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Abstract

Machine learning and deep learning techniques have become prevailing in arti-

ficial intelligence. The rise of applications in autonomous vehicles, healthcare,

and finance introduce practical challenges against various attacks towards these

systems. Learning from unbalanced and non-IID (not independently and identically

distributed) data while preserving privacy, federated learning is proposed to train

global models on distributed devices. In federated learning, each device as a client

owns a private training dataset that is invisible to other parties, which protects data

privacy and data security. However, the loose federation of participating devices in

this decentralized approach could bring potential security threats between the com-

munications among these nodes. The state-of-the-art privacy-preserving technique

in the context of federated learning is user-level differential privacy. It substantially

reduces information disclosure about decentralized datasets rather than individual

records. Despite this, such a mechanism is vulnerable to some specific model poi-

soning attacks such as sybil attacks. A malicious adversary could create multiple

fake clients or collude compromised devices in sybil attacks to mount direct model

updates manipulation. Recent works on novel defense against model poisoning

attacks are difficult to detect sybil attacks when differential privacy mechanism is

utilized, as it masks clients’ model updates with perturbation. This thesis is based

on the scope of federated learning settings where user-level differential privacy is

deployed. There are three contributions in this work as follows.

The first contribution of the work is to implement sybil attacks on differential

privacy based federated learning architectures and show the impact of model poi-

soning attacks on model convergence. The attack intensity depends on the number
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of sybil clients and the noise levels of each sybil reflected by the local privacy budget

ε of differential privacy.

The second contribution of the work is to propose a method to detect and defend

sybil attacks for a differential privacy based federated learning setting. The key

insight is that the poisoned model parameters from sybil clients can be identified

by their induced higher loss values of prediction on the global model than those

from honest clients in each iteration round of training. When the central server

aggregates the clients’ models, the model updates obtained from sybil clients may

induce higher cost in the global model than those from honest clients, which affects

the convergence of the global model.

The third contribution of the work is to apply our attacks to two recent Byzantine-

resilient aggregation defense mechanisms, called Krum and Trimmed Mean. Our

evaluation results on the MNIST and CIFAR-10 datasets demonstrate that our

proposed sybil attacks increase the training loss of the global model tremendously

on various state-of-the-art defense mechanisms. We also conduct an empirical study

which shows that our defense approach effectively mitigates the impact of our model

poisoning attacks on model convergence.
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Chapter 1

Introduction

1.1 Federated Learning

Machine learning and deep learning techniques have become prevailing in artificial

intelligence. Along with this rise of application in autonomous vehicles, healthcare,

and finance, data privacy and security are the major concerns during machine

learning training and test procedure. Learning from unbalanced and non-IID (not

independently and identically distributed) data while preserving privacy, federated

learning methods are proposed to train global models on distributed devices [19,

20, 25, 28, 37, 38, 39]. In federated learning, each device as a client has private

data of training that is inaccessible to other clients and the server, which protects

data privacy and data security.

Federated learning can be classified into cross-device and cross-silo settings.

Cross-device federated learning may contain up to 1010 mobile or IoT devices to

solve the optimization problem collaboratively, while in cross-silo setting it typically

involves 2 - 100 distributed organizations or data centres [17]. Such a distribution

scale introduces practical challenges on reliability against various attacks towards

the system.

In federated learning, learning models are shared globally. When training

a global model, each client computes an update to the server by performing a

local iterative algorithm to achieve the learning objective. Stochastic gradient

descent (SGD) algorithm is commonly used towards a local minimum in the practice

1



2 Introduction

of federated learning [1, 29]. The central server is responsible for aggregating

all clients’ updates with an aggregation rule in the current round. Suppose we

have K clients in total. An aggregation rule can be formally expressed by w =

� (w1, w2, · · · , wK). This procedure requires iterative communication rounds during

the entire learning process to train a high-quality model. However, this framework

is vulnerable to model poisoning attacks [2, 5, 13], and it becomes even worse to

some specific model poisoning attacks, called sybil attack [9]. In one study, Fung

et al. [14] demonstrate that a deep learning network model in federated learning

can be easily subverted by using the sybil attack. In such attacks, the clients’ model

updates are tampered with a backdoor into the learned model, even if a small

fraction of the client devices are compromised [3, 5].

1.2 Differential Privacy

Differential privacy is a privacy preservation technique to quantify and limit leaking

sensitive data [10, 11, 12]. It masks user responses with perturbations when

submitting queries to the statistical database, which aims to maximize the utility

of accuracy, meanwhile minimize reveal of individual records. Specifically, the

query results for adjacent datasets are close enough such that no information can be

inferred from their difference. The notion of adjacent datasets is referred to as they

differ by only one record. Formally, a query algorithm� satisfies (ε,δ)-differential

privacy if for all adjacent datasets � and �′:

P(� (�) ∈ S)≤ eεP(� (�′) ∈ S) +δ (1.1)

where ε is the privacy budget, δ is the confidence, and S denotes the output

space of the query. There have several popular differential privacy mechanisms

of perturbation, including Laplace, Gaussian, and exponential mechanism. In this

thesis, we use Laplace mechanism to distort the output of the user.
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In Laplace mechanism, the perturbation to output data is achieved via Laplace

distributed additive noises with probability density function

f (x) =
1

2b
exp
�
−|x −μ|

b

�
(1.2)

where μ is a location parameter and b is a scale parameter. A Laplace mechanism

	 (μ, Δ f
ε ) satisfies (ε,μ)-differential privacy where Δ f = max�,�′ ‖ f (�)− f (�′)‖1 if

� and �′ are adjacent datasets. In this Laplace differential privacy mechanism, for

any ε > 0, the scale of additive noise is increased when ε is reduced, corresponding

to an increased level of privacy protection. In the next section, we introduce the

application of differential privacy in the context of federated learning.

