
DEEP LEARNING FOR

MAGNETOENCEPHALOGRAPHY

By

Tim Chard
BSc Macquarie University

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY

FOR THE DEGREE OF

MASTER OF RESEARCH

DEPARTMENT OF COMPUTING

APRIL 2021

mailto:timothy.chard@hdr.mq.edu.au
http://www.mq.edu.au/

ii

c© Tim Chard, 2021.

Typeset in LATEX 2ε.

mailto:timothy.chard@hdr.mq.edu.au

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To
the best of my knowledge and belief, the thesis contains no material previously published
or written by another person except where due reference is made in the thesis itself.

(Signed) Date:
Tim Chard

iii

mailto:timothy.chard@hdr.mq.edu.au

Abstract

Deep learning has been used in a wide range of applications, but it has only very recently
been applied to Magnetoencephalography which is used to understand a variety of cog-
nitive processes; for instance it can be used to understand how we process language or
identify cognitive decline such as dementia. Work published in 2019 showed that it was
possible to apply deep learning to categorise induced responses to stimuli across subjects.
While trailblazing in its application of deep learning, it used relatively simple neural
network (NN) models compared to other domains such as image and natural language
processing.

In these other domains, there is a long history in developing complex NN models
that combine spatial and temporal information in a range of ways. This thesis proposes
more complex NN models that focus on modeling temporal relationships in the data, and
applies them to the challenges of MEG data such as vulnerability to noise. In addition, it
explores other insights from image processing to this domain, such as the unexpectedly
high importance of approaches to data normalization. It applies these techniques to
an extended range of MEG-based tasks, and finds that our new NN models outperform
existing work on temporally-oriented tasks.

iv

Contents

Statement of Originality iii

Abstract iv

1 Introduction 1

2 Background 8
2.1 Machine Learning . 8

2.1.1 Deep Learning Architectures . 9
2.1.2 Training . 11

2.2 MEG . 11
2.2.1 Preprocessing and feature engineering 12
2.2.2 Applications . 13
2.2.3 Summary . 14

3 Foundation 15
3.1 Method . 15

3.1.1 Datasets and Tasks . 15
3.1.2 Training and Evaluation . 17

3.2 Results . 17
3.3 Summary . 18

4 New Models 20
4.1 Models . 20
4.2 Experimental Setup . 23

4.2.1 Datasets and Tasks . 23
4.2.2 Training and Evaluation . 25
4.2.3 Baselines . 25

4.3 Results . 26
4.4 Summary . 30

5 Model Preprocessing 32
5.1 Introduction . 32
5.2 TimeAutoencoder . 32

5.2.1 Experimental Setup . 34
5.2.2 Results . 34

v

vi CONTENTS

5.3 The Role of Normalization . 35
5.3.1 Experimental Setup . 35
5.3.2 Results . 37

5.4 Summary . 37

6 Conclusion 39

A Appendix 41

References 43

1
Introduction

Deep learning has achieved some truly amazing feats in recent years across a range of
applications, from playing Go and near-autonomous self-driving cars to natural language
question answering and algorithmic trading algorithms. Deep learning is a sub-field of
machine learning that uses highly non-linear multi-layered networks to learn increasingly
complex relationships with sufficiently high confidence that they can be employed in
safety-critical applications.

One domain that was an early adopter of deep learning, and that has produced many
architectures that are applicable in other domains, is image processing. One type of
neural network that arose in image processing and that is now used more broadly is the
Convolutional Neural Network (CNN) [1, 2], whose architecture was inspired by the
human vision system [3]. CNNs are multi-layer neural networks where each layer is well
suited to learning spatial relationships of the previous layers. This leads to deeper layers
gradually learning more complicated patterns in the data. For instance, in a model that
recognises digits, the first layers may learn to isolate simple colour gradients, middle
layers combine these gradients to form simple shapes and later layers would combine
these shapes to identify an individual number or letter. This type of network has been
applied to a variety of different datasets, ranging in complexity from identifying the digits
zero through nine (such as in MNIST [4]) to much large classification tasks with hundreds
of different everyday objects (such as in CIFAR-10/100 [5] and ImageNet [6]). As the
datasets became more complex, architecture developed correspondingly, starting with
LeNet 5 [7] to more complex architectures such as VGGNet [8] and ResNet [9] which
both perform well on more difficult tasks.

In a new domain and for a new task, initial adoption is largely driven by ease with
which models can be adapted from existing domains. As an example from the medical
domain that has seen easy adaptation from existing image processing models, medical
imaging such as x-rays (see Figure 1.1) [10–13] are a natural extension of the CNNs that
are used in the computer vision domain. When the hierarchical structure embodied in a

1

2 INTRODUCTION

(a) COVID-19 infection. (b) non-COVID-19 infection.

Figure 1.1: X-rays of respiratory infections. From Wang et al. [10]

Figure 1.2: COVID-net architecture. From Wang et al. [10]

CNN is present in a domain, models can be adapted and built very quickly,such as the
models that have been developed to identify COVID-19, such as the convolution-based
COVID-net [10], which exploits these similarities and proposes an architecture using PEPX
modules (see Figure 1.2) that build on architectures from computer vision. On the other
hand, transferring to a very different domain can require very different architectures and
require overcoming substantial challenges. For instance, in natural language processing,
GPT-3 [14] has not only been able to generate large-high-quality paragraphs from writing
prompts but has even been able to answer general knowledge questions correctly despite
never being trained on these tasks. However, these achievements did not come easily, and
an entirely new neural network architecture was developed. The successful adoption of
deep learning in a domain depends on many factors, but there are two critical components:
architectures and data.

Magnetoencephalography (MEG) is a brain imaging technique that uses magnetic
fields generated in the brain to detect brain activity at a high temporal resolution [15]
and there are a few characteristics that are not shared with existing domains which makes
adaptation more difficult. One key difference compared to other domains is that while the
data is dense along the temporal dimension (often sampled at around 1KHz), it is sparse
spatially where the data is only sampled at a small number of locations around the head.
Existing deep learning architectures from image processing, the domain most focussed on
spatial structure, expect that adjacent values in the data are a result of adjacent values

3

in the source; this assumption is partially violated for MEG data where it is only valid in
individual channels. This would be the equivalent to arbitrarily changing the order of the
rows in an image, making the adaptation of existing architectures not straightforward.

Until recently, conventional machine learning approaches have been the most common
way to analyse MEG data. Many of these depend on features extraction steps such
Independent Component Analysis (ICA), Common Spatial Patterns (CSP) [16], FBCSP
[17] and xDAWN [18]; and then employing a conventional classification technique such as
Linear Discriminant Analysis (LDA) [19, 20], Support Vector Machines (SVM) [19, 21–23]
and Hidden Markov Models (HMM) [24]. However, in 2019 Zubarev et al proposed two
deep learning architectures for MEG data [21], LF-CNN and VAR-CNN (see Figure 1.3),
which were motivated by the theoretical models of the processes that produce the magnetic
fields in the brain, and to allow them to visualise how these networks determine their
prediction. They evaluated the proposed models on three different tasks in the context of
real-time brain-computer interfaces. Two of these tasks were related to classifying the
type of stimulus that was presented to the subject (for example, distinguishing auditory
from visual stimuli), with the third being a motor imagery task where the subject was
to imagine making a physical movement. They found that their models beat both the
conventional machine learning models as well a deep learning model from the computer
vision domain. In this thesis, we use Zubarev et al’s work as a starting point for exploring
the application of deep learning to MEG analysis, examining it more deeply, and extending
it in various ways.

Both of the models of Zubarev et al have two main components, a spatial de-mixing
layer followed by a single temporal convolution layer. The spatial de-mixing layer applies
a set of spatial filters to the raw input which separates spatial patterns into higher-level
features. The next layer then identifies rudimentary temporal patterns in these spatial
features using a single one-dimensional convolution. Despite the relative simplicity, they
found that their models outperformed both the vector machines of traditional machine
learning, as well as both domain-specific and general computer vision neural network
architectures. In addition, perhaps surprisingly, they found that the much more expres-
sive VGGNet architecture [8], a pioneering architecture from the computer vision field,
performed very poorly on most datasets. However, only one of the datasets, Cam-CAN,
is a large one, and it is well-known that deep learning approaches need much larger
amounts of high-quality data than conventional machine learning; it was on this dataset
that VGGNet performed competitively. Furthermore, the task on the Cam-CAN dataset
was an easy one and does not require sophisticated models to perform well, with all
approaches obtaining well over 90% accuracy, and not allowing a true determination to
be made about the superiority of different models. Given this, we look at three aspects of
applying deep learning to MEG analysis, following from Zubarev et al.

Investigation of Models on New Datasets As noted, deep learning requires very large
amounts of high-quality data; in the past, the creation of datasets such as ImageNet [6]
have been pivotal for their domains. The Cam-CAN dataset, as currently released, only
includes data for a single task where subjects were either exposed to either a visual or
auditory stimulus. As there is such a small difference between the best and worst models,
it would be useful to apply these architectures to a more difficult task. Recently, another

4 INTRODUCTION

Figure 1.3: LF-CNN and VAR-CNN architecture. From Zubarev et al. [21]

large dataset has been released, the Mother Of Unification Studies (MOUS) [25] in which
subjects are presented a series of words either visually or via audio. The words could form
a sentence which is easy to process because of its syntactic structure, a sentence which is
hard to process, or an arbitrary list of words. This leads to a variety of classification tasks
with a variety of difficulties. For instance, can we distinguish audio from visual stimuli?
Can we distinguish stimuli corresponding to syntactically valid sentences versus a random
ordering of those words? Can we distinguish syntactically more complex sentences from
syntactically simpler ones? We can perform the same task that is used on Cam-CAN, but
the other classification tasks should prove to be much more challenging and leads us to
ask: If we apply the same techniques to this new data, will we see similar results?

In both Cam-CAN and MOUS, the classification task is derived from a stimulus that
the subject is exposed to. However, MEG has other applications, such as the diagnosis of
cognitive impairment. In these applications, there is no stimulus and instead, the subject
is recorded in a resting state. This is the case for the Dementia screening challenge dataset
released as part of the BioMag 2021 Data Analysis Competitions.1 In this dataset, the
goal is to distinguish dementia and mild cognitive impairment from the healthy control
subjects, which presents a challenge because it is a between-subject experimental design.
While in the Cam-CAN dataset, each participant is exposed to both forms of stimuli (a
within-subject design), in this dataset we are looking to identify something about the
subjects themselves. This means that the models need to extrapolate past the inter-subject
differences to perform well in this task.

Research Question RQ1 Our research question here is: Does the superiority
of Zubarev et al’s proposed deep learning architectures, LF-CNN and VAR-CNN,
hold for these new large datasets and more challenging tasks?

1https://www.biomag2020.org/awards/data-analysis-competitions/

https://www.biomag2020.org/awards/data-analysis-competitions/

5

Development of New Models We noted above that the Zubarev et al models were
relatively simple compared to some of the architectures in computer vision. For instance,
comparing the complexity of the computer vision architecture (Figure 1.2) to LF-CNN and
VAR-CNN (Figure 1.3) we can see that a single COVID-net PEPX module (see Figure 1.2)
is made up of more layers than the entirety of the LF-CNN architecture.

As a result, these models are limited in the type of interactions that can be expressed
and most focus heavily on spatial relationships in the data. However, given that the signal
can only be recorded at a discrete number of locations around the head, it generates
spatially sparse data. This means that it is difficult to develop a model that is able to learn
a hierarchy of spatial features of the kind that are learnt by state-of-the-art computer
vision architectures. This is because, as previously mentioned, an assumption that these
state-of-the-art architectures make about the data is only partially valid, and it will only
be able to effectively learn relationships along the temporal dimension. Therefore, we
propose architectures that focus on building up a hierarchy of temporal features that are
combined using residual connections, a popular method that was first used in computer
vision [9].

The first idea here, of a hierarchy of temporal features, is drawn from WaveNet [26],
a speech recognition and synthesis model that is capable of tracking very long temporal
dependencies. These long term dependencies are fairly common in speech: for instance,
in the sentence “he was sitting down because he hurt his leg”, the gendered pronouns
can have an arbitrary amount of distance between them. However, temporal patterns are
something that existing models have not really exploited at all. With this motivation, we
will develop a model that is capable of learning more complex temporal relationships.

The second idea, of residual connections, comes from image processing. While much of
the computer vision research is focused on learning spatial relationships more effectively,
there has also been a significant amount of more general work that can be applied to
many fields. One such development was in the ResNet architecture, which introduced
the residual connection [9]. The residual connections are layers that learn the best way
to alter the input to reduce superfluous data, and these layers have allowed much larger
neural networks to be trained as a result.

Research Question RQ2 Here, we aim to answer the question: Do our pro-
posed architectures that specifically handle temporal characteristics outper-
form the existing models on our chosen tasks, both the original from Zubarev
et al and our more challenging tasks?

An Additional Model Component: An Autoencoder While it is common in this do-
main to use different forms of dimensionality reduction, the above models, existing and
proposed, all take the raw data as input to the neural network. In other domains, however,
the generation of intermediate latent representations has been found to be more useful,
particularly where these can be learnt from large amounts of unlabelled data. For instance,
in natural language processing, it is common to develop a language representation model
which is learned from unlabelled data via the task of predicting a word from its context.
This is then used as the input to another model for a specific task, such as text classification
or machine translation. Building a model with this representation as a starting point has
been shown to greatly improve performance on downstream tasks [27, 28].

6 INTRODUCTION

Autoencoders [29] are another possible method of achieving a similar goal. An
autoencoder encodes an input into a lower-dimensional latent representation and then
attempts to reconstruct the original input from this reduced representation. This causes it
to learn to encode only relevant information in these representations which can then be
used as input for downstream tasks. Like a language representation model, the advantage
with this approach is that we train these models on data that have no labels and this will
greatly increase the amount of data that is available for training.

Existing models have under-utilised temporal information, and there have not been ar-
chitectures that allow a complex hierarchy of features to be developed simliar to computer
vision architectures. For this reason, the autoencoder that we develop is only capable
of learning temporal features. This is particularly attractive because we can produce a
representation that can substitute the raw data in existing architectures and this will allow
us to examine our assumption of the value of these temporal features.

Research Question RQ3a Can we further improve the performance of a
model by using the intermediate latent representation of an autoencoder?

