directly measurable 

features and wingspan estimates [2,4,5,15,16] or substantially reduces sample size. As such, 

previous studies have constructed morphospaces from measurements of measurable skeletal 

elements from the fore- and hindlimbs [4, 5]. 

This study compares the morphospaces of pterosaurs and Mesozoic birds using 

measurements not only from the wings but also the legs and mandible and applies multivariate 

analyses. A different approach is required because the wings of pterosaurs and birds are 

constructed in very different ways. Pterosaurs have an extremely elongated fourth manual digit, 

which along with the rest of the arm supports a membrane that extended down to the hindlimb 

[12,14]. In birds, the bones of the hand are fused to form the carpometacarpus and the flight 

feathers form the aerofoil surface as well as a large portion of the leading edge of the wing. 

Additionally, the legs are free from the wings. Previous research has used measurements from 

homologous skeletal structures such as the forearm (ulna/radius) and hand (metacarpals and 

digits) as variables in order to compare these groups [4,5]. The problem with this approach is that 

these units are not functionally comparable and may not accurately reflect differences in 

locomotion or ecology, instead being the result of differences in ancestry.  
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Recent research indicates that the main distal wing joint in pterosaurs is between the 

fourth metacarpal and the first phalanx of the flight finger with movement at the wrist restricted 

[17,18]. On the hand, the distal wing joint in birds is at the wrist, meaning that all other structures 

distal to this point (carpometacarpus, digits, primary feathers) are functionally part of the distal 

wing whilst in pterosaurs this unit is made up of the phalanges of the wing finger [17]. Here I 

divide the wings of pterosaurs into units functionally analogous to birds, as described by 

Prondvai and Hone [17], and employ the measurements of these units as variables.  

 

Methods 

For both pterosaurs and early avians, measurements of the lengths of the mandible, humerus, 

ulna, femur, tibiotarsus, and longest metatarsal as well as maximum mandible depth were 

compiled from the published literature (Supplementary Material 1). For the hand skeleton of 

pterosaurs, lengths of metacarpal IV and the phalanges of digit IV were taken. For the birds 

manus length (carpometacarpus plus digit II) was used. Measurements that were not reported in 

publications were taken by measuring published images. 

Some pterosaur species are represented by large numbers of individuals (e.g. 

Rhamphorynchus muensteri, Pterodactylus kochi, P. antiquus). However, due to the high 

proportion of immature individuals in these samples [19–21] species averages were not 

employed. Instead, the largest complete individuals were used to represent the species. Although 

the largest individual in a population is not necessarily a good representative of a population as a 

whole, the individuals chosen were generally not the largest in the sample as completeness was 
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also a criterion for selection. In cases where an element from a limb was missing, the relative 

proportions of similarly sized individuals of the same species (if available) were used to calculate 

the length of the missing element (Supplementary Material 1). A number of species have been 

described based on individuals which were not osteologically mature according to the criteria laid 

out by Bennett [22], such as lack of fusion of combined bones (e.g. scapula-coracoid), grainy 

surface texture of long bones, and poorly ossified epiphyses. However, these criteria were used to 

distinguish subadults which were similar in size to osteologically mature individuals and likely 

filled the same niches [22]. As a result, individuals which do not exhibit full skeletal fusion were 

included in the dataset when no complete, fully mature individuals were available. However, 

those species represented only by individuals which exhibited extensive lack of skeletal fusion, 

poor ossification, and graining of long bones were excluded as these characters indicate the 

animal was still growing rapidly [22–24]. These criteria were also used for the avian dataset. 

 The length of the skeletal wing in birds is not representative of total wing length as the 

primary feathers substantially increase functional wing length by up to 100% [25]. As feathers 

are not preserved in all avian specimens, an equation for estimating average primary feather 

length was formulated using regressions of mean primary feather length against skeletal lengths 

in 22 Mesozoic birds. Average primary feather lengths were taken from Wang et al. [26], with 

some additional measurements taken from published images using the program ImageJ 

(Supplementary Material 2). A step-wise function in the R package “MASS” [27] based on 

Akaike’s information criterion (AIC) [28] was used to find the best combination of forelimb 

measurements for predicting primary feather length. Of the three skeletal elements (humerus, 

ulna, manus), manus length alone was found to be the best predictor (AIC = -94.24, Adjusted R2 

= 0.743). The R2 was higher than that for regression of average primary feather length against 
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total skeletal length (Adjusted R2 = 0.668). The equation given for estimating mean primary 

feather length was: 

log10Primean = 0.971(log10Manus Length) + 0.361     (1) 

Prediction error was calculated for each specimen using: 

 

Predicted− Observed
Observed

*100 

                               (2) 

Mean percentage error for the 23 specimens was 21.2% and varied between 1.2% (Yixianornis 

grabaui IVPP V12631) and 53.4% (Cuspirostrisornis houi STM A11-65). A Welch two-tailed T-

test found no significant difference between predicted and observed feather lengths (p = 0.852). 

As a result, equation (1) was used to estimate mean primary feather length in specimens 

representing 35 species of Mesozoic birds for which feather length data was unavailable. 