1.3 Differential Privacy based Federated Learning

In this thesis, we name our federated learning setting differential privacy based

federated learning. As a defense technique in cryptography, differential privacy is

utilized in federated learning model to protect data confidentiality between the

communications among server and multiple clients. By adding a certain distribution

of random noise on each client’s update locally or on the aggregated global model,

user-level differential privacy [30] can be achieved when training a global model.

Similar to (1.1), if �′ distinguishes from � by all the records of a single client, the

algorithm� satisfies (ε,δ) - user-level differential privacy. Accordingly, we use

Laplace distributed additive noises with the following probability density function:

f (w) =
1

2b
exp
�
−‖w‖1

b

�
(1.3)

where w represents model parameters shared globally. This Laplace mechanism

	 (0, Δ f
ε ) satisfies (ε, 0) - user-level differential privacy if � and �′ are two user-

adjacent datasets. Moreover, in this setting, any specific user’s data will not influence

the behaviours of trained model no matter it is used for training or not during the
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learning process.

However, there have some weaknesses in these methods. One of which is that

differential privacy requires that the scale of additive noises has to match the scale of

parameters in the model updates to preserve utility. As discussed in the last section,

when the privacy protection level is increased, the scale of additive noises is also

increased, which will reduce the convergence rate of the global model or even lead

to divergence. Therefore, it needs a comparatively larger number of clients or larger

value of privacy budget compared to that in the central setting [17]. We evaluate

the negative impacts of differential privacy on model convergence in Chapter 6.

Inspired by this limitation of user-level differential privacy which leaves more space

for the attack, we introduce our sybil attacks that aim to manipulate the updated

parameters inside local models such that the aggregated model in the server has a

high cost of the prediction indiscriminately for training examples, which makes the

global model converges slowly, or even leads to divergence.

1.4 Challenges

We perform the study on differential privacy based sybil attacks in federated learning

settings. A key challenge for the attacker is that how the compromised model updates

from sybil clients can obscure the aggregation defense rules in the uncompromised

server to deviate the global model from its original prediction. To address the

challenge, we apply different strategies to carefully craft local model updates of

sybil clients according to different aggregation rules by manipulating different noise

levels reflected by the local privacy budget ε of differential privacy. Our goal of attack

is to introduce higher cost in the global model when the server aggregates all the

clients’ updates, including our crafted parameters in each training round compared

with the original one. Our attack intuition is the accumulated high cost during the

learning process may slow down the convergence of the global model significantly.
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We replicate two recent defense techniques, called Krum [7] and Trimmed Mean

[36], as our targeted aggregation rules. Our evaluation results on MNIST [23] and

CIFAR-10 [21] show that our proposed sybil attacks increase the training loss of the

global model tremendously in the presence of these Byzantine-resilient defenses

throughout rounds of training.

Existing defenses against model poisoning attacks replace the mean aggregation

rule in the central server with a Byzantine-resilient algorithm as the robust aggrega-

tor [31, 32]. However, these defenses do not take into account the scenarios where

differential privacy is applied in the federated learning model. Whereas differential

privacy prevents data leakage, federated learning models are still susceptible to

model poisoning attacks, especially to sybil attacks. To address this challenge, we

propose our defense method to defend against our sybil attacks on differential

privacy based federated learning settings. Our proposed defense excludes those

client updates inducing high loss values of prediction on the global model where

the cost is evaluated based on the loss report from each client. Empirical results

show that our proposed defense mechanism effectively mitigates the impacts of our

sybil attacks on the convergence of the global model.

1.5 Contributions

There are three main contributions in this thesis as follows:

• We implement sybil attacks on differential privacy based federated learning

architectures and show their impacts on model convergence. The attack

intensity depends on the number of sybil clients and the noise levels of each

sybil reflected by the local privacy budget ε of differential privacy on the local

model updates of these sybil clients.

• We propose a method to detect and defend our sybil attacks based on the

prediction cost reported from each client. The key insight is that the poisoned
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model parameters from sybil clients can be identified by their induced high

loss values of prediction on the global model. When the server aggregates

the clients’ models, the model updates obtained from sybil clients may induce

higher cost in the global model than those from honest clients, which affects

the convergence of the global model.

• We apply our attacks to two recent aggregation defense mechanisms, called

Krum [7] and Trimmed Mean [36], that are resilient to arbitrary adversarial

behaviour. Our evaluation results on the MNIST and CIFAR-10 datasets

demonstrate that our proposed sybil attacks increase the training loss of the

global model tremendously. We also conduct an empirical study to illustrate

that our proposed defense method effectively defends against our sybil attacks.

1.6 Roadmap of the Thesis

This paper is organized as follows. Chapter 2 discusses the state-of-the-art adversar-

ial attacks and defenses methods on federated learning. In Chapter 3, we introduce

our attacks on how to compromise Krum and Trimmed Mean. We describe our

defense solution in Chapter 5. Chapter 6 analyzes the evaluation results using

two public datasets. We finally conclude our work and close with future research

direction in Chapter 7.