Data preprocessing and normalization In other domains (such as in natural language
processing [30, 31] and for autonomous vehicles [32, 33]) it has been shown that neural
network architectures are capable of end to end learning which has eliminated many of
the feature engineering steps, but there are a number of steps that are taken for granted
for this to be possible. For instance, all pixels in an image are integers between 0 and 255
even though the raw signal from the sensor of a camera may vary significantly between
cameras. The generated image is calibrated in two steps; first by the camera itself and
then by the operator who is able to easily identify corrections that need to be made.

While the first step is possible for MEG, in practice, there can be orders of magnitude
difference between the amplitude of the signal that is produced by two different machines.
This is compounded by the fact that a human operator can not instinctively identify when
there is a problem with the intensity of the signal in the same way that a photographer
would identify a bright scene from an over-exposed picture. Instead, these sort of adjust-
ments are generally made on a per-trial basis, but it is not clear exactly what the best
approach is for deep learning on MEG data.

In machine learning, it is generally accepted [3] that features should have a mean
of zero and a standard deviation of one. This has become even more important in deep
learning where it can catastrophically affect training models: it has been shown that initial-
ization of the neural network weights can be very important [34, 35] in addressing these
issues. However, the term ‘feature’ becomes less concrete when applied to more complex
domains. For instance, in computer vision, each colour channel is considered a ‘feature’
and is adjusted separately because for each channel there is an affine transformation that
can move an arbitrary pixel to any other arbitrary location.

Normalizing data on a per-trial level is a significant difference from computer vision
where datasets are normalized with statistics calculated across the entire dataset. While
there are reasonable justifications for making either choice there hasn’t yet been a direct
comparison of these two paradigms. We will perform this comparison and in addition, we
will evaluate a few other steps that are involved in preprocessing the dataset.

7

Research Question RQ3b Is it better to use subject-level normalization or a
global-level normalization on datasets?

This thesis is structured into three main sections that correspond to our research
questions. First, we will look at the replications and extension of the existing Zubarev et
al work which will serve as a baseline. We will then define our proposed neural network
models and our evaluation framework, and compare them against the existing models.
Finally, we will describe our exploration of improving performance of the models in terms
of preprocessing and normalization.

2
Background

In this chapter, we will give an overview of related work and describe the foundational
background of this thesis. This chapter is split into two main strands. In the first, we
will discuss machine learning, a method for learning predictive models from data, which
is currently a major paradigm for Magnetoencephalography (MEG) analysis. We will
then focus on deep learning, a subfield of machine learning where the models are neural
networks that build up hierarchical non-linear representations of the data. Deep learning
models have produced state-of-the-art results in many domains.

The second strand of the chapter will cover our domain of interest, the processing
of brain activity, specifically as captured by MEG. In this strand, we will describe the
characteristics of MEG data, and the various ways it has been processed. We then bring
these two strands together by discussing recent work by [21] that has applied deep
learning models to MEG data. This is the core work that we use as a starting point in this
thesis, to investigate new deep learning models and methods for processing MEG data.

2.1 Machine Learning

While there are a lot of different applications in machine learning, many problems can
be broken down into one of two types, regression or classification. Regression tasks are
those that look at predicting a continuous variable, such as predicting a subject’s age.
Classification looks at predicting discrete quantities, for example predicting the gender of
the subject. In this thesis we will be primarily focused on classification, which we can
define generally as: given inputs x i ∈ X and labels yi ∈ Y we would like to find some
function f :X →Y such that the predicted labels ŷi = f (x i) are good approximation to
the true labels yi[3, 36].

There are many different algorithms that are used in machine learning, such as Linear
Regression, Naive Bayes, Nearest-Neighbors and Decision Trees. However, we give only

8

2.1 MACHINE LEARNING 9

a high-level overview here for reasons of space; more details of these are available in
[3, 36]. The heart of many of these algorithms is gradient descent, which is an optimization
algorithm that can be used to iteratively find weights that minimize a loss function which
used to quantify the performance of the model [3, 36]. A key one that we use in this
thesis is the Support Vector Machine (SVM).

SVMs are a fast and accurate method to solutions where features exhibit demarcation
points which can be used as a class boundary [36]. In their simplest form, they do this by
finding a hyperplane through an input feature space that linearly separates most classes.
More formally given an input space X ∈ Rp with p input features and Y ∈ {−1,1}, we
would like to find a weight vector w ∈ Rp and a bias b ∈ R so that sign(wTφ(x i)+ b) = yi.
It may not be possible to find a solution where this holds for all x i but enforcing this
constraint is known as a hard-margin and requires that the data to be linearly separable.
However, if this constraint is not enforced it is known a soft-margin SVM. In addition to
the Linear SVM that we have just described there are a number of variants such as the
Radial Basis Function SVM and details of these can be found in [3].

2.1.1 Deep Learning Architectures

In this section, we will give an overview of relevant background information in the
field of deep learning; a more comprehensive discussion can be found in [3]. We will first
briefly discuss the fundamental concepts behind neural networks. We then will look at a
number of models that will be relevant to MEG data. Following that, we will look at some
aspects of the training of these models that will have implications for application to MEG
data.

Neural networks are multi-stage classification models that are represented as graphs.
Each node (neuron) in the graph can be thought of as a separate regression problem;
these are organized into layers. In the simplest case, a fully-connected layer, all of the
nodes in the same layer receive the same input. The output from one layer is fed into
the input of the next. Given an input to a layer x i, a weight matrix W and a bias b, each
neuron will calculate Activation(x i ·W + b) where Activation is a form of non-linearity.
Commonly a Rectified Linear Unit (ReLU) is used.

Convolutional Neural Network (CNN) The introduction of CNNs was a breakthrough
for image processing tasks because they are well suited to learn location-independent
features. For instance, if we wanted to learn to detect if a picture contains a ball, a
CNN could learn a Filter to detect a ball and apply that in multiple locations, whereas
a fully-connected network would need to learn how to detect a ball separately for each
location. Unlike a fully-connected layer, nodes are only connected to a small number of
close-by nodes in the previous layer. The layer learns a set number of Filters (Kernels),
that function as feature detectors, the shape of which dictates the receptive field, how
many nodes in the previous layer are connected to each output.

Stacking these convolution layers allows the network to learn hierarchical structures.
Lower layers learn low-level features such as simple gradients, and later layers gradually
become capable of detecting more complicated shapes and finally to higher levels features
that are used to ultimately make the classification [3]. Figure 1.3 depicts a CNN.

10 BACKGROUND

ResNet One of the most ubiquitous models that is used in practice today is the ResNet
architecture [9] which was developed by He et al in 2015. The key insight that they
had was to utilize residual or skip connections. These layers learn a residual function
which alters the original input and performs the operation hW,b(x i)+ x i instead of hW,b(x i).
This design was motivated by the observation that adding extra layers could reduce the
performance of a model. With a skip connection, if a particular layer is not improving
performance the model is able to reduce the residual and in doing so the layer acts as
an identity function. While a neural network could learn the identify function without
this connection, using skip connections makes this easier to optimize because the ReLU
function will output 0 for all negative values.

WaveNet WaveNet [37] is a convolution-based network that was designed to learn
temporal relationships in raw audio waveforms. WaveNet made use of convolutional
dilation which is similar to stride, but spreads out the input neuron instead of the output
as with stride [3]. In effect given a dilation d and a kernel size k, it is equivalent to
increasing the kernel size to k× d but only taking every dth input nodes. This means that
it is able to have a significantly larger receptive field while maintaining the same number
of trainable parameters and maintaining the memory footprint as well. WaveNet stacked
these dilated convolutional layers into blocks, where each successive layers dilations was
double the previous. This allows the model to capture both short term and long term
patterns in the input.

Autoencoders Autoencoders are a method of unsupervised pre-training [38, 39]. Au-
toencoders are conceptually very simple and transform an input into a lower-dimensional
latent representation and then reconstruct the input from the latent representation. There-
fore, the encoder acts as a form of compression and this compressed representation can be
used by downstream tasks to improve performance. Autoencoders typically use the Mean
Square Loss to minimize the difference between the reconstructed and original data.

There are a number of variations of autoencoder that are popular in different areas.
The convolutional autoencoder [40] for instance incorporates convolutions and has seen
success with image data. Another approach is to artificially add noise to the input as in a
denoising autoencoder [41]. It is also possible to stack autoencoder so that subsequent
autoencoders try to reproduce the latent representation of the parent autoencoder. This
type of autoencoder is unsurprisingly called Stacked Autoencoders and has already seen
some use in this domain [42, 43]

Transformers Transformers are a recent development that was first introduced by
Vaswani et al. [44]. They have since been extensively adopted in state-of-the-art ar-
chitectures in natural language processing [27, 28, 45], and have also been applied in
other domains such as computer vision much more recently [46, 47]. The key component
of the transfer architecture is a multi-headed self-attention which allows the models to
dynamically focus on relevant parts of the data by using multiple separate Attention
operations.

There are other types of attention that can be used but transformers typically use the
Scaled Dot Product Attention which is defined in Eq 2.1 It takes three tensors as input, the
query Q, the key K and the value V . A softmax operation is performed on the dot product of
the query and the key which is scaled based on the dk, size of the dimensions of embeddings

2.2 MEG 11

used by the query and key. This dynamically generates the weighting that is applied to the
value.

Figure 2.1: Multi-Headed Attention.
From Vaswani et al. [44]

Attention(Q, K , V) = softmax

�

QK T

p

dk

�

V (2.1)

In Figure 2.1 we can see that before the At-
tention operation there are linear layers and
these allow the network to accept the same
input for the query, key and value. This multi-
headed attention is combined with a residual
connection, and is followed by a position-wise
linear layer which is combined with a second
residual connection. These two layers are then
stacked together six times to form the encoder
of a transformer. A detailed description of the
whole architecture can be found in [3, 44].

2.1.2 Training
Weight Initialization & Layer Normalization
As architectures became more complex, it be-
came apparent that both weight initialization
and normalization was important to allow models to train successfully. Both of these
affect the dynamics of the networks in terms of two related problems: exploding and
vanishing gradients [3]. Xavier initialization was one of the first that was proposed to
address these issues. [35] argued that it is important to consider the variance not just
of the outputs but the gradients as well. Their initialization solution was to change the
variance of the generated weight to be a function of the number of outputs and inputs in
the layer. He initialization [34] is an extension of this that has been designed to work on
the now more common ReLU activation, where it helps to prevent dead neurons in the
network; it is considered current best practice for the ReLU activation functions and its
variants [3]

In addition to weight initialization, there are a number of other techniques that look
at addressing the normalization of inputs to layers at each layer, for example, Batch [48],
Group [49] and Layer Normalization [50]. These layers explicitly control the mean and
variance of the outputs of the previous layers through parameters learnt during training.
These normalization layers have been shown to dramatically increase the speed at which
models converge as well as to increase the performance of the final model.

2.2 MEG

All brain activity is the result of electrical currents that occur in the brain and therefore
by recording this electrical activity we will be capturing brain activity. Two related
technologies are able to capture these electrical impulses: Magnetoencephalography

12 BACKGROUND

(MEG) and Electroencephalography (EEG). In most cases, EEG captures the activity
by recording the electrical potential on the surface of the scalp, while MEG detects the
magnetic flux that is created by electric fields[51]. This work focuses on MEG, although we
will also touch on work that is applied to EEG where similar spatiotemporal relationships
in the data are relevant. Both MEG and EEG have a much higher temporal resolution
(often sampled at around 1KHz) but are not known for their spatial resolution. This
contrasts with functional magnetic resonance imaging (fMRI) which provides high spatial
resolution but can not be reliably used to study rapid changes in the brain.

The magnetic flux that is captured by MEG is in the picoTesla and femtoTesla range
which is more than 7 orders of magnitude smaller than Earth’s ambient magnetic field
[51]. This means that there is a great deal of effort to shield these machines from all
other sources of magnetic fields. However, even with these precautions MEG still has a
low signal-to-noise ratio [51], so methods to overcome this challenge have received a lot
of attention.

There are two general types of MEG data, event-based or continuous [15]. In event-
based sessions, subjects are responding to a change in the environment, typically a
stimulus, such as being shown a checkerboard pattern on a screen for a small period of
time. Continuous recordings, on the other hand, do not have discrete events and may
not have any events at all. Instead, these sessions look at long-running activities, such as
performing a physical action, but also include sessions where the subject is at rest.

2.2.1 Preprocessing and feature engineering

The nature of MEG data leads to a number of challenges when applying machine
learning techniques, such as complexity in training the models and the risk of over-
fitting a model to training data. There are a number of methods that are used as part
of preprocessing and feature engineering that help to address these issues. For instance,
band power captures the energy for a given frequency band in a small temporal window
and can be calculated in a number of ways [52, 53]. Common Spatial Patterns (CSP)
are another method of feature engineering that find a set of linear spatial filters that
distinguish two classes [54]; these have been used in [55], for example.

Unlike band power, the spatial filters in CSP are generated through a form of supervised
learning. Despite this, however, it is still necessary to select the subject-specific frequency
bands that are used. Filter Bank Common Spatial Patterns (FBCSP) [56] are an extension
of CSP that allow for the automated selection these frequency bands.

There are also unsupervised methods such as Primary Component Analysis (PCA)
[57] and Independent Component Analysis (ICA) [57, 58]. While PCA is a method of
linear dimensionality reduction, ICA separates a data into a combination of maximally
independent components and these methods can be used individually [59] or together
[60]. ICA has also been shown to be useful in artifact suppression [59].

End-to-end learning One of the often-cited advantages of applying deep learning is that
it removes the need to perform feature engineering. This is not always easy but end-to-end
learning has been demonstrated in a wide range of domains, such as autonomous vehicles
[61], speech recognition [62, 63] and many more [32, 64, 65]. Even in those applications
there is still some pre-processing steps that are used, such as normalization and cropping.

2.2 MEG 13

For MEG data, there are a number of pre-processing steps that are widely used such as
downsampling [21], band-pass filtering [21, 66, 67], normalization [21, 23, 68]. However,
the effect of each of these has not been systematically explored in the context of deep
learning.

Normalization Gradient Descent is an incredibly powerful technique, but it can be very
sensitive to input data. It is generally accepted [3] that data should have a mean of
zero and standard deviation of one. However, as problem domains have become more
complex, simple methods of normalization can remove informative relationships. This
adjustment typically involves calculating the normalized input x̂ i by subtracting the mean
and dividing by the standard deviation.

However, there are a variety of ways to calculate the mean and standard deviation.
For example, there are two types of normalization that can be applied to each item in
a dataset: GLOBAL or LOCAL normalization. Global normalization calculates the mean
and variance of the entire dataset and then adjusts each item with the same mean and
variance [3] and calculates x̂ i = (x i − µ)/σ. On the other hand, LOCAL normalization
calculates a mean and variance for each input x i.

