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Abstract

Background: The emergence of precision medicine, which is described as an approach

that tailors health interventions to a group of patients based on their characteristics,

brings challenges to Health Technology Assessment (HTA). HTA seeks to provide

policymakers with the necessary information to better understand the benefits of

health technologies and make better funding decisions, and ultimately improve resource

allocation. Precision medicine differs from traditional medicine in that it is based on

patient subsets, whereas traditional medicine is based on the entire patient population.

Therefore, identifying appropriate patient subgroups is an important part of the evaluation

of precision medicines. Objective: This research aims to develop Machine Learning

tools to address the subgroup identification problem in precision medicine. Methodology:

A novel Machine Learning model is proposed in this research using Multi-Task Learning

and Support Vector Machine. The survival analysis problem is decomposed into a

series of classification problems, and Support Vector Machine is applied to improve the

classification accuracy. Moreover, a ℓ2,1 norm is used for feature selection.This model

has two functions: (1) predict event times based on censored data; (2) select important

covariates. Results: The prediction accuracy of the proposed model is compared

with two benchmark statistical methods, Cox-LASSO and Cox-EN, and three state-

of-the-art Machine Learning methods. The proposed model outperforms the other

methods. The proposed model significantly outperforms the Cox models in terms of

feature selection. In the simulation study, the proposed model outperforms the other

methods in selecting patient subgroups with enhanced treatment effects Conclusion:

v



vi Abstract

The model proposed in this research outperforms several other state-of-the-art methods

in time-to-event prediction and feature selection. Therefore, the proposed model can

be used for precision medicine to select high-risk patients or patient subgroups with

enhanced treatment effects and has potential applications in other fields involving

survival analysis.
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1
Introduction

Precision medicine, which is described as an approach that tailors health interventions

to a group of patients based on their individual characteristics, has grown rapidly over

the past decade. The emergence of precision medicine brings challenges for Health

Technology Assessment (HTA), which is a subfield of health economics that aims to

assess the quality of health technologies by using scientific evidence. The purpose of

this thesis is to develop machine learning (ML) models to improve the assessment of

health technologies in precision medicine.

This chapter outlines the background, purpose, and objectives of the research.

Section 1.1 introduces the background of HTA and precision medicine. Section 1.2

describes the relationship between subgroup identification and survival analysis. Section

1.3 and 1.4 introduce survival analysis and the ML model used in the research. Finally,

Section 1.5 lists the research questions and intended contributions of the research.

1



2 Introduction

1.1 Background: Health Technology Assessment and

Precision Medicine

The goal of HTA is to provide policymakers with the necessary information to better

understand the benefits of health technologies and make better funding decisions.

When making decisions between different actions, economic evaluation is the tool

for comparing the corresponding costs and consequences (Drummond et al., 2015).

Economic evaluation has four categories: cost-effectiveness analysis, cost-minimisation

analysis, cost-benefit analysis, and cost-utility analysis. In cost-effectiveness analysis,

the incremental cost-effectiveness ratio (ICER) is used to compare the cost-effectiveness

of a new health technology versus an old technology or no technology. Suppose A is a

new health technology and B is the alternative intervention to be compared, the ICER

is calculated as follow:

ICERA,B “
CA ´ CB

EA ´ EB

(1.1.1)

where CA and CB are the costs of health technologies A and B, and EA and EB

represents their effectiveness. Funding decisions for new health technologies are based

on comparing the ICER to a willingness-to-pay threshold. If the ICER of the new health

technology A is smaller than the threshold, then we say that the health technology A

is cost-effective.

Precision medicine is described as the tailoring of health interventions based on

patients’ individual characteristics (Joore et al., 2020; Fahr et al., 2019). With advances

in genomes, data collection, and data analysis, precision medicine is no longer out of

reach. Compared with traditional healthcare, precision medicine improves both disease

prevention and treatment (Williamson et al., 2018). In terms of disease prevention,

precision medicine uses genetic screening to identify high-risk patients before symptoms

appear. Early diagnosis of disease combined with prevention can reduce the risk of

severe conditions, thereby increasing health outcomes such as life years gained and

reducing the financial burden to healthcare providers. In terms of disease treatment,

precision medicine provides personalised treatment to maximise efficacy and minimise

side effects. Precision medicine achieves the goal of stratifying patients by collecting
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multiple data including genomic, environmental and population health data for analysis

(Williamson et al., 2018).

Both patients and healthcare systems can benefit from precision medicine, where

their treatments are designed based on their baseline risk, estimated treatment outcome,

and other important biomarkers (Love-Koh et al., 2018). Precision medicine is increasingly

important worldwide over the last five years as many countries such as the UK, US

and China recognise it as a funding priority (Williamson et al., 2018). Australia

also attaches great importance to precision medicine. In 2018, “using genomics and

precision medicine to help Australia become the healthiest country on earth” was

identified by Innovation and Science Australia as an ideal National Mission (Williamson

et al., 2018). The development of precision medicine brings challenges to health

economics. Therefore, the Australian health policy-makers such as HTA agencies

should consider how their methods can be improved to better evaluate new precision

medicines.

1.2 Background: Subgroup Identification

As described above, precision medicine not only requires optimised treatments based

on individuals’ characteristics, but also predictive methods to identify patients at risk

for specific health conditions. The process to identify patients is called subgroup

identification. In precision medicine, the purpose of subgroup identification is to

evaluate patient subgroups in which a particular health intervention can be clinically

effective and/or cost-effective (Chen et al., 2020).

In precision medicine, health technologies such as drugs are designed for specific

patient subgroups with enhanced treatment outcomes, rather than targeting the entire

patient population. Therefore, HTA assesses the ICER of new health technologies in

precision medicine among specific patient subgroups rather than the entire population.

As a result, subgroup identification can directly influence the calculation of the ICER,

as it affects EA in Equation (1.1.1). Here is an example of how funding decisions

are made among a subgroup of patients. Gefitinib is a drug for non-small cell lung
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cancer (NSCLC) tumor patients with activating mutations of EGFR-TK. In 2010,

the National Institute for Health and Care Excellence (NICE) in England assessed

the cost-effectiveness of gefitinib among NSCLC patients with activating mutations

of EGFR-TK. The results showed that gefitinib is cost-effective for this subgroup of

patients, so NICE recommended gefitinib as the first-line treatment for them (Gavan

et al., 2018). This example illustrates the difference in economic evaluations between

traditional and precision medicine – economic evaluations for precision medicine take

patient heterogeneity into consideration.

Here are some examples of identifying high-risk patient subgroups. Hill et al.

(2019b) built a tree-based predictive model to identity patients who have high-risk

of developing atrial fibrillation, and the patients who are identified as high-risk will

be tested. They also conducted a cost-effectiveness analysis of this method and the

result showed that the screening strategy based on their risk predictive algorithm is

more cost-effective than the conventional screening strategy (Hill et al., 2019a). Ling

et al. (2018) developed a predictive model using observational data to identify sepsis

patients at high risk for prolonged intensive care unit (ICU) stay, and the result can

inform the plan to meet the demand for ICU care. Zack et al. (2019) applied a Random

Forest model to identify patients who have high-risk of death or congestive heart failure

rehospitalisation after percutaneous coronary intervention, and their result can improve

the quality of healthcare, reduce healthcare costs, and assist clinical decision-making.

These examples show that the identification of specific patient subgroups at risk for

certain health conditions is important and can enhance health outcomes and resource

allocations.

Dmitrienko et al. (2016) pointed out several contexts in precision medicine where

identifying suitable patient subgroups for particular health technologies is needed:

• A sponsor is interested in ‘salvaging’ an experimental treatment following a failed

Phase III trial by identifying a subgroup with a substantial treatment benefit ;

• A sponsor is interested in identifying a subset of ‘super-responders’ in a successful

Phase III trial.
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Successfully identifying a proper patient subgroup in these contexts can influence the

economic evaluations for these health interventions. For example, bevacizumab is a

drug for epithelial ovarian cancer, and evidence of improved median progression free

survival time can be found in two Phase III trials when bevacizumab was added to

the treatment for ovarian cancer. However, only a subgroup of ovarian cancer patients

benefited remarkably from bevacizumab, while the rest benefited marginally or not

at all. Winterhoff et al. (2018) developed a predictive model which identified 20%

of patients who benefit significantly from bevacizumab, and the ICER of bevacizumab

dropped from $360,000 per Quality-Adjusted Life-Year (QALY) for universal treatment

to $120,000 per QALY for treating only the predictive patient subgroup. This example

shows that predictive modelling has the potential to improve healthcare resource allocations

in precision medicine by identifying the suitable patient subgroup for a certain treatment.