Chapter 2

Literature Review

Federated learning provides a machine learning setting where the optimization

problem can be solved collaboratively, rather than traditional centralized model

training. However, this framework is vulnerable to increasing threats from various

attacks, even with the presence of differential privacy technique in machine learning

tasks. In this chapter, we survey the literature on state-of-the-art attack and defense

mechanisms on federated learning.

• Section 2.1 introduces the attack paradigms and their limitations in federated

learning.

• Section 2.2 presents state-of-the-art defense mechanisms against malicious

attacks that target federated learning.

In this thesis, we focus on the sybil attacks in the context of differential privacy

based federated learning. We discuss about sybil attacks and security issues in

federated learning in Section 2.1. The literature related to differential privacy are

summarised in Section 2.2.2.

2.1 Attacks on Federated Learning

The distributed nature of federated learning architecture introduces increasing

threats and attack surfaces. There have been considerable recent works that have

proposed various attacks towards the federated learning systems. We review these

7



8 Literature Review

Table 2.1: Attacks on Federated Learning
Attack Vector Goals Methods Literature

Model Poisoning

Untargeted
Craft local model updates
directly by optimization
based methods

[4, 13, 17, 22]

Targeted
The corrupted model
updates are learned from
the auxiliary data

[5]

Data Poisoning

Untargeted
Train global model using
crafted training data [6]

Targeted
Label-flipping or add
perturbations to the original
data

[8, 14, 18, 26]

attack modes in terms of the attack vector and goals of the attack. The existing

attack methods are summarised in Table 2.1.

2.1.1 Model Poisoning Attack

The most distinction between federated learning and centralized machine learning

is that federated learning trains a model collaboratively across distributed client

devices. Thus, it opens up new attack surfaces such that the adversary is able to

manipulate the model updates sent back to the server [4]. This class of adversarial

attacks is known as model poisoning attacks. Since the corrupted model updates can

be arbitrary, model poisoning attacks are generally viewed as the most powerful and

worst-case attacks, which is also referred to as Byzantine attacks [22]. Currently,

Byzantine attacks mainly aim to degrade model performance or even make the

global model unusable. Based on the goal of the adversary, these Byzantine attacks

can be further classified as untargeted attacks [17]. For the characteristic of model

poisoning attacks, some recent works have shown that the Byzantine-resilient

defenses are susceptible to model poisoning attacks in federated learning.

In work [13], Fang et al. showed that their proposed attacks could effectively
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degrade the trained model in the Byzantine-robust federated learning setting. Their

method is to craft local model updates from compromised client devices during the

training phase by formulating their attacks as optimization problems. By solving their

well-designed optimization problem, the global model deviates from its intended

direction without attacks in each training iteration of federated learning. The

experiment results show that the error rates of the trained models are increased

considerably under their attacks to several Byzantine-resilient methods. This work

demonstrated how untargeted model poisoning attacks impact the performance

of federated learning methods. However, the limitation is that the attacker has

to know about the aggregation rule in the server entirely. Otherwise, the attacks

would be much less effective.

Another category of model poisoning attack is targeted attacks. The aim is

that the trained model is modified in desired behaviour for the adversary, such

as misclassification on some specific tasks. Bhagoji et al. [5] revealed that the

learned global model could be poisoned to the misclassify targeted objective while

preserving the classification accuracy of the trained model. Moreover, it needs only a

small portion of client devices to be compromised for their targeted model poisoning

attacks. However, it assumes that the server uses the accuracy on validation data to

detect anomalous updates. In the training process, validation data are not accurate

enough compared to training data due to the stochastic gradient descent algorithm,

as we discussed in Section 1.1. Therefore, the effect of this kind of attacks is limited

without the appropriate assumptions.

Our proposed sybil attacks are one of the worst-case model poisoning attacks.

In sybil attacks, an adversary controls some number of clients to send arbitrary

values. Furthermore, while recent Byzantine model poisoning attacks studies focus

on Byzantine-robust federated learning, our attacks consider differential privacy

preserved federated learning.
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2.1.2 Data Poisoning Attack

In the literature, data poisoning attacks are explored comprehensively. One fact is

that it is more natural to tamper client data for an adversary in the compromised

client devices rather than manipulate local model updates in the training process of

federated learning. Another possible reason would be that data poisoning attacks

somehow induce model poisoning attacks eventually. Since local model parameters

are updated by performing an iterative algorithm over the training data for the

optimization problem, any violation of client data must eventually result in some

alteration of model updates being sent to the server. However, it is still uncertain

about the quantity relation between two attack paradigms where additional research

is needed [17].

In data poisoning attacks, the adversary tampers the training dataset of clients

by replacing labels or adding perturbations to the original data [18, 26]. Recent

work by Fung et al. [14] illustrates the vulnerability of federated learning to data

poisoning attacks. They train a model of classification in the federated learning

setting, where the ten-digit MNIST dataset [23] is distributed to ten clients. Each

client is assigned a partition of MNIST dataset with one single digit. Their sybil

attacks simulate several fake clients and collude them to train the classifier on the

poisoned dataset where only contains images of digit ’1’ with the incorrect class

label ’7’. As a result, the learnt model classifies 96.2% images of digit ’1’ as the class

of digit ’7’ incorrectly, meanwhile maintaining the accuracy rate of classification

on other digits at a high level of 88.8%. Such characteristic reflected from their

empirical results is strongly related to targeted attacks. In fact, targeted attacks are

referred to as backdoor attacks [8], in which the performance of the global model

on specific tasks is influenced through manipulating client data. In the work of

targeted attacks [5] we have reviewed in Section 2.1.1 for model poisoning attacks,

the final weights update sent back by the malicious client is actually learned from
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the auxiliary data. Therefore, we can see that although the model poisoning attacks

are more powerful, it is enormously important to investigate data poisoning attacks

for well understanding of the relation between them. Although some past work

has explored untargeted data poisoning that reduces the accuracy of the global

model notably using crafted training data [6], research directions on targeted data

poisoning attacks are dominant.

