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ABSTRACT

Wearable devices for human activity tracking are becoming a commonly

used infotainment gadget in daily life. Many commercial devices have emerged

for human health and wellness assessment, such as daily physical activity

monitoring through step counting or exercise tracking. The popularity of wear-

ables has improved drastically with developments in internet of things (IoT)

technologies and the ability to analyse data with cloud-computing. However,

wearables have not been fully utilized in the physical activity tracking of dis-

abled people. This is primarily due to the ethical requirements and restrictions

imposed when acquiring data from this cohort. In this study, we show that hu-

manoid robots have the potential to be used as a model for the movement and

physical activity analysis of disabled people. This will aid in the development

of wearable devices capable of providing services to disabled people.
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Chapter 1

Introduction

Wearable devices for physical activity monitoring are becoming increasingly more
common. There are many commercially available solutions for individuals who wish
to monitor their physical activity, such as smartwatches and fitness trackers from com-
panies like Fitbit, Apple, Samsung and many others. There are also high-end systems
available which offer an accurate yet expensive solution to wireless motion tracking,
such as the various inertial measurement units (IMUs) from Xsens [1] and the Blue
Trident IMU from Vicon [2]. Smartwatches and fitness trackers readily deliver generic
metrics that track activity, such as step count and sleep pattern tracking, which are not
useful in clinical motion analysis. More advanced data can be accessed by the user,
but this is often gated with a membership and recurring fee [3]. Through developer
application programming interfaces (APIs), such trackers can be made to deliver some
raw sensor data, but limitations on data access rate per hour are generally imposed [4].
Custom-built wearable devices have been proposed and developed which aim to offer
a home-based solution for the physical activity monitoring of people with disabili-
ties [5–8]. These custom-built solutions are more suitable for use in physical activity
tracking research than the current commercial solutions, for both home-based and in-
clinic applications, as they provide cheap and unlimited access to raw sensor data and
the ability for edge-computer integration. However, home-based activity monitoring
system architectures are not yet ready for general acceptance by healthcare service
providers and system developers and are still under active research and development.

Wearable devices have been utilised in clinical research for their ability to provide
biomedical, physiological and motion sensing data. Wearables are an extremely pow-
erful technology, offering useful solutions to many health-based problems [9]. Appli-
cations include assessment of treatment efficacy [10], home-based rehabilitation [11],
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2 Chapter 1. Introduction

health and wellness tracking [12], and early detection of disorders [13]. A substantial
amount of research with motion sensors specifically has been conducted in multiple
sclerosis (MS), with a focus on physical activity intensity classification [14].

Cerebral palsy (CP) is a non-progressive brain disorder which causes long-term
physical disability resulting in limited movement and mobility [15, 16]. Although the
brain injury is non-progressive, due to musculoskeletal pathologies the physical im-
pairments of an individual with CP often do worsen over time. These pathologies
include spasticity, muscle weakness and bone deformity [15]. The most common mo-
tor disorder in children with CP is spasticity, making spasticity assessment highly im-
portant for safe and efficient interventions. Common clinical measures of spasticity
include the modified Ashworth scale (MAS), the modified Tardieu scale (MTS) [16],
and the pendulum test (PT) [17]. Other common clinical measurement methods for
CP include the Gross Motor Function Measure (GMFM), which is used to assess gross
motor development in children with CP [18], and instrumental gait analysis, which
uses the gait characteristics of an individual to assess motor deficits [17]. The potential
for integration of wearables into these various assessment methods has recently been
presented in the literature [16, 17, 19–22], but the work done is limited.

A common method used for assessing spasticity is the PT [17] originally described
by Wartenberg [23, 24]. The PT uses gravity to provoke the muscle stretch reflex dur-
ing passive swinging of the lower leg. Characterization of the leg oscillations with
electrogoniometry, videography and magnetic sensing devices may provide an objec-
tive measure to differentiate between various degrees of spasticity in children with CP.
More recently, an accelerometer-based sensing method has been used, which provides
versatile, high sensitivity measurements and excellent reliability while being less ex-
pensive than other movement analysis systems [17]. The cheap and accurate motion
tracking that wearables are able to provide is heavily underutilized in CP research.

The levels of disability severity vary widely across the CP population. Therefore,
it is difficult to form a group of CP individuals which can provide us statistically sig-
nificant data of motion impairments with common characteristics. Besides, stringent
ethical approval requirements exist to collect research data from the CP cohort. All
these restrictions make research data collection from CP individuals a very difficult and
time-consuming process. Humanoid robots may have the potential to model disabled
movement, which would make research on disabled motion more accessible. To our
knowledge, humanoid robots have not been used as a model for human movement in
the literature. This approach is a new opportunity in clinical activity tracking research,
and has been studied in this project with use of the Alpha 1 humanoid robot [25].
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1.1 Aims and Objectives

The overarching aim of this study is to investigate the efficacy of using humanoid
robots as a model for the physical activity analysis of disabled individuals, such as
those affected by cerebral palsy. This study has following objectives:

• Develop calibration methods for accurate data collection from a custom-built
wearable activity tracking device (WATD).

• Develop pre-processing methods for motion data captured by the WATD.

• Conduct an exhaustive literature review to program the Alpha 1 humanoid robot
to act as a model for CP motion and track this motion using the WATD.

• Collect normal and imitated CP movement data from healthy human participants
to validate the use of the Alpha 1 robot as a model for CP.

1.2 Organisation of the Thesis

The thesis is organised as follows:
Chapter 1 introduces and provides a background of the research and technology

topics relevant to this study. An overview of the current state of wearable devices used
commercially and in clinical research is given. CP is introduced, as well as various
common assessment methods for the disease, with a focus on the PT. The Alpha 1
humanoid robot is presented as a potential research tool for modelling CP motion.
Finally, the aims and objectives of the study are laid out.

Chapter 2 runs through the exhaustive literature review that was conducted to find
motion data that could be used to program the Alpha 1 robot. The focus of the liter-
ature review is research papers which use wearables in CP research. The search strat-
egy, inclusion criteria and survey results are discussed and a conclusion of the review
is given.

Chapter 3 describes the methodology that was used in the current study. The ex-
perimental setup is presented, showing the research apparatus and explaining how
this equipment was used. Data processing and analysis techniques are then described.
Finally, the movement activities that were used in this study are explained.
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Chapter 4 presents and discusses the results of the study. First, the effect of device
calibration and the 3D-printed case are discussed. After this, the human and robot
results from the movement activities are laid out. Finally, the use of the Alpha 1 hu-
manoid robot and WATD are evaluated.

Chapter 5 concludes the study and presents plans for future work with this re-
search.