From the examples given above, it can be concluded that patient subgroups can be

defined according to the following rules:

1. Patients who have a particularly good or poor prognosis, such as the identification

of high-risk patients examples (Hill et al., 2019b,a; Ling et al., 2018; Zack et al.,

2019).

2. Patients for whom the treatment effect is particularly strong, such as the bevacizumab

example (Winterhoff et al., 2018).

3. Patients for whom the treatment is particularly cost-effective, such as the Gefitinib

example (Gavan et al., 2018).

As the capability of collecting and managing data grew rapidly over the past

decades, ML as the state-of-the-art predictive method is suggested to be applied

to precision medicine for cost-effectiveness analysis (Chen et al., 2020). Compared

with statistical methods, ML models perform well in discovering non-linear and non-

monotone relationships by processing a large number of covariates simultaneously, and

outperformed traditional statistical methods in various real-world applications. For

example, a study compared ML methods with conventional statistical methods for
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survival analysis, and the result showed that when the dimension of covariates is high,

ML methods outperformed conventional statistical methods (Spooner et al., 2020).

Consequently, ML methods will be applied to build predictive models to identify patient

subgroups in this research.

1.3 Background: Survival Analysis

Survival analysis, also known as duration analysis, is the branch of econometrics

or statistics to analyse the time until the event of interest occurs based on censored

datasets. In general, building predictive ML models to identify high-risk patients

and suitable patient subgroups for health interventions involves estimating time-to-

event outcomes using data from clinical trials or observational studies. There are

several associated difficulties. For example, often some of the data are censored –

individuals lost to follow-up or have not experienced the event of interest at the end

of the observation period (in this research only right-censoring is considered, as this is

the norm). Suppose a study lasts 10 years and the event of interest is death. A large

proportion of patients are alive at the end of the study, and then they are censored.

The duration between the starting point of observation and the event of interest is

called the survival time. Standard ML models cannot be applied to censored data

directly. One intuitive method is to delete the censored data and use the rest to build

the model. However, it is inappropriate since: (1) the censored data provide partial

information – the lower bound of the survival time; and (2) in some observations or at

the early stage of observations, a large proportion of patients are censored.

Due to the existence of censoring and the demand of identifying patient subgroups

based on censored datasets, survival analysis should be adapted to subgroup identification.

1.4 Background: Multi-task Learning

Multi-task learning (MTL) is a branch of ML, which has been intensively studied

lately. In an early study, Caruana (1997) defined MTL as ‘an inductive transfer
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mechanism whose principal goal is to improve generalization performance by leveraging

the domain-specific information contained in the training signals of related tasks.’ In

plain words, MTL enables algorithms to learn from the experiences of other similar

tasks. Caruana (1997) also stated that most real-world problems are multi-task problems.

Moreover, Caruana (1997) listed three fields MTL can be applied to, and one of them

is healthcare.

There are two reasons MTL is chosen as the ML method to build the predictive

model in this research. First, several works have applied MTL to survival analysis,

and the results showed that it outperformed several other popular ML methods and

conventional statistical methods (Yu et al., 2012; Li et al., 2016; Wang et al., 2017; Liu

et al., 2018; Wang et al., 2021). Second, MTL has developed fast over the past decade

and has outstanding performance in many real-world applications, and the technique

can identify patient subgroups using censored data. MTL has been successfully applied

in the fields of computer vision, natural language processing, web, bioinformatics, and

so on (Zhang and Yang, 2021).

Zhang and Yang (2018) gave a formal definition of MTL:

Definition 1.4.1 (Multi-task learning). Given m learning tasks tTiu
m
i“1 where all the

tasks or a subset of them are related but not identical, multi-task learning aims to learn

the m tasks together to improve the learning of a model for each task Ti by using the

knowledge contained in all or some of other tasks.

This learning strategy is naturally used by humans in daily life because people always

transfer knowledge between related things, which is the motivate of MTL. For example,

learning Japanese and Mandarin can help each other. When learning Japanese and

Mandarin at the same time, one can find that the two languages have many characters

in common with the same meaning. So, ‘Learning Mandarin’ and ‘Learning Japanese’

are two related but not identical tasks. In this way, common information ‘characters’

are shared in the related tasks ‘Learning Mandarin’ and ‘Learning Japanese’, which

improves the results of both tasks. Another example is spam filters. Suppose there

are two tasks, a spam filter for Russian users and a spam filter for US users. Russian
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emails are likely to be spam for US users, but not for Russian users, and vice versa.

1.5 Research Objectives

Current patient subgroups identification methods using MLmodels based on censored

datasets are limited (Huber et al., 2019; Alemayehu et al., 2018; Loh et al., 2019).

The models reviewed in the comparative study suffer from at least one limitation,

such as inability to handle censored data and/or defective performance on at least

one of the seven rules for subgroup identification (Loh et al., 2019), which are: (a)

bias in selection of subgroup variables; (b) probability of false discovery; (c) probability

of identifying correct predictive variables; (d) bias in estimates of subgroup treatment

effects; (e) expected subgroup size; (f) expected true treatment effect of subgroups; and

(g) subgroup stability.

The purpose of this research is to build a novel predictive ML model based on MTL

to identify patient subgroups using censored datasets, and the main goal is to improve

the prediction accuracy of survival time. The prediction of survival time is when given

a new patient, the proposed model can predict the survival time of the new patient

based on the censored dataset. And the prediction accuracy is assessed by concordance

index, which is introduced in Chapter 3. This research is designed as follows:

• First, I propose a new ML model based on MTL to improve the prediction

accuracy of time-to-event outcomes when data are censored.

• Second, I apply this new model to real-world and simulated datasets.

• Third, I compare the accuracy of my model in these datasets with other state-

of-the-art models, including both conventional and ML models, and calculate

the change of ICER in simulated datasets based on the method of subgroup

identification.

The predictive model proposed in this research will not satisfy all the seven criteria

for subgroup identification. There are two reasons. First, the development of ML
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models for subgroup identification in precision medicine is still in its infancy. Second,

satisfying all the seven criteria is unrealistic at this stage as the comparative studies

showed no existing model close to this standard (Huber et al., 2019; Alemayehu et al.,

2018; Loh et al., 2019). This research makes unique contribution to the literature as:

(1) a novel model for survival analysis based on MTL is developed; and (2) to the best

of my knowledge, it is the first to use MTL to identify patient subgroups.

In precision medicine, identification of patient subgroups at risk for certain diseases

or health events is required. Successful identification of such patient subgroups can

help to enhance healthcare quality, reduce healthcare costs, and assist health decision-

making. Moreover, predictive models which can identify suitable patient subgroups

for a certain treatment have the potential to impact the ICER of the treatment and

thereby improve healthcare resource allocations. So successful identification of patient

subgroups based on their individual characteristics in the contexts demonstrated above

is an important step towards precision medicine. Moreover, as Innovation and Science

Australia identified “using genomics and precision medicine to help Australia become

the healthiest country on Earth” as an ideal National Mission (Williamson et al.,

2018), this research can ultimately help healthcare providers enhance the uptake of

appropriate treatments and improve the well-being and quality of life of Australians.

The primary questions of this research is:

Compared with existing models, can the proposed model improve the accuracy of

time-to-event prediction based on the censored dataset, as assessed by the concordance

index?

Secondary questions that this research will additionally investigate are:

Compared with existing models, can the proposed model select the correct predictive

or prognostic biomarkers? and

How will the ICER change when calculated among selected patient subgroups and

whole patient population?
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2
Literature Review

In this chapter, the current HTA agencies’ guidelines on subgroup identification

will be discussed, and important works on subgroup identification, survival analysis,

and MTL for survival analysis will be reviewed. Finally, the research gaps will be

illustrated.

The definitions of prognostic and predictive biomarkers need to be introduced, as

they are mentioned in the guidelines.

Typically, subgroups are defined by biomarkers, which refer to covariates, including

clinical, genomic, demographic, and other covariates. There are two types of biomarkers:

prognostic and predictive biomarkers. Prognostic biomarkers provide information on

disease progression and are independent of treatment. Predictive biomarkers provide

information on the effectiveness of treatment.