2.2 Defenses on Federated Learning

Table 2.2 shows the current defense mechanisms against model poisoning and data

poisoning attacks.

Table 2.2: Defenses on Federated Learning
Defense Type Scope Mechanisms Literature

Byzantine-resilient
Model Poisoning

Replace aggregation rule
with a robust aggregator [7, 36]

Data Poisoning
Select clients’ updates by
ranking-based preference [35]

Privacy-preserving
Model Poisoning

Train global model with
differential privacy [33]

Data Poisoning
A subset of clients’
updates are randomized

[15, 27]

2.2.1 Byzantine-resilient Defenses

A common method to aggregate the local models is using the mean aggregation rule

[29]. However, this model averaging is susceptible to adversarial attacks and hardly

provides privacy guarantees. A number of works have explored Byzantine-resilient

defense mechanisms for federated learning. Specifically, recent works propose

various robust aggregation rules against both untargeted and targeted attacks.

As the popular aggregation defense mechanisms, Krum [7] and Trimmed Mean
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[36] are proposed to be robust under untargeted adversarial settings. These methods

replace the mean aggregation rule in the central server with a Byzantine-resilient

algorithm as the robust aggregator. However, these mechanisms work under ap-

propriate assumptions that provably asymptotic on the number of the client. In

our sybil attacks, an adversary is capable of manipulating model updates from a

large number of client devices, which significantly influences the performance of

the global model, even when these defense aggregation rules are present.

In relation to data poisoning attacks, they can be viewed as special cases of

model poisoning attacks. The reason is that compromised training data will induce

anomaly in clients’ model updates. Therefore, Byzantine-resilient defenses against

model poisoning attacks may also work for data poisoning attacks [35].

It is noteworthy that any proposed robust defense has to guarantee the conver-

gence of global model when using gradient descent algorithm on client device.

2.2.2 Robustness of Differential Privacy

Concerning about data privacy, user-level differential privacy [30] is leveraged in

the context of federated learning. A number of works have shown that the use of

differential privacy effectively defends against privacy disclosures on the scope of

targeted model poisoning attacks [33], data poisoning attacks [15, 27], and attacks

on adversarial examples [24]. In our study, we implement the first sybil attacks

as untargeted model poisoning attacks and defenses on federated learning models

with differential privacy applied. In [33], Sun et al. have explored an approach to

eliminate the impacts of targeted attacks using differential privacy, while our sybil

attacks are untargeted attacks that focus on differential privacy based federated

learning.



Chapter 3

Problem Definition and Threat Model

This chapter describes the architecture of our differential privacy based federated

learning settings, followed by characterizing the capabilities and goals of adversaries

in sybil attacks.

In this thesis, we consider a standard federated learning context, in which

there are K clients in total, each owning private training data and the number of c

compromised clients at most from K clients. All the clients collaboratively train a

classifier by solving the optimization problem

min f (w) where f (w) =
K∑

k=1

fk(w) (3.1)

where fk(w) is the objective function for the local dataset on the kth client, and w

denotes the parameters of the global model. Specifically, the procedure of federated

learning in each round is as follows:

Step1. The central server sends the global model parameters w to each partici-

pating client.

Step2. Each participating client computes an update to the server by performing

a local stochastic gradient descent (SGD) algorithm using the local dataset. The

learning objective is defined in (3.1).

Step3. The server aggregates clients’ models by a predetermined aggregation

rule w=� (w1, w2, · · · , wK) where wk denotes the parameters in the local model

updates of each client.

13



14 Problem Definition and Threat Model

We call our federated learning settings differential privacy based federated learn-

ing. In this architecture, the clients’ model updates are masked with a user-level

differential privacy perturbation as described in Section 1.3 in the form:

�wk = wk + �nk (3.2)

where wk is the parameters in the local model updates from the kth client, and �nk

is an additive noise to guarantee differential privacy. Formally, the clients’ model

update queries Q satisfy (ε, 0) - user-level differential privacy if for all client-adjacent

datasets � and �′:
P(Q(�) ∈ S)≤ eεP(Q(�′) ∈ S) (3.3)

where ε is the privacy budget and S denotes the output space of the query.

The noise level of each client is reflected by the local privacy budget ε of differ-

ential privacy on the local model updates. In this thesis, we use Laplace distributed

additive noises with the probability density function (1.3). In accordance with

Theorem 1 in work [34], we calculate the scale parameter in (1.3) b = 2Dmax T/nkε

where Dmax represents the maximum absolute value of the model update parameters

in current communication round, T is the total number of communication rounds,

and nk is the number of examples in training dataset of the kth client. It is proved

that the clients’ model updates being sent back to the server that perturbed by noise

�n with this Laplace mechanism meet (ε, 0) - user-level differential privacy.