Chapter 2

Background and Literature Review

2.1 Introduction

CP treatment interventions often include physical rehabilitation to increase mobility
and reduce pain [16]. To gauge the severity of CP and assess the effectiveness of treat-
ment, clinical examination combined with gait analysis is commonly used [20]. Several
tools can be used in instrumented gait analysis, such as 3D motion capture systems, 2D
systems using video cameras with analysis software, or pressure sensitive mats [26].
These measurement systems do not provide an ideal solution. Generally they are non-
portable, costly, and must be used in dedicated laboratories due to their bulky nature.
Subject preparation, a laboratory environment, and limited space to allow for a natural
gait pattern make these gait analysis measurement tools unfavourable for patients [22].

IMUs are widely used in research to track motion. Some researchers have proposed
IMUs for gait analysis [22]. IMUs are also proposed for tracking motion during the PT
[17]. Usually IMUs consist of at least a 3-axis accelerometer and 3-axis gyroscope, but
many are equipped with a 3-axis magnetometer. With the ability to measure movement
in 9 separate axes, such IMUs are often called 9 degrees of freedom (9DOF) IMUs.
There are many commercial solutions which are cheaply available and compatible with
common hobby electronics boards.

The aim of this review is to survey the literature for studies that utilise IMU tech-
nology to measure the movement of individuals with CP. From these papers, various
angular parameters that define CP motion will be extracted and collated to construct a
library of movement data. Using this library, the Alpha 1 humanoid robot [25] will be
programmed to model CP movement. Programming the Alpha 1 robot to mimic real
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6 Chapter 2. Background and Literature Review

CP motion will make it an invaluable research tool for testing and calibrating novel
wearable activity tracking devices. This robot model could also be used in conjunction
with wearables to generate massive amounts of motion data to aid in the development
of machine learning algorithms to diagnose, classify and treat CP in the future.

2.2 Search Strategy

A search of the literature from January 2000 to October 2019 was conducted using the
electronic databases Medline Complete and PubMed through Macquarie University
permissions. The search terms aimed to find any articles and papers which were on
the topic of cerebral palsy and made use of a 9DOF IMU. In both PubMed and Medline
Complete, the search terms used were as follows: “(accelerometer OR gyroscope OR
magnetometer) AND cerebral palsy”. The reference lists of articles, conference papers,
and systematic reviews from the search engines were manually checked in full, except
where Macquarie University did not have the relevant permissions to allow access to
the full article. Relevant articles were extracted from the database reference lists using
the inclusion criteria listed in section 2.3.

2.3 Inclusion Criteria

Inclusion criteria aimed to find journal articles and conference papers that contained
any angular motion data relating to the movement of individuals with CP. The survey
was not specific to activity type or particular bodily angles. Articles or papers were
included if they (1) included only participants of any age with cerebral palsy of any
severity; (2) studied any kind of activity or therapy which involved movement of the
body, and (3) gave clear and useful numerical data relating to the angular movements
of the body. Articles or papers were excluded if they (1) did not include individuals
with CP as the sole participant; (2) did not present original data (systematic review
papers); (3) were not available as a full text through Macquarie University’s licensing
permissions; (4) did not look at the movement of study participants, or (5) did not
present useful numerical data relating to the angular movements of the body.
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2.4 Survey Results

Searches on the Medline Complete and PubMed electronic databases identified 168
records, of which 72 were duplicates. 96 full text articles were assessed for their eli-
gibility. Figure 2.1 summarises the literature survey technique and reasons for exclu-
sions. Of the 86 papers, 8 had useful numerical data relating to the angular movements
of the body. 7 are journal papers and 1 is a conference paper.

Figure 2.1: Flowchart summarising the literature survey technique and denoting num-
bers of articles found, included and excluded.

The two electronic databases (PubMed and Medline Complete) returned very sim-
ilar results and showed the same trend of papers published across time. This can be
seen in figure 2.2. All 72 of the records found on PubMed were also found on Medline
Complete (termed duplicates in figure 2.1). Medline Complete had an additional 24
unique records, out of which only 1 additional eligible paper was found (out of a total
of 8 eligible papers). Figure 2.2 shows the growing trend of using 9DOF IMU modules
in research related to CP.
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Figure 2.2: A graph displaying the number of papers and the date of publication found
in the literature survey. Note that all 72 records found using the PubMed database were
also present in the Medline Complete search.

As laid out in the inclusion criteria, papers regarding the movement of individu-
als with CP were only deemed eligible if clear numerical data relating to the angular
movements of the body were given. The 8 eligible papers found through the literature
survey are summarised in table 2.2. The papers are all published recently, the earli-
est being published in 2012. 6 of the 8 papers provide data on various angles of the
legs of individuals with CP, with clinical gait analysis being a commonly used research
method.
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2.5 Discussion

The 8 eligible papers can be sorted into 3 groups as listed in table 2.2. Group 1 papers
present angular data which may be useful for programming gait motion into the Alpha
1 robot. Group 2 papers present specific angular data sets from various tests, analyses
and assessments, as opposed to normal everyday movement. The data from group 2
papers is useful for programming CP movement into the Alpha 1 robot which mimics
motion from these specific clinical analyses. Group 3 has only one article; it is set apart
from the other 7 papers because it does not study gait or lower body motion.

Table 2.2: Grouping of the 8 eligible papers.

Paper Title Year of
Publica-
tion

Group
Number

Locomotion and cadence detection using a single trunk-fixed
accelerometer: validity for children with cerebral palsy in daily life-like
conditions [15]

2019 1

Augmented effects of EMG biofeedback interfaced with virtual reality
on neuromuscular control and movement coordination during reaching
in children with cerebral palsy [27]

2017 3

Improving modified Tardieu scale assessment using inertial
measurement unit with visual biofeedback [16]

2016 2

The Effect of Ankle-Foot Orthoses on Community-Based Walking in
Cerebral Palsy: A Clinical Pilot Study [28]

2016 1

Validation of Inter-Subject Training for Hidden Markov Models Applied
to Gait Phase Detection in Children with Cerebral Palsy [21]

2015 1

Quadriceps femoris spasticity in children with cerebral palsy:
measurement with the pendulum test and relationship with gait
abnormalities [17]

2014 2

The relationship between clinical measurements and gait analysis data
in children with cerebral palsy [20]

2013 2

Stability and harmony of gait in children with cerebral palsy [19] 2012 1

The papers in group 1 provide angular data on CP gait. Reference [15] provides 3
CP individuals’ shank pitch angular velocity data during gait. This information could
be used to set the Alpha 1 robot’s legs moving at a speed similar to an individual with
CP during gait. Reference [28] provides the shank to vertical angle of children with CP
during gait. This is useful data to ensure the Alpha 1 robot’s lower legs are positioned
correctly at the midstance of the gait. Reference [21] presents a detailed graph of the
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foot and shank angular velocity during gait, with the stride broken into progressively
more detailed partitions. This data could be used to tune the Alpha 1 robot’s stride
speed to more closely mimic a typical CP gait. Reference [19] provides peak-to-peak
angular velocities in 3 body axis directions (CC: cranio-caudal, LL: latero-lateral, AP:
antero-posterior). This data may be useful to compare the Alpha 1 robot’s gait stability
against, to ensure it is as similar as possible to a typical CP gait.