LOCAL normalization is a common approach for MEG and EEG data [21, 23, 68], and
is typically called BASELINE normalization, where the mean and variance are calculated
on a baseline period before the stimulus. WINDOW normalization calculates the mean
and variance directly from the item so that x̂ i = (x i − x̄ i)/sx i

.

2.2.2 Applications

Deep learning is a growing area of research in EEG but conventional machine learning
remains the most common paradigm. We have touched on some; a comprehensive review
of applications with EEG data can be found in [69] for machine learning and in [70] for
deep learning. However, it is only recently that deep learning has been applied to MEG.
We will now describe work by Zubarev et al which we use as a starting point in this thesis.

Zubarev et al proposed two deep learning architectures [21], LF-CNN and VAR-CNN,
which were designed to model the processes that generate the signals created in the brain.
They also developed methods for analyzing the models’ predictions, where they looked
at the spatial and temporal features that were most strongly related to each predicted
class. This allowed them to visualise how these networks derived their prediction and
how these prediction were associated with regions of the brain.

They performed four different experiments that looked at three different tasks, and
focused on generalization to new subjects. They therefore evaluated each of their models
on a held-out group of subject/s, which were selected randomly. The first two were
evaluated on one subject, the third on two subjects, and the fourth on 50 subjects. These
experiments were in the context of brain-computer interfaces, and so in addition to the
standard Validation and Test accuracy for evaluation they also simulated a real-time
brain-computer interface environment. This was similar to Test accuracy but the model
parameters were updated after it had made a prediction for each trail and aimed to gauge
how well the models could adapt to new subjects as they are being used.

The first experiment involved seven subjects that were exposed to five different types
of sensory stimulus, which included visual, auditory and electrical stimulation. The second

14 BACKGROUND

and third experiment looked at predicting an imagined physical action when a visual
cue was presented. While the second and third experiment involved the same task, the
third experiment was conducted in a live real-time brain computer interface environment.
The final experiment used 250 subjects from the Cam-CAN where two types of sensory
stimulus was classified.

Cam-CAN dataset Cam-CAN is the largest MEG dataset that is available and consists of
more than 600 subjects [71]. This MEG dataset is part of a much larger study that look
at the effects of aging, but at the time of writing only the second stage of the study has
been released. In this stage subjects were involved in three MEG sessions, a resting state
recording and a passive and active sensorimotor task. The same stimulus was used in both
the active and passive stage which consisted of a checkerboard pattern or an auditory
tone played at one of three different frequencies (300Hz, 600Hz and 1200Hz). In the
passive stage, which is used by Zubarev et al, the trial consists of a unimodal stimulus,
either auditory or visual, and no action is required by the subject. In contrast, during the
active stage subjects were exposed to both forms simultaneously and were required to
respond when they observed either stimulus.

Models Zubarev et al introduced the LF-CNN and VAR-CNN models and evaluated them
against a number of other models, both conventional machine learning classifiers as well
as deep learning models from both EEG and computer vision. Specifically, they compared
their models against SVMs with both linear and radial basis function kernels, EEG-Net
[66], Shallow FBCSP-CNN [72] and VGG-19 [8]

The LF-CNN and VAR-CNN models use raw MEG data and are relatively simple with
two main components, a spatial convolution followed by a temporal convolution and
then a linear layer (see Figure 1.3). The surprising thing about these models is that they
perform well despite only containing two (ReLU) non-linearities in the entire network.
This suggests that there are relatively simple relationships in the data that correlate
highly with the output class. Despite the fact that models are going to be limited in the
relationships that they are able to model, Zubarev et al found that they were able to
outperform the other models in each comparison they made. They also found that the
other neural network architectures were not always able to outperform conventional
machine learning baseline.

2.2.3 Summary
Deep learning is rapidly being adopted by new fields, but this is not always easy and it

is only just starting to be adopted in MEG. We have seen one application that demonstrates
deep learning can outperform other methods. However, this was applied to only one large
dataset, where they performed a task where the baseline models were already able to
perform (more than 90%) well which limits the potential improvement on the task. With
this in mind, in the next chapter we will build on their initial work and extend it to new
datasets with more difficult tasks.

3
Foundation

In §2.2.2 we observed that, on the only large dataset Cam-CAN, the classification task
was easy, with all architectures performing well. In this chapter, we will discuss our
replication of Zubarev et al and how we extended this work to a newly released large
dataset and more challenging tasks. On this new dataset, we will evaluate and compare
the performance of the two models LF-CNN and VAR-CNN that Zubarev proposed against
their SVM baselines, to see if their superiority still holds, and to investigate their suitability
as baselines for our new models in Chapter 4.

3.1 Method

In this chapter, we have aimed to deviate from the original work as little as possible,
although some minor changes were unavoidable in our extension to new datasets. We
will start this section with the new dataset that we will be using in this chapter, the MOUS
dataset. After this discussion, we will describe the training and evaluation of models.

3.1.1 Datasets and Tasks

In addition to Cam-CAN, another large dataset has also been recently released, the
Mother Of Unification Studies (MOUS) [25] with a much more interesting stimulus. The
focus of the study was understanding the way that we process written and spoken language
and was specifically looking at how we process individual words in a sentence. The study
consisted of 204 participants and like the Cam-CAN dataset, the subjects were exposed
to an auditory and a visual stimulus. In this case, however, subjects were only subjected
to one stimulus, with half being shown written text and the other half hearing spoken
words. In each case, the stimulus consists of linguistic utterances (in Dutch), either a valid
sentence or an arbitrary list of words. In addition, there were two types of sentences: a
sentence that is easy to understand with a main clause plus a simple subordinate clause,

15

16 FOUNDATION

and a sentence with a relative clause which is harder to understand. In this work, we will
look at three different classification tasks; auditory vs visual stimuli, sentence vs word list
and simple vs hard sentence. Examples of the stimuli can be found in Appendix A.1.

While we will perform a number of different classification tasks, we will use the same
data for each. For each trial, we extracted a window of the data as the subject was
presented with the target word. We epoched the data in the same way as Zubarev et al,
taking 300ms before the onset and 500ms after. However, this results in a small change in
the resulting input because the MOUS is sampled at a higher frequency. So while the final
Cam-CAN data has 64 time samples, the final MOUS data has 85. In both cases we are
normalizing by the mean and standard deviation of the first 36 samples of the epoched
data which means that the MOUS data includes more prestimulus data.

The other deviation from the Cam-CAN data is the number of channels that are
included. We are using 270 channels from the MOUS (compared to 204 in Cam-CAN
related tasks), but we have also increased the number of time samples that are included as
well. This is not all of the channels that are available in the datasets: there are a number
of channels which are not present in all recordings and there were also channels from
other sources, such as EEG. These channels were not considered in any of our experiments.
In total ten channels were not present in all recordings (BP2, EEG061, EEG062, EEG063,
EEG064, MLC11, MLF62, MLT37, MRF66, MRO52); of these channels, 5 were MEG
related channels and were consequently excluded.

This data provides options for several classification tasks with a variety of difficulties,
and we have constructed three new tasks for this dataset. The AUDIOVIS task attempts to
distinguish audio from visual stimuli. The SENTWORDLIST task attempts to distinguish
syntactically correct sentences from lists of words. The HARDEASYSENT task looks at
detecting relative processing difficulty of a sentence.

The auditory vs visual stimulus task (AUDIOVIS) is similar to that for the Cam-CAN
dataset in Zubarev et al: we are trying to predict if the subject was seeing a written word or
if they were hearing a spoken word. However, it is important to note that unlike the Cam-
CAN datasets this is a between-subject variable. A subject was shown either the words,
or they heard them; none of the subjects experienced both. This is important for two
reasons. First, different subjects might encode the relationships between the stimuli very
differently and second, deep learning is very good at picking up on unintended features
(particularly noise) that correlates highly with the output class: [73] demonstrated this
for image classification systems, using an example where the presence of snow in a photo
could have led a model to predict a dog as a wolf. In this case, we will have to consider
the possibility that the neural network is picking up a characteristic of the session (such
as background noise) instead of the stimulus; we analyse the results in light of this.

In our second classification task (SENTWORDLIST) we aim to distinguish a sentence
from an arbitrary list of words: more specifically, if the stimulus target word is part of
a syntactically correct sentence or part of an arbitrary list of words. Similarly, our third
classification task (HARDEASYSENT) is to predict if the target word was part of a sentence
with a syntactically complex structure or a simple one.

We can further break down each of these last two classification problems into more
fine-grained tasks by also taking into account how the stimulus is presented. We will
evaluate each task by training models on three different subsets of the data; audio, visual

3.2 RESULTS 17

Dataset Architecture Val. Acc. Test Acc. Upd. Acc. Train Time

Cam-CAN LF-CNN 94.52 92.53 92.41 278
VAR-CNN 93.86 92.33 92.80 426
SVM (Lin.) 92.06 89.36 89.71 252
SVM (RBF) 93.73 92.10 91.27 795

MOUS LF-CNN 82.46 81.49 87.01 848
VAR-CNN 91.45 80.93 89.02 948
SVM (Lin.) 70.82 68.63 74.39 1960
SVM (RBF) 64.71 57.30 95.47 1427

Table 3.1: Results of the Audio vs Visual task on both the Cam-CAN and MOUS datasets

and both together. This means that in each of the audio and visual subset we will be
restricted to 102 subjects, although this restriction may allow models to focus on more
fine-tuned features for each of the modes of stimulus.

3.1.2 Training and Evaluation

We have only made superficial changes to the training and evaluation code of [21],
for the most part to update to more recent versions of the required dependencies. The
models were trained on a CPU using Tensorflow [74] with early stopping and these
models typically took less than 30 minutes to train.

As in Zubarev et al, we separated the data into three parts, a training, validation and
test set. We follow Zubarev in looking at between-subject generalization, so the data was
separated by subject such that each subject was assigned to a single split. Of the total
data used, 20% of the subjects were assigned to the test set, the remaining split between
the training set and the validation set with a 9-10 split. The models were trained in a
standard fashion and used early stopping on the validation loss with a patience of 3. We
used the same metrics as Zubarev et al as described in §2.2.2, Validation and Test accuracy
as well as Pseudo-real-time accuracy which we refer to as Update Accuracy.

3.2 Results

From the upper half of Table 3.1 we can see very similar results to the original work on the
Cam-CAN dataset in terms of validation accuracy. However, there is a larger difference in
both the Test and Update accuracy than might be expected. Since both of the models have
similar accuracy on the test set, this difference is likely caused by differences in which
specific subjects are in which subset of the data. Results for AUDIOVIS on MOUS are in
the lower half of Table 3.1. As mentioned in §3.1.1, given the between-subject nature of
the task it is not surprising that it is more challenging. Nonetheless, the models perform
well on this task with both models getting between 80% and 90%, which is a substantial
improvement over the SVM baseines.

In both the SENTWORDLIST and HARDEASYSENT tasks, the classes are evenly distributed
and this means that the random change baseline is 50% in each case. The results for these

18 FOUNDATION

Subset Architecture Val. Acc. Test Acc. Upd. Acc. Train Time

Audio LF-CNN 66.67 66.51 65.45 435
VAR-CNN 65.35 64.27 64.81 447
SVM (Lin.) 58.30 58.11 59.14 1703
SVM (RBF) 64.12 62.95 63.82 625

Both LF-CNN 56.36 59.99 60.14 540
VAR-CNN 56.36 60.07 59.72 1183
SVM (Lin.) 53.77 53.91 55.40 2412
SVM (RBF) 55.27 55.75 58.80 1474

Visual LF-CNN 58.99 56.05 56.61 354
VAR-CNN 57.89 55.28 55.70 661
SVM (Lin.) 54.40 53.41 54.76 2040
SVM (RBF) 50.94 52.36 55.47 817

Table 3.2: Results of the Word List vs Sentence task on the MOUS datasets

tasks are in Tables 3.2 and 3.3 respectively. These are significantly more challenging, with
the accuracy ranging between 55% and 65%. We can also see that the models proposed by
Zubarev et al are again better than the SVM models, particularly in SENTWORDLIST. We
can see that the SVM (RBF) performs well on the Update Accuracy metric on the MOUS
dataset. However, this metric may not provide a reliable measure of performance on this
dataset because subjects are only exposed to a single stimulus. It is therefore possible
that information from the first trial in a session influences the performance on subsequent
trials in the same session.

One perhaps surprising result is that there was a sizeable difference between the
different modalities of the task. It may have been expected that models trained on
either of the audio or visual subsets may perform better than models trained on both
together. However, we see from both Table 3.2 and Table 3.3 that the audio subset has
substantially higher accuracy for SENTWORDLIST while the visual subset takes the lead
in HARDEASYSENT. (One possibility is that this is the result of subvocal articulation
where a subject may be more prone to articulate words in more complex sentences that
are presented visually). Ultimately, however, we have seen evidence that it possible to
distinguish someone who is processing sentence from someone who is processing an
arbitrary list of words. There is also slightly weaker evidence that we can identify the
complexity of a sentence that someone is processing when it presented visually.

3.3 Summary

In this chapter we have successfully replicated the existing work with only minor differ-
ences in the results. The differences that we have seen could have come about from minor
differences in training: specifically, the subjects used in the evaluation and the version of
dependencies that were used. We followed Zubarev et al as closely as possible, but the

3.3 SUMMARY 19

Subset Architecture Val. Acc. Test Acc. Upd. Acc. Train Time

Audio LF-CNN 49.12 48.73 50.00 165
VAR-CNN 50.22 50.79 52.00 191
SVM (Lin.) 51.22 51.10 52.37 719
SVM (RBF) 49.39 50.60 50.29 154

Both LF-CNN 55.21 53.43 54.24 392
VAR-CNN 54.65 52.62 52.77 578
SVM (Lin.) 52.68 51.64 51.67 2035
SVM (RBF) 55.16 54.18 54.18 821

Visual LF-CNN 58.77 59.40 57.22 199
VAR-CNN 57.24 56.98 58.30 233
SVM (Lin.) 56.27 56.12 56.41 880
SVM (RBF) 57.19 58.96 58.83 220

Table 3.3: Results of the Simple vs Complex sentence task on the MOUS datasets

specific subject splits were not recorded so can not be reproduced exactly. In addition,
deep learning libraries are rapidly evolving and can lead to substantial differences in the
same model, and this likely has played a role in the differences but we can’t draw any
definite conclusions.