Our sybil attack is one of untargeted model poisoning attacks. In this attack

model, an adversary can spoof up to the number of c clients and tamper model

parameters before sending them back to the server during the training process, as

the capability of Byzantine threat model discussed in Section 2.1.1. In this thesis,

we assume that the c compromised clients are from a total of K clients and no more

fake clients in the system for simplicity. Moreover, we assume that the adversary

knows the aggregation rule� used by the server, as it is usually published for the
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Figure 3.1: Differential privacy based federated learning with sybil attacks.

trust and transparency of the system [28]. The structure of the learning process in

differential privacy based federated learning with sybil attacks is shown in Figure

3.1.

We consider the goal of an adversary is to slow down the convergence rates of

the global model or even diverge the model in the training phase. In this thesis, we

assume the loss function of models is smooth and strongly convex. Although the loss

function for high-dimensional networks is usually non-convex, it can still achieve

a local minimum using stochastic gradient descent (SGD) algorithm iteratively on

each client when training a model in federated learning.

Under the assumption above, the lower bound of global convergence rate in

federated learning settings can reach to O( 1
T ), where T denotes the total number

of communication rounds to train a model [16]. As we discussed in Section 1.3,

differential privacy with a small value of ε reduces the convergence rate of the

global model. Given the lower bound of the model convergence rate, we propose

a search algorithm to choose an optimal ε for differential privacy in the system.

Specifically, we select one from the following values as the local privacy budget ε of

clients: 0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 8.0, 10.0. These typical values of ε have been
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evaluated in recent works for the trade-off investigation between privacy and utility

of differential privacy [1, 34, 40]. We first initialize ε = 10.0 for all clients and

calculate the global convergence rate based on the average loss of prediction on the

global model in 50 iterations of training. If it is greater than O( 1
T ), then we choose

the next smaller value of ε from candidates and repeat this process until the global

convergence rate is less than O( 1
T ). This process determines the optimal value of

ε for honest clients, which guarantees differential privacy, meanwhile preserves

the convergence rates of the federated learning model. To solve ε value on sybil

clients, we will introduce our attack strategies according to different aggregation

rules, respectively, in the next chapter.



Chapter 4

Our Attack

In the user-level differentially privacy-preserving federated learning setting, for any

ε > 0, the scale of additive noise over the client updates is increased when ε is

reduced. We leverage this characteristic to introduce a larger variance on model

updates from sybil clients using a smaller value of ε relative to it on honest clients,

which will induce higher loss of prediction on the global model in each iteration

round of training.

In this chapter, we introduce our sybil attack strategies for three aggregation rules

in the central server of federated learning, including one widely used aggregator

and two state-of-the-art defensive mechanisms.

4.1 Our Attack to FedAvg

One commonly used aggregation rule in federated learning is FederatedAveraging

(FedAvg) [29]. In FedAvg algorithm, the global model in each communication round

of training is the average of all clients’ model parameters.

wt+1 =
1
K

K∑
k=1

w(k)t (4.1)

where w(k)t represents the local parameters from the kth client in the current round

t, and wt+1 is the aggregated global model for next training round. The user-level

17
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differential privacy on each client’s model update is applied by:

�w(k)t = w(k)t + �n(k)t (4.2)

where �n(k)t is Laplace additive noise ∼ 	 (0, Δ f
ε ) with the optimal ε we choose

using our search algorithm. Based on this optimal ε, the differential privacy can be

guaranteed while preserving the convergence rate of global model above the lower

bound. From (4.1), it is easy to get the aggregation with differential privacy:

�wt+1 =
1
K

�
K∑

k=1

w(k)t +
K∑

k=1

�n(k)t

�
(4.3)

As discussed in Section 2.2.1, FedAvg is vulnerable to adversarial attacks. We can

increase additive noise �n(k)t in (4.3) from sybil clients to achieve a large variance on

�wt+1 by reducing the local privacy budget ε on sybil clients.

We propose two strategies to attack FedAvg. One obvious method is to use any

εs on sybil clients for 0< εs < εh where εh is the optimal value we choose for honest

clients using our search algorithm in Chapter 3. In this thesis, for simplicity, we

assume that all sybil attackers use the same εs for attacks, and all honest clients

use the same εh for differential privacy. The smaller value of εs corresponds to

the stronger attack intensity, easier to be detected, however. To choose the value

of εs from candidates, we evaluate this attack method using different εs and the

different number of sybil attackers in Section 6.2. The other more stealthy method

is using synchronous additive noises on these collusive sybil clients. In this method,

the noises added to the model updates of sybil clients are from either the positive

or negative part of Laplace distribution in phase. According to (4.3), even with a

small magnitude of additive noises, the attack intensity will be amplified by the sum

operation of FedAvg when the server aggregates all the clients’ model updates. We

evaluate two methods in our experiment, respectively.
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4.2 Our Attack to Krum

Recent work [7] proposed Krum to increase the robustness of the aggregation rule

against Byzantine attacks. The basic idea is that it selects one of the model updates

from all the clients as the global model instead of using the mean of them. The

selection criterion is based on the similarity concerning Euclidean distance between

two clients’ model updates. Specifically, suppose we have K clients in total and c

sybil clients among them, it first calculates the Euclidean distance between each

client’s model update. Then for each model update, it computes the squared sum

of the smallest K − c − 2 Euclidean distances. Finally, the Krum algorithm selects

the model update with the minimum squared sum as the global model. It has been

proved that the global model can converge to a local minimum under Byzantine

attacks when c < K−2
2 by using Krum. This literature also proposed Multi-Krum

algorithm as a variant version of Krum to speed up the convergence when training

a global model. In Multi-Krum, it selects m clients’ model updates with the smallest

squared sum instead of one in Krum, then uses the mean of selected model updates

as the global model. We can see that when m = 1, Multi-Krum is same as Krum,

and when m= K , Multi-Krum is the FedAvg aggregation rule.