Prior to multivariate analyses the forelimb elements were divided into three functional 

units: brachial, antebrachial, and distal wing. For pterosaurs, the composition of the units were 

brachial = humerus, antebrachial = ulna + metacarpal IV, and distal wing = digit IV.  For avians, 

the units were brachial = humerus, antebrachial = ulna, and distal wing = carpometacarpus + digit 

II + mean primary feather length (Fig. 1). These units were based on the functional descriptions 

of Prondvai and Hone [17]. The lengths of the units and the lengths of the leg bones and 

mandible measurements were subjected to a principal components analysis (PCA) using the 

standard “princomp” function in R 3.1.0 [29]. For this analysis, 18 species of pterosaur and 22 

species of early avians had sufficiently complete representatives to be included. A separate 
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principal components analysis was carried out using only the wing measurements. This analysis 

included 42 species of pterosaurs and 51 species of birds.  

To examine the effect of including metacarpal IV in the pterosaur antebrachial region an 

additional set of analyses was carried out in which this element was included in the distal wing 

due to its homology to the metacarpals of birds. This approach is similar to that taken by previous 

studies comparing limb disparity in pterosaurs and birds in which the arm was divided into 

homologous units [4,5]. However, in this case primary feather length was incorporated in the 

distal wing unit in the avian dataset. 

Whether differences in elbow angle at full wing extension affected the degree of overlap 

in wing lengths between pterosaurs and Mesozoic avians was also examined. The elbow angles 

used for both “rhamphorhynchoid” and pterodactyloid pterosaurs were 155° and 160° 

respectively [18,30,31]. The exception was Pteranodon for which the angle used was 150° [32]. 

To my knowledge, no studies have been carried out on the range of elbow flexion in early avians. 

However, maximum elbow angles have been reported for modern birds during flight with 110°-

120° and 127° for the common starling (Sturnus vulgaris) and chukar partridge (Alectornis 

chukar) [33,34]. Therefore, the elbow angle at full wing extension for Mesozoic birds was set to 

120°. Two sets of wing lengths were calculated. The first was a simple summing of the forelimb 

elements. The second involved estimating the true length of the wing represented from the 

proximal end of the humerus to the distal end of the ulna using the following trigonometric 

equation: 

𝑐𝑐2 = 𝑎𝑎2 +  𝑏𝑏 − 2𝑎𝑎𝑎𝑎cos𝛾𝛾     (3) 
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where c equals the distance from the proximal end of the humerus to the distal end of the ulna, a 

is humeral length, b is ulna length, and 𝛾𝛾 is equal to the angle of the elbow (Fig. 1). The corrected 

wing length was then calculated by summing c and the remaining wing elements (manus and 

feather length in birds, metacarpal and digit IV in pterosaurs). It is important to note that the 

angles reported in vivo for neornithine birds may have been further constrained by soft tissues 

whereas those for pterosaurs could not have been [18]. Additionally, whether the elbow angles of 

modern birds can be applied to early avians remains to be tested. However, the intention here is 

simply to examine whether differences in elbow joint angle could affect comparisons of wing 

length and span between pterosaurs and early avians in order to see whether there is a need for 

further study in this area. 

 

Results 

With the wing of pterosaurs divided into functional units equivalent to those of birds, the first 

principal component (PC) accounted for 89.5% of variance (Table 1). All variables loaded 

weakly (<0.5) and negatively on this axis, indicating that first component scores primarily reflect 

size with larger taxa having more negative scores. However, not all loadings were equal and so 

some shape variation must be included in the first component. The second principal component 

accounted for 5.3% variance. Mandible length and metatarsal length both loaded moderately (0.5 

– 0.8) with the former loading positively and the latter negatively. Brachial length also had a 

weak to moderate negative loading (-0.48).  All other loadings were weak or neutral. Together, 

the first two principal components accounted for 94.7% of the variance.  
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 Separation between Mesozoic birds is clearly shown by plots of PC1 scores against PC2 

scores, with only Confuciusornis sanctus falling into the 95% ellipse of pterosaurs (Fig. 2A). 

However, separation is not visible on either single axis as both groups have overlapping PC1 and 

PC2 scores. Instead, Mesozoic birds that overlap on PC1 with pterosaurs tend to have more 

negative PC2 scores indicating longer metatarsals, brachial region, and shorter mandibles. With 

the fourth metacarpal of pterosaurs included in the distal wing, the proportions of variance 

explained by the first three principal components were similar to those seen in the first set of 

PCA results (Table 1). One exception was that the antebrachial region and the distal wing had 

weaker and stronger loadings on PC1 respectively.  

Principal components analysis of wing measurements by themselves also showed 

separation between Mesozoic birds and pterosaurs. When the pterosaurian metacarpal IV was 

included in the antebrachial region, PC1 accounted for 95.3% of variance (Table 2). All three 

variables loaded positively on this axis, with higher loadings for the antebrachium and distal 

wing than the brachial region (Table 2). The loading of the brachium was strongly positive, the 

antebrachium had a moderate, negative loading, and the distal wing had a neutral loading on the 

second principal component. This axis accounted for 3.1% of variance. Separation of Mesozoic 

birds and pterosaurs is apparent in a plot of PC scores with only Yixianornis grabaui plotting 

within the 95% confidence ellipse of pterosaurs (Fig. 3A). However, there is overlap between the 

two groups on each axis with separation due to birds with similar PC1 loadings to pterosaurs 

having higher PC2 scores (Fig. 3A).This indicates that compared to pterosaurs of similar size and 

relative distal wing length Mesozoic birds have a longer brachial region. Thus despite the low 

amount of variance explained by PC2, this axis is required for separation between birds and 

pterosaurs to become apparent. 
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Paired Wilcoxon signed rank tests found significant differences between the wing lengths 

of Mesozoic birds and pterosaurs before and after correction of wing lengths (p<0.001). 