We have also shown that all of the new tasks are more difficult than those for the
Cam-CAN dataset. Two of these are significantly more difficult with both the LF-CNN
and VAR-CNN doing about 10% better than chance on the HARDEASYSENT task. We have
also seen that there is a difference in performance between the modalities of the stimulus
and the task, with audio stimulus being easier to identify than visual stimulus for the
SENTWORDLIST while the opposite relationship holds for the HARDEASYSENT.

We have seen that the models proposed by Zubarev et al have generally outperformed
the SVM baselines. As a result the LF-CNN and VAR-CNN models will be suitable baselines
for the new models that we propose in next chapter.

4
New Models

In this chapter we will introduce a number of new neural network architectures that are
designed to address some of the weaknesses of the models proposed by Zubarev et al
which we will use as a baseline. In addition, we will also implement two architectures
from the computer vision domain.

We apply these new models to the classification tasks of Chapter 3, and compare them
experimentally against the existing models and the computer vision architectures. In
addition, we introduce the new Hokuto dataset, which differs from the previous ones in
that it does not have a stimulus, but rather records the resting state of individuals with
varying degrees of cognitive impairment. We explore how to extend all the models to
work with this dataset, and compare them on a classification task derived from it.

4.1 Models

In this section, we will propose a number of different network architectures that are
capable of modelling more complex relationships than the models used in Chapter 3.
Our first architecture, TimeConv, is our simplest one that explores the value of temporal
relationships in the data. These ideas are then refined into a spatially invariant autoencoder
architecture (TimeAutoencoder) that is built with a number of temporal residual blocks
which exploit these temporal relationships with residual connections [9]. Our third
model (SERes) combines the same temporal residual blocks with the spatial relationships
that have already been found to be effective in the models of Zubarev et al. Our final
architecture (SETra) uses the Transformer architecture [44] which follows from the way
that we have thought about the MEG image as a sequence of spatial embeddings.

20

4.1 MODELS 21

t

C

Input

32 t/
2

Temporal Conv 1

64 t/
4

Temporal Conv 2

32 t/
4

Temporal Conv 3

12
8

fc1

cl
as
se
s

fc2

Data Convolution + ReLU Dense Dense + ReLU

Figure 4.1: The TimeConv architecture.

TimeConv The input to these
modesl consists of a 2-dimensional
matrix, one representing time and
the other representing the spatial
aspect of the data. This architec-
ture is designed to help us gauge
the importance of temporal rela-
tionships in the data.

As such, a separation between
temporal and spatial relationships
is enforced throughout the body
of the network, such that the net-
work learns spatial features only
at the final fully-connected layers. In Figure 4.1 we can see the high-level structure of the
network.

Even though the main body is composed of just three temporal convolution layers,
this is already deeper than previous work. Each temporal convolution layer consists of a
2d convolution, limited to act only on a single channel, and this encourages the network
to focus on temporal aspects of the data and effectively disallows it from learning spatial
features. More specifically, they have a kernel size of (1, 5), dilation of (1, 3) and a stride
of (1,3) and use “same” padding. These convolutions are followed by a standard ReLU
activation function. There are 32 filters in the first layer, 64 in the second, and 32 in the
last and were chosen to allow for more expressiveness than the models of Zubarev et
al while also keeping the number of elements in the output of the last layer relatively
small. These layers are followed by an adaptive max-pooling layer, which means that
ultimately the network is learning a non-linear function that maps the activity in each
channel into a 32 dimension temporal embedding (the number of filters in the last layer).
These embeddings are then concatenated and fed into a dense layer with 128 output
features, a ReLU and finally an output layer with the number of classes as its dimension.

Temporal Residual Block The Temporal Residual Block is a self-contained logical group
of layers; we will use these in different configurations of these blocks in SERes and the
TimeAutoencoder. The structure of this block follows from the ideas in the previous
model, but unlike TimeConv, the Temporal Residual Block is completely prevented from
learning any spatial features. This means that this block is completely independent of the
size of the spatial embeddings (or the number of MEG channels) in the input.

We realise this by using a 1-dimensional kernel in a 2-dimensional convolution. This
has two consequences. First, because the kernel is 1-dimensional, it is incapable of
learning any spatial relationships. Second, because it is a 2-dimensional convolution,
the kernel is applied to all channels and this encourages the network to learn low-level
relationships that exist in all channels.

This convolution may seem similar to the LF-CNN because they both use a 1-dimensional
kernel, but they are significantly different in the type of patterns they are able to learn.
Let us consider how these convolutions will act on a black and white image. If we were to
use the same number of kernels and use the same kernel size then both will have the same

22 NEW MODELS

t

C

Input

t

16

Spatial
Embedding

16

16

16 16 16 16 t/
2

Temporal Block 1

16

16

16 16 16 16 t/
4

Temporal Block 2

16

16

16 16 16 16 t/
8

Temporal Block 3
t/
8

16

12
8

fc1

cl
as
se
s

fc2

Data Convolution Residual Convolution Dense Dense + ReLU

Figure 4.2: The Spatial Embedding Residual (SERes) network architecture.

number of trainable parameters. Both architectures will apply a 1-dimensional kernel to
each row of the image. However, the LF-CNN will apply a different kernel to each row,
whereas our convolution will apply each kernel to all rows.

Each block consists of four Temporal Residual Convolution layers which are similar to
residual layers used by He et al [9]. However, we reduce the kernel to 1-dimension which
means each convolution uses a kernel size of (1, 3), dilation of (1, 3) and padding of (1, 3).
We use the same number of filters in each layer which we leave as a hyper-parameter.

Our implementation of the residual connection is very similar to the PyTorch imple-
mentation [75] and, ignoring the convolution that is being used, only differs in how batch
normalization is applied. While we use a single batch normalization layer before either
convolution, the PyTorch implementation uses two layers directly after each convolution.

SERes While TimeConv learnt temporal relationships in the raw data, the temporal
layers of both the LF-CNN and VAR-CNN have operated on a spatial embedding. The
SERes architecture (Figure 4.2) combines both of these ideas, by first learning a spatial
embedding which effectively reduces the number of “channels” to 16. So given an input
(1, C , t) with C channels and t time samples, the spatial embedding layer will produce an
embedding of size (1, 16, t). This spatial embedding is then processed by three temporal
residual blocks. Each of the three blocks has 16 filters and reduces the number of time
samples by a factor of eight, leading to an output of (16, 16, t/8). To reduce the number
of parameters and avoid problems like overfitting, we apply a dimensionality reducing
(1× 1) convolution which outputs (1, 16, t/8) and is then flattened to a 16× t/8 feature
vector. The head of the network is very simple and consists of two layers. The first has
128 output features and uses the ReLU activation. The last predicts the weighting of the
classes which are used as part of the cross-entropy loss, which combines the softmax
activation and the negative log-likelihood loss.

SETra Transformer architectures have received a lot of attention recently, although most
of this has remained in the natural language processing domain. One of the strengths of
a transformer comes from its ability to use information present across the entire input. In
comparison, a convolutional network can only exploit information inside the receptive
field of the neuron and this means that details that are separated in the input can only be
combined as the receptive field gradually grows in later layers. However, very recently
there have been a few architectures that use the Transformer on computer vision problems
[76, 77]. Successfully implementing a transformer architecture in this domain would
mean that the network is capable of combining details regardless of where they occur in

4.2 EXPERIMENTAL SETUP 23

the image. For example, the presence of a baseball at the edge of the image is helpful in
identifying that the subject in the photo is playing baseball, but this type of information can
only be used later in the network. A transformer on the other hand would be able to use
this information immediately. For an image, it quickly becomes computationally infeasible
to use attention on each pixel, because the number of pixels itself grows quadratically with
image size. The existing designs have avoided this by using a downsampling mechanism
or restricting the scope of the attention. For instance, Image Generative Pre-trained
Transformer (I-GPT)[76], an architecture that directly adapts an existing architecture
from NLP, resizes the image until the operation is feasible, while the even more recent
Vision Transformer (ViT) [77] takes a more sophisticated approach and splits the images
into patches that are then attended to.

In our domain, however, this problem is already addressed from the way that we
are thinking about the problems: as a sequence of spatial embeddings. This means that
while other approaches grow quadratically with the size of the image, our approach
grows linearly. To compare our approach directly with the ViT, given an input with size
(224× 224), ViT would split this into 196 patches of 16× 16 that need to be attended
to, whereas our method would attend to all 224 rows (or columns). This means that the
operation should still be feasible, but does not require any form of downsampling.

One of the biggest differences between this architecture and other transformers is the
way the model is trained. Most transformers are pre-trained using a next token prediction
task. However, the SETra is trained exactly the same way as the other classifiers, which
means that there is no need for masking or positional embeddings.

Like the previous model, we use a spatial embedding of size 16 — this can be considered
as the equivalent of a “word embedding” in the NLP domain. We use four transformer
layers with an embedding size of 16 and a feedforward dimension of 64 which are much
smaller than is typical, but necessary to allow the model to train.

4.2 Experimental Setup

For this chapter, we have reimplemented the models of Zubarev et al: the original imple-
mentation used a proprietary data format that was not suitable for our reimplementation.1

This reimplementation allows us to implement both existing and new models in the same
framework for consistent evaluation.

4.2.1 Datasets and Tasks
While this chapter uses the datasets of Chapter 3, there were slight differences because

of the issue of the proprietary data format. Compared to Zubarev and the previous chapter,
the data was split in a slightly different manner. While we still used a training, validation
and test sets, the size of each subset was slightly different, to allow us to run repeated
experiments while still holding out a test set for use once only at the end, to genuinely
measure model generalization. Specifically, we assigned 60% of the subjects to the training

1Specifically, the mne toolbox introduced limitations on the development of new models and introduction
of other datasets and tasks. We reimplemented its core functionality, and the existing models themselves,
for this chapter. Results under this reimplementation are consistent with those of Chapter 3.

24 NEW MODELS

set, 20% was allocated for validation and the remaining 20% were allocated to the test
set. In addition to the training, validation and test set, we also used a development set
which was created by partitioning half the data (instead of subjects) from the validation
set. We used the validation set for early stopping and hyperparameter selection, and the
development set as a stand-in for the test set for producing results over the course of
experiments. (Note that unlike the other splits, the validation-development split is not
looking to evaluate inter-subject performance and instead is used to evaluate intra-subject
performance. This means that while the validation and test sets consist of different
subjects, the validation and development have the same subjects but different trials.)

In addition, there are subtle differences in our preparation of both the Cam-CAN and
the MOUS datasets. In each case, we epoched the data in the same way as Zubarev et al,
by taking a 800ms window that starts 300ms before the stimulus onset. However, after
the data was epoched Zubarev et al downsampled and then normalized it, whereas we do
these in the reverse order. In §3.1.1 the data is normalized using the first 280ms of the
downsampled data, and the rest is processed by the neural networks. This means that
this data includes a small amount of prestimulus data. In contrast, for strict correctness,
we normalize based on the whole prestimulus period, and the input to the networks starts
precisely at the stimulus onset.

Cam-CAN In addition to the AUDIOVIS task that was used on the Cam-CAN dataset in
the previous chapter, our re-implementation allowed us to easily add an additional task.
The Cam-CAN uses an auditory stimulus that consists of three distinct tones and so in
addition to the AUDIOVIS task described in §2.2.2, we also perform a TONE task where we
aim to predict the specific tone that is being played.

Unlike the previous chapter, we did not limit the number of subjects to 250 because
performance generally increases when neural networks are trained on larger amounts
of data. Instead, we only excluded five subjects (CC120208, CC510220, CC610462,
CC620193, CC620685) where there were issues with the data (for example, sessions with
no data), leaving 644 subjects. The training set consists of 388 subjects, the validation
and development set share 128 subjects and the test set has the remaining 128 subjects.

MOUS Our re-implementation of this dataset only deviates from the previous chapter
in two ways that have already been mentioned: the normalization of the data and the
number of subjects that are being used. In this chapter, our test set contains 40 subjects,
our validation and development set shares 40 subjects and the remaining 124 subjects
belong to the training set.

Hokuto This dataset is new to this chapter. It was released as part of the Biomag 2021
Dementia screening challenge,2 where the goal was to develop systems for the diagnosis of
dementia and mild cognitive impairment. Unlike the other datasets, there is no stimulus
and instead, this data consists of a resting state recording.3 This dataset consists of 100
control subjects, 16 subjects with mild cognitive impairment and 29 subjects suffering
from dementia. To address the class imbalance of this task, we will pool the subjects into
two classes: healthy and some cognitive impairment. The latter group combines subjects
with mild cognitive impairment and dementia.

2https://www.biomag2020.org/awards/data-analysis-competitions/
3It could not be used in the experiments of Chapter 3 as mne does not support this.

https://www.biomag2020.org/awards/data-analysis-competitions/

4.2 EXPERIMENTAL SETUP 25

The subjects were recorded in two separate locations, with 93 being recorded at
location A and 51 at location B. There was a large class imbalance at location A where 73
subjects were in the control, 19 had dementia and only one had mild cognitive impairment.
Location B on the other hand was more balanced with 27 subjects in the control class, 14
with mild cognitive impairment and 10 with dementia.

We will perform two different tasks on this data. The first (IMPAIRMENT) is to directly
predict if the subject has any cognitive impairment. The second is to predict which
location the recording took place in. This second task is to allow us to explore what kind
of spurious features a machine learner might pick up: in ideal circumstances, this second
task should not be possible. However, if there are strong location-based signals, it may be
the case that a learner for IMPAIRMENT is influenced by this in its predictions.

To look at the effect of the recording site we will also break down the IMPAIRMENT

task by the recording site in the same way that we broke down the SENTWORDLIST and
HARDEASYSENT tasks by the mode of the stimulus. Here we will train models on just the
data from location A, then train new models on location B and again on all of the data.

The data was recorded with different machines at each location, and while both used a
160-channel gradiometer they were sampled at different frequencies (1000Hz and location
A and 2000Hz at location B). Unlike the other datasets, we used WINDOW normalization
because there is no stimulus in this datasets.

Apart from these considerations, we use a similar approach to the other datasets. The
data was first band-pass filtered to 1-45 Hz and the data from location B is downsampled
by a factor of two. We then epoched the data into 1000ms windows at which point we
rescaled the window to have a mean of zero and a standard deviation of one. The data is
then downsampled by a factor of 8 in the same fashion as the other datasets.

4.2.2 Training and Evaluation

Evaluation The main metric is classification accuracy, as in Zubarev and §3.1.2. In
addition, we look at the variability of results in two ways. In the first, we calculate
standard deviation over subject accuracies on the test set (indicated by ± in the subject
accuracy columns of results). In addition, we calculate the 95% confidence Wilson score
interval for the classifier [78], which is calculated on a binomial assumption; the lower
and upper bounds are indicated by LB, UB respectively.