11
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2.1 Guideline Discussion

Many fear that uncontrolled data ‘dredging’ could lead to inflated treatment effects

in selected patient subgroups, so HTA agencies from the UK and Australia have

guidelines on the identification of subgroups. Data ‘dredging’ is an abuse of data

analysis by reporting only statistically significant results. To avoid data ‘dredging’,

the common method is to perform randomised Cross-Validation while training the

model. The details of Cross-Validation is in section 4.1.

2.1.1 NICE

The National Institute for Health and Care Excellence (NICE) in England is one of

the leading HTA reimbursement organisations. NICE evaluates the clinical effectiveness

and cost-effectiveness of medicine, medical devices and diagnostic tests in England.

According to the NICE Health Technology Evaluations: the Manual1 (NICE,

2022) published on 31st January 2022:

• “The characteristics of patients in the subgroup should be clearly defined and

should preferably be identified based on an expectation of differential clinical or

cost effectiveness because of known, biologically plausible mechanisms, social characteristics

or other clearly justified factors.”

• “Avoid post hoc data ‘dredging’ in search of subgroup effects, this will be viewed

sceptically.”

• Subgroups can be based on “characteristics of patients” or “differences in baseline

risk of specific health outcomes”.

• “..., potentially relevant subgroups will be identified at the scoping stage.”

• “Individual patient data is preferred.”

To conclude, NICE prefers:

1https://www.nice.org.uk/process/pmg36

https://www.nice.org.uk/process/pmg36
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1. Subgroups being pre-specified is preferred and post hoc subgroup analysis should

be avoided.

2. Subgroups should be biologically plausible.

3. Subgroups can be based on predictive biomarkers (treatment-by-characteristics

interaction) or prognostic biomarkers (baseline risk).

4. Analysis of individual patient data is preferred.

2.1.2 PBAC

The Pharmaceutical Benefits Advisory Committee (PBAC) is an independent institute

in Australia to make recommendations on which health technology should be publicly

funded. The recommendations are made based on the safety, clinical effectiveness

and cost-effectiveness of new health technologies. According to the Guidelines for

Preparing a Submission to the Pharmaceutical Benefits Advisory Committee2

(PBAC, 2016) published on September 2016:

• “Provide. .. the plausibility of a variation in treatment effect for the subgroup,

as it relates to the pharmacological, biological or clinical rationale for using the

medicine.”

• “The PBAC prefers submissions based on the whole population of a randomised

trial.”

• “For each outcome relevant to the submission, present the relative and absolute

treatment effect measures for the whole trial population, the subgroup and the

complement.”

• “Test for interaction between the subgroup and its complement to support and

quantify the association between the treatment effect and the covariate defining

the subgroup.”

2https://pbac.pbs.gov.au

https://pbac.pbs.gov.au
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To conclude, PBAC prefers:

1. Subgroups being pre-specified is preferred.

2. Subgroups should be biologically plausible.

3. Submissions based on the whole patient population of a randomised trial are

preferred.

2.1.3 Discussion

As described above, both guidelines recognise subgroup analysis and both prefer

patient subgroups to be biologically and statistically plausible and to be pre-specified.

Now considering each of the rules in turn. For the requirement that subgroups should

be pre-specified, it will never be known which biomarkers are associated with treatment

effect or baseline risk until the data analysis is conducted. Therefore, the model

presented in this study can be used as a tool in the analysis of data from early clinical

trials by pharmaceutical companies to find potential predictive/prognostic biomarkers.

The result of the analysis could inform the design of further trials regarding patient

subgroups. For the requirement that subgroups be biologically plausible, this should

be left to medical researchers to decide.

For the concerns about data ‘dredging’ and overfitting, these can be avoided by

model validation techniques such as Cross-Validation.

2.2 Subgroup Identification

There are generally three types of subgroup identification methods: basic methods,

global outcome modelling methods, and global treatment effect modelling methods

(Dmitrienko et al., 2016).
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2.2.1 Basic Methods

Basic methods include univariate regression and tree-based regression. The univariate

regression method assumes that a set of candidate predictive biomarkers has been

specified in advance, and then performs the following three steps:

Step 1:

Use the single biomarker and treatment biomarker interaction terms as covariates

and treatment effect as the response variable to fit a group of regressions. For example:

y “

n
ÿ

i“1

cixi `

n
ÿ

i“1

bit ¨ xi ` ε

where xi are candidate biomarkers, y is treatment effect, t is treatment option, ci and

bi are coefficients, and n is the number of candidate biomarkers.

Step 2:

If the interaction term bi is significant, the corresponding biomarker is identified as

a predictive biomarker.

Step 3:

Use the identified biomarkers to define a patient subgroup S.

The subgroups defined on binary predictive biomarkers (e.g. positive or negative)

are straightforward. If the biomarkers are continuous (e.g., age), a pre-specified reasonable

cutoff is needed (e.g., ě 60 or ă 60 years old). A severe disadvantage of the univariate

regression method is that it only considers single biomarkers and ignores the interaction

between biomarkers.

Tree-based regression models are one of the most popular tools for identifying

potential predictive biomarkers in clinical trials. The ‘tree’ in this model is a ML

method – decision tree. Decision trees divide the covariate space into separate areas

called leaves of the tree, and assign each patient to a region based on each patient’s

covariate.
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In univariate regression models, cutoff values for continuous biomarkers need to

be specified in advance. In tree-based regression models, continuous biomarkers are

segmented during tree fitting. Therefore, an advantage of tree-based regression methods

compared to univariate regression methods is that cutoff points for continuous biomarkers

do not need to be pre-specified, and the optimal cutoff point can be found by this

method.

However, the tree-based regression method still has some deficiencies. For example,

tree-based regression methods perform well at identifying prognostic biomarkers but

poor at identifying predictive biomarkers (Lipkovich et al., 2017).

2.2.2 Global Outcome Modelling

The basic concept of global outcome modelling methods is to build a model with

a relatively large number of candidate biomarkers to predict the outcome. Depending

on how the outcome model is fitted, there are two methods in this class: parametric

and non-parametric (Lipkovich et al., 2017).

Royston and Sauerbrei (2004) applied factional polynomials (details can be found

in Royston and Altman (1994)) to model the relationship between treatment outcome

and candidate biomarkers. The results of this type of methods are easy to explain, but

only suitable for a relatively small group of candidate biomarkers. In some real-world

scenarios, there are hundreds or thousands of candidate biomarkers, in which case we

should look for other approaches such as penalised regression methods.

The core concept of penalised regression is to put constraints on the regression

coefficients to select predictive biomarkers. One famous penalised regression method

called FindIt is developed by Imai and Ratkovic (2013). FindIt uses support vector

machine (SVM) along with Least Absolute Shrinkage and Selection Operator (LASSO)

penalty to put constrains on predictive and prognostic biomarkers.

In the non-parametric approach, a famous model called Virtue Twins (VT) is

designed by Foster et al. (2011). VT has two stages. In the first stage, Foster et al.

(2011) applied Random Forest to estimate the outcome function. Random Forest is

a black box ML method (details of Random Forest can be found in Breiman (2001)).
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Then the treatment contrast for each patient is calculated using the fitted model.

The treatment contrast is defined as the difference between treatment effect under

different arms of Randomised Controlled Trials. In the second stage, a regression tree

was generated using treatment contrast as the response variable. Any patient with

a treatment contrast greater than a pre-specified threshold was then selected to the

identified patient subgroup S.

2.2.3 Global Treatment Effect Modelling

Global treatment effect modelling methods aim to estimate the treatment contrast

directly, bypass the problem of estimating the global outcome. The most famous

method in this category is the Interaction Tree (IT) proposed by Su et al. (2008). IT

changes the splitting criterion in the tree-based regression method, so that the patient

subgroups selected by IT are likely to benefit from the treatment. IT has better

property on identifying predictive biomarkers compared with the tree-based regression

method (Lipkovich et al., 2017).

2.3 Survival Analysis

Several conventional statistical methods describe the survival function under censoring

and the commonly used ones can be grouped into three categories: non-parametric,

semi-parametric, and parametric models. Non-parametric models, including Kaplan-

Meier estimator, Nelson-Aalen estimator, and life-table method, are efficient when there

are no underlying distributions for the survival time. These methods are proposed

for generating unbiased descriptive statistics, but generally they cannot be used to

assess the impact of covariates on response variables. Therefore, non-parametric models

will not be compared with the proposed model in this research. Parametric models

assume that survival time follows a distributions, e.g.: exponential distribution, Weibull

distribution, (log-)normal, (log-)logistic, or gamma distribution. The parametric models

are easy to use and computationally efficient, but the disadvantage is obvious: most

high dimensional real-world data do not follow such distributions. In the semi-parametric
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class, the Cox regression is more commonly used. It is based on the proportional

hazard assumption, which means the hazards are proportional over time and the ratio

of hazards for any two individuals is constant over time. For parameter estimation, Cox

models use partial likelihood. In Cox regression, the underlying distribution is usually

unknown, hence it was called semi-parametric method. The Cox regression makes no

assumption on the underlying distribution of survival time. However, the assumption

that covariates have an exponential influence on the hazard function is not realistic in

many real-world applications (Klein and Klein, 2013).