However, correction for elbow angle had little effect on comparisons between the groups with 

substantial overlap between the groups both before and after correction (Fig. 4).  

Figure 1. (top) Bird (Sturnus vulgaris) and (bottom) pterosaur (Rhamphorhynchus muensteri) 

wings extended to show the method used to correct wing lengths for elbow flexion angle. 

Humerus (a), ulna (b) lengths and elbow angle (𝛾𝛾) were input into equation (3). The resultant 

length was summed with distal wing (d) length (manus length + average primary feather length) 

in the case of birds, and metacarpal IV (dotted line) plus distal wing (sum of phalanges of digit 

IV) in pterosaurs. Diagrams are modified from Jenkins et al. [35] and Prondvai & Hone [18]. 
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Incorporation of the fourth metacarpal into the distal wing region in the pterosaur data 

changed the loadings of the three variables. All variables had negative loadings with the distal 

wing loaded most strongly on the first PC axis (Table 2), which accounted for 95.7% of variance. 

On the second PC (accounting for 3.7% of variance) brachial length loaded positively with 

moderate strength whereas the distal wing loaded with similar strength in the opposite direction. 

Antebrachial length loaded weakly on this axis. The two groups clustered more closely in a plot 

of PC scores compared to the analysis of functional units with four avian species (C. sanctus, C. 

suniae, Y. grabaui, and Archaeornithura meemannae) falling within the 95% confidence ellipse 

(Fig. 3B), and two pterosaurs (Jeholopterus ninchengensis, Sordes pilosus) falling in the avian 

ellipse. As before, birds that plotted similarly on PC1 to pterosaurs had higher PC2 scores.   

 

Table 1. Loadings of variables on the first three principal components. Italics indicate values 

stemming from a PCA in which the pterosaurian metacarpal IV was included in the distal wing 

as opposed to the antebrachium. 

 

 

 PC1 PC2 PC3 PC1 PC2 PC3 

Mandible length -0.420 0.567 -0.328 -0.430 0.576 -0.375 

Mandible depth -0.465 0.000 0.800 -0.479 0.159 0.730 

Brachial length -0.262 -0.472 -0.380 -0273 -0.461 -0.384 

Antebrachial length -0.448 0.113 -0.122 -0.332 -0.199 -0.335 

Distal wing length -0.391 0.000 -0.281 -0.451 0.143 0.000 

Femur Length -0.299 -0.265 0.000 -0.309 -0.244 0.000 

Tibia length -0.286 -0.215 0.000 -0.295 -0.196 0.141 

Metatarsal length -0.115 -0.559 0.000 -0.121 -0.522 0.203 

Proportion of variance 89.5 5.3 1.8 89.1 5.8 2.0 
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Figure 2. Plot of PC1 vs PC2 with the pterosaurian metacarpal IV included in the antebrachium. 

Mesozoic birds are represented by blue triangles and pterosaurs by red circles. 
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Figure 3. PC1 vs PC2 based on a PCA of wing measurements with pterosaur metacarpal IV 

included either in the antebrachium (A) or the distal wing (B). 

 

Table 2. Loadings of variables on principal components from PCA of wing element lengths only. 

Italics indicate values stemming from a PCA in which the pterosaurian metacarpal IV was 

included in the distal wing, as opposed to the antebrachium. 

 

 PC1 PC2 PC1 PC2 

Brachial 0.419 0.856 -0.457 0.708 

Antebrachial 0.682 -0.517 -0.540 0.261 

Distal wing 0.600 0.000 -0.707 -0.657 

Proportion of variance 95.3 3.1 95.7 3.7 

 

Discussion 

The results here indicate little ecomorphological overlap between pterosaurs and Mesozoic birds. 

Previous studies using measurements of homologous fore- and hindlimb bones found a similar 

pattern [4,5]. However, there are crucial differences. Firstly, there is a great deal of overlap 

between the groups on individual principal components axes, and so separation is instead 

apparent only when multiple axes are inspected. Mesozoic birds have relatively longer 

metatarsals, longer brachia, and shorter mandibles compared to pterosaurs of similar size. This is 

true regardless of whether the fourth metacarpal of the pterosaurs is included in the antebrachium 

(analogous position) or distal wing (homologous position). Studies comparing the lengths of 

homologous skeletal structures found complete separation of Mesozoic birds and pterosaurs due 
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to the relatively longer hands, shorter proximal forelimb bones and shorter metatarsals of 

pterosaurs compared to birds [4,5]. However, the distal wing had a relatively low loading on the 

second and third principal component axes in this study, showing that variation in this element 

was not a major source of separation. This is likely due to the inclusion of primary feather length 

in the functional distal wing unit, which reduces the difference in relative lengths of this 

component between birds and pterosaurs. 