Training In each case, we trained three different models and then applied the model
with the best validation accuracy to the test set. During all development we use the
development set as a proxy for the test set.

We trained each model on a GPU with a batch size of 128, using the Adam gradient
descent optimization algorithm [79] with a learning rate of 10−3 which optimized the
cross-entropy loss of each model. We used early stopping on the validation loss with a
patience of 3.

4.2.3 Baselines

Our core baselines are LF-CNN and VAR-CNN from [21]. Like [21], we also include
high-performing computer vision models: GoogLeNet [80]and ResNet18 [9], described in

26 NEW MODELS

§2.1.1.4 These models are designed to process images with three colour channels, so we
added a 1× 1 convolution with three filters to form three “colour” channels.

4.3 Results

AUDIOVIS In Table 4.1 we have the results for the AUDIOVIS task for both the Cam-CAN
and MOUS datasets. Compared to our replication in §3.2 (Table 3.1), we can see that
accuracies here are somewhat higher than in the previous chapter, which is likely due to
the differences in training. Specifically, we trained three models and evaluated the model
with the best validation score, and we used all of the available data in the Cam-CAN
dataset. In terms of consistency, we can see that there are almost identical patterns
between the models on the datasets. Our replication saw very little difference among the
models on Cam-CAN, while the only difference on MOUS was that VAR-CNN outperformed
the LF-CNN on all evaluation sets (validation, development and final test), not just initial
validation.

Overall, the differences in results between the two datasets are substantial, despite
conceptually being a similar task. While our TimeConv and SERes models outperform
VAR-CNN and LF-CNN on Cam-CAN, the results are the other way around for MOUS. On
the Cam-CAN dataset, the lower bound of the Subject Accuracy for SERes is higher than
the test accuracy of any of the other architectures. This is likely due to the much larger
variation in the results for MOUS than Cam-CAN. We can see that the standard deviation
is around 5 on Cam-CAN but is between two and four times larger for MOUS. This may
well be due to that fact that this is a between-subject task and it is possible that the models
are picking up on characteristics of the session.

ResNet18 approaches the level of performance of the SERes and this may because they
are capable of capturing similar types of temporal relationships. However, both ResNet18
and GoogLeNet are much larger, which means that they tend to overfit more easily and
that do not reach performance levels seen elsewhere.

We also note that there is a substantial difference between our models that have a
larger component of dense connections. The TimeConv has a much larger fully-connected
layer than the SERes and the SETra is not constrained by convolutions at all. This may
indicate that these models are over-fitting more easily.

TONE The results for the TONE task are in Table 4.2 and we can see that almost all of
the models are able to significantly beat the random chance baseline of 33.3%. However,
there is much less variability between the models on this task compared to AUDIOVIS on
the MOUS, with all but two models doing better than 46%.

Notably, GoogLeNet performs the worst across all metrics. This is not the only time
that we have seen similar results from a computer vision architecture, over the course of
our experiments on the development set. We have noticed that the larger a model is, the
less likely it is to successfully converge.5

4[21] use the older VGGNet, modified to include batch normalization. When we implemented it, we
were unable to train a single model successfully. Instead of altering the architecture, we implemented

4.3 RESULTS 27

Dataset Architecture Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

Cam-CAN SERes 94.99 94.92 95.87 95.87±4.0 (95.16 - 96.58)
TimeConv 94.28 94.30 94.80 94.80±4.9 (93.95 - 95.66)
SETra 93.29 93.02 94.38 94.38±5.5 (93.42 - 95.34)
LF-CNN 93.24 93.09 94.38 94.38±5.5 (93.41 - 95.34)
VAR-CNN 93.29 92.73 94.33 94.33±5.5 (93.36 - 95.30)
GoogLeNet 93.22 92.89 93.86 93.86±5.4 (92.91 - 94.81)
ResNet18 94.24 94.09 95.03 95.03±4.8 (94.19 - 95.87)

MOUS SERes 78.03 78.97 79.34 79.29±14.0 (74.77 - 83.82)
TimeConv 72.20 71.91 74.36 74.49±11.4 (70.79 - 78.19)
SETra 72.13 72.97 74.11 73.80±8.2 (71.14 - 76.46)
LF-CNN 79.22 80.20 82.21 81.72±15.2 (76.78 - 86.66)
VAR-CNN 82.06 83.32 83.55 82.82±16.7 (77.42 - 88.23)
GoogLeNet 78.07 79.21 81.68 81.30±19.2 (75.07 - 87.53)
ResNet18 77.45 77.96 76.86 75.91±21.5 (68.95 - 82.88)

Table 4.1: Results of the AUDIOVIS task on both the Cam-CAN and MOUS datasets.
Included is the Validation Accuracy, Development Accuracy, Test Accuracy and the Lower
and Upper Bound of the Subject Accuracy

Architecture Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

SERes 45.16 46.72 46.09 46.09±8.5 (44.61 - 47.58)
TimeConv 44.19 46.17 45.70 45.70±8.3 (44.25 - 47.16)
SETra 45.89 46.90 46.50 46.50±8.7 (44.97 - 48.02)
LF-CNN 45.81 46.88 46.34 46.34±8.9 (44.77 - 47.91)
VAR-CNN 45.65 45.42 45.31 45.31±9.4 (43.67 - 46.95)
GoogLeNet 33.15 33.80 33.45 33.45±2.8 (32.95 - 33.95)
ResNet18 44.40 46.12 44.00 44.00±9.5 (42.33 - 45.66)

Table 4.2: Results of the TONE task on the Cam-CAN dataset

SENTWORDLIST In Table 4.3 we have the results of the SENTWORDLIST task on the MOUS
dataset. We can see that SERes outperformed our baselines (LF-CNN and VAR-CNN) in
every case for the Visual and Both subsets. The computer vision models do not do well
on this task and like the TONE, the GoogLeNet in particular falls behind. As in §3.2, we
see that there is a substantial difference between the different subsets. This may be due
to the way that the information can be processed. When a word is presented visually the
subject can immediately focus on any part of the word. For audio, on the other hand,
the subjects attentions will always initially be at the start of the word which may result
in more informative temporal relationships. Despite having half the available data, the

architectures that already incorporated batch normalization.
5This is consistent with our attempted training of VGGNet.

28 NEW MODELS

Audio subset achieves the best results.
Training on all of the data does not seem to improve compared to the results of each

subset. This may be because the low-level features are not easily transferred from one
modality to the other. This makes sense because these models are limited to learning a
spatial embedding which only allows focusing on the brain activity in 16 distinct ways.
When trained together, the models will need to compromise to focus on activity that
applies on both modalities. Increasing the size of the spatial embedding could improve
the results, although it may also make it easier for the network to overfit.

Subset Architecture Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

Audio SERes 65.91 65.61 65.79 65.93±4.1 (64.01 - 67.86)
TimeConv 63.44 64.46 64.95 64.90±4.8 (62.68 - 67.13)
SETra 63.63 64.19 64.78 64.79±4.8 (62.54 - 67.03)
LF-CNN 63.40 64.64 63.78 63.86±4.9 (61.59 - 66.13)
VAR-CNN 64.34 64.27 65.40 65.46±4.8 (63.23 - 67.69)
GoogLeNet 61.15 62.54 60.39 60.49±5.1 (58.09 - 62.89)
ResNet18 63.08 64.07 65.36 65.41±4.2 (63.47 - 67.34)

Both SERes 60.22 60.54 60.26 60.56±7.2 (58.23 - 62.89)
TimeConv 57.92 58.37 58.96 59.11±4.4 (57.68 - 60.55)
SETra 58.40 59.82 59.29 59.52±6.0 (57.58 - 61.46)
LF-CNN 58.55 58.75 58.73 59.00±5.9 (57.10 - 60.91)
VAR-CNN 57.30 58.62 57.99 58.15±5.9 (56.23 - 60.06)
GoogLeNet 52.50 53.63 52.87 52.82±3.4 (51.74 - 53.91)
ResNet18 55.83 58.47 58.08 58.22±4.8 (56.67 - 59.78)

Visual SERes 54.64 56.08 56.55 56.57±3.1 (55.03 - 58.11)
TimeConv 55.88 56.77 56.12 56.09±3.1 (54.54 - 57.65)
SETra 54.83 55.70 57.05 57.00±3.2 (55.43 - 58.56)
LF-CNN 54.99 55.41 56.22 56.18±2.8 (54.79 - 57.56)
VAR-CNN 54.54 55.20 55.53 55.51±3.2 (53.90 - 57.11)
GoogLeNet 53.86 55.35 55.06 55.04±0.7 (54.70 - 55.38)
ResNet18 53.28 55.43 56.22 56.19±3.3 (54.54 - 57.84)

Table 4.3: Results of the SENTWORDLIST task on the MOUS dataset

HARDEASYSENT In Table 4.4 we have the results of the HARDEASYSENT task on the
MOUS dataset for both the Audio and Visual subsets. Results for the Both subset can be
found in Appendix A.2. Like the SENTWORDLIST task, we can see a difference between the
subsets, but in this case, the classes are more easily distinguishable with a Visual stimulus
compared to the Audio equivalent. We also note that none of the models trained on the
Audio subset did better than chance (50%), whereas in both of the other subsets each
model lower bound of the 95% confidence interval was better than chance.

This also seems to be a task that does not see much benefit of the temporal features
that our proposed models focus on. While the LF-CNN outperforms the other models on

4.3 RESULTS 29

the Visual subset, as well as the Both subset (See Appendix A.2), there does not seem to be
a substantial difference between the other models. In any case, this is a challenging task
but all of the models are able to distinguish the difference when the stimulus is presented
visually.

Subset Architecture Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

Audio SERes 50.64 49.25 49.77 49.80±0.6 (49.52 - 50.08)
TimeConv 50.49 48.97 49.97 50.00±0.5 (49.77 - 50.22)
SETra 50.41 50.53 50.63 50.50±5.2 (48.10 - 52.90)
LF-CNN 54.24 49.83 51.54 51.48±4.9 (49.22 - 53.74)
VAR-CNN 50.13 51.48 51.88 51.63±4.5 (49.52 - 53.73)
GoogLeNet 53.06 48.44 50.91 50.81±4.6 (48.66 - 52.95)
ResNet18 52.54 48.78 49.72 49.49±3.9 (47.67 - 51.31)

Visual SERes 57.73 57.25 59.34 59.27±3.9 (57.32 - 61.22)
TimeConv 55.34 53.79 58.09 58.05±3.9 (56.14 - 59.96)
SETra 56.87 57.56 60.09 60.06±3.1 (58.53 - 61.59)
LF-CNN 58.82 59.40 60.76 60.66±3.0 (59.18 - 62.15)
VAR-CNN 59.24 59.06 59.08 59.00±3.3 (57.35 - 60.64)
GoogLeNet 57.84 59.05 59.55 59.16±1.1 (58.60 - 59.72)
ResNet18 56.76 55.96 58.72 58.43±3.0 (56.96 - 59.89)

Table 4.4: Results of the HARDEASYSENT task on the MOUS dataset

IMPAIRMENT In Table 4.5 we have the results of the IMPAIRMENT task on the Hokuto
dataset. This dataset was one of the most challenging, for three reasons: it does not
involve an evoked response, it is the smallest in terms of the number subjects which are
recorded at two separate locations, and it is tracking a between-subject variable. Despite
this, we were still able to train four different models that outperformed the random chance
baselines. This is the smallest dataset: there are only 14 subjects in the test set and only
five at location B, with large confidence intervals as a consequence.

For Location A, GoogLeNet, ResNet18, LF-CNN and VAR-CNN all perform very well
on the validation set. The same models also perform well on the validation set for Both
locations. This may be because the models have been able to consistently learn features
that work well for that majority of subjects from Location A in the validation set.

More generally, the models trained at Location A performed much better than Location
B. However, at least some of this is due to the class imbalance at each location. The
random chance baseline at Location A was 66.66% while it was 60% at Location B. The
models at Location B were much closer to random chance than at Location A: the mean
test accuracy at Location A is 78.88%, and at location B it is just 59.88%

Ultimately, there does not seem to be enough data to draw any strong conclusions,
although the results at Location A seem promising. However, we also looked at predicting
which location the subject was from, and all architectures achieve near 100% accuracy.
The mean test accuracy across all the models is 99.51%, with the lowest score 97.53%. We
are forced to conclude that the models are easily able to identify the individual machine

30 NEW MODELS

that was used to record the data. Consequently, this need to be carefully considered in
experimental design when looking at between-subject variables.

Location Architecture Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

A SERes 90.64 90.50 86.41 86.30±30.6 (70.65 - 101.95)
TimeConv 85.64 86.76 77.69 77.52±31.0 (61.66 - 93.39)*
SETra 90.99 92.17 79.71 79.53±31.6 (63.35 - 95.71)*
LF-CNN 95.47 95.76 84.91 84.77±33.4 (67.67 - 101.87)
VAR-CNN 94.07 94.61 83.22 83.08±31.8 (66.79 - 99.37)
GoogLeNet 96.16 96.25 83.75 83.71±32.8 (66.92 - 100.50)
ResNet18 94.20 94.78 81.17 81.12±33.0 (64.21 - 98.03)*

B SERes 50.62 51.15 60.43 59.78±34.3 (33.88 - 85.68)*
TimeConv 51.17 50.19 51.31 50.14±34.4 (24.19 - 76.09)*
SETra 48.12 48.79 60.14 59.78±21.3 (43.73 - 75.83)
LF-CNN 58.13 58.44 61.31 60.68±33.0 (35.80 - 85.56)*
VAR-CNN 72.75 72.42 65.49 64.66±30.6 (41.57 - 87.75)*
GoogLeNet 80.27 77.82 67.32 67.16±36.0 (40.00 - 94.32)*
ResNet18 75.99 74.77 67.40 67.24±35.5 (40.44 - 94.04)*

Both SERes 81.22 81.31 75.63 75.69±34.9 (61.92 - 89.46)*
TimeConv 76.87 77.03 71.86 71.71±32.4 (58.92 - 84.51)*
SETra 82.45 82.61 75.94 75.80±36.9 (61.23 - 90.37)*
LF-CNN 82.60 82.24 73.95 73.81±33.5 (60.59 - 87.03)*
VAR-CNN 85.58 85.65 76.82 76.69±35.5 (62.67 - 90.70)*
GoogLeNet 85.24 85.00 74.50 74.47±34.0 (61.04 - 87.90)*
ResNet18 88.89 88.47 77.77 77.74±33.0 (64.70 - 90.78)

Table 4.5: Results of the IMPAIRMENT task on the Hokuto datasets.