Papers in group 2 use various tests, analyses and assessments to generate angular
data on individuals with CP. Reference [16] uses MTS assessment with both a novel
IMU approach and a conventional approach. Exact angle ranges are provided for range
of motion, angle of catch, and angle of spasticity of CP individuals during the MTS
assessment. This data could be used to mimic the MTS assessment with the Alpha 1.
References [17] and [20] provide angular data from the DAROM tests, while reference
[17] also looks at the PT. Similarly, this data could be used to program the Alpha 1 to
mimic these tests.

Reference [27] is alone in group 3. It is the only paper that is not focused on lower
body movement or gait analysis. Reference [27] studies angular elbow flexion and
extension ranges of motion in children with CP while seated. This data would be
useful to program the Alpha 1 robot to mimic a similar reaching task.

2.6 Conclusion

Of the 8 eligible papers found in the literature survey, 4 contain useful information for
the programming gait motion in the Alpha 1 robot. The data from these group 1 papers
consists of: shank pitch angular velocity data, shank to vertical angle during midstance
of gait, foot and shank angular velocity, and 3-axis peak-to-peak velocity of the centre
of mass. 3 papers contain angular data from the following analysis methods: MTS
assessment, DAROM tests, and the PT. These group 2 papers can be used to program
the movement of the Alpha 1 robot to mimic these specific tests. The final paper focuses
on the range of movement in the arms of an individual with CP. The group 3 paper may
be used alone to program the movement of the Alpha 1 robot’s arms.

With the information gathered from the 8 eligible papers, it is possible to program
motion into the Alpha 1 robot that mimics some traits of typical CP movement during
gait, various clinical assessments and reaching tasks. However, the data available in
the literature only provides a limited description of the overall movements, and so the
movement of the Alpha 1 robot may only moderately reflect typical CP movement.
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Chapter 3

Methodology

3.1 Introduction

A survey of the literature found 8 papers which present numerical data that could po-
tentially be used for programming the Alpha 1 humanoid robot. [17] was chosen as a
focus paper, as it presents a multitude of numerical data of both typically developed
(TD) and CP people for a specific clinical test, the PT. The PT is a simple exercise when
compared to a movement such as CP gait. It is a perfect starting point for program-
ming human motion into the Alpha 1 robot, due to its simple nature and the ability to
validate the likeness of programmed motion to the real human data from [17].

The PT is a commonly used clinical test to measure spasticity. It uses gravity to
provoke the muscle stretch reflex during passive swinging of the lower leg [17]. An
illustration of the PT is shown in figure 3.1. To track the motion of the shank during
the PT, a custom-built WATD was used. The WATD design and function is laid out
in [5]. The WATD tracks motion in 9-axis directions, as explained in section 2.1, but
since we were only interested in the angular motion of the PT, only the gyroscope data
was used in this study. The gyroscope captures angular velocity in 3-axis directions. By
integrating this data with respect to time, the WATD can be used to measure the angle
of the shank during the PT. We first developed a method for data collection from the
WATD using the Alpha 1 robot and then used this method to collect data from healthy
human participants who imitated CP motion during the pendulum test.

In this chapter, section 3.2 explains the experimental setup for the human and robot
data collection trials, section 3.3 goes through the data processing and analysis tech-
niques, and section 3.4 describes the movement activities performed by the Alpha 1
robot and healthy human research participants.

15
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Figure 3.1: An illustration of the PT. Oscillatory shank motion is indicated by the arrow.
The measurement axis directions of the WATD are shown in the dashed rectangle.

3.2 Experimental Setup

3.2.1 Apparatus for Equipment Setup

The experimental apparatus is shown in figure 3.2. Additionally, a computer and local
Wi-Fi network are required to retrieve the data from the WATD.

Wearable Activity Tracking Device Specifications

The WATD is a small, custom-built device capable of tracking 9DOF motion data and
sending this data over Wi-Fi to a nearby computer (an edge-computer). We used the
WATD to acquire motion data from the Alpha 1 robot and human research participants.
It can be seen in panel (d) of figure 3.2. The device had a width of 46mm, a length of
58mm, height of 47mm (including the battery and measuring the greatest dimension,
as the WATD was not perfectly rectangular) and a weight of 81g (including battery). A
9V battery and 5V voltage regulator were used to power the WATD. The WATD con-
sisted of two modules - the Wemos D1 Mini ESP8266 Wi-Fi module and the MPU9250
IMU. The MPU9250 was responsible for tracking the motion of the WATD in 9DOF,
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Figure 3.2: The experimental apparatus used to gather motion data.

and this was shared with the Wemos D1 Mini’s onboard microcontroller unit (MCU)
via Inter-Integrated (I2C) communication. The MPU9250 was set to a full-scale range
of 1000 degrees per second [5].

9DOF motion data was stored in the MCU memory of the Wemos D1 Mini. Data
was accessed by the user over Wi-Fi through a server hosted on the ESP8266 Wi-Fi
module in the Wemos D1 Mini. The server also provided control of the device, allow-
ing the user to reset the WATD memory once it was full. The server was accessed by
a PC or other device connected to the internet (locally or in another network). The
WATD was able to store 1000 separate entries of 9DOF data. The tracking period could
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be varied, to a maximum tracking frequency of 100Hz (10ms period). The maximum
tracking time of the WATD until the memory reached capacity was directly dependent
on the period that was specified for data collection. In this study, a 10ms period was
used, so the maximum tracking runtime of the device was 10 seconds. The LED of the
WATD was used to indicate WATD state information to the user, such as a successful
connection to Wi-Fi, when motion data was being tracked, when the memory was full,
and when the Wi-Fi server was accessed by a client [5].

3D-Printed Case Design

A custom case to house the WATD was designed and 3D-printed. Autodesk Inventor
2020 [29] was used to design the top and bottom parts of the case. The two parts of the
case clip together with a simple mirrored step pattern along the connecting walls. The
case has a width of 58mm, a length of 73mm, a height of 68mm, and a weight of 31g.
There are several slits along the roof of the case which allow for the WATD LED to be
seen when in use. To print the case, a FlashForge Dreamer 3D printer [30] was used.
The 3D-printed case can be seen in panel (e) of figure 3.2.

3.2.2 Alpha 1 Humanoid Robot

To wirelessly collect 9-axis motion data from the Alpha 1 robot, the WATD was at-
tached to the front of the Alpha 1’s right shank with several small rubber bands. Data
was collected with and without the use of the 3D-printed case. The Alpha 1 humanoid
robot was perched on the edge of a desk and its torso was tightly secured to a weighted
bookend with a latex band. This positioning allowed the right shank of the Alpha 1
to swing unencumbered while the robot remained secured in place. A photo of this
setup with the 3D-printed case can be seen in figure 3.3. When the case was not used,
the WATD was placed in a small bubble wrap pocket and fixed directly to the Alpha 1
robot’s shank in the same position.