 

Figure 4. Frequency histograms of wing lengths calculated by summing all wing elements (A) 

and of lengths corrected for elbow flexion angle at maximum extension (B) for Mesozoic birds 

(blue, vertical hatching), “rhamphorynchoids” (green, diagonal hatching), and pterodactyloids 

(red, horizontal hatching). 

 

When comparing only the wing unit patterns separation between the two groups is also 

apparent. Mesozoic birds tend to have longer brachial regions and a shorter antebrachial region 

than pterosaurs of similar wing length due to the inclusion of the pterosaurian metacarpal IV in 
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the functional antebrachium. With the fourth metacarpal of pterosaurs included in its homologous 

position within the manus overlap between the groups increases. In this case, birds tend to have 

relatively longer brachial lengths and shorter distal wings, which accords with previous studies 

dividing the wings into homologous units [4,5]. Thus, the reduced separation between Mesozoic 

birds and pterosaurs in the second analysis is due to the inclusion of the primary feathers in the 

avian distal wing.  

Interpretation of the results of morphospace analyses on extinct groups should err on the 

side of caution. Often, the goal of comparing the morphospaces of two groups is to inform 

hypotheses of ecological similarity and indicate the potential for competition between taxa [36, 

37]. However, a number of studies in extant animals show that there is often not a one-to-one 

correlation between morphology and function [36–40]. Instead, different morphologies may 

correspond with similar functional traits [38–39]. This problem is likely to be amplified when 

comparing groups with long, separate evolutionary histories, and potentially differing internal 

constraints on morphological change resulting in differing solutions to similar ecological 

pressures [2,39]. There is good reason to believe that the variables used in this study are 

correlated with function. As previously mentioned, the forelimb measurements are for functional 

units based on models of pterosaur and avian wing morphology [18]. In addition, numerous 

studies have found the hind-limb length and relative lengths of the leg bones to be associated 

with potential running ability, stride length and frequency in both bipeds and quadrupeds [41–

44]. 

 The results presented here and prior studies have indicated that the relatively longer 

metatarsals of birds seperates them from pterosaurs in morphospace [4,5]. Birds are digitigrade 
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bipeds and pterosaurs were quadrupeds with a plantigrade foot [45–47]. As a result, a lengthening 

of the metatarsals in birds increases stride length and the distance of the torso from the substrate 

(a benefit to wading birds) [41,43,48,49]. As the ventral surface of the metatarsals would have 

contacted the ground in pterosaurs, a lengthening of these bones would not produce the same 

effect. 

 Birds also have relatively longer brachial regions compared to pterosaurs of similar size 

and wing length. This is due to the extension of the antebrachial region in pterosaurs which 

incorporates the extended fourth metacarpal [18]. The elongate metacarpal IV of pterosaurs has 

been suggested to aid in a quadrupedal vaulting launch for take-off [8]. Such a mechanism for 

take-off is very different from the bipedal launch of birds. The differences in wing morphology 

between birds and pterosaurs also likely indicate differences in the kinematics of flapping flight 

given that differences in wing segment lengths will affect the pattern of wing folding during 

flapping [50]. 

 Diet is another aspect of an animal’s ecology which has yet to be quantitatively compared 

in birds and pterosaurs. Although stomach contents and crop remains have been identified in 

some pterosaurs and Mesozoic avians [51–55], such specimens remain rare. Jaw shape is a good 

indicator of diet in extant birds, and it seems reasonable to assume this is also the case with 

respect to Mesozoic avians [56–58]. As a result, jaw shape may be used not only to compare 

pterosaurs and early avians but also to examine whether modern birds filled in the vacant niches 

left after the extinction of pterosaurs and basal birds. In addition, both non-neornithine birds and 

pterosaurs exhibit dentulous and edentulous jaws [59–61]. Variation in tooth morphology has 

been used as an indicator of dietary variation within both groups, and is another source of data 



  Chapter 4 
 

136 
 

that could be used test for dietary overlap between Mesozoic avians and pterosaurs [59, 61]. It is 

suggested here that future studies testing for competition between these two groups should 

incorporate information on jaw shape and dental morphology.  

 The concepts of competition and ecological niches are intertwined in modern ecology 

[62,63]. Niches are multidimensional spaces defined by the biotic and abiotic factors required for 

the survival of an organism [63]. These factors may be placed in three broad categories; diet, 

space, and time [64]. Similarity in body size alone is unlikely to result in increased competition 

unless it corresponds with similarity in another aspect of ecology, e.g. diet. Like-wise, 

dissimilarity in body size is not a necessary prerequisite of niche separation as species of different 

sizes may still compete for the same resources [65]. Ecological separation may be achieved 

through the absence of overlap in at least one of these categories, for example species may 

overlap in the space inhabited and exhibit similar diets yet avoid competition by being active at 

different times of the day or inhabiting that space at different times of the year [64]. Due to time 

averaging of stratigraphic data the category of time must be broadened in scale when considering 

the co-occurrence of species in time to whether two taxa inhabit strata of similar geological age. 