4.4 Summary

In this chapter, we have introduced three novel architectures and they have demonstrated
that by learning temporal relationships in the data we are able to improve the performance
on some tasks. In particular, the SERes was able to beat all our baseline models on the
SENTWORDLIST task where it achieved the highest overall accuracy in two of three subsets
(Audio and Both) and was only outperformed by our SETra in the third (Visual) subset.
We point out that these temporal patterns were easiest to identify on the audio subset of
the data. This difference may be due to the way that the word is processed because the
subject’s attention will always initially be at the start of the word for the audio stimulus
whereas this is not the case for the visual stimulus.

In the tasks where the models can make use of these temporal features, SERes generally
outperforms all other models including much large models like ResNet18 which has more

4.4 SUMMARY 31

than 150× more trainable parameters than SERes. In contrast, other tasks such as the
HARDEASYSENT task seem to be more conducive to spatial aspects and models such as
SETra and the baselines seem to perform better. It would be interesting in future work
to understand what key cognitive science properties distinguish HARDEASYSENT from
SENTWORDLIST in terms of their temporal behaviour.

Training models successfully remains the biggest challenge in the domain, with the
best performing models being the ones that are able to constrain the problem in a way that
maintains important relationships but reduces overfitting. The work by Zubarev et al has
shown to do this remarkably well at this, but its simplicity limits the types of interactions
that it can model. On the other hand, our SERes model is far more expressive and has
the potential to significantly improve on the LF-CNN and VAR-CNN if the challenge in
training models is addressed. In spite of these challenges, the SERes outperforms all other
models on several tasks which demonstrate the utility of these features.

Given the success of transformers in other fields, the SETra does not perform as well as
one might hope. This may be in part due to a transformer’s abilty to attend to information
anywhere in the input, which in this case may allow it to more easily overfit to any noise
that is present. This result highlights the importance of pretraining, which we will explore
in the next chapter through the use of an autoencoder.

5
Model Preprocessing

5.1 Introduction

In this chapter we will explore two possible ways to improve the performance of the
models that were used in Chapters 3 and 4. First, we will first look at a method of
pre-training which has been shown to be effective in other domains such as natural
language processing. Using an autoencoder, we will encode temporal relationships into a
dimensionally reduced representation (‘embedding’) which can then be taken as input by
other models. Not only will this pre-training potentially improve results, but it will also
allow us to investigate the importance of the temporal features in the data which our new
models have focused on.

Second, we will investigate the effects of normalization of the data from two different
points of view: local and global. As noted in §2.1.2, good normalization has been
important for building high-performing deep learning models in other domains. It is
common to normalize each trial from an MEG session individually using a baseline period.
However, in computer vision all of the data is normalized using the same set of statistics
which are calculated across the entire dataset. We will explore both of these approaches,
both independently and in combination, to determine the most appropriate method for
normalization.

5.2 TimeAutoencoder

In this section, we will explore the effects of pre-training via an architecture we refer to
as TimeAutoencoder. While transformers are potentially one possibility for pre-training,
they are generally trained as part of a next (or missing) token classification task. In this
domain, we do not have discrete tokens and therefore we can not directly adapt these

32

5.2 TIMEAUTOENCODER 33

t

C

Input

32 t 32 32 32 32 t

Encoder

t/
2

t/
2

Latent

32 32 32 32 32 t/
2

Decoder t

C

Output

Data Convolution Residual Convolution

Figure 5.1: The TimeAutoencoder architecture.

training methods. However, this line of inquiry seems to be a promising one for future
work.

Instead of using a next-token prediction, we focus on the traditional autoencoder
training task where we train our model to reproduce an input from a compressed latent
embedding. Specifically, we train our model to minimise the mean square error between
the output to the decoder and the original input. This architecture builds on the ideas
from our other models and relies on the Temporal Residual Block that we described in §4.1.
However, unlike our other models, this architecture has no method of learning any spatial
relationships at all. The intention here is that by limiting the types of interactions that it
can model, it will be forced to learn low-level features that are more easily generalized in
downstream tasks.

As the TimeAutoencoder only operates on temporal relationships, the latent embedding
that it generates can be thought of as data that has been downsampled. We can also train
the TimeAutoencoder on a larger input window to generate a latent representation that
has the same dimensions as the inputs that we used in §4.2.1, allowing more temporal
data to be incorporated. As training the autoencoder is significantly more computationally
intensive than the other models, we will only evaluate the architecture by training the
TimeAutoencoder on MOUS with 128 time steps which will then halve the temporal
dimension. We will train models in five different configurations: two baselines which use
the raw data, and three configurations which incorporate the encoder and differ in how
the encoder is trained.

Model As with other convolutional autoencoders described in §2.1.1, the TimeAutoen-
coder has two main components, the encoder and the decoder. In Figure 5.1 we see
these components separated by the latent representation. Given an input with size
(1, C , t) where C is the number of channels and t is the number of time steps, this will be
compressed down to (1, C , t/2) before the original input is reproduced.

The first layer in the encoder increases the number of filters to (32, C , t), which is then
passed to Temporal Residual Block with 32 filter layers, maintaining the same dimensions.
The last layer in the encoder is a strided temporal convolution and is the bottleneck in the
network. This layer uses the same settings as the other layers in the Temporal Residual
Block, but in addition uses a stride of 2. It outputs the latent representation which has
half the number of time steps of the input but is otherwise the same (1, C , t/2).

The decoder is similar to the encoder but replaces the first and last layer convolutions
with transpose-convolution equivalents. The first layer will increase the number of filters

34 MODEL PREPROCESSING

to 32 so that the data has a shape of (32, C , t/2) and like the encoder, this is input to the
Temporal Residual Block. The last layer in the decoder is responsible for recreating the
missing time steps and reproducing the input.

5.2.1 Experimental Setup

We will compare five different experimental configurations. The first two (RAW64,
RAW128) will not use the TimeAutoencoder at all and instead use the raw data, with
either 64 or 128-time steps. These will allow us to evaluate whether any performance
increase is simply due to extra information that is present in the larger input. Of those
that use the autoencoder, the FROZEN configuration will use the latent representation of
the encoder as part of a pre-processing step, and the parameters of the encoder will not
be updated. In contrast, the UNFROZEN will also use the latent representation but will
be fine-tuned as part of training the classifier. The UNINITIALIZED will use an encoder
with randomly initialized parameters, and like UNFROZEN the parameters will be updated
while training the classifier. For each of these configurations, we will train four different
model architectures (SERes, SETra, LF-CNN and VAR-CNN). We will apply these to the
HARDEASYSENT and SENTWORDLIST tasks on MOUS, to assess the benefit of temporal
information there.

Despite the simplicity of the TimeAutoencoder, there is a substantial computational
expense and training these models took more than 8 hours. As a result, unlike in §4.2.2,
we will only train one instance of each model, and because of the increased memory
requirements, we will use a batch size of 32. However, we will also accumulate gradients
across 4 batches to maintain an effective batch size of 128 and optimise it as described in
§2.1.1. In addition, we will not develop stimulus-specific models and will use the Both
subset to train our models.

5.2.2 Results

Table 5.1 (SENTWORDLIST) contains a number of interesting results. The TimeAutoen-
coder substantially increased the results of both the LF-CNN and VAR-CNN, where the best
configuration (UNFROZEN) produced Test Accuracies of 59.58% and 59.09%, respectively.
This reduced the difference in subject accuracy between SERes and LF-CNN to just 0.66%
from 1.61%. For both the LF-CNN and VAR-CNN the UNFROZEN configuration outperforms
all other configuration in every evaluation set.

Interestingly, the FROZEN in contrast decreases performance in most cases. We can
also see the benefit of pre-training by comparing the results to UNINITIALIZED, which are
significantly lower on the LF-CNN and VAR-CNN models. This might suggest that the
TimeAutoencoder is overfitting and is learning how to noise as well as useful information.

Looking at SERes and SETra, we can see that there is only a minor difference between
Disabled (64) and Disabled (128). We also see that these models perform no better when
the encoder is added. Taken together this suggests that the extra data is not capturing
useful relationships; as a result, the encoder is making better use of the information that
would already be present in the 64 time samples that we used in the previous chapters.

Moving on to Table 5.2 (HARDEASYSENT) we can see no clear optimal configuration.
This is not too surprising because in Table 4.4 and §4.3 we saw that the models that
incorporated temporal features performed no better than those without. This result more

5.3 THE ROLE OF NORMALIZATION 35

directly supports the idea that temporal features are more important in some tasks than
others.

Architecture Encoder Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

SERes Disabled (128) 59.63 60.67 60.24 60.46±6.3 (58.41 - 62.52)
Disabled (64) 58.21 59.02 59.42 59.62±5.7 (57.77 - 61.47)
Frozen 59.03 59.96 59.85 60.12±6.0 (58.18 - 62.06)
Unfrozen 55.04 56.25 56.42 56.57±4.3 (55.18 - 57.97)
Uninitialized 55.26 55.87 55.50 55.59±3.7 (54.40 - 56.78)

SETra Disabled (128) 59.00 59.93 60.18 60.42±6.5 (58.29 - 62.54)
Disabled (64) 59.19 59.65 59.63 59.94±6.3 (57.91 - 61.97)
Frozen 57.69 58.91 58.76 58.97±5.4 (57.21 - 60.74)
Unfrozen 58.81 60.12 59.04 59.25±5.7 (57.39 - 61.10)
Uninitialized 58.35 59.84 59.20 59.43±6.1 (57.46 - 61.41)

LF-CNN Disabled (128) 57.71 58.76 58.73 58.85±4.9 (57.28 - 60.43)
Disabled (64) 57.06 57.53 58.50 58.63±5.9 (56.73 - 60.54)
Frozen 56.13 58.39 57.08 57.20±5.5 (55.41 - 58.99)
Unfrozen 58.63 60.18 59.58 59.80±5.4 (58.06 - 61.55)
Uninitialized 57.36 58.83 57.61 57.78±5.4 (56.03 - 59.53)

VAR-CNN Disabled (128) 56.98 58.95 58.30 58.27±5.4 (56.54 - 60.01)
Disabled (64) 57.96 58.88 58.28 58.61±5.9 (56.69 - 60.53)
Frozen 56.77 57.19 57.94 58.19±5.8 (56.33 - 60.06)
Unfrozen 58.58 59.01 59.09 59.34±5.8 (57.47 - 61.21)
Uninitialized 58.06 58.93 58.58 58.84±5.9 (56.92 - 60.77)

Table 5.1: Results of the applying the TimeAutoencoder to the SENTWORDLIST task on
the MOUS dataset

5.3 The Role of Normalization

We have noted in §2.2.1 that there is a difference in how normalization is processed in MEG
compared to other domains. In this section we will explore the effect of normalization
methods that are common in MEG and machine learning more broadly. We will look
at the effects of a number of different LOCAL normalization methods and compare then
together with GLOBAL normalization.

5.3.1 Experimental Setup
Again to limit the computational cost, we will focus on the Cam-CAN dataset, and

we will train each normalization strategy on three different architectures (SERes, LF-
CNN and VAR-CNN) on both inputs with 64 and 128 time steps. The two different
normalization strategies are BASELINE and WINDOW that have been described in §2.2.1. We

36 MODEL PREPROCESSING

Architecture Encoder Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

SERes Disabled (128) 54.58 56.10 55.44 54.89±5.3 (53.18 - 56.60)
Disabled (64) 53.22 55.05 55.45 54.78±5.0 (53.16 - 56.39)
Frozen 53.91 54.70 54.91 54.34±4.6 (52.86 - 55.82)
Unfrozen 54.02 54.89 54.92 54.35±4.7 (52.84 - 55.86)
Uninitialized 54.90 55.09 55.50 55.18±4.3 (53.79 - 56.57)

SETra Disabled (128) 54.96 55.22 56.57 56.11±4.6 (54.63 - 57.58)
Disabled (64) 53.25 54.69 55.60 54.93±5.4 (53.20 - 56.67)
Frozen 54.21 54.92 54.91 54.34±4.5 (52.87 - 55.81)
Unfrozen 52.79 54.26 55.22 54.56±7.3 (52.19 - 56.92)
Uninitialized 55.39 55.92 55.77 55.32±5.2 (53.63 - 57.00)

LF-CNN Disabled (128) 54.61 55.04 55.14 54.35±5.2 (52.66 - 56.03)
Disabled (64) 53.98 55.12 55.97 55.21±5.9 (53.31 - 57.10)
Frozen 55.02 53.31 54.79 54.30±5.7 (52.45 - 56.15)
Unfrozen 54.11 54.02 56.28 55.67±5.8 (53.80 - 57.55)
Uninitialized 53.72 55.26 55.47 54.91±4.8 (53.36 - 56.46)

VAR-CNN Disabled (128) 56.11 54.00 56.12 55.51±4.6 (54.01 - 57.01)
Disabled (64) 53.06 54.61 55.80 55.26±4.3 (53.87 - 56.65)
Frozen 55.26 55.08 55.09 54.56±5.0 (52.94 - 56.17)
Unfrozen 55.47 53.27 56.01 55.46±6.1 (53.50 - 57.42)
Uninitialized 54.36 55.04 55.46 55.06±5.4 (53.30 - 56.82)

Table 5.2: Results of the applying the TimeAutoencoder to the HARDEASYSENT task on
the MOUS dataset

also implement SCALE, which is a LOCAL normalization that is similar to the ROBUSTSCALER

used in Scikit-Learn [81], as well as the effect of not applying any normalization which
we refer to as NONE normalization. In addition to being applied locally, each of these
methods has a GLOBAL variant, where the LOCAL method is applied first and followed by
GLOBAL normalization.

The BASELINE is the normalized method that we used for most of our previous ex-
periments and follows the procedure used by Zubarev et al where the baseline period is
300ms prior to stimulus onset. In contrast, SCALE fits the data to the interval [−1,1] to
reduce the effect of outliers in the data. More precisely, it first clips all the values to fall
between the 1st and 99th percentile, subtracts the 1st percentile and divides 99th so that
the data is between 0 and 1, then further rescales to the interval [−1,1].

We will follow the same methodology we used in §4.2.2 and will evaluate the best of
three models. This means that we will measure the performance of each strategy on six
different models from three different architectures on two different input sizes. As usual,
we will evaluate the performance of these models by the accuracy metric, noting mean
and standard deviation.