The Cox regression and its two variants – Cox-LASSO and Cox-EN will be compared

with the new model proposed in this research.

2.4 Multi-task Learning for Survival Analysis

To date, there are no studies applying MTL to subgroup identification, but studies

applying MTL to improve the prediction accuracy of survival analysis have been

conducted. There are generally two categories, one is to build multi-task frameworks

based on conventional statistical methods (Wang et al., 2017; Yu et al., 2012; Liu

et al., 2018), and another is to avoid prior statistical assumptions(e.g., underlying

distributions, proportional hazard assumptions) and turn the problem into a series of

classification problem (Li et al., 2016; Wang et al., 2021).

Wang et al. (2017) formulated two multi-task models based on Cox regression. They

applied the conventional semi-parametric statistical method Cox Regression to build

the survival functions for different training sets and treat them as single tasks, then

applied MTL to simultaneously process these tasks. The differences between their two

models are the methods they applied to share the information between tasks. After

that, they compared their model with two variants of regularised Cox regression model:

Cox-LASSO and Cox-EN. The evaluation metric they used is the concordance index

(C-index), which is commonly used in survival analysis. C-index compares the relative

risks between two patients instead of the absolute survival time. Two patients are

comparable if their survival times satisfying: (1) both are not censored; (2) one is
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censored the other is not censored, and the survival time of the not censored patients

is smaller than then censored time of the censored patient. C-index is widely used in

survival analysis because it considers right-censoring. The C-index is defined as follow:

c “ PpT̂1 ą T̂2|T1 ą T2q

where T̂i is the estimated survival time of patient i, and Ti is the real survival time. The

results showed that their methods outperformed the traditional methods in prediction

accuracy, suggesting that, when the dataset is large, MTL performs well when combined

with traditional survival analysis. Their study proposed a unified framework for multi-

task survival analysis, and it uses the same way to handle censored data as the Cox

models.

A local multi-task logistic regression model (MTLR) was first established by Yu

et al. (2012). MTLR directly models the survival function by combining multiple local

logistic regression models and assume they are related. The prediction of individual

survival status at each time interval was regarded as separate tasks, and the information

between related tasks are shared by different regularisation terms. Their method is

similar with the one proposed by Wang et al. (2017), the difference is that they use

logistic regression while Wang et al. (2017) use Cox regression.

The two studies above belong to the first category – building multi-task framework

based on conventional statistical methods (Cox regression and logistic regression).

The Cox regression assumes that the covariates have an exponential influence on the

outcome, which is often violated in real-world applications. To overcome this weakness,

Li et al. (2016) reformulated the survival analysis problem as a MTL problem without

prior assumptions. They transferred the data to a target matrix Y and a indicator

matrix W . Y is the target matrix, which shows the survival status for each patient

in different days (1: alive; 0: dead; ?: censored). W is the indicator matrix, which

indicate whether a patient is censored at a given day (1: uncensored; 0: censored).

Then they reformulated the objective function as following:

min
1

2
}ΠW pY ´ XBq}

2
F ` RpBq
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whereX is the covariates matrix andB is the coefficient matrix. RpBq is the regularisation

term. } ¨ }F is the Frobenius Norm. The only assumption of this model is the linear

assumption. The advantage is that there are few restrictions, while the disadvantage

is that the method is a black box. Moreover,

pΠW pUqqij “

$

’

&

’

%

Uij if Wij “ 1

0 if Wij “ 0

This equation means that the loss function become 0 when data are censored. Li et al.

(2016) compared their model to a series of semi-parametric and parametric models, and

the results showed that, based on C-index, their model outperformed all the models

above in predicting survival time using high-dimensional gene expression data.

2.5 Research Gaps

In some real-world scenarios, especially when evaluating genomic data, there are

often far more candidate biomarkers than patients. And as mentioned before, in

subgroup identification, when the number of candidate biomarkers is large, the basic

and parametric methods in global outcome modelling do not work, so the only option

is the non-parametric approach.

As shown in the previous section, non-parametric global outcome modelling methods

include two steps. The first step is to fit the treatment outcome function and calculate

the treatment contrast for all patients. The second step is to find the appropriate

patient subgroup S based on the treatment contrasts. The first step is central because

almost all the errors come from the modelling of the treatment outcome function.

Therefore, if the prediction accuracy of the treatment outcome function can be improved,

the accuracy of subgroup identification will also be improved.

Moreover, the treatment outcome modelling is a survival analysis problem when

the data are censored. Although MTL models are proved to have an outstanding

prediction ability in survival analysis, to date, there is no research that applies MTL

in subgroup identification. This research will propose a novel MTL model for survival
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analysis, which improves prediction accuracy based on the current MTL framework.

This research only addresses the outcome function modelling step in the global outcome

modelling method, not the second step.

To conclude, when datasets are censored, the central step of subgroup identification

is a survival analysis modelling problem. Improving the prediction accuracy of the

survival analysis model can also improve the accuracy of subgroup identification. This

study aims to propose a novel MTL model to improve the prediction accuracy of

survival analysis and ultimately the accuracy of subgroup identification.
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3
Methodology

This chapter will describe all the methods applied in this research, as well as the

process of constructing the new model. Section 3.1 introduces the basic definitions of

ML to help readers from other backgrounds better understand this thesis. In Section

3.2, the multi-task learning and feature selection methods in multi-task learning are

described as they will be used in this research. In Section 3.3, SVMs are introduced as

they will be used in the new model to achieve higher classification accuracy. In Section

3.4, all the procedures for building a new model are given. Section 3.5 introduces real

and simulated datasets. Section 3.6 presents the methods to be compared in this study.

Finally, Section 3.7 introduces the evaluation metric – the concordance index.

23
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3.1 Machine Learning Basics

ML is a part of artificial intelligence which studies computer algorithms that can

learn from experience. It means that algorithms can make decisions without explicit

instructions. An popular definition of ML was given by Tom Mitchell (Mitchell, 1997):

Definition 3.1.1 (Machine Learning). A computer program is said to learn from

experience E with respect to some class of tasks T, and performance measure P, if

its performance at tasks in T, as measured by P, improves with experience E.

There are many types of ML based on different properties of task T, performance

measure P, and experience E. Generally speaking, ML can be divided into three

categories: supervised learning, unsupervised learning and semi-supervised learning.

Some common notations and the three categories of ML will be introduced below.

The input x “ px1, . . . , xdq P Rd is called covariates, features or predictors, and

d is the dimension of covariates (i.e., number of input features). The output y is called

target, label or response. The experience E used to train the algorithm is called

training set, which can be written as the form of input-output pairs D “ tpxi,yiquNi“1.

There are N pairs data points in the training set, and N is defined as the sample size

of the training set (Murphy, 2012).

3.1.1 Empirical Risk Minimisation

Suppose an ML algorithm has a training set D “ tpxi,yiquNi“1 and the goal is to find

a map f : X Ñ Y that minimise the prediction error when given an unknown test set.

Loss function L : R ˆ R Ñ R is defined to quantify how well the predicted outcome

ŷ approximates the real y (Murphy, 2012). Here are some common loss functions.

Example 3.1.2 (quadratic loss). The quadratic/square loss is defined as:

Lpŷ, yq “ pŷ ´ yq
2

Example 3.1.3 (absolute loss). The absolute loss is defined as:

Lpŷ, yq “ |ŷ ´ y|
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Example 3.1.4 (0-1 loss). The 0-1 loss is defined as:

Lpŷ, yq “

$

’

&

’

%

0, if ŷ “ y

1, if ŷ ‰ y

Example 3.1.5 (hinge loss). The hinge loss is commonly used in SVMs:

Lpŷ, yq “ maxt0, 1 ´ ŷyu

Empirical risk is defined to quantify how well the algorithm fit the training set

(Murphy, 2012):

Definition 3.1.6 (Empirical Risk). The empirical risk is defined as the average loss

within the training set with respect to some loss function:

L “
1

N

N
ÿ

i“1

Lpŷi, yiq

If ŷ “ fpX, θq, then the empirical risk can be written as:

Lpθq “
1

N

N
ÿ

i“1

Lpfpxi, θq, yiq

where θ represents parameters.