As Krum selects one model update from K clients as the global model for the

next communication round, our idea is that this model is from one of c sybil clients.

The goal is this selected model deviates the global model from its intended converge

direction before attacks. The key challenge of the attack is that each crafted local

model with added random noises will induce large Euclidean distance to the models

from honest clients. As a result, Krum can easily exclude our crafted local models in

such aggregation rule. To address this challenge, we let model updates from sybil

clients maintaining the same to achieve a zero Euclidean distance between each of

them. Then we carefully adjust εs in these sybil clients such that their Euclidean

distances to honest models are comparable with those among honest clients. This
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collusion of sybil clients ensures our crafted model update to be selected by Krum.

In implementing our attack, we evaluate both Krum and Multi-Krum on different

training models, respectively, to maximize the attack impacts in experiments.

4.3 Our Attack to Trimmed Mean

Another aggregation rule, Trimmed Mean [36], considers element-wise algorithm

in the model updates. Similar to Krum, Trimmed Mean requires an explicit number

of compromised clients. As we assumed those c sybil clients as mentioned above,

it removes the largest and smallest c elements in model parameters among all

clients’ updates. After that, it uses the average of the remaining elements as the

corresponding parameter in the global model. In Trimmed Mean, the variance of

model parameters in clients’ update is constrained to a benign magnitude, which

mitigates the impacts of Byzantine attacks. The authors also proved that the global

model converges when c < K
2 and the statistical error rates achieves O( c

K
�

n +
1�
Kn
)

for strongly convex loss functions, where n is the number of examples in training

dataset of each client. We notice that when c = 0, i.e. there is no attack, the

Trimmed Mean algorithm is equivalent to FedAvg.

To slow down the convergence of the global model in our attack, we craft c

compromised local models based on the intended gradient of each element in

current training round. Specifically, when one parameter in global model intends to

increase upon the previous iteration if there is no attack, we add negative random

noise with Laplace distribution onto this element of the corresponding location

in each compromised client, such that this parameter with additive noise from

each compromised client is smaller than the majority of the corresponding model

parameter from the honest clients. As a result, the mean of the remaining K − 2c

elements according to the Trimmed Mean algorithm is tending to decrease upon

the previous iteration. Otherwise, if one parameter in the global model intends to
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decrease upon the previous iteration, we add positive random noises with Laplace

distribution on each compromised client in the same way. In our experiments, we

evaluate the values of εs to nominate the most effective attacks.
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Chapter 5

Our Defense

We design a method to detect and defend our sybil attacks on differential privacy

based federated learning setting. Compared with state-of-the-art defense mecha-

nisms such as Krum and Trimmed Mean, our proposed algorithm does not require

the exact quantity of compromised clients. The experiment results show that our

defense method effectively mitigates the impacts of untargeted model poisoning

attack on model convergence.

The key insight is that the poisoned model updates from sybil clients can be

identified by their induced high loss of prediction on the global model. Technically,

the cost of a network is defined as a function fi(w) = �(xi, yi; w) which takes model

parameters w as its input and maps the loss of output on examples (xi, yi) where

xi is input and yi is label. In our federated learning settings, sybil clients will

contribute model updates that appear larger loss values than those from honest

clients to affect the convergence of the global model.

Our approach keeps monitoring the convergence rate of the global model

throughout all training rounds on the server-side. As we discussed in Chapter

3, the optimal convergence rate can reach to O( 1
T ) for a smooth and strongly convex

loss function where T denotes the number of communication rounds. This algo-

rithm evaluates the convergence rate from round 2 by comparing the model loss

decrease rate to a pre-determined threshold to detect sybil attacks. This threshold

reflects defense intensity. For most of machine learning or deep learning models,

23
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the convergence rate is usually between O( 1�
T
) to O( 1

T ) [16]. In this thesis, we set

the threshold to 0.8( 1
t−1 − 1

t ) or 0.8( 1�
t−1
− 1�

t ) depending on the loss function in

the global model. Note that a ratio of 0.8 is used to tolerate non-malicious failures

from unreliable clients.

To locate sybil attackers from participating clients, we use binary search in the

vector of client devices. For each half of client devices, the central server sends

loss report request to a random fraction C of K clients with model parameters w

averaged from model updates in the corresponding half of clients. After that, the

loss values reported from selected clients lk are averaged in the server. We keep

searching sybil attackers in the half of client devices vector with larger mean of

loss until three clients or 10% of total K clients remaining. Finally, we aggregate

all clients’ model parameters, excluding these remaining client updates after the

binary search has finished for the next global training round. Although there could

have some honest client updates sacrificed for a few rounds of communication, our

defense does not influence the convergence of the global model. The details of our

defense method are introduced in Algorithm 1.

In Algorithm 1, our proposed defense method keeps monitoring the convergence

rate of the global model from iteration round 2 until the end of the training period,

by comparing the rate to a pre-determined threshold of defense intensity. When

this model loss decrease rate drops below the threshold in a certain round t, our

method detects sybil attacks and launches the defense procedure. The binary search

algorithm is used to locate sybil model updates among all the participating clients.