3.2.3 Human Data Collection

To wirelessly collect 9-axis motion data from human participants, the WATD was at-
tached to the front of the right shank close to ankle with a large rubber band. The
3D-printed case was always used during human data collection. Figure 3.4 shows a
participant wearing the WATD during the PT. A detailed description of the PT admin-
istered on the participants is given in 3.4.2.
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Figure 3.3: Side and front on views of the experimental setup of the Alpha 1 robot
during shank movement data collection (with case).

Participants

A total of 7 (6 male and 1 female) research participants were included in this study.
Participants fell within the height range of 155-190cm, had an age range of 23-27 years
and an average age of 23.86 years, and were TD (no issue in physical movement due
to disease, injury or other condition). None of the participants had undergone surgery
during the year prior to the study. All research participants were recruited from the
student population of Macquarie University.
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Figure 3.4: Side and front on views of the human experimental setup and WATD place-
ment during the PT. The WATD is secured to the right shank close to the ankle.

3.3 Data Processing and Analysis

The gyroscope of the WATD records 3-axis angular velocity measurements (in units
of °/s) with a 10 millisecond period. To convert this data to angular displacement (in
units of °), cumulative trapezoidal numerical integration of the data was performed
in MATLAB [31]. However before integrating, the raw angular velocity data must be
calibrated to ensure the angle calculated from the velocity measurements is accurate.
The application of this principle is discussed in subsection 3.3.1. To further improve the
accuracy of the WATD angle measurements for these specific movements, the vector
of the angle data was taken. The reasoning and methodology behind this is discussed
in subsection 3.3.2.



3.3 Data Processing and Analysis 21

3.3.1 Device Calibration

The gyroscope requires calibration to eliminate errors in the raw data measurements.
The gyroscope measures angular velocity in each axis direction. These measurements
can be written in the form of equation 3.1, where ω is the x-, y- or z-axis angular veloc-
ity measurement recorded by the gyroscope, ωa is the actual angular velocity in that
axis direction, and ω0 is the constant DC shift error in the gyroscope measurement.

ω = ωa + ω0 (3.1)

To calculate the angular displacement, the angular velocity is integrated by per-
forming cumulative trapezoidal numerical integration of the data in MATLAB [31].
This principle is seen in equation 3.2, with θ representing the angular displacement,
or how many degrees the WATD has travelled in that axis direction. The constant DC
shift error in the gyroscope measurements, ω0, becomes a linear term for the angular
displacement, ω0t. This causes linear drift in the angle calculation.

θ =

t∫
0

ω dt = ωat + ω0t (3.2)

To eliminate the drift in the angular displacement measurement, the constant DC
shift error in equation 3.1 was estimated and subtracted from the angular velocity mea-
surements. This was done by averaging a total of 27000 data points while the device
was still, meaning angular velocity measurements should remain at 0°/s, and so any
value measured by the gyroscope would be due to constant DC shift error and random
fluctuation errors. 3000 data points were collected with 3 different orientations of the
WATD for each axis, making a total of 9000 data points for each axis. The 3 orientations
of the WATD were such that the x-y, x-z or y-z planes were parallel to the earth. The
calculated error for each axis direction is subtracted from the raw gyroscope data for
all other data collection activities.

3.3.2 Angular Measurements

During the PT, angular movement of the Alpha 1’s shank is isolated around a single
axis located at the knee. This is the y-axis in figure 3.1. Due to this, it is feasible to
take the vector magnitude of the x-, y- and z-axis angular displacement measurements
to obtain the total angular displacement of the shank. This compensates for misalign-
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ments of the WATD on the shank, which cause a fraction of the y-axis direction angle
measurements to be captured in the x- or z-axis direction, resulting in a lower angle
measurement than expected. Equation 3.3 was used on the calculated x-, y- and z-axis
angle data (θx, θy and θz respectively) to obtain the total angle vector of the exercise,
θtotal.

θtotal =
√

θx × θx + θy × θy + θz × θz (3.3)

To compare the total angular displacement vector with the values used to program
the Alpha 1 robot, the total angular displacement vector was flipped and aligned with
the programmed values. First the total angular displacement vector was flipped (mul-
tiplied by -1), then the starting angle value was added to the vector, and finally the first
point of change was shifted to 0ms. This changes the total angular displacement vector
to be in terms of the angle of the knee servo (servo ID9) used to program the alpha 1
robot.

After converting the measured angle data to be in terms of the Alpha 1 ID9 servo,
the accuracy of measurements are judged through the use of graphs, resting angle
(RA) values, and the root-mean-square error (RMSE) and cross-correlation (R) with
the programmed angle.

For the human PT, the motion of the shank is not as perfectly aligned around the y-
axis in figure 3.1 as it is with the Alpha 1 robot. During the pendulum oscillations of the
human shank, there is some side-to-side movement due to the mobility of the hip joint
allowing the upper leg to move and rotate. This side-to-side motion is much smaller
than the oscillations of the shank around the knee joint however, and misalignments
of the WATD on the shank have more effect on the angular measurement, so equation
3.3 was also used when processing human data.

3.4 Movement Activities

3.4.1 Repetitive Shank Oscillation

As the PT was selected as an exercise to focus on in this study, the accuracy of the
WATD when tracking angular oscillations needed to be assessed. A repetitive shank
oscillation exercise was programmed into the Alpha 1 robot for this purpose. During
the repetitive shank oscillation exercise, the Alpha 1 robot was programmed such that
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angle range and number of swings fell within the typical ranges of the PT (given later
in table 3.2). 3 different oscillation frequencies were used. Parameters of the repetitive
shank oscillation exercises can be seen in table 3.1. Note that the oscillation exercise
nomenclature is such that the trial name is derived from the half-period of the shank
swing.

Table 3.1: Parameters of the 3 repetitive shank oscillation exercises. Angles refer to the
programmed angle of the Alpha 1 knee servo (servo ID9).

Trial Name Half period (ms) Extension Angle (°) Flexion Angle (°) Angle Range (°)
200ms Oscillation 200 140 80 60
500ms Oscillation 500 140 80 60
800ms Oscillation 800 140 80 60

During the repetitive shank oscillation trials, motion data was captured by the
WATD as described in section 3.2.2.

3.4.2 Pendulum Test

The PT was administered on human participants and was mimicked by the Alpha 1
robot from data gathered in the literature. An illustration of the PT is shown in figure
3.1. This section describes how the PT activity was designed for the Alpha 1 robot and
how it was administered on human participants.

Alpha 1 Robot Activity Design

To imitate human movement during the PT, the Alpha 1 humanoid robot was pro-
grammed from real human movement data captured from the shank during the PT.
This data is available in the literature, specifically taken from [17]. 4 metrics from re-
sults data of the right leg of the reference (Ref) group and right leg of the spastic diple-
gia (SD) group in [17] were used. Herein, the Ref group metrics have been used to
characterize the movement of a TD person, and the SD group metrics have been used
to characterize the movement of a person with CP. The TD and CP metric descriptions
and values are shown in table 3.2.