5.4 SUMMARY 37

5.3.2 Results

Normalization Mean Val. Acc. Mean Dev. Acc. Mean Test Acc. Mean Acc. (LB - UB)

Baseline 93.80±1.0 93.59±0.8 94.82±0.8 (93.95±0.9 - 95.70±0.6)
Baseline + Global 93.66±0.9 93.49±0.8 94.61±0.8 (93.69±0.9 - 95.53±0.7)
None 50.64±0.0 49.36±0.0 50.00±0.0 (50.00±0.0 - 50.00±0.0)
None + Global 93.26±0.6 92.94±0.6 94.26±0.7 (93.33±0.8 - 95.20±0.6)
Scale 93.99±0.6 93.65±0.9 94.97±0.6 (94.10±0.6 - 95.84±0.5)
Scale + Global 93.59±0.9 93.40±0.8 94.77±0.6 (93.86±0.7 - 95.68±0.5)
Window 93.69±0.9 93.48±0.9 94.81±0.7 (93.92±0.8 - 95.70±0.6)
Window + Global 93.60±0.7 93.42±0.8 94.71±0.7 (93.80±0.8 - 95.61±0.6)

Table 5.3: Effects of normalization on the AUDIOVIS task on the Cam-CAN dataset

From Table 5.3 we can clearly see that not applying any form of normalization com-
pletely prevents training, with NONE getting exactly 50% in most cases. At first look,
this is not terribly surprising; however, as there is no deviation in the models (standard
deviation 0), this means that none of the 18 models that were trained were able to learn
any useful features.

This is unexpected because our SERes model makes use of batch normalization, the
first of which takes place before any form of non-linearity. This may have been due to an
undesirable interaction between the weights of the first layer and the subsequent batch
normalization, where a small update to the weights and the bias in particular would result
in chaotic data distribution between batches and disrupt the normalization process.

In the AUDIOVIS task, the SCALE has a small lead in each metric, but the inter-model
variations are larger than the differences between most of the normalization strategies.
Looking at the mean test accuracy, BASELINE, WINDOW and SCALE score 94.82%, 94.81%
and 94.97% respectively which amounts to a difference of just 0.16%.

There is also a small difference in the models that used GLOBAL normalization where
the GLOBAL version performed a fraction worse than the version that just used the local
normalization. However, we can see from Table 5.4 that this difference is more pronounced
in the AUDIOVIS than the TONE.

We had assumed that we would see an effect of the normalization in all models, but it
is possible that these effects only become significant on larger models. We leave these
experiments to future work and while running such an experiment would be substantially
more computationally intensive, understanding why these larger models fail to train may
allow much more complex models to be trained

5.4 Summary

In this chapter, we explored two potential ways to improve performance, the TimeAu-
toencoder and normalization methods. In §4.3 we had found that the architectures that
focused on temporal features outperformed others on the SENTWORDLIST task. The

38 MODEL PREPROCESSING

Normalization Mean Val. Acc. Mean Dev. Acc. Mean Test Acc. Mean Acc. (LB - UB)

Baseline 45.87±0.4 46.22±0.6 45.91±0.4 (44.35±0.4 - 47.46±0.4)
Baseline + Global 45.34±0.7 46.29±0.9 45.71±0.8 (44.22±0.7 - 47.21±0.8)
None 33.76±0.1 32.91±0.1 33.33±0.0 (33.33±0.0 - 33.33±0.0)
None + Global 44.62±1.2 45.71±0.8 45.13±1.1 (43.68±1.0 - 46.58±1.1)
Scale 45.85±0.3 46.68±0.9 46.25±0.9 (44.72±0.9 - 47.77±0.8)
Scale + Global 45.56±0.3 46.71±0.6 46.09±0.9 (44.60±0.9 - 47.57±1.0)
Window 45.41±0.6 46.74±0.9 46.20±0.5 (44.69±0.5 - 47.70±0.5)
Window + Global 45.58±0.4 46.39±0.9 45.55±0.7 (44.02±0.8 - 47.08±0.7)

Table 5.4: Effects of normalization on the TONE task on the Cam-CAN dataset

results with the TimeAutoencoder— where applying it to LF-CNN and VAR-CNN, which
do not incorporate temporal features, was able to increase the performance on the task —
reinforce the finding that this task depends strongly on temporal features. We established
using various comparison models that this performance increase was also not solely due
to the increased complexity of the model.

The TimeAutoencoder did not improve the performance of all models. This may be
because it encodes temporal information in a redundant way; this is an open question. It
is possible that both of these problems, as well as the issue of high computational cost,
may be overcome by incorporating spatial relationships and further reducing the latent
embedding. This is because as it stands the computational costs are directly related to the
number of channels or the size spatial embedding. While there are hundreds of channels,
the spatial embeddings is only of size 16 which massively reduces the computational cost.

We have seen that there is only minor difference between local and global normaliza-
tion methods but some form of normalization is critical. However, we did not investigate
the effects on larger models such as ResNet18 and GoogLeNet and the effects may be
more pronounced on these types of models and more research is required in this area.

6
Conclusion

In this thesis we have successfully replicated a very recent piece of work by Zubarev et al
and extended it to answer several research questions.

RQ1: Does the superiority of Zubarev et al’s proposed deep learning architectures,
LF-CNN and VAR-CNN, hold for new large datasets and more challenging tasks? We
closely replicated the original work, and as they did found that both the LF-CNN and
VAR-CNN outperformed the chosen baseline machine learning classifiers. The new tasks
that we introduced showed a significant range in difficulty, with the AUDIOVIS task being
slightly more difficult and the HARDEASYSENT being very difficult. In addition, we also
found that the modality of the stimulus affected the difficulty of the task. For instance,
the SENTWORDLIST was easier when performed with an auditory stimulus as opposed to
a visual one.

RQ2: Do our proposed architectures outperform the existing models on our chosen
tasks, both the original from Zubarev et al and our more challenging tasks? We
proposed three novel architectures, the TimeConv, SERes and SETra, which have all
concentrated on learning temporal relationships in the data. We found that the SERes
and SETra architectures outperformed both of the LF-CNN and VAR-CNN in several tasks,
particularly those where a temporal aspect was clear.

This is similar to the pattern that we found when applying computer vision architec-
tures. We found that both ResNet18 and GoogLeNet generally performed worse than our
baselines but it was not always the case.

RQ3a: Can we further improve the performance of a model by using the interme-
diate latent representation of an autoencoder? We proposed the TimeAutoencoder
architecture which learns a temporally enriched embeddings that can replace the input
data used in other models. We found that using these embeddings significantly improved
the performance of both the LF-CNN and the VAR-CNN on the same tasks where our new
models had a significant lead. These embeddings were able to reduce the lead but were

39

40 CONCLUSION

not able to improve the performance pasts models that were designed to take advantage
of these features. They nonetheless demonstrate the importance of both pre-training and
capturing temporal relationships in the data.

RQ3b: Is it better to use subject level normalization or a global level normalization
on datasets? We explored three different strategies of subject-level normalization and
found that there is only a small difference among them. There was also only a small
difference when comparing subject-level normalization to global-level normalization.
However, not applying any normalization completely prevented models from learning
any useful features and even models that incorporated batch normalization failed to train.
Ultimately, this is an area that requires further exploration with a focus on larger and
more complex models.

Future Work This is a new domain for deep learning, and there is a great deal of work
to be done on the best way to train models. We have noted that models which contain
more than one million parameters (GoogLeNet and ResNet18) would not always train
successfully. This suggests that there is some unknown, intermittent and undesirable
interaction taking place while training these models. Understanding the cause of this is
likely to increase the performance of all architectures significantly.

In the mean time there are two other areas of research that are promising; pre-training
and data augmentation. In this work we have shown the benefits of pre-training using
an autoencoder; however, we constrained the encoder to only be able to learn temporal
features. Developing a method of pre-training that builds on spatial features as well is
likely to further increase performance.

Our SERes architecture has achieved state-of-the-art results on temporally-oriented
tasks but it is not clear what makes the distinction apparent. It would be interesting to
understand the underlying cognitive processes that cause the difference in temporal be-
havior between the HARDEASYSENT and SENTWORDLIST tasks. This understanding would
also likely lead to further performance improvements in neural network architectures.

A
Appendix

41

42 APPENDIX

Sentence Word List

Difficult The nice lady gave Henk, who had
bought a colourful parrot, a bag of
seeds

Bag a colourful nice a had who lady
parrot gave the bought seeds Henk

Het aardige vrouwtje gaf Henk die een
kleurige papegaai gekocht had een zak
pitjes

Zak een kleurige aardige een had die
vrouwtje papegaai gaf het gekocht pit-
jes Henk

Easy These are no regional problems such
as those on the Antilles

such as no those Antilles problems
regional are the these on

Dit zijn geen regionale problemen
zoals die op de Antillen.

zoals geen die Antillen problemen re-
gionale zijn de dit op

Table A.1: Literal translations of the Dutch sentences that were used as stimulus. Target
words (highlighted in bold) are in the same ordinal position in both the Sentence and the
Word List (in the original Dutch sentences)

Subset Architecture Val. Acc. Dev. Acc. Test Acc. Sub. Acc. Mean Acc. (LB - UB)

Audio SERes 50.64 49.25 49.77 49.80±0.6 (49.52 - 50.08)
TimeConv 50.49 48.97 49.97 50.00±0.5 (49.77 - 50.22)
SETra 50.41 50.53 50.63 50.50±5.2 (48.10 - 52.90)
LF-CNN 54.24 49.83 51.54 51.48±4.9 (49.22 - 53.74)
VAR-CNN 50.13 51.48 51.88 51.63±4.5 (49.52 - 53.73)
GoogLeNet 53.06 48.44 50.91 50.81±4.6 (48.66 - 52.95)
ResNet18 52.54 48.78 49.72 49.49±3.9 (47.67 - 51.31)

Both SERes 55.16 54.33 55.35 54.95±4.0 (53.64 - 56.25)
TimeConv 53.74 54.15 54.19 53.57±5.3 (51.87 - 55.27)
SETra 54.76 53.11 55.11 54.58±4.5 (53.12 - 56.03)
LF-CNN 53.19 55.64 56.61 55.83±5.9 (53.94 - 57.73)
VAR-CNN 55.02 54.90 55.27 54.70±5.3 (52.99 - 56.40)
GoogLeNet 54.02 54.89 54.92 54.35±4.7 (52.84 - 55.86)
ResNet18 54.56 53.98 55.21 54.66±5.1 (53.00 - 56.33)

Visual SERes 57.73 57.25 59.34 59.27±3.9 (57.32 - 61.22)
TimeConv 55.34 53.79 58.09 58.05±3.9 (56.14 - 59.96)
SETra 56.87 57.56 60.09 60.06±3.1 (58.53 - 61.59)
LF-CNN 58.82 59.40 60.76 60.66±3.0 (59.18 - 62.15)
VAR-CNN 59.24 59.06 59.08 59.00±3.3 (57.35 - 60.64)
GoogLeNet 57.84 59.05 59.55 59.16±1.1 (58.60 - 59.72)
ResNet18 56.76 55.96 58.72 58.43±3.0 (56.96 - 59.89)

Table A.2: Results of the HARDEASYSENT task on the MOUS dataset

References

[1] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks 3361(10), 1995 (1995). 1

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pp. 1097–1105 (2012). 1

[3] A. Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts,
Tools, and Techniques to Build Intelligent Systems (O’Reilly Media, 2017). 1, 6, 8, 9,
10, 11, 13

[4] LeCun Yann, Cortes Corinna, and Burges Christopher. THE MNIST DATABASE
of handwritten digits. The Courant Institute of Mathematical Sciences
pp. 1–10 (1998). URL http://yann.lecun.com/exdb/mnist/http:
//yann.lecun.com/exdb/mnist/{%}5Cnhttp://yann.lecun.com/exdb/
publis/index.html{#}lecun-98. 1

[5] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Tech. rep. (2009). URL https://www.cs.toronto.edu/{~}kriz/
learning-features-2009-TR.pdf. 1

[6] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. pp. 248–255 (IEEE, 2009). 1, 3

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition. Neural
Computation 1(4), 541 (1989). 1

[8] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings (2015). 1409.1556, URL http://arxiv.org/abs/
1409.1556. 1, 3, 14

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778 (2016). 1, 5, 10, 20, 22, 25

[10] L. Wang and A. Wong. Covid-net: A tailored deep convolutional neural network
design for detection of covid-19 cases from chest x-ray images. arXiv preprint
arXiv:2003.09871 (2020). 1, 2

43

http://yann.lecun.com/exdb/mnist/ http://yann.lecun.com/exdb/mnist/{%}5Cnhttp://yann.lecun.com/exdb/publis/index.html{#}lecun-98
http://yann.lecun.com/exdb/mnist/ http://yann.lecun.com/exdb/mnist/{%}5Cnhttp://yann.lecun.com/exdb/publis/index.html{#}lecun-98
http://yann.lecun.com/exdb/mnist/ http://yann.lecun.com/exdb/mnist/{%}5Cnhttp://yann.lecun.com/exdb/publis/index.html{#}lecun-98
https://www.cs.toronto.edu/{~}kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/{~}kriz/learning-features-2009-TR.pdf
1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

44 REFERENCES

[11] P. Lakhani and B. Sundaram. Deep learning at chest radiography: Automated classifi-
cation of pulmonary tuberculosis by using convolutional neural networks. Radiology
284(2), 574 (2017). URL https://doi.org/10.1148/radiol.2017162326.

[12] A. A. A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. J. Van Riel, M. M. W. Wille,
M. Naqibullah, C. I. Sanchez, and B. Van Ginneken. Pulmonary Nodule Detection in
CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE
Transactions on Medical Imaging 35(5), 1160 (2016).