Even when species show considerable overlap in niche space competition is not an inevitable 

conclusion [62–64]. For competition to occur at least one of the shared resources needs to be a 

limiting factor on population size [62,63]. As direct observation of species interactions at the 

population level in the fossil record is not an option, tests of niche overlap in palaeontological 

studies are limited to testing for the potential for competition.  Such studies should focus on 

quantifiable species attributes that are linked to habitat use and resource utilization. This includes 

traits associated with feeding and substrate interaction (e.g. was the animal capable of underwater 

diving, wading, perching, climbing, etc.). With increasing numbers of functional traits exhibiting 
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overlap and greater overlap on each dimension of hypothesized niche space, the likelihood of the 

taxa in question having competed over resources in the past also increases. This is also dependent 

on the taxa existing at the same point in the stratigraphic column (overlap in time) and in the 

same local beds (overlap in space). The latter comes with a note of caution that more mobile taxa, 

particularly those capable of flight, may traverse several different depositional environments.  

Fossils of birds and pterosaurs have been found to co-occur in a number of Mesozoic 

stratigraphic units [66, 67] and thus fulfil the criteria of spatial and temporal overlap. 

 Although the sample size here is relatively small, the results of multivariate analysis of 

the full number of measurements do suggest that pterosaurs and Mesozoic birds were 

ecologically separated. This separation was due to a combination of differences in body size, 

locomotory mode, and feeding adaptations. This conclusion comes with the caveat that the vast 

majority of birds used in this analysis were from Lower Cretaceous deposits due to the shortage 

of complete specimens from the Upper Cretaceous. Thus, the two groups may have shifted in 

morphospace in respect to each other in the latest Mesozoic. More specimens of Upper 

Cretaceous birds are required before this can be tested.  

 There is substantial overlap in wing lengths between birds and pterosaurs, however as 

previously stated similarity in size alone is not an indicator of competitive interactions between 

species. The largest birds in the dataset belong to the Sapeornithidae from the Jiufotang 

Formation of north-eastern China which exhibit wing lengths similar to contemporanus 

pterosaurs such as Sinopterus and Shenzhouopterus. Sapeornithids are hypothesized to have been 

herbivourous due to the presence of gastroliths and the reduction of teeth, thus the relatively large 

body size of this family may be due to the evolution of herbivory in this clade [68,69].  
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The trend of increased pterosaur body size through the Cretaceous has been suggested to 

be evidence of a clade wide shift in order to avoid competition with birds [2, 3]. However, the 

beginning of this trend in the Late Jurassic also coincides with the radiation of pterodactyloid 

pterosaurs [70]. The lineage leading to pterodactyloid-pterosaurs exhibits changes to the tail and 

limb morphology that appear to have improved the performance of terrestrial locomotion [71], 

take-off ability from the ground [8], and facilitated increased body size [70]. Thus, the increased 

average body sizes of pterosaurs in the Cretaceous may well have been due to adaptive 

exploration of new niches enabled by removal of intrinsic, morphological constraints to body size 

[70]. As such, it is plausible that the greater average size of Early Cretaceous pterosaurs 

compared to Jurassic species was due to an increase in the upper bounds of body masses 

exhibited.  

However, this does not explain the absence of small sized pterosaurs for the remainder of 

the Cretaceous. Recent studies have demonstrated the substantial effect of Lagerstätte on 

estimating pterosaur diversity and disparity, with the occurrence of these deposits being an 

important driver of observed patterns of pterosaur diversity and disparity [70,72,73]. Konservat-

Lagerstätten increase the likelihood of preservation of small bodied species from any time period 

in which they occur, indeed the substantial drop in avian taxonomic diversity at the beginning of 

the Upper Cretaceous is probably due to a reduction in the numbers of well preserved specimens 

due to the absence of Lagerstätte [72]. As such the absence of these deposits in the Upper 

Cretaceous may have at least exaggerated the observed pattern of increased minimum pterosaur 

body size through the Cretaceous. Of the nine exceptional pterosaur bearing deposits identified 

by Butler et al. [73] only one, the Niobrara Chalk, occurs within the Upper Cretaceous. The 

pterosaurs from this stratum are deposited approximately 200km from the nearest palaeo-
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coastline [22], as such the absence of small bodied species from these strata could well be a result 

of the distance away from land that these sediments were deposited. In addition, the only birds 

found here are the aquatic Hesperornithiformes and Icthyornis [74]. Butler et al. [70,72,73] 

recommend caution when interpreting patterns of diversity and disparity in pterosaurs due to 

preservational biases caused by the heterogeneous occurrence of Lagerstätte. It is suggested here 

that the same caution also be applied to observed trends in body size evolution.  