The metrics in table 3.2 were used to produce a waveform model for the TD and CP
groups which outputs values that are used to program the Alpha 1 humanoid robot’s
right knee servo (servo ID9). Assuming a RA for servo ID9 of 70° means at rest the
shank is roughly perpendicular to the ground as a human shank would be. From
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Table 3.2: PT metric descriptions and values for TD and CP volunteers. This data is
not my own, but borrowed from [17] to program the Alpha 1 robot.

Metric Description TD CP
EX (°) The first swing excursion. The difference between

the starting angle and the first angle of reversal
swing.

95 55

RI The relaxation index. Calculated as follows:
(starting angle - first angle)/(starting angle –
resting angle). The resting angle (RA) is the angle
measured at the knee joint when the shank has
stopped oscillating.

1.2 0.85

T (s) The duration of oscillations. The time from the start
of the PT until the shank comes to rest.

5.6 2.1

n The number of shank oscillations before coming to
rest.

7 4

the RA, the other angles were calculated using the RI in table 3.2. The model only
provides peaks, troughs and an endpoint, which gives a triangle waveform output. It
is assumed for simplicity that each wave has an equal period and that the peak and
trough amplitudes decrease linearly towards the RA.

Initially, the PT was performed by the Alpha 1 robot to monitor how accurately
the WATD could track the motion. Following the human trials, a direct comparison of
trial variability for Alpha 1 versus real humans was needed. To achieve this, data was
collected for 60 trials each for the TD and CP PT motions, reflecting the total number
of human trial datasets used in the study.

During the Alpha 1 robot’s PT trials, motion data was captured by the WATD as
described in section 3.2.2.

Human Trials

The procedure for the PT administered on human research participants was performed
as described in [17]. Research participants were seated on a desk which was of ade-
quate height to allow for uninhibited swinging of the shank. Participants were in-
structed to recline approximately 20° from the vertical to reduce any possible effects
of hamstring tightness. Each participant sat with their knees far enough away from
the edge of the desk to avoid their shank contacting with the desk at maximum knee
flexion. Figure 3.4 shows a research participant in this position.

Each participant performed 2 sets of 10 PT trials. The first set was the true PT, mea-
suring the participants’ natural response to passive movement. This is referred to as
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the TD category in the results. The participant was instructed to remain relaxed and
refrain from actively controlling any of their leg muscles during this PT. Participants
were asked to repeat a TD PT trial if the tester noticed any active control of the shank
through observation. The second set of PT trials was the CP category, where partici-
pants were asked to mimic the motion of a person with CP during the PT by actively
tensing their quadriceps muscles. Participants were instructed to close their eyes to
prevent them from influencing how their shank oscillated based on visual feedback.
After each of the TD and CP trials, the participant was given a minimum of 30 seconds
rest to ensure their muscles did not become fatigued. Participants were given a chance
to familiarise themselves with these motions before their motion data was recorded.

For the TD PT trials, from the participant’s seated and relaxed position on the edge
of the desk, the tester raised the right shank of the participant to maximum extension.
The WATD was switched to the data tracking mode, and the leg was held in place for
around 1 second to ensure the entire PT motion was captured. The shank was dropped
by the tester and left to passively pendulum until it came to a complete rest. The tester
saved the data captured by the WATD and allowed the participant time to rest before
repeating for a total of 10 trials.

For the CP PT trials, from the participant’s seated and relaxed position on the edge
of the desk, the tester again raised the right shank of the participant to maximum ex-
tension. The WATD was switched to the data tracking mode, and the leg was held
in place for around 1 second to ensure the entire PT motion was captured. The shank
was dropped by the tester and swung with a truncated pendulum motion due to active
muscle control by the participant before coming to a complete rest. The tester saved the
data captured by the WATD and allowed the participant time to rest before repeating
for a total of 10 trials.

During the human PT trials, motion data was captured by the WATD as described
in section 3.2.3. The 4 metrics mentioned in table 3.2 were extracted from the human
data sets and used in the comparison and analysis of the PT results.
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Chapter 4

Results and Discussion

4.1 Device Calibration

The error calculated for each of the still trial orientations and the average error for
each axis is shown in table 4.1. Each axis error remains consistent independent of
the orientation of the device. It is therefore likely that the WATD will always record
gyroscope data with an offset close to these values regardless of WATD orientation
during physical activity when it is still. The error values may deviate when the device
is in motion, but this is harder to test as there are multiple variables.

Table 4.1: The error recorded for each gyroscope axis during the 3 still trials and the
average error amongst the trials.

x-axis Error (°/s) y-axis Error (°/s) z-axis Error (°/s)
x-y plane parallel to earth -0.0880 -0.7560 -1.2402
x-z plane parallel to earth -0.0821 -0.7419 -1.2545
y-z plane parallel to earth -0.0968 -0.7629 -1.2515

Average DC shift error -0.0890 -0.7536 -1.2487

Figure 4.1 shows the recorded raw 3-axis gyroscope data for a single still trial of
the WATD in panels (a), (c), and (e). By subtracting the average error from each axis
recording, these data sets are centred around the 0°/s line and have a new average
value of 0°/s, as is expected when the WATD is not in motion.

The effect of calibrating the raw gyroscope data can be seen in figure 4.1 panels (b),
(d), and (f). As the WATD is not moving during the still trial, no angular displacement
is expected in any axis direction. The calculated angle from the data that has not been
calibrated (full lines in figure 4.1 (b), (d), and (f)) shows a finite angular displacement
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Figure 4.1: 3-axis angular velocity and angle data recorded by the WATD gyroscope
during a still trial with x-y plane parallel to the earth. (a) raw x-axis gyroscope angular
velocity data; (b) x-axis angle measurement with and without calibration of the raw
data; (c) raw y-axis gyroscope angular velocity data; (d) y-axis angle measurement
with and without calibration of the raw data; (e) raw z-axis gyroscope angular velocity
data; (f) z-axis angle measurement with and without calibration of the raw data.
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due to the error, ω0t, in equation 3.2. By calibrating the raw gyroscope data before
integration, this linear shift is effectively compensated for. This can be seen in the cal-
ibrated angle measurements (dashed lines in figure 4.1 (b), (d), and (f)), which remain
very close to 0° for the entire trial.

The effect of calibration on the raw data sets can also be seen in figures 4.2 and 4.3.
These figures are discussed further in their relevant sections (4.3 and 4.4.1). Calibra-
tion of the raw gyroscope data greatly improves the accuracy of the WATD angular
measurements.