For example, if quadratic loss is chosen as the loss function in an algorithm, then the

corresponding empirical risk is:

L “
1

N

N
ÿ

i“1

pŷi ´ yiq
2

When training an algorithm, the aim is to find a θ˚ to minimise the empirical risk,

such that:

θ˚
“ argminθPΘLpθq

where Θ is the parameter space. This process is called empirical risk minimisation.
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3.1.2 Labelled and Unlabelled Data

In ML, all data can be grouped into two categories: labelled and unlabelled. Label

is the output y that the algorithms aim to learn or predict. For example, suppose we

want to build an algorithm to identify whether an animal in a picture is a dog or a cat,

then the label y P tdog, catu. Labelled data has labels, while unlabelled data has no

labels (see Figure 3.1).

Figure 3.1: The label of the pictures on the left is cat or dog, and pictures on the

right are unlabelled.

3.1.3 Supervised Learning

Based on the types of the training sets, ML models can be grouped into different

categories. Supervised learning is the most common type of ML when the dataset

contains data with labels. Supervised models use labelled data in the training set

to predict the label of a new data point as shown in Figure 3.2. When given a new

image without a label, the model will predict the label of the image. Regression and

classification are two common types of supervised learning (Murphy, 2012).
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Figure 3.2: Supervised learning predict the label of a new data point.

3.1.4 Unsupervised Learning

The difference between unsupervised learning and supervised learning is that the

training set given to unsupervised learning has no label. When the dataset has no

labels, there is no target to predict. For example, if we have a dataset with different

animals but unlabelled, then we cannot use it to predict the label of a new picture.

However, we can still obtain useful information from unlabelled datasets. If we are given

a dataset with images of dogs and cats but without labels, unsupervised learning models

can divide images to different groups based on their similarities without knowing what

each group represents (Murphy, 2012). Figure 3.3 shows an example of unsupervised

learning.
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Figure 3.3: Unsupervised learning group similar data together.

3.1.5 Semi-supervised Learning

Semi-supervised learning is a method in ML to build models based on datasets

which contain a small proportion of labelled and a large proportion of unlabelled data.

It falls between supervised learning and unsupervised learning, and aims to combine

the advantages of these two methods.

3.2 Multi-task Learning

3.2.1 Introduction

Recall the definition of Multi-task learning (MTL):

Definition 3.2.1 (Multi-task Learning). Given m learning tasks tTiu
m
i“1 where all the

tasks or a subset of them are related but not identical, multi-task learning aims to learn

the m tasks together to improve the learning of a model for each task Ti by using the

knowledge contained in all or some of other tasks.

As the definition shows, the basic concept of MTL is to share information among
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related tasks, rather than training each task individually. When building MTL models,

two questions need to be answered (Zhang and Yang, 2021). First, what kind of

information is shared? Second, how to share the selected information?

For the first question, according to the literature, three types of information that

need to be shared: features, instances (i.e., samples), and parameters (Zhang and Yang,

2021). The feature-based MTL models assume that related tasks share a common set of

features. The instance-based MTL models select useful data samples in each task and

share them with other tasks. The parameter-based MTL models assume that related

tasks share a common set of parameters.

In survival analysis and subgroup identification problems, the dataset is usually a

clinical dataset, the features are candidate biomarkers, and the response variable is

the patient’s survival time. The purpose of these questions is to find prognostic or

predictive biomarkers and predict survival time among all candidate biomarkers, so it

is reasonable to assume that all tasks share a common set of biomarkers. So, for the

second question, the features-based MTL is chosen in this research.

3.2.2 Feature Selection Approach

In this research, the feature-based MTL approach is used to select prognostic or

predictive biomarkers. Typically, ℓp,q norm is used to select features in MTL (Zhang

and Yang, 2021). ℓp,q norm is a matrix norm, and matrix norm is derived from vector

norm. Vector norm is defined as (Royden and Fitzpatrick, 1988):

Definition 3.2.2 (Vector Norm). Given a vector space X, a norm } ¨ } is a function

f : X Ñ R satisfies:

1. }x ` y} ď }x} ` }y} for any x,y P X

2. }ax} “ |a| ¨ }x} for any a P R, x P X

3. }x} “ 0 if and only if x “ 0

4. }x} ě 0 for any x P X



30 Methodology

ℓp norm is a type of vector norm that is widely used in feature selection methods in

statistics. ℓp norm is defined as (Horn and Johnson, 2012):

Definition 3.2.3 (ℓp norm). For a vector x “ px1, . . . , xnqJ, the ℓp norm of vector x

is:

}x}p “ p

n
ÿ

i“1

|xi|
p
q
1
p , p ě 1

Note that when p “ 2,

}x}2 “

b

x2
1 ` ¨ ¨ ¨ ` x2

n

is the Euclidean norm.

The entry-wise matrix norm ℓp,q is defined as (Horn and Johnson, 2012):

Definition 3.2.4 (ℓp,q norm). Suppose matrix A “ pa1, . . . ,amq P Rnˆm, then the ℓp,q

norm of matrix A is:

}A}p,q “ }p}a1}p, . . . , }am}pq}q

“

»

–

m
ÿ

j“1

˜

n
ÿ

i“1

|aij|
p

¸

q
p

fi

fl

1
q

The objective function of a feature-based MTL model usually has the following

form (Zhang and Yang, 2021):

LpW, bq ` λ}W}p,q

where W is the coefficient/weight matrix, and the ith column of W represents the

coefficients of task i. b is the bias vector, representing the bias for all tasks. The ℓp,q

norm placed on the coefficient matrix W forces W to be row-sparse, which means that

most rows of W are 0. Then non-zero rows represent important features that need to

be selected.

3.3 Support Vector Machine

SVMs are one of the best supervised learning algorithms in existence, and many

believe it is indeed the best (Ng, 2018). The approach is highly suitable for classification



3.3 Support Vector Machine 31

tasks and has shown decent performance. At the finest, SVMs map training samples

into multi-dimensional space and attempt to partition the space into different classes.

The boundaries are drawn in a way so that the distances between sample points and

the boundaries are maximised. This section is based on Chapter 17 of Murphy (2012).

3.3.1 Introduction

SVMs classify sample data by drawing hyperplanes in d-dimensional space which act

as boundaries to define regions corresponding to different classes. Here, d is equivalent

to the number of features in the data. When d equals to 2, the task is to draw linear

lines to separate different classes on a Cartesian plane.

Figure 3.4: An illustration of SVM mechanism in 2-dimensional space with 2

classes of samples.

When data samples are scattered in a way that one cannot draw a linear line to

separate classes, the kernel trick is often applied where the original data points xJ
i are

transformed through a kernel function Ø reaching new data points ØpxJ
i q. The new

data points may be separated into classes with linear lines and this is equivalent to

non-linear boundaries on the original data set.
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Figure 3.5: An illustration of kernel trick with kernel Ø (Adapted from Kernel

Machine [Image], by Alisneaky, 2011, licensed under CC BY-SA 4.0).

Without loss of generality, denote xJ
i as the data points where linear boundaries

are to be applied over with, whether this is the raw data or the kernel transformed

data. Then, SVMs seek to determine the optimal hyperplane of the form

wJx ´ b “ 0

where x here represents a generic variable while w and b are to be determined via

optimisation. For simplicity, we only introduce SVMs over binary classification as

multi-class classification can be viewed as repeated pairwise binary classifications. We

denote the responses as yi taking values ˘1.

Hard-Margin

The simple scenario is when the data points can be perfectly separated by a

hyperplane into two classes. This often means that there exists infinitely many hyperplanes

satisfying the classes separation criteria. Hence the definition of optimal hyperplane

is needed for a unique solution. Intuitively, the best boundary should be such that its

distance to the data points are maximised. Thus two additional parallel hyperplanes

can be defined as

wJx ´ b “ 1 and wJx ´ b “ ´1
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where the distance between the two hyperplanes are given by 2
||w||2

. Thus the space

may be partitioned into 3 regions
$

’

’

’

’

’

&

’

’

’

’

’

%

␣

x : wJx ´ b ě 1
(

;

␣

x : wJx ´ b ď ´1
(

;

␣

x : wJx ´ b P p´1, 1q
(

.