 

Conclusion 

The separation between pterosaurs and Mesozoic birds in morphospace suggests that these 

groups were filling different ecological niches in the Early Cretaceous. As well as differences 

related to mechanisms of terrestrial locomotion and flight there were also differences in feeding 

related traits. Separation was not merely a function of size overlap in wing lengths. Previous 

studies utilising similar multivariate analyses only examined appendicular traits as potential 

indicators of locomotory differences. However, there are many factors that contribute to the 

filling of an ecological niche including body size, habitat, and diet. Including measurements of 

the jaws adds another facet to ecomorphological comparisons of pterosaurs and birds. 
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SYNTHESIS 
The evolution of diversity and disparity in birds has been greatly influenced by morphological 

constraints, whether imposed or relaxed. For example, the evolution of powered flight is likely to 

have relaxed constraints on hindlimb morphology, allowing legs to be adapted for a variety of 

different uses (Gatesy & Middleton, 1997; Abourachid & Höfling, 2012). In combination with 

the increased dispersal ability conferred by flight, this has enabled birds to colonise a wide array 

of environments (Abourachid & Höfling, 2012).  On the other hand, the more anterior centre of 

mass created by a combination of tail reduction and expansion of the forelimbs and associated 

musculature has required the femur of birds to re-orientate in order to place the knee under the 

centre of mass (Gatesy, 1990; Carrano, 1998; Hutchinson, 2001; Allen et al., 2013). As a result, 

parasagittal rotation of the femur is restricted and contributes little to stride length. Instead, 

rotation at the knee is the primary driver of forward motion during walking (Gatesy, 1990; 

Carrano, 1998; Abourachid & Renous, 2000; Rubenson et al., 2007). Thus, the restrictions placed 

on femoral movements appear to have led to a major change in locomotor mechanics (Gatesy, 

1990; Carrano, 1998; Grossi et al. 2014).  

 This thesis examined several topics on the theme of morphological constraints in birds. 

They included constraints on body mass, allometric scaling, and eco-morphology. The results 

presented provide new insights on about these themes. Firstly, the hypothesis that a widening 

discrepancy between eggshell strength and incubator mass with increased size limits body mass 

is not supported by study of one of the largest species to have existed: the difference between the 

mass of the smallest specimens of Genyornis newtoni and the mass able to be supported by the 

egg is far greater than reported for any large flightless bird (Chan, 2014). In addition, there is no 
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evidence for G. newtoni exhibiting extreme reverse sexual dimorphism (RSD), a trait 

hypothesized to be a response to the risk of damage to the eggs during incubation in Dinornis, 

with the smaller males carrying out this task (Bunce et al., 2003; Deeming & Birchard, 2009; 

Chan, 2014). There are two main alternative explanations for extreme RSD in Dinornis. Species 

in this genus are some of the largest within a clade which commonly exhibits RSD (Olson & 

Turvey, 2013). As a result extreme RSD may simply be due to allometric scaling, with the 

discrepancy between males and females increasing as a result of increased species size (Olson & 

Turvey, 2013). Another explanation is that the difference in mass between males and females 

represents inequality in reproductive investment and high levels of intrasexual competition 

between females. It has previously been hypothesised that in size-dimorphic birds the smaller sex 

invests more in reproduction whereas the larger competes for territories and/or mates (Olsen & 

Cockburn, 1993). Evidence for small clutch sizes relative to female body mass (Hartree, 1999; 

Werner & Greibeler, 2012), male incubation (Huynen et al., 2010), and exclusion of males at 

certain sites (Worthy et al., 2005; Allentoft et al., 2010) suggest that this may have been the case 

in Dinornis. Thus, the extreme RSD seen in Dinornis is likely a product of these factors rather 

than a response to a mechanical constraint that is universal to Aves.  

 The second topic examined was the allometric patterns of leg bone scaling of flightless, 

terrestrial birds. Strong evidence was found for a curvilinear relationship between femoral length 

and circumference, indicating that larger species have shorter femora in relation to the girth of 

this bone. The pattern identified likely reflects the previously mentioned requirement to maintain 

the knee under the centre of mass. Contrary to previous study, no curvilinear relationship was 

found between femoral length and circumference in non-avian theropods (see Christiansen, 

1999). This result contradicts the hypothesis that larger theropods maintained lower stresses in 
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the bones by increasing their robusticity at a faster rate than smaller forms (Christiansen, 1999). 

Instead, it appears that may have been achieved through a linear, negatively allometric 

relationship between femoral length and girth, decreased locomotor performance, and an increase 

in resistance to mediolateral bending (Carrano, 2001).  

 Thirdly, the evolution of the leg bones subsequent to loss of flight was tested for 

directionality and correspondence with potential controlling factors. Numerous qualitative and 

quantitative studies have examined changes occurring in the forelimbs of birds with loss of flight 

(Worthy, 1998; McCall et al., 1998; Livezey, 2003; Nudds & Davidson, 2010). However, 

changes in the leg bones have been less well studied. The results presented in the third chapter of 

this thesis show that there is no overall directionality to the evolution of the leg bones in 

flightless birds. This contrasts with the evolution of the forelimbs, which uniformly reduce in size 

as flight is lost (McCall et al., 1998; Livezey, 2003; Nudds & Davidson, 2010). Instead, the 

hindlimbs of birds likely vary according to their particular environments and/or modes of life 

(Abourachid & Renous, 2000). This hypothesis is supported by the fact that neither the 

directionality nor the magnitude of change is affected by the degree of change in body size or the 

length of time since flight was lost. The one pattern that was found indicates that ratites living 

outside of New Zealand tend to have proportions indicative of greater cursoriality. This 

difference may be due to an increased requirement and opportunity to traverse longer distances or 

to increased predation pressure. 