4.2 Effect of Case

The required height for the 3D-printed case was overestimated during manufacturing,
meaning the empty space inside the case needed to be filled with padding (bubble
wrap) to secure the WATD in place. The WATD LED had to remain visible to the tester
during trials, so the WATD was positioned at the roof of the case near the slits and
padding was placed below this. This caused the device to be approximately 25-35mm
away from the surface of the robot or human shank during movement trials when the
case was used. This distance between the case and shank has reduced the accuracy
of recorded angle results. The oversized nature of the case may also allow the WATD
to move around inside the case if the padding is not adequately thick, again reducing
accuracy of WATD results. Instances of this occurring are laid out in sections 4.3 and
4.4.1.

The case was necessary in all human trials, as when fixing the WATD to humans
the rubber band in 3.2 (b) exerts a significant amount of force which may have caused
the uncovered WATD components to break off from the board. The effect of the case
on human motion tracking has not been observed for this reason, but it is assumed that
using the case will reduce the accuracy of recorded results as was seen with the Alpha
1 robot.

By reducing the size of the WATD itself and ensuring a secure fit inside the case, the
distance between the WATD and the shank can be minimised and the WATD would not
move around inside the case. Achieving this minimal distance and fixed orientation
inside the case would allow the WATD to track results as accurately as seen in the
”without case” robot results in sections 4.3 and 4.4.1.
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4.3 Repetitive Shank Oscillation

The WATD is able to track the motion pattern of the 3 repetitive shank oscillation
exercises well. This can be noticed in figure 4.2 and is evident from the high cross-
correlation values of the WATD measured angle with the programmed Alpha 1 angle
seen in table 4.2 for all trials (>97.89%). Overall, calibration of the results is seen to im-
prove the accuracy of the WATD, and use of the case when tracking is seen to slightly
decrease the accuracy of recorded repetitive shank oscillation results.

Table 4.2: Root-mean-square error, resting angle measurement, and cross-correlation
for the various repetitive shank oscillation trial data sets as compared with the Alpha
1 servo ID9 programmed angle. Note the resting angle for all trials should be 80°.

Trial Calibration (Y/N) Case (Y/N) RMSE (°) Resting Angle (°) R

200ms oscillation
Y Y 5.1897 86.2406 0.9875

N 4.1120 80.8205 0.9925

N Y 6.0849 88.1170 0.9874
N 3.9885 83.5674 0.9936

500ms oscillation
Y Y 5.2599 85.1226 0.9945

N 0.5260 80.3804 0.9997

N Y 6.8920 88.4801 0.9918
N 3.0084 85.0258 0.9979

800ms oscillation
Y Y 5.0250 85.8292 0.9934

N 0.8191 81.0444 0.9994

N Y 7.2613 90.9075 0.9789
N 3.7359 86.8095 0.9930

A feature noticeable in all trials is the smooth peaks and troughs of the recorded
angle data waveforms seen in figure 4.2. The Alpha 1 is programmed to follow the
sharp-peaked, triangular waveform, but the recorded angle data always shows smooth
peaks and troughs. This may be an inadequacy of the WATD, or the Alpha 1 robot
servomotor may not be able to change directions fast enough to replicate these sharp
peaks.

The Alpha 1 robot has some limitations on how fast its servomotors can move.
This is seen in the 200ms repetitive shank oscillation trials (panels (a) and (b) of figure
4.2). Referring just to the calibrated data recorded without the case, the measured an-
gle waveforms show a reduced amplitude when compared to the programmed angle,
more so than is seen in the 500ms and 800ms trials. This could be an inaccuracy of the
WATD, but it is likely a limitation of the Alpha 1, as a reduced amplitude of this degree
is only recorded in the 200ms trial. Also visible is the small overshoot of the recorded
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Figure 4.2: Angle measurements recorded during the various repetitive shank oscil-
lation trials. (a) 200ms oscillation trial angle measurements without data calibration;
(b) 200ms oscillation trial angle measurements with data calibration; (c) 500ms oscil-
lation trial angle measurements without data calibration; (d) 500ms oscillation trial
angle measurements with data calibration; (e) 800ms oscillation trial angle measure-
ments without data calibration; (f) 800ms oscillation trial angle measurements with
data calibration.
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data just before it reaches the RA. Similarly, this is only seen in the 200ms, so is likely
an error of the Alpha 1 servomotor when moving at this speed.

The calibration performed on the data described in section 3.3.1 improves the accu-
racy of the WATD in the repetitive shank oscillation trials. Visually, this is seen in fig-
ure 4.2 with the closer match of the data to the programmed angle when calibration is
used. It is most visible at the peaks, troughs and especially comparing the differences
in measured RA. In the 500ms and 800ms trials, gyroscope drift causes increasingly
drastic peak amplitude suppression as the trial progresses. Calibration of the raw data
is shown to eliminate this almost completely. Table 4.2 shows calibration always brings
the RA closer to the desired value of 80°, and is seen to reduce the RMSE by an aver-
age value of 2.033° among the trials (except in the 200ms oscillation without case trial
where RMSE was seen to increase by 0.1235°).

In all of the repetitive shank oscillation trials, the case is shown to reduce the accu-
racy of the WATD. This is due to the reasons discussed previously in section 4.2. The
RMSE and RA of the trials listed in table 4.2 are always worse when the case was used
during data collection. Referring to the calibrated 500ms and 800ms trial data in figure
4.2 (d) and (f), the peaks are registered less accurately with the case - a flat line can be
seen instead of a curved sinusoidal peak when the case is used. This is likely due to
the WATD moving around inside the case as the shank abruptly changes direction at
the top of the swing. It is much less noticeable on the bottom of the swing (a smooth
sinusoidal curve is seen), which is probably due to the placement of the case padding
below the WATD, which supported it during this direction change.

4.4 Pendulum Test

4.4.1 Alpha 1 Robot Results

Preliminary Trials

As with the repetitive shank oscillation trials, the WATD is able to track the motion
patterns of the TD and CP programmed PT trials well. This can be noticed in figure
4.3 and is evident from the high cross-correlation values of the WATD measured angle
with the programmed Alpha 1 angle seen in table 4.3 for all trials (>99.43%). As with
the repetitive shank oscillation trials, calibration of the data is seen to improve the ac-
curacy of the WATD, and use of the case when tracking is seen to decrease the accuracy
of recorded PT results.
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Figure 4.3: Angle measurements recorded during the Alpha 1 PT trials. (a) TD trial
without data calibration; (b) TD trial with data calibration; (c) CP trial without data
calibration; (d) CP trial with data calibration.
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Table 4.3: Root-mean-square error, resting angle measurements, and cross-correlation
for the PT trial data as compared with the Alpha 1 servo ID9 programmed angle. Note
the resting angle for PT trials should be 70°.