If the regions are assigned as
$

’

&

’

%

wJxi ´ b ě 1 if yi “ 1 ;

wJxi ´ b ď ´1 if yi “ ´1 ,

they can be reformulated into

yi
`

wJxi ´ b
˘

ě 1

as a condition that must be met. Now one may maximise the distance 2
||w||

by

minimising ||w|| subject to the above constraint. This is a formalised optimisation

problem solvable by many algorithms.

Figure 3.6: A visualisation of the optimisation problem in 2-dimensional feature

space (Adapted from SVM margin [Image], by Larhmam, 2018, liscensed under CC

BY-SA 4.0).
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Soft-Margin

It is often not possible to perfectly separate two classes of data without extensive

search for kernels. Often, it is not ideal to separate the classes perfectly over the

training set as this is a recipe for overfitting. Hence, most applications of SVMs adapt

soft-margins where some data points are allowed to be separated to the wrong side by

the hyperplane boundary. In this case, for some data points xi, the original constraint

yi
`

wJxi ´ b
˘

ě 1

or equivalently

1 ´ yi
`

wJxi ´ b
˘

ď 0

does not necessarily have to be acknowledged. Nevertheless, one still aims to ensure

that most points in the training sample are being allocated to the correct region and

those being allocated to the wrong region should not be too far from the boundary.

The latter means that whenever a point is misallocated,

1 ´ yi
`

wJxi ´ b
˘

which is always greater than 0, should be minimised. Combining the two goals, SVMs

with soft-margins hold objective function

1

2
}w}

2
2 `

”

C
n
ÿ

i“1

max
`

0, 1 ´ yi
`

wJxi ´ b
˘˘

ı

where C ą 0 defines a trade-off between keeping the two classes away from each other

and correct allocation of training samples. In practice, the value of C is determined

via hyperparameter search in the effort of minimising generalisation loss.

Computing SVMs

Let

ζi “ max
`

0, 1 ´ yi
`

wJxi ´ b
˘˘

.
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The primal problem of SVMs is:

min
w

1

2
}w}

2
2 ` C

n
ÿ

i“1

ζi

s.t. yi
`

wJxi ´ b
˘

ě 1 ´ ζi

ζi ě 0, @i

Optimisation theories allow further simplification via the duality principle. The dual

form can be efficiently solved by any quadratic optimisation problem and it seeks to

maximise with ci:

max
ci

n
ÿ

i“1

ci ´
1

2

n
ÿ

i“1

n
ÿ

j“1

yicipx
J
i xjqyjcj

s.t.
n
ÿ

i“1

ciyi “ 0

0 ď ci ď C, @i

w is subsequently computed as

w “

n
ÿ

i“1

ciyixi

while b can be found with any point xi on the margin via

b “ wJxi ´ yi .

3.4 SVM-based MTL for Survival Analysis

In this section, the process of constructing a new algorithm will be described.

Section 3.4.1 describes the notation used in the new algorithm, and Section 3.4.2

explains the details of how the objective function is chosen. After the objective function

is determined, the problem becomes an optimisation problem. Then Section 3.4.3

proves that the objective function is a convex function defined on a convex set such

that every local minimum is a global minimum. Finally, the optimisation problem is

solved and the pseudo-code of the algorithm is given.
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3.4.1 Notations

Suppose the sample size of the training set is n, and there are d candidate biomarkers.

Let X P Rnˆd denote the input matrix:

X “

¨

˚

˚

˚

˚

˚

˚

˝

xJ
1

xJ
2

...

xJ
n

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

x11 x12 . . . x1d

x21 x22 . . . x2d

...
...

...
...

xn1 xn2 . . . xnd

˛

‹

‹

‹

‹

‹

‹

‚

P Rnˆd

each row of X is a sample with d features:

xJ
i “ pxi1, . . . , xidq, i “ 1, 2, . . . , n

Suppose there are m time intervals, then the target matrix Y is:

Y “ py1,y2, . . . ,ymq “

¨

˚

˚

˚

˚

˚

˚

˝

y11 y12 . . . y1m

y21 y22 . . . y2m
...

...
...

...

yn1 yn2 . . . ynm

˛

‹

‹

‹

‹

‹

‹

‚

P Rnˆm

for any i P t1, . . . , nu and j P t1, . . .mu

yij “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 sample i is alive at time interval j

´1 sample i is dead at time interval j

? sample i is censored at time interval j

each column ofY represent the survival status of all the sample points at the corresponding

time interval:

yj “

¨

˚

˚

˚

˚

˚

˚

˝

y1j

y2j
...

ynj

˛

‹

‹

‹

‹

‹

‹

‚

, j “ 1, 2, . . . ,m

An extra matrix B is used to indicate the censoring information. B has the same
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dimensions as Y:

B “

¨

˚

˚

˚

˚

˚

˚

˝

b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
...

...

bn1 bn2 . . . bnm

˛

‹

‹

‹

‹

‹

‹

‚

P Rnˆm

where each element of B represents the censoring status of sample point i at time

interval j:

bij “

$

’

&

’

%

1 sample i is uncensored at time interval j

0 sample i is censored at time interval j

Without loss of generality, assume the map f : X Ñ Y has the form:

Y “ XW ` b “ p1,Xq

¨

˝

bJ

W

˛

‚

where b P Rmˆ1 is a vector represents the bias terms, and 1J “ p1, . . . , 1q P Rnˆ1 is a

vector of 1.

And W is the coefficient/weight matrix:

W “ pw1, . . . ,wmq “

¨

˚

˚

˚

˚

˚

˚

˝

w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

...
...

wd1 wd2
... wdm

˛

‹

‹

‹

‹

‹

‹

‚

P Rdˆm

To make the notation simple, let

X “ p1,Xq, W “

¨

˝

bJ

W

˛

‚

then the new X and W are:

X “

¨

˚

˚

˚

˚

˚

˚

˝

xJ
1

xJ
2

...

xJ
n

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1 x11 x12 . . . x1d

1 x21 x22 . . . x2d

...
...

...
...

...

1 xn1 xn2 . . . xnd

˛

‹

‹

‹

‹

‹

‹

‚

P Rnˆpd`1q
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where

xJ
i “ p1, xi1, xi2, . . . , ximq, i “ 1, 2, . . . n

and

W “ pw1,w2, . . . ,wmq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b1 b2 . . . bm

w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

...
...

wd1 wd2
... wdm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Rpd`1qˆm

where

wJ
j “ pbj, w1j, . . . , wdjq, j “ 1, 2, . . . ,m

3.4.2 Objective Function

First, the original dataset is decomposed to a series of classification problems follow

the work of Li et al. (2016). The transformation process is shown in Figure 3.7.

Figure 3.7: The original dataset (left) is transferred into a weight matrix W and

an indicator matrix B (right).

After the data transformation, the goal of the MTL model is to train m SVMs

simultaneously on X, and each SVM determine the survival status of all patients at

the corresponding time interval. Therefore, for the jth SVM:

ŷj “ signpXwjq
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where wj P Rpd`1qˆ1, and ŷj is the predicted survival status of all patients at time

interval j.

Before deciding the objective function, it is necessary to carefully observe the

characteristics of the problem to be solved and select the most suitable objective

function. Observe that:

• feature selection The datasets used in this research are survival datasets, so they

are assumed to be collected from clinical trials or observational studies with a

relatively large number of covariates and contain censored data. In the problem

of identifying high-risk patients for a disease or identifying appropriate patients

for a treatment, it is natural and reasonable to assume that disease progression or

treatment response y is determined by a set of prognostic or predictive biomarkers

X “ px1 ¨ ¨ ¨ ,xvq, and y “ fpXq where f : X Ñ Y is a map. Individual

patients have different prognostic or predictive biomarker values, and therefore

different disease progression or response to treatment. The new algorithm has two

goals: (1) to select prognostic or predictive biomarkers from a set of candidate

biomarkers, which is called feature selection; (2) to predict y. Features selection

approaches in MTL have been discussed in section 3.3.2. ℓ2,1 norm is chosen in

the new algorithm to force the coefficient matrix W to be row-sparse, and select

important features.

• non-recurring Some events are non-recurring, such as death. For those recurring

events such as rehospitalisation, they are treated as one-time events in this

research. This means that if a sample i in time interval j has status yij “ ´1,

then for any time interval k ą j, its status remains yik “ ´1.