The invariant in binary search is the key insight of our proposed defense method,

which is that the average loss of clients containing sybil attackers is larger than that

of the other half. Specifically, we split the model updates from all the clients and

average the local model parameters of each half, w′t and w′′t respectively. Then the

server sends both global model parameters w′t and w′′t to randomly selected set of

clients St for the request of loss report. Each client k ∈ St completes the training
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Algorithm 1 Detection and defense
Require: Average training loss l1 in round 1
Server executes:

for round t = 2,3, ... do
if (Δlt)/l1 < threshold of defense intensity then
// The binary search
// The invariant: the average loss of clients containing sybil attackers is larger
than that of the other half.
i, h= 1, K
while h− i >max(K/10,2) do

m= (i + h)/2�
w′t =

1
m

∑m
k=1 w(k)t

w′′t =
1

K−m

∑K
k=m+1 w(k)t

// Each client reports loss with model parameters w′t and w′′t
St = random set of max(C · K , 1) clients
for each client k ∈ St do

l(k)′t = ClientCost(k, w′t)
l(k)′′t = ClientCost(k, w′′t )

end for
l ′t =

1
num(St )

∑num(St )
k=1 l(k)′t

l ′′t =
1

num(St )

∑num(St )
k=1 l(k)′′t

if l ′t < l ′′t then
i = m+ 1

else
h= m

end if
end while
Exclude client updates ranging from w(i)t to w(h)t , remaining K ′ clients

end if
wt+1 =

1
K ′
∑K ′

k=1 w(k)t

end for

ClientCost(k, w):
batches← training data split into batches of size B
for batch b in batches do

lb = �(w; b)
end for
l = 1

num(batches)

∑num(batches)
b=1 lb

return l to server



26 Our Defense

task based on both global model parameters w′t and w′′t and returns loss value l(k)′t

and l(k)′′t to the server respectively. The client uses the minibatches of size B on SGD

algorithm in local. After all the clients in St report loss values l(k)′t and l(k)′′t , the

server calculates the mean of these loss values l ′t and l ′′t for each half client vector

correspondingly. We keep searching sybil clients in the half of vector with larger

loss value by comparing l ′t and l ′′t . We repeat this process until there are 10% of

total K clients or 3 clients left in the vector. Then we exclude these clients’ model

updates and average the remaining model updates as the global model wt+1 for the

next training round. This concludes our proposed defense mechanism against sybil

attacks for monitoring and detection implementation.



Chapter 6

Evaluation

6.1 Experiment Setup

In this thesis, our proposed attack and defense approaches are evaluated by CNN

and MLP models on two datasets MNIST [23] and CIFAR-10 [21] respectively. The

MNIST data are partitioned by non-IID, and CIFAR-10 data are IID. We implement a

federated learning prototype of PyTorch based on [29]. The computer environment

is Intel R© CoreTM i7-4770 CPU @ 3.40GHz processor, 16.0GB RAM and Windows

10 64-bit operating system.

The parameters for our differential privacy based federated learning settings

by default are summarised in Table 6.1. The sybil attackers are randomly selected

from 100 clients in each communication round. All additive noises are Laplace

distributed with a corresponding privacy budget.

Table 6.1: Federated Learning Settings
Parameter Description Value

K Number of clients 100
C Fraction of clients 0.1
c Number of compromised clients 20
T Number of communication rounds 50
B Local batch size 10
E Number of local epochs 5
η Learning rate 0.01
εh Privacy budget of honest clients 8.0
εs Privacy budget of sybil clients 0.3
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To compare with our proposed attack methods, we implement Gaussian attack

[13] as a benchmark. This attack injects random noises with Gaussian distribution

into the local model updates from sybil clients. In our experiments, we set the mean

of the distribution to 0 and its standard deviation to 0.3 for evaluation.

As shown in Table 6.1, we perform 50 rounds of training and 5 local epochs on

each client in our experiments. The learning rates were tuned between 0.01 to 0.05

for the best performance.

6.2 Evaluation on Model Convergence

In this section, we evaluate the model convergence using different parameter settings

in our differential privacy based federated learning architecture.

6.2.1 Impact of Differential Privacy

In our federated learning framework, all clients’ model updates are preserved

with user-level differential privacy. However, this method has negative impacts on

model convergence, as we discussed in Section 1.3. Figure 6.1 shows the model

convergence concerning the privacy budget on the MNIST dataset throughout

50 communication rounds. The performance of model convergence is similar

when ε ≥ 1. The convergence rate starts to decrease when ε is reduced to 0.5.

Furthermore, the global model diverges substantially when ε= 0.3.

We notice that there is a significant difference between ε= 0.3 and ε= 0.5 in

Figure 6.1. When ε = 0.5, the training loss decreases throughout the communication

rounds of training, which is close to the other training curves with larger values of ε.

It shows that the scale of additive noises are comparable to the scale of parameters in

the model updates of local clients. However, when we reduce ε to 0.3, the training

loss stops decreasing in round 10, and starts to increase dramatically in the rest

of training rounds. That means the scale of additive noises are too large, which
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Figure 6.1: Training loss for different privacy budgets on MNIST.

significantly affects the aggregation of model parameters in the server. The huge

gap appears when the value of ε is reduces by just 0.2. This reveals the issue on the

robustness of differential privacy: when the privacy protection level is appropriate

to the global model, even a little increase of protection level might affect the model

convergence significantly.

We also evaluate these impacts on the CIFAR-10 dataset using MLP classifier,

as shown in Figure 6.2. In both scenarios, it is evident that when we reduce the

value of privacy budget ε on the clients, the convergence rate of the global model is

decreased or the model even stops converging. Therefore, we need an appropriate

value of ε for differential privacy while guaranteeing the convergence. In our

experiment for evaluation on the attack, we set εh = 8.0 for all honest clients.
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Figure 6.2: Training loss for different privacy budgets on CIFAR-10.