Trial Calibration (Y/N) Case (Y/N) RMSE (°) Resting Angle (°) R

TD
Y

Y 12.5306 82.3796 0.9966
N 1.5585 69.7084 0.9964

N
Y 14.9731 86.4499 0.9943
N 2.4351 72.5657 0.9956

CP
Y

Y 1.6090 71.9205 0.9980
N 1.1887 69.9592 0.9974

N
Y 3.0328 74.2182 0.9972
N 2.1019 72.9082 0.9966

The calibration performed on the data described in section 3.3.1 is shown improve
the accuracy of the WATD in all PT trials. Visually, this can be noticed in figure 4.3
with the closer match of the data to the programmed angle when calibration is used.
Again, it is most visible at the peaks, troughs and especially comparing the differences
in RA. Table 4.3 shows that calibration of the raw gyroscope data always improves the
measured RA and reduces the RMSE for both the TD and CP PT.

Similarly to the previous section, the case is shown to reduce the accuracy of the
WATD in both PT trials. The RMSE and RA of the trials listed in table 4.3 are always
worse when the case was used during data collection. In figure 4.3 panels (a) and (b),
the effect of the case is more dramatic than in any of the repetitive shank oscillation
results or the CP PT results. This may be because the shank is swinging with a higher
amplitude in the beginning than in any of the other movements. However, without the
case, the motion is recorded quite accurately.

These preliminary results are significant as they indicate the level of accuracy the
WATD is able to achieve in recording angular results of movements in a single plane
such as the PT. With further miniaturisation and development, this inexpensive WATD
could be made even more accurate. Additionally, although the PT modelled from the
literature is a somewhat simplified version of the real motion, these results show that
the Alpha 1 can be programmed to follow a specific movement pattern. This verifies
the ability of the Alpha 1 humanoid robot to act as a model for human movement.
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Trials for Direct Comparison with Human Data

This section looks at the 120 (60 TD, 60 CP) PT trials recorded to match the amount of
human data processed in the study. To copy the human results format and analysis
(section 4.4.2), the data has been broken up into sets of 10 TD and CP trials, which are
labelled as ”participants” 1-6 (p1-p6). In reality, data was all recorded from a single
Alpha 1 humanoid robot. The average value of the 4 PT metrics (described in table 3.2)
across the 10 trials for each of the participants has been extracted. These results are
shown in figures 4.4, 4.5, 4.6 and 4.7 for metrics EX, RI, T, and n respectively.

Figure 4.4: TD and CP EX means from the 10 trials with standard deviation error bars
for the 6 robot participants.

Figure 4.5: TD and CP RI means from the 10 trials with standard deviation error bars
for the 6 robot participants.
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Figure 4.6: TD and CP T means from the 10 trials with standard deviation error bars
for the 6 robot participants.

Figure 4.7: TD and CP n means from the 10 trials with standard deviation error bars
for the 6 robot participants.

The values for the 4 metrics are extremely consistent over all the trials, shown by
having similar means across participants and low standard deviation error bars. The
average extracted metric values across all 60 TD or CP trials are close in value to the
metric values used to develop both of the PT movement models. This is shown in table
4.4, with the measured TD EX value being the only metric which varies significantly
between programmed and measured value. This was also seen in the preliminary
results, referring to figure 4.3 panel (b). Optimization of the case as discussed in 4.2
would improve this result, as is shown by the measured angle when no case was used
during the TD PT preliminary trial.
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Table 4.4: Comparison of the programmed versus average extracted metric values for
the 120 robot PT trials. The average was taken across all the TD or CP robot trials as a
whole.

TD CP
Metric Programmed Measured Programmed Measured
EX (°) 95 84.1812 55 55.2537

RI 1.2 1.1925 0.85 0.8567
T (s) 5.6 5.6805 2.1 2.1415

n 7 7 4 4

Although it was known that recording robot PT trials without the 3D-printed case
measured more accurate results, the case was used in all 120 of these PT trials. This
was to match the human data collection method, where the case was always necessary
as discussed in section 4.2.

4.4.2 Human Results

1 of the 7 participants’ data was discarded. This was due to the participant’s shank
swinging for longer than the tracking window of the WATD. The WATD tracking win-
dow was set to 10 seconds, which was done to optimise the sampling frequency for
the expected duration of the average PT. However, this participant’s shank swung for
more that 10 seconds in most trials, so the end of the PT movement was not captured
by the WATD. The PT test trials were recorded and analysed for the remaining 6 par-
ticipants (5 male, 1 female).

An example of the angle data recorded during a single trial of both the TD and CP
PT is shown in figure 4.8. Graphs such as these were generated for all of the individual
PT trials, and from the total angle vector the 4 metrics were extracted and recorded.
These figures look different from the previously presented Alpha 1 robot figures as the
data is not put in the reference frame of the Alpha 1 knee servo. Instead, 0° represents
maximum knee extension in these graphs.

The average value of the 4 PT metrics (described in table 3.2) across the 10 TD and
CP PT trials for each of the human participants was extracted. These results are shown
in figures 4.9, 4.10, 4.11 and 4.12 for metrics EX, RI, T, and n respectively. Participants
1-6 are labelled as p1-p6.

All participants show a higher average metric value in the TD trials, except for the
RI value of participant 2, where a higher average was obtained in the CP trials. There
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Figure 4.8: Angle measurements recorded during the human PT trials. Both the TD
and CP graphs are a single trial taken from participant 6.
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Figure 4.9: TD and CP EX means across 10 trials with standard deviation error bars
for the 6 human participants.

Figure 4.10: TD and CP RI means across 10 trials with standard deviation error bars
for the 6 human participants.

Figure 4.11: TD and CP T means across 10 trials with standard deviation error bars for
the 6 human participants.
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Figure 4.12: TD and CP n means across 10 trials with standard deviation error bars for
the 6 human participants.

is a lot of variation in average metric values between the participants, except in the TD
RI values, which are approximately 1.6 for 4 of the participants.

It is visible in figures 4.9-4.12 that the participants are generally able to achieve dif-
ferent results in the TD and CP PT when given instructions as laid out in section 3.4.2.
Participant 2 is the only participant which shows similar average metrics between the
two sets of PT trials. The low t-test p-values displayed on the graphs confirm the met-
ric values are consistently different between the TD and CP PT. However, it is difficult
to determine if this difference reflects an accurate representation of the PT performed
on a person with CP.

As well as variation between participants, there is some individual variation be-
tween trials for each participant. This is seen in the standard deviation error bars in
figures 4.9-4.12. Comparing the participants’ individual average TD and CP metric
values, 15 out of 24 show higher standard deviation in their CP trials. This means that
the participants as a whole exhibit somewhat less similarity between CP trials than TD
trials.

The measured average metric values for the 6 participants differ from the metric
values found in the literature (listed in table 3.2). However, the results borrowed from
the literature are from children. In [17], the TD group had an average age of 8 years
and the SD group 10.33 years, whereas the participants in this study had an average
age of 23.86 years (24 years not including the participant whose data was discarded).

A population of 7 is small for this type of study. A population in the order of 10-
100 people would be more significant. A wider age range of participants would also
provide more significant results. The 1 year time frame (with effectively 10 months of
research work) of the Macquarie University Master of Research qualification and the
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ethical approval process made it difficult to have a population of such a significant
size. The participant age range was narrow as participants were recruited from the
Macquarie University student population, which favours recruitment of young adults.
To improve the validity of this study, it is planned to acquire data from a larger popu-
lation with a wider age range in the future.