In short, the problem has these characteristics:

1. All tasks share a common set of features;

2. For any sample i, ŷij ą ŷik, @j ă k.

Based on these characteristics, the objective function has the form:

LpWq ` λ1RpWq ` λ2L1pWq λ1, λ2 ą 0 (3.4.1)
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The first part LpWq is a common loss function for evaluating prediction errors. The

second part RpWq is the regularisation term for selecting features. The third part

L1pWq is used to ensure non-recurring. Also, λ1 and λ2 are two hyperparameters that

need to be selected manually. These terms are explained below.

LpWq: A Modified Hinge Loss

Hinge loss is selected in this research as it is the most common loss function in

SVMs. Hinge loss is defined as:

hingepy, ŷq “ maxt0, 1 ´ yŷu

However, it cannot be directly applied to censored datasets because the exact survival

times of censored patients are unknown. Therefore, in this research, the hinge loss is

modified to include the censoring information, the same as Li et al. (2016) modifying

their loss function.

Define the modified loss function as:

Lpyij, ŷijq “

$

’

&

’

%

hingepyij, ŷijq if bij “ 1

0 if bij “ 0

It can be written as

Lpyij, ŷijq “ bij maxt0, 1 ´ yij ŷiju

In this way, the censoring information bij for each patient is embedded into the loss

function.

RpWq : ℓ2,1 Norm for Feature Selection

Follow the general approach of feature-based MTL models (Zhang and Yang, 2021),

defined }W}2,1 as:

}W}2,1 “

d`1
ÿ

i“1

}wi
}2 “

d`1
ÿ

i“1

g

f

f

e

m
ÿ

j“1

w2
ij (3.4.2)

where wi is the ith row of weight matrix W. Note the different between wi and

wi, where wi is the ith column of W. During the minimisation of the objective
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function, most }wi}2 will be forced to zero. Therefore, the non-zero features are the

most important ones. In this way, prognostic and predictive biomarkers are selected.

L1pWq: Term to Ensure Non-recurring

To ensure non-recurring, L1pWq is set in a way so that every time the predicted

survival status ŷij is smaller than ŷik for any k ą j, it will incurs a loss. L1pWq can

be written as:

L1pWq “

n
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“j`1

Ipŷij ă ŷikqpxJ
i wk ´ xJ

i wjq

Combining all the terms, the objective function becomes:

n
ÿ

i“1

m
ÿ

j“1

bij maxt0, 1 ´ yijx
J
i wju ` λ1}W}2,1 ` λ2

n
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“j`1

Ipŷij ă ŷikqpxJ
i wk ´ xJ

i wjq

(3.4.3)

Observe that }W}2,1 is represented by rowswi, while the other two terms are represented

by columns wj. Therefore, the form of }W}2,1 needs to be changed. The following

theorem and corollary allow }W}2,1 to be represented by columns (Yang et al., 2012;

Wang et al., 2016).

Theorem 3.4.1.

}W}2,1 “ trpWJDWq (3.4.4)

where W P Rnˆm, pn,m ą 0q and D is a diagonal matrix:

D “

¨

˚

˚

˚

˝

1
}w1}2

. . .

1
}wn}2

˛

‹

‹

‹

‚

where wi denote the ith row of W, and trp¨q is the trace of a matrix.
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Proof.

WJDW “

´

w1 . . . wn

¯

¨

˚

˚

˚

˝

1
}w1}2

. . .

1
}wn}2

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

w1J

...

wnJ

˛

‹

‹

‹

‚

“

´

w1

}w1}2
. . . wn

}wn}2

¯

¨

˚

˚

˚

˝

w1J

...

wnJ

˛

‹

‹

‹

‚

“

n
ÿ

i“1

wiwiJ

}wi}2

So,

trpWJDWq “ trp

n
ÿ

i“1

wiwiJ

}wi}2
q “

n
ÿ

i“1

trp
wiwiJ

}wi}2
q “

n
ÿ

i“1

trpwiwiJq

}wi}2

“

n
ÿ

i“1

trpwiJwiq

}wi}2
(cyclic property)

“

n
ÿ

i“1

m
ÿ

j“1

w2
ij

}wi}2
“

n
ÿ

i“1

}wi}22

}wi}2

“

n
ÿ

i“1

}wi
}2 “ }W}2,1

Corollary 3.4.2.

}W}2,1 “

m
ÿ

j“1

wJ
j Dwj (3.4.5)

where W P Rnˆm, pn,m ą 0q and D is a diagonal matrix:

D “

¨

˚

˚

˚

˝

1
}w1}2

. . .

1
}wn}2

˛

‹

‹

‹

‚

where wi denote the ith row of W, and wj denote the jth column of W.
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Proof. According to Theorem 3.4.1, we know that

}W}2,1 “ trpWJDWq “ trpDWWJ
q (cyclic property)

“ trpD
´

w1 . . . wm

¯

¨

˚

˚

˚

˝

wJ
1

...

wJ
m

˛

‹

‹

‹

‚

q

“ trpD
m
ÿ

j“1

wjw
J
j q

“ trp

m
ÿ

j“1

Dwjw
J
j q

“

m
ÿ

j“1

trpDwjw
J
j q

“

m
ÿ

j“1

trpwJ
j Dwjq

“

m
ÿ

j“1

wJ
j Dwj

According to Theorem 3.4.1 and corollary 3.4.1, formula (3.4.3) can be written as

n
ÿ

i“1

m
ÿ

j“1

bij maxt0, 1´yijx
J
i wju`λ1

m
ÿ

j“1

wJ
j Dwj`λ2

n
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“j`1

Ipŷij ă ŷikqpxJ
i wk´xJ

i wjq

(3.4.6)

When }wi} ď ε, i “ 1, . . . , n, then set }wi} “ ε. ε is a small number which can be

chosen manually.

According to empirical risk minimisation, the training goal is to find a W such that:

min
W

n
ÿ

i“1

m
ÿ

j“1

bij maxt0, 1 ´ yijx
J
i wju ` λ1

m
ÿ

j“1

wJ
j Dwj

` λ2

n
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“j`1

Ipŷij ă ŷikqpxJ
i wk ´ xJ

i wjq

(3.4.7)

where λ1 ą 0 and λ2 ą 0.
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3.4.3 Optimisation

Formula (3.4.7) can be seen as a function f : W Ñ R, where W P Rpd`1qˆm. The

goal is to find a W˚ P Rpd`1qˆm such that

fpW˚
q ď fpWq, @W P Rpd`1qˆm (3.4.8)

The matrixW˚ which satisfies (3.4.8) is called a global optimum or global minimum

of function f , and the process of finding W˚ is called optimisation (Murphy, 2012).

However, sometimes it is difficult to find the global optimum. This process can

be simplified by requiring f to be a convex function defined on a convex set, so that

every local optimum is a global optimum. Now the definition of convex set and convex

function will be explained.

Convexity

This part is based on Chapter 8 of Murphy (2012).

Definition 3.4.3 (Convex Set). S is a convex set if and only if for any x P S and

y P S,

λx ` p1 ´ λqy P S, @λ P r0, 1s (3.4.9)

Figure 3.8 shows some examples of convex and not convex sets.

Figure 3.8: Examples of convex and not convex sets

Lemma 3.4.4. According to the definition, the real space Rnˆmpn,m ě 1q is a convex

set.
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Definition 3.4.5 (Convex Function). Suppose S is a convex set. The function f :

S Ñ R is a convex function if and only if for any x P S and y P S,

fpλx ` p1 ´ λqyq ď λfpxq ` p1 ´ λqfpyq λ P r0, 1s (3.4.10)

Figure 3.9: Examples of convex (a) and not convex (b) functions.

Example 3.4.6. The quadratic function

fpxq “ x2

is a convex function.

Proof. For any x, y P R, we have

fpλx ` p1 ´ λqyq “ rλx ` p1 ´ λqys
2

Then

λfpxq ` p1 ´ λqfpyq ´ fpλx ` p1 ´ λqyq

“λx2
` p1 ´ λqy2 ´ rλx ` p1 ´ λqys

2

“λp1 ´ λqx2
` λp1 ´ λqy2 ´ 2λp1 ´ λqxy

“λp1 ´ λqpx ´ yq
2

ě 0
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So we have

fpλx ` p1 ´ λqyq ď λfpxq ` p1 ´ λqfpyq

for any λ P r0, 1s. Thus f is a convex function.

Lemma 3.4.7. Any affine function

fpxq “ ax ` b, a, b P R

is a convex function.

Lemma 3.4.8. The hinge loss

fpu, yq “ maxt0, 1 ´ uyu, y P t´1, 1u

is a convex function.

Lemma 3.4.9. Suppose f1, f2, . . . , fn are a series of convex functions. Then the

positive linear combination

fpxq “

n
ÿ

i“1

λifipxq λi ě 0

is a convex function.