Lastly, ecomorphological comparisons between Mesozoic birds and pterosaurs were used 

to examine the possibility of ongoing competition between these groups. Separation between 

Mesozoic and pterosaurs indicates differences in locomotory and feeding adaptations. This 
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finding does not support the hypothesis of competition, instead indicating ecological separation 

between pterosaurs and birds in the Late Jurassic and Early Cretaceous. The use of measurements 

of functionally analogous structures instead of homologous structures is recommended for future 

studies testing for the expansion of neornithines into niches opened by the extinction of 

pterosaurs at the Cretaceous-Palaeogene boundary. In addition, detailed examination of the 

morphology of the jaws and teeth of the Mesozoic groups will further clarify how niche space 

was divided between birds and pterosaurs during the Mesozoic.  

Constraints on the morphology of birds have had a strong effect on the patterns of 

diversity and disparity that we see in their evolutionary history. The evolution of flight is widely 

seen as a removal of a constrait allowing to birds to diversify into the most diverse group of 

tetrapods today. In particular the leg morphology of birds has been shown to be more disparite 

than that of non-avian theropods (Gatesy & Middleton, 1997). This release of the legs from being 

the primary form of locomotion has led to the adaptation of the hindlimbs for a variety of other 

functions (Abourachid & Höfling, 2012). However, the changes in the morphology due to the 

evolution of flight have also imposed new constraints on avian morphology. Not only are the 

kinematics of the femur restricted but the length of the bone has also become constrained in order 

to maintain the knee under the centre of mass (Gatesy, 1990; Carrano, 1998; Grossi et al. 2014). 

Flight also imposes limits on the maximum body mass that can be attained (Alexander, 1998). 

Loss of flight removes this impediment but the mark of this evolutionary history is still imprinted 

on flightless species as femoral length and orientation remains constrained in these species. The 

greater torsional stresses caused by the retention of this posture may well have limited the body 

mass of flightless birds preventing them from attaining the same sizes as their large non-avian 



  Synthesis 
 

153 
 

relatives such as Tyrannosaurus rex (Gatesy, 1991). This provides a more plausible constraint on 

avian body mass than eggshell strength (Chan, 2014).  

The evolution of the leg bones post-loss of flight indicates that this set of traits is quite 

plastic. Changes in the relative proportions of the distal limb bones do not appear to be strongly 

constrained to follow any particular trajectory of change due to loss of flight. This may be due to 

the fact that terrestrial flightless species often belong to clades in which the volant members 

generally spend a high proportion of their time on the ground. Limb proportions have the 

potential to evolve rapidly, with the distal bones often being the first to change (Worthy, 1988; 

Nudds & Davidson, 2010). This in turn may provide a malleable set of traits that can adapt to 

new selection pressures given enough time. This may be one reason why the large, flightless 

ratites that inhabit open spaces have evolved relatively long distal limb bones, thereby increasing 

their ability to cover longer distances, as this provides an evolutionary path of least resistance. It 

certainly requires fewer changes to morphology compared to the number of changes needed to 

regain flight. 

By combining studies of previously neglected groups and functional characters with 

alternative methodological approaches this thesis provides new insights into morphological 

constraints on avian evolution. It is hoped that they will inform future studies of the 

morphological and ecological evolution of birds.  

 

 

 



  Synthesis 
 

154 
 

References 

Abourachid, A. & Höfling, E. 2012. The legs: a key to bird evolutionary success. J. Ornithol. 

153: S193–S198. 

Abourachid, A. & Renous, S. 2000. Bipedal locomotion in ratites (Paleognatiform): examples of 

cursorial birds. Ibis 142: 538–549. 

Alexander, R. McN. 1998. All-time giants: the largest animals and their problems. Palaeontology 

41: 1231–1245. 

Allen, V., Bates, K.T., Li, Z., & Hutchinson, J.R. 2013. Linking the evolution of body shape and 

locomotor biomechanics in bird-line archosaurs. Nature 497: 104–107. 

Allentoft, M.E., Bunce, M., Scofield, R.P., Hale, M.L., & Holdaway, R.N. 2010. Highly skewed 

sex ratios and biased fossil deposition of moa: ancient DNA provides new insight on New 

Zealand’s extinct megafauna. Quaternary Sci. Rev. 29: 753–762. 

Birchard, G.F. & Deeming, D.C. 2009. Avian eggshell thickness: scaling and maximum body 

mass in birds. J. Zool. 279: 95–101. 

Carrano, M.T. 1998. Locomotion in non-avian dinosaurs: integrating data from hindlimb 

kinematics, in vivo strains, and bone morphology. Paleobiology 24: 450–469. 

Carrano, M.T. 2001. Implications of limb bone scaling, curvature and eccentricity in mammals 

and non-avian dinosaurs. J. Zool. Lond. 254: 41–55. 



  Synthesis 
 

155 
 

Chan, N.R. 2014. Does size variation in Genyornis newtoni (Aves, Dromornithidae) encompass 

eggshell safety limits? J. Vertebr. Paleontol. 34: 976–979. 

Christiansen, P. 1999. Long bone scaling and limb bone posture in non-avian theropods: 

Evidence for differential allometry. J. Vertebr. Paleontol. 19: 666–680. 

Deeming, D.C. & Birchard, G.F. 2009. Why were gigantic birds so small? Avian Biol. Res. 1: 

187–194. 

Gatesy, S.M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. 

Paleobiology 16: 170–186. 