4.4.3 Justification for Using the Pendulum Test

In clinical application, the PT is used as an objective measurement of spasticity [17].
Development of such measurement methods has been researched thoroughly since the
introduction of ”spasticity management” [32]. These scales are used extensively in
clinic as they do not require complicated equipment and are non-invasive, uncompli-
cated techniques [16, 17]. Other examples of such scales are the MTS, MAS and the
DAROM tests - all of which appeared in the literature review (chapter 2). The various
scales and tests all require a tester to either move or drop a limb to induce passive
motion, perhaps at varying speeds.

The most useful and extensive data in the literature regarding CP movement tracked
with wearables was data from the PT. This is why the PT was chosen as a focus exercise
in this study for programming CP human movement into the Alpha 1 robot. However,
as the clinical scales and tests are quite similar in their fundamentals, the development
of the WATD and Alpha 1 human movement model in this study could easily be trans-
lated to modelling these other scales and tests.

4.5 Humanoid Robots as a Model for Clinical Movement

Humanoid robots have several advantages over using human participants for CP mo-
tion imitation. The movement of robots can be controlled exactly, whereas humans will
always have some error in their movements. One can also compare measured data to
programmed data with robots, which is not applicable for humans. As seen when
comparing the various graphs in sections 4.4.1 and 4.4.2, human participants showed
much more variation than the Alpha 1 robot when performing the PT. This is explicitly
shown for all metrics in figures 4.13-4.16. The Alpha 1 robot can repeat PT trials much
more accurately than the human participants.
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Figure 4.13: A scatter plot of all human and robot participants’ EX standard deviation
across the 10 TD and 10 CP PT trials.

Figure 4.14: A scatter plot of all human and robot participants’ RI standard deviation
across the 10 TD and 10 CP PT trials.

Figure 4.15: A scatter plot of all human and robot participants’ T standard deviation
across the 10 TD and 10 CP PT trials.
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Figure 4.16: A scatter plot of all human and robot participants’ n standard deviation
across the 10 TD and 10 CP PT trials.

It is also easier to acquire data from humanoid robots than it is from humans. Ethi-
cal approvals to allow research with human participants take time to obtain, but these
are not necessary when using robots. Access is also limited when studying a popu-
lation like people with CP, through lengthy ethical approval processes and the small
general population of such people. A large human population is necessary for study
results to be significant, whereas a single robot can be programmed to move with as
many variations as required to simulate a large population sample. It also takes more
time to record data from a human participant than a robot, with equipment setup for
each new person and participant recruiting and briefing. Human error (tester or partic-
ipant) can also be minimised or eliminated from research trials with the use of robots.

In the future, we plan to record our own PT data from people with CP and program
the Alpha 1 robot with this data. However, this was not the scope of the current project,
having an effective research time frame of 10 months during the Macquarie University
Master of Research qualification. As the Alpha 1 robot was programmed using human
PT data from the literature, we did not directly correlate our research participant PT
data with the Alpha 1 PT data. Future work of programming the robot with our own
data will allow us to perform a statistical analysis to find a direct correlation between
the two data sets and improve the accuracy of the Alpha 1 robot’s imitation.

There are drawbacks to using humanoid robots in research. The robot is only a
model, and as such its imitation of human movement will not be identical to real hu-
man movement. Humanoid robots are only useful in specific applications. Humanoid
robots are often also at a smaller scale to real humans, especially in our case where
budget was a limiting factor.



44 Chapter 4. Results and Discussion

4.6 Evaluation of the Wearable Activity Tracking Device

There are commercially available solutions for wireless motion tracking, such as the
various IMUs from Xsens [1] and the Blue Trident IMU from Vicon [2]. These IMU
systems cost upwards of 10-20 times the amount spent on the WATD components.
It was not feasible to purchase a commercial wireless tracking IMU with the Master
of Research budget. Future work by other researchers can focus specifically on com-
paring the results from our WATD device with the commercial IMUs. However, it is
worth mentioning that these commercially available devices are not compatible with
the edge-computing architecture described in [5] and [6], which was specifically the
case with our WATD.
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Conclusions and Future Work

5.1 Conclusions

This study aimed to validate a previously developed custom-built WATD and gauge
the suitability of the Alpha 1 humanoid robot as model for human movement in clinical
CP research. Leveraging off the programmability of the Alpha 1, the WATD was shown
to track angular data from various oscillatory motion patterns accurately and with
low variability. PT data from the literature was used to program the Alpha 1 robot,
allowing it to act as a model for TD and CP human movement. The Alpha 1 was shown
to be an accurate model of the simplified motion, and exhibited much less movement
variation between trials than human research participants.

5.2 Limitations

There are several limitations of the work that has been conducted in this study. Key
limitations are:

• The small research participant population size with a narrow age range.

• The PT motion is predominantly isolated around a single axis, so only a two
dimensional movement.

• The PT modelled by the Alpha 1 humanoid robot is a simplified version of the
real human movement.

• Only the gyroscope data of the WATD has been utilised.

45
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5.3 Future Work

Future work should be done to improve the accuracy of the WATD and to further
develop the Alpha 1 humanoid robot as a model for human movement. The following
items are planned to be implemented to achieve these goals:

• Miniaturisation of the WATD and fitting of the case to allow the device to be
firmly secured as close as possible to the body.

• Increased WATD memory to allow for a longer tracking window or multiple tri-
als to be tracked.

• Adding an audio indication for WATD memory and tracking state to avoid the
need for the tester to see the WATD during trials.

• Further development of the edge-computing feature of the system by including
analytics in the edge-computer.

• Processing of the WATD accelerometer and magnetometer data for movement
trials.

• Analysis of more clinical movements using the Alpha 1 robot, such as other mea-
surement scales or gait.

• Use of the WATD and Alpha 1 to generate training data for a deep-learning neural
network based classifier to classify normal and abnormal motions in CP.

• Increase the human population size sampled in this study.



Abbreviations

9DOF 9 degrees of freedom
API Application programming interface
CP Cerebral palsy
DAROM Dynamic evaluation of range of movement
DROM Range of motion deficit
EX First swing excursion
FA First angle
GMFM Gross Motor Function Measure
I2C Inter-Integrated
IMU Inertial measurement unit
IoT Internet of Things
MAS Modified Ashworth scale
MCU Microcontroller unit
MS Multiple sclerosis
MTS Modified Tardieu scale
n Number of swings
PPV Peak-to-peak angular velocities
R Cross-correlation
RA Resting angle
RI Relaxation index
RMSE Root-mean-square error
ROM Range of motion
SA Starting angle
SD Spastic diplegia
T Duration of oscillations
TD Typically developed
WATD Wearable activity tracking device
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