[13] F. Milletari, N. Navab, and S. A. Ahmadi. V-Net: Fully convolutional neural networks
for volumetric medical image segmentation. In Proceedings - 2016 4th International
Conference on 3D Vision, 3DV 2016, pp. 565–571 (Institute of Electrical and Elec-
tronics Engineers Inc., 2016). 1606.04797. 1

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krüger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learners. ArXiv
abs/2005.14165 (2020). 2

[15] J. Gross. Magnetoencephalography in Cognitive Neuroscience: A Primer (2019). 2, 12

[16] Z. J. Koles, M. S. Lazar, and S. Z. Zhou. Spatial patterns underlying population
differences in the background EEG. Brain Topography 2(4), 275 (1990). 3

[17] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan. Filter Bank Common Spatial Pat-
tern (FBCSP) in brain-computer interface. In Proceedings of the International Joint
Conference on Neural Networks, pp. 2390–2397 (2008). 3

[18] B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and
Products. Technometrics 4(3), 419 (1962). 3

[19] D. Garrett, D. A. Peterson, C. W. Anderson, and M. H. Thaut. Comparison of linear,
nonlinear, and feature selection methods for EEG signal classification. IEEE Transactions
on Neural Systems and Rehabilitation Engineering 11(2), 141 (2003). 3

[20] R. Scherer, G. R. Müller, C. Neuper, B. Graimann, and G. Pfurtscheller. An asyn-
chronously controlled EEG-based virtual keyboard: Improvement of the spelling rate.
IEEE Transactions on Biomedical Engineering 51(6), 979 (2004). 3

[21] I. Zubarev, R. Zetter, H. L. Halme, and L. Parkkonen. Adaptive neural network
classifier for decoding MEG signals. NeuroImage 197, 425 (2019). 1805.10981. 3,
4, 8, 13, 17, 25, 26

[22] F. Wang, S. H. Zhong, J. Peng, J. Jiang, and Y. Liu. Data augmentation for eeg-based
emotion recognition with deep convolutional neural networks. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 10705 LNCS, pp. 82–93 (Springer Verlag, 2018).

https://doi.org/10.1148/radiol.2017162326
1606.04797
1805.10981

REFERENCES 45

[23] R. M. Cichy, D. Pantazis, and A. Oliva. Resolving human object recognition in space
and time. Nature neuroscience 17, 455 (2014). 3, 13

[24] B. Obermaier, C. Guger, C. Neuper, and G. Pfurtscheller. Hidden markov models for
online classification of single trial eeg data. Pattern Recognit. Lett. 22, 1299 (2001).
3

[25] J. M. Schoffelen, R. Oostenveld, N. H. Lam, J. Uddén, A. Hultén, and P. Hagoort. A
204-subject multimodal neuroimaging dataset to study language processing. Scientific
data 6(1), 17 (2019). 4, 15

[26] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. ArXiv
abs/1609.03499 (2016). 5

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018). 5, 10

[28] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
Deep contextualized word representations (2018). 1802.05365, URL http://arxiv.
org/abs/1802.05365. 5, 10

[29] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-
encoders for hierarchical feature extraction. In Artificial Neural Networks and Machine
Learning – ICANN 2011, pp. 52–59 (2011). 6

[30] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi, M. A. Nicolaou, B. Schuller, and
S. Zafeiriou. Adieu features? end-to-end speech emotion recognition using a deep
convolutional recurrent network. 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) pp. 5200–5204 (2016). 6

[31] P. Tzirakis, G. Trigeorgis, M. A. Nicolaou, B. Schuller, and S. Zafeiriou. End-to-end
multimodal emotion recognition using deep neural networks. IEEE Journal of Selected
Topics in Signal Processing 11, 1301 (2017). 6

[32] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object
detection. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
pp. 4490–4499 (2018). 6, 12

[33] A. Kendall, H. Martirosyan, S. Dasgupta, and P. Henry. End-to-end learning of
geometry and context for deep stereo regression. 2017 IEEE International Conference
on Computer Vision (ICCV) pp. 66–75 (2017). 6

[34] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, vol. 2015 Inter, pp. 1026–1034 (2015). 1502.01852,
URL https://arxiv.org/abs/1502.01852. 6, 11

1802.05365
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
1502.01852
https://arxiv.org/abs/1502.01852

46 REFERENCES

[35] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Journal of Machine Learning Research, vol. 9, pp. 249–256 (2010).
URL http://www.iro.umontreal. 6, 11

[36] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics (Springer New York, New York, NY, 2009). URL http:
//link.springer.com/10.1007/978-0-387-84858-7. 8, 9

[37] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu. WAVENET: A GENERATIVE MODEL FOR
RAW AUDIO. Tech. rep. 1609.03499v2. 10

[38] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of
deep networks. In Advances in Neural Information Processing Systems, pp. 153–160
(2007). 10

[39] X. Chai, Q. Wang, Y. Zhao, X. Liu, O. Bai, and Y. Li. Unsupervised domain adaptation
techniques based on auto-encoder for non-stationary EEG-based emotion recognition.
Computers in Biology and Medicine 79, 205 (2016). 10

[40] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-
encoders for hierarchical feature extraction. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 6791 LNCS, pp. 52–59 (2011). 10

[41] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th International
Conference on Machine Learning, pp. 1096–1103 (2008). 10

[42] Q. Lin, S. Q. Ye, X. M. Huang, S. Y. Li, M. Z. Zhang, Y. Xue, and W. S. Chen.
Classification of epileptic EEG signals with stacked sparse autoencoder based on deep
learning. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9773, pp. 802–810
(Springer Verlag, 2016). 10

[43] S. Narejo, E. Pasero, and F. Kulsoom. EEG based eye state classification using deep belief
network and stacked autoencoder. International Journal of Electrical and Computer
Engineering 6(6), 3131 (2016). 10

[44] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, vol. 2017-Decem, pp. 5999–6009 (2017). 1706.03762, URL
http://arxiv.org/abs/1706.03762. 10, 11, 20

[45] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165 (2020). 10

http://www.iro.umontreal.
http://link.springer.com/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
1609.03499v2
1706.03762
http://arxiv.org/abs/1706.03762

REFERENCES 47

[46] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative
Pretraining from Pixels. Tech. rep. (2020). 10

[47] Anonymous. An Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. ICLR pp. 1–19 (2021). 10

[48] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift (2015). 1502.03167, URL http://arxiv.org/
abs/1502.03167. 11

[49] Y. Wu and K. He. Group Normalization. International Journal of Computer Vision
128(3), 742 (2020). 1803.08494, URL http://arxiv.org/abs/1803.08494.
11

[50] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization (2016). 1607.06450,
URL http://arxiv.org/abs/1607.06450. 11

[51] R. Hari and A. Puce. MEG-EEG Primer (Oxford University Press, 2017). 12

[52] N. Brodu, F. Lotte, and A. Lécuyer. Comparative study of band-power extraction
techniques for motor imagery classification. 2011 IEEE Symposium on Computational
Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB) pp. 1–6 (2011). 12

[53] P. Herman, G. Prasad, T. McGinnity, and D. Coyle. Comparative analysis of spectral
approaches to feature extraction for eeg-based motor imagery classification. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 16, 317 (2008). 12

[54] Z. Koles, M. S. Lazar, and S. Z. Zhou. Spatial patterns underlying population differences
in the background eeg. Brain Topography 2, 275 (2005). 12

[55] Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki. Optimizing spatial patterns
with sparse filter bands for motor-imagery based brain–computer interface. Journal of
Neuroscience Methods 255, 85 (2015). 12

[56] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang. Filter bank common spatial
pattern algorithm on bci competition iv datasets 2a and 2b. Frontiers in Neuroscience
6 (2012). 12

[57] T. Hoya, G. Hori, H. Bakardjian, T. Nishimura, Y. Miyawaki, A. Funase, and J. Cao.
Classification of single trial eeg signals by a combined principal + independent compo-
nent analysis and probabilistic neural network approach (2003). 12

[58] N. Castellanos and V. Makarov. Recovering eeg brain signals: Artifact suppression with
wavelet enhanced independent component analysis. Journal of Neuroscience Methods
158, 300 (2006). 12

[59] J. Bayliss and D. Ballard. Single trial p300 recognition in a virtual environment
(1998). 12

1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
1803.08494
http://arxiv.org/abs/1803.08494
1607.06450
http://arxiv.org/abs/1607.06450

48 REFERENCES

[60] N. Xu, X. Gao, B. Hong, X. Miao, S. Gao, and F. Yang. Bci competition 2003-data
set iib: enhancing p300 wave detection using ica-based subspace projections for bci
applications. IEEE Transactions on Biomedical Engineering 51, 1067 (2004). 12

[61] M. Bojarski, D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel,
M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learning
for self-driving cars. ArXiv abs/1604.07316 (2016). 12

[62] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case,
J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen,
J. Engel, L. Fan, C. Fougner, A. Y. Hannun, B. Jun, T. Han, P. LeGresley, X. Li, L. Lin,
S. Narang, A. Ng, S. Ozair, R. Prenger, S. Qian, J. Raiman, S. Satheesh, D. Seetapun,
S. Sengupta, A. Sriram, C. Wang, Y. Wang, Z. Wang, B. Xiao, Y. Xie, D. Yogatama,
J. Zhan, and Z. Zhu. Deep speech 2 : End-to-end speech recognition in english and
mandarin. ArXiv abs/1512.02595 (2016). 12

[63] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural
networks. In ICML (2014). 12

[64] D. Ardila, A. Kiraly, S. Bharadwaj, B. Choi, J. Reicher, L. Peng, D. Tse, M. Etemadi,
W. Ye, G. Corrado, D. Naidich, and S. Shetty. End-to-end lung cancer screening with
three-dimensional deep learning on low-dose chest computed tomography. Nature
Medicine 25, 954 (2019). 12

[65] I. Serban, A. Sordoni, Y. Bengio, A. C. Courville, and J. Pineau. Building end-to-end
dialogue systems using generative hierarchical neural network models. In AAAI (2016).
12

[66] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J.
Lance. Eegnet: a compact convolutional neural network for eeg-based brain–computer
interfaces. Journal of Neural Engineering 15(5), 056013 (2018). URL http://dx.
doi.org/10.1088/1741-2552/aace8c. 13, 14

[67] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball. Deep learning
with convolutional neural networks for EEG decoding and visualization. Human Brain
Mapping 38(11), 5391 (2017). 1703.05051, URL http://doi.wiley.com/10.
1002/hbm.23730. 13

[68] A. Laakso and G. Cottrell. Content and cluster analysis: Assessing representational
similarity in neural systems. Philosophical Psychology 13(1), 47 (2000). 13

[69] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and
F. Yger. A review of classification algorithms for EEG-based brain-computer interfaces:
A 10 year update 15(3) (2018). 13

[70] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert. Deep
learning-based electroencephalography analysis: a systematic review. Journal of

http://dx.doi.org/10.1088/1741-2552/aace8c
http://dx.doi.org/10.1088/1741-2552/aace8c
1703.05051
http://doi.wiley.com/10.1002/hbm.23730
http://doi.wiley.com/10.1002/hbm.23730

REFERENCES 49

Neural Engineering 16(5), 051001 (2019). URL https://iopscience.iop.org/
article/10.1088/1741-2552/ab260c. 13

[71] M. A. Shafto, L. K. Tyler, M. Dixon, J. R. Taylor, J. B. Rowe, R. Cusack, A. J. Calder,
W. D. Marslen-Wilson, J. Duncan, T. Dalgleish, R. N. Henson, C. Brayne, E. Bull-
more, K. Campbell, T. Cheung, S. Davis, L. Geerligs, R. Kievit, A. McCarrey, D. Price,
D. Samu, M. Treder, K. Tsvetanov, N. Williams, L. Bates, T. Emery, S. Erzinçlioglu,
A. Gadie, S. Gerbase, S. Georgieva, C. Hanley, B. Parkin, D. Troy, J. Allen, G. Amery,
L. Amunts, A. Barcroft, A. Castle, C. Dias, J. Dowrick, M. Fair, H. Fisher, A. Gould-
ing, A. Grewal, G. Hale, A. Hilton, F. Johnson, P. Johnston, T. Kavanagh-Williamson,
M. Kwasniewska, A. McMinn, K. Norman, J. Penrose, F. Roby, D. Rowland, J. Sargeant,
M. Squire, B. Stevens, A. Stoddart, C. Stone, T. Thompson, O. Yazlik, D. Barnes,
J. Hillman, J. Mitchell, L. Villis, and F. E. Matthews. The Cambridge Centre for Ageing
and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, multidis-
ciplinary examination of healthy cognitive ageing. BMC Neurology 14(1) (2014).
14

[72] R. T. Schirrmeister, J. T. Springenberg, L. Fiederer, M. Glasstetter, K. Eggensperger,
M. Tangermann, F. Hutter, W. Burgard, and T. Ball. Deep learning with convolutional
neural networks for eeg decoding and visualization. Human Brain Mapping 38, 5391
(2017). 14

[73] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should i trust you?" Explaining
the predictions of any classifier. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, vol. 13-17-Augu, pp. 1135–1144
(2016). 1602.04938, URL https://arxiv.org/abs/1602.04938. 16

[74] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems (2015). Software available from tensorflow.org, URL
https://www.tensorflow.org/. 17

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library (2019). 1912.01703, URL
http://arxiv.org/abs/1912.01703. 22

[76] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, P. Dhariwal, D. Luan, and I. Sutskever.
Generative pretraining from pixels. In Proceedings of the 37th International Conference
on Machine Learning (2020). 22, 23

https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
1602.04938
https://arxiv.org/abs/1602.04938
https://www.tensorflow.org/
1912.01703
http://arxiv.org/abs/1912.01703

50 REFERENCES

[77] Anonymous. An image is worth 16x16 words: Transformers for image recognition at
scale. In Submitted to International Conference on Learning Representations (2021).
Under review, URL https://openreview.net/forum?id=YicbFdNTTy. 22, 23

[78] L. D. Brown, T. T. Cai, and A. Das Gupta. Interval estimation for a binomial proportion.
Statistical Science 16(2), 101 (2001). 25

[79] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2015). 25

[80] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07-12-
June, pp. 1–9 (IEEE Computer Society, 2015). 1409.4842, URL https://arxiv.
org/abs/1409.4842v1. 25

[81] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
python. ArXiv abs/1201.0490 (2011). 36

https://openreview.net/forum?id=YicbFdNTTy
1409.4842
https://arxiv.org/abs/1409.4842v1
https://arxiv.org/abs/1409.4842v1

	Statement of Originality
	Abstract
	1 Introduction
	2 Background
	2.1 Machine Learning
	2.1.1 Deep Learning Architectures
	2.1.2 Training

	2.2 MEG
	2.2.1 Preprocessing and feature engineering
	2.2.2 Applications
	2.2.3 Summary

	3 Foundation
	3.1 Method
	3.1.1 Datasets and Tasks
	3.1.2 Training and Evaluation

	3.2 Results
	3.3 Summary

	4 New Models
	4.1 Models
	4.2 Experimental Setup
	4.2.1 Datasets and Tasks
	4.2.2 Training and Evaluation
	4.2.3 Baselines

	4.3 Results
	4.4 Summary

	5 Model Preprocessing
	5.1 Introduction
	5.2 TimeAutoencoder
	5.2.1 Experimental Setup
	5.2.2 Results

	5.3 The Role of Normalization
	5.3.1 Experimental Setup
	5.3.2 Results

	5.4 Summary

	6 Conclusion
	A Appendix
	References