6.2.2 Impact of Compromised Clients Quantity

Intuitively, more compromised clients have more impacts on model convergence.

We run the experiment with different fractions of 100 clients on the MNIST and

CIFAR-10 datasets, respectively. As shown in Figure 6.3, the model convergence

is getting slow when the ratio of compromised clients increases. However, from

both Figure 6.3 and Figure 6.4, the impact of compromised clients quantity are

not as significant as that concerning privacy budget. Although the percentage

of compromised clients can be further increased, it is not practical in real-world

federated learning settings.
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Figure 6.3: Model convergence with respect to compromised clients ratio on MNIST.

Figure 6.4: Model convergence with respect to compromised clients ratio on CIFAR-10.
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6.3 Evaluation on Our Attacks

The empirical results for our attacks are shown in Table 6.2 and Table 6.3. The error

rates after our proposed attacks are significantly higher than those after Gaussian

attacks on both CNN and MLP models. In particular, when we use our proposed

method to attack Trimmed Mean with CNN model as the classifier, the error rate

achieves 85%, while Gaussian attack only results in an error rate of 5%. We also

notice that the FedAvg aggregator hardly defends against adversarial attacks, which

needs to be replaced with a robust aggregation rule.

Table 6.2: Error Rates on CNN Model After Attacks
No Attack Gaussian Attack Proposed Attack

FedAvg 0.03 0.24 0.90
Krum 0.03 0.03 0.14

Trimmed Mean 0.03 0.05 0.85

Table 6.3: Error Rates on MLP Model After Attacks
No Attack Gaussian Attack Proposed Attack

FedAvg 0.59 0.73 0.91
Krum 0.59 0.61 0.63

Trimmed Mean 0.59 0.59 0.65

We also explore the model convergence under these attacks for three aggregation

rules respectively. In Figure 6.5 and Figure 6.6, it can be seen that our proposed

attacks effectively slow down the model convergence when Krum is the aggregation

rule in the server, and even lead the model to divergence in the presence of FedAvg

and Trimmed Mean.

6.4 Evaluation on Our Defenses

We evaluate our proposed defense algorithm on MNIST and CIFAR-10 datasets using

CNN and MLP models respectively. We use the error rate as test metrics for the

evaluation of our defense, which is defined in (6.1).
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(a) FedAvg

(b) Krum

(c) Trimmed Mean

Figure 6.5: Model convergence for different attacks on CNN model.



34 Evaluation

(a) FedAvg

(b) Krum

(c) Trimmed Mean

Figure 6.6: Model convergence for different attacks on MLP model.
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Error Rate = 1− Test ing Accurac y (6.1)

As shown in Table 6.4 and Table 6.5, our defense is effective at optimizing the

training loss for all scenarios. For example, when defending our proposed attack

on CNN model, the error rate remains at 3%, which is same as it when there is no

attack. However, Krum and Trimmed Mean are not effective to defend our proposed

attack. The error rates increase to 14% and 85% respectively. According to (6.1), a

small error rate reflects high testing accuracy, which means that the training loss

achieves to a local minimum after 50 rounds of training. This explains why our

proposed defense method works, which eliminates the impacts of our proposed

attack on both CNN and MLP models.

Table 6.4: Error Rates on CNN Model After Attacks for Defense Results
No Attack Gaussian Attack Proposed Attack

Krum 0.03 0.03 0.14
Trimmed Mean 0.03 0.05 0.85

Proposed Defense 0.03 0.03 0.03

Table 6.5: Error Rates on MLP Model After Attacks for Defense Results
No Attack Gaussian Attack Proposed Attack

Krum 0.59 0.61 0.63
Trimmed Mean 0.59 0.59 0.65

Proposed Defense 0.59 0.59 0.59
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Chapter 7

Conclusion and Future Work

This thesis comprehensively analyzes diverse attacks and defenses on federated

learning. We first present preliminary knowledge of federated learning and differ-

ential privacy. The application of differential privacy in the context of federated

learning is user-level differentially private. Our work is to evaluate the vulnerabili-

ties of differential privacy based federated learning and explore possible defense

mechanism. For these aims of research, we have made three major contributions as

follows.

1. Sybil Attack Implementation.

We simulate a federated learning framework and implement user-level dif-

ferential privacy in the system, namely differential privacy based federated

learning. In this framework, we perform sybil attacks with different settings

of attack intensity and privacy protection level.

2. Detection and Defense against Sybil Attacks.

Our proposed defense mechanism does not consider the explicit number of

compromised clients. Without this assumption, it is more practical to defend

against adversarial attacks in industrial applications.

3. Thorough Evaluation of Comparison with State-of-the-art Methods.

We conduct experimental evaluation to demonstrate that our proposed sybil

attacks evidently spoof recent Byzantine-resilient aggregators. Furthermore,

the experiment results show that our proposed defense method outperforms

37
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these aggregation defense mechanisms in differential privacy based federated

learning settings.

Our work raises the interests in the research direction of differential privacy

based federated learning. We also explore the attacks and defenses mechanisms

in relation to untargeted model poisoning attacks. In future research, targeted

model poisoning attacks that are strongly related to data poisoning attacks will be

investigated in the real-world application scenarios such as Internet of Vehicles.
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