Gatesy, S.M. 1991. Hind limb scaling in birds and other theropods: implications for terrestrial 

locomotion. J. Morphol. 209: 83–96. 

Gatesy, S.M. & Middleton, K.M. 1997. Bipedalism, flight, and the evolution of theropod 

locomotor diversity. J. Vertebr. Paleontol. 17: 308–329. 

Grossi, B., Iriarte-Diaz, J., Larach, O., Canals, M. & Vásquez, R.A. 2014. Walking like 

dinosaurs: Chickens with artificial tails provide clues about non-avian theropod 

locomotion. PLoS ONE 9: e88458 doi:10.1371/journal.pone.0088458. 

Hartree, W.H. Jr. 1999. A preliminary report on the nesting habits of moas on the East Coast of 

the North Island. Notornis 46: 457–460. 

Hutchinson, J.R. 2001. The evolution of femoral osteology and soft tissues on the line to extant 

birds (Neornithes). Zool. J. Linn. Soc. Lond. 131: 169–197. 



  Synthesis 
 

156 
 

Huynen, L., Gill, B.J., Millar, C.D., & Lambert, D.M. 2010. Ancient DNA reveals extreme egg 

morphology and nesting behavior in New Zealand’s extinct moa. Proc. Natl. Acad. Sci. 

USA 107: 16201–16206. 

Livezey B.C. 2003. Evolution of flightlessness in rails (Gruiformes: Rallidae): phylogenetic, 

ecomorphological, and ontogenetic perspectives. Ornithol. Monogr. 53: 1–654. 

McCall, R.A., Nee, S. & Harvey, P.H. 1998. The role of wing length in the evolution of avian 

flightlessness. Evol. Ecol. 12: 569–580. 

Nudds R.L. & Davidson J.S. 2010. A shortening of the manus precedes the attenuation of other 

wing-bone elements in the evolution of flightlessness in birds. Acta Zool-Stockholm 91: 

115–122. 

Olson, V.A. & Turvey, S.T. 2013. The evolution of sexual dimorphism in New Zealand giant 

moa (Dinornis) and other ratites. Proc. R. Soc. B 280: doi: 10.1098/rspb.2013.0401. 

Rubenson, J., Lloyd, D.G., Besier, T.F., Heliams, D.B. & Fournier, P.A. 2007. Running in 

ostriches (Struthio camelus) : three-dimensional joint axes alignment and joint 

kinematics. J. Exp. Biol. 210: 2548–2562. 

Werner, J. & Griebeler E.M. 2012. Reproductive investment in moa: a K-selected life-history 

strategy? Evol. Ecol. 26: 1391–1419. 

Worthy, T.H. 1988. Loss of flight ability in the extinct New Zealand duck Euryanas finschi. J. 

Zool. Lond. 215: 619–628. 



  Synthesis 
 

157 
 

Worthy, T.H., Bunce, M., Cooper, A. & Scofield, P. 2005. Dinornis – an insular oddity, a 

taxonomic conundrum reviewed. Monografies de la Societat d’Història Natural de les 

Balears 12: 377-390. 

 



  Appendices 
 

158 
 

APPENDICES 

Appendix 1: Supplementary materials 

Chapter 1: Does size variation in Genyornis newtoni encompass eggshell safety limits? 

Supplementary Data available free online:  

http://www.tandfonline.com/doi/suppl/10.1080/02724634.2013.826668 

 

All other supplementary materials are available with the digital version of this thesis stored at 
http://www.researchonline.mq.edu.au/. 

Chapter 2: Phylogenetic variation in hindlimb bone scaling of flightless theropods 

Appendix S1 Raw measurements of avian femora and tibiotarsi. 

Appendix S2 References for additional non-avian theropods. 

Appendix S3 MRP codings and phylogenetic sources. 

 

Chapter 3: Complex evolution of leg bones in the transition to flightlessness in birds 

Supporting Information 1 Raw measurements of flightless and volant species. 

Supporting Information 2 Phylogenetic references, land areas, and estimates of time since loss 

of flight. 

 

Chapter 4: A comparison of pterosaur and Mesozoic avian morphospaces constructed using 

functionally analogous traits 

Supplementary Material 1 Measurements and references for pterosaurs 

Supplementary Material 2 Measurements and references for Mesozoic birds 

http://www.tandfonline.com/doi/suppl/10.1080/02724634.2013.826668


  Appendices 
 

159 
 

 Appendix 2: Primary feather lengths may not be important for inferring 
the flight styles of Mesozoic birds. Chan, N.R., Dyke, G.J., and Benton, 
M.J. 2013. Lethaia, Vol. 46, pp. 146–152. 

 

This paper was based on a thesis written in fulfilment of an MSci in Palaeontology and Evolution 
at the University of Bristol and published in 2013 in the journal Lethaia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Due to copyright restrictions pages 160-169 have been omitted from this thesis. Please refer 
to the following citation for details of the article contained in these pages. 
 

Primary feather lengths may not be important for inferring the flight styles of 
Mesozoic birds. Chan, N.R., Dyke, G.J., and Benton, M.J. 2013. Lethaia, Vol. 46, pp. 
146–152. 
 
http://doi.org/10.1111/j.1502-3931.2012.00325.x  
 