Convexity of the Objective Function

Based on all the lemmas and theorems in the above section, I now prove the

objective function (3.4.7) in this research is convex.

Theorem 3.4.10. The objective function

fpWq “

n
ÿ

i“1

m
ÿ

j“1

bij maxt0, 1 ´ yijx
J
i wju ` λ1

m
ÿ

j“1

wJ
j Dwj

` λ2

n
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“j`1

Ipŷij ă ŷikqpxJ
i wk ´ xJ

i wjq

is convex.
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Proof. According to Lemma 3.4.4, the real space Rpd`1qˆm is convex, hence fpWq is

defined on a convex set. Now let

fpWq “ f1pWq ` λ1f2pWq ` λ2f3pWq λ1, λ2 ą 0

where

f1pWq “

n
ÿ

i“1

m
ÿ

j“1

bij maxt0, 1 ´ yijx
J
i wju

f2pWq “

m
ÿ

j“1

wJ
j Dwj

f3pWq “

n
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“j`1

Ipŷij ă ŷikqpxJ
i wk ´ xJ

i wjq

If f1pWq, f2pWq and f3pWq are all convex function, then according to Lemma 3.4.9,

fpWq is a convex function.

Observe that f1pWq is a positive linear combination of hinge losses, since bij “

0 or 1. According to Lemma 3.4.8, hinge loss is convex, thus f1pWq is a convex

function.

Observe that f2pWq is a linear combination of quadratic functions with coefficient

D. Recall that

D “

¨

˚

˚

˚

˝

1
}w1}2

. . .

1
}wn}2

˛

‹

‹

‹

‚

and according to definition 3.8, it has:

}wj
}2 ě 0 j “ 1, . . .m

thus every elements of D is greater than 0. Therefore, f2pWq is also a positive linear

combination of convex functions, hence it is convex.

Rewrite f3pWq as

f3pWq “

n
ÿ

i“1

m
ÿ

j“1

m
ÿ

k“j`1

ISpWq

where

ISpWq “

$

’

&

’

%

0 if XW P S

xJ
i wk ´ xJ

i wj if XW R S
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where S is a set of matrices such that every matrix satisfies non-recurring condition.

Now we prove ISpWq is convex.

Suppose A,B P Rpd`1qˆm are two arbitrary matrices. Now we discuss all the

situations:

1. If XA P S and XB P S, then

XpλA ` p1 ´ λqBq “ λXA ` p1 ´ λqXB P S

since S is a convex set. Therefore,

λISpAq “ 0

p1 ´ λqISpBq “ 0

ISpλA ` p1 ´ λqBq “ 0

This satisfies:

ISpλA ` p1 ´ λqBq “ λISpAq ` p1 ´ λqISpBq

2. If XA R S, XB R S and XpλA ` p1 ´ λqBq P S, then:

λISpAq “ λpxJ
i ak ´ xJ

i ajq

p1 ´ λqISpBq “ p1 ´ λqpxJ
i bk ´ xJ

i bjq

ISpλA ` p1 ´ λqBq “ 0

This satisfies the inequality:

ISpλA ` p1 ´ λqBq ď λISpAq ` p1 ´ λqISpBq

3. If XA R S, XB R S and XpλA ` p1 ´ λqBq R S, then:

λISpAq “ λpxJ
i ak ´ xJ

i ajq

p1 ´ λqISpBq “ p1 ´ λqpxJ
i bk ´ xJ

i bjq

ISpλA ` p1 ´ λqBq “ λxJ
i pak ´ ajq ` p1 ´ λqxJ

i pbk ´ bjq

This satisfies:

ISpλA ` p1 ´ λqBq “ λISpAq ` p1 ´ λqISpBq
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4. If XA P S, XB R S and XpλA ` p1 ´ λqBq R S, then:

λISpAq “ 0

p1 ´ λqISpBq “ p1 ´ λqpxJ
i bk ´ xJ

i bjq

ISpλA ` p1 ´ λqBq “ λxJ
i pak ´ ajq ` p1 ´ λqxJ

i pbk ´ bjq

Then we have

ISpλA ` p1 ´ λqBq “ p1 ´ λqISpBq ` λxJ
i pak ´ ajq

Since XA P S, then we have

λxJ
i pak ´ ajq ă 0

Then the inequality

ISpλA ` p1 ´ λqBq ď λISpAq ` p1 ´ λqISpBq

is satisfied.

5. If XA P S, XB R S and XpλA ` p1 ´ λqBq P S, then:

λISpAq “ 0

p1 ´ λqISpBq “ p1 ´ λqpxJ
i bk ´ xJ

i bjq

ISpλA ` p1 ´ λqBq “ 0

Then the inequality

ISpλA ` p1 ´ λqBq ď λISpAq ` p1 ´ λqISpBq

is satisfied.

Combining all the situations above, we can conclude that ISpWq is convex, thus f3pWq

is a convex function. As a positive linear combination of convex functions, fpWq is

also convex.
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Sub-gradient Descent Method

After proving the objective function is a convex function defined on a convex set,

the sub-gradient descent method can be applied to solve the optimisation problem

(Murphy, 2012). Let

Wt`1 “ Wt ´ ηt
BfpWtq

BWt

where Wt is the value of W at iteration t, and ηt is the step size at iteration t.

The gradient of fpWq is:

BfpWq

BW
“

Bf1pWq

BW
` λ1

Bf2pWq

BW
` λ2

Bf3pWq

BW

f1pWq is not differentiable since hinge loss is not differentiable, so its sub-gradient will

be used.

Bf1pWq

BW
“

$

’

&

’

%

´yijxi if yij ŷij ă 1 and bij ‰ 0

0 if yij ŷij ě 1 or bij “ 0

(3.4.11)

for every wj, j “ 1, . . . ,m.

f2pWq is differentiable, so

Bf2pWq

BW
“ 2DW (3.4.12)

Similarly,

Bf3pWq

BW
“

$

’

&

’

%

´
řm

k“j`1 xi if ŷik ą ŷij

0 if ŷik ď ŷij

(3.4.13)

for every wj, j “ 1, . . . ,m.

After calculating the gradients and sub-gradient, the algorithm of this research is

as follows:
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Algorithm 1: SVM-based MTL for Survival Analysis

input : X P Rnˆpd`1q,Y P Rnˆm,W P Rpd`1qˆm,B P Rnˆm, λ1, λ2

output: Ŵ

Set W0 “ 0;

t “ 1;

while not convergence do

ηt “ 1
λ1t

;

Calculating Dt with respect to Wt;

Calculating BfpWtq

BWt
according to (3.4.11), (3.4.12), (3.4.13);

Wt`1 “ Wt ´ ηt
BfpWtq

BWt
;

t “ t ` 1;

end

3.5 Data Description

This section demonstrates the real and simulated data used. The real data are

used to test the prediction accuracy of the proposed model in this research, while the

simulated data are used to study the prediction accuracy, feature selection ability of

the model, as well as the change of ICER.

3.5.1 Real Data

Four high-dimensional open-source gene expression datasets are used in this study,

all the datasets can be found here http://user.it.uu.se/~liuya610/download.

html.

NSBCD: The Norway/Stanford breast cancer data from Sorlie et al. (2003) contains

gene expression measurements of 115 women with breast cancer, and 77 patients are

censored. The response variable is survival time, and the maximum survival time is

188 months. The dataset contains 549 features.

VDV: Van de Vijver’s Microarray Breast Cancer data (van’t Veer et al., 2002) contains

gene expression measurements of 78 women with breast cancer, and 44 patients are

http://user.it.uu.se/~liuya610/download.html
http://user.it.uu.se/~liuya610/download.html
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censored. The response variable is survival time, and the maximum survival time is 13

years. The dataset contains 4707 features.

DBCD: The Dutch Breast Cancer Data from van Houwelingen et al. (2006) contains

gene expression measurements of 295 women with breast cancer, and 216 patients are

censored. The response variable is survival time, and the maximum survival time is 18

years. The dataset contains 4919 features.

LUNG: Gene-expression profiles of lung adenocarcinoma from Beer et al. (2002) is a

dataset containing observations of 86 early-stage lung adenocarcinoma patients. The

response variable is survival time, and the maximum survival time is 110 months. The

dataset contains 7129 features and 62 patients are censored.

Datasets Patients Censored Features

NSBCD 115 77 549

VDV 78 44 4707

DBCD 295 216 4919

LUNG 86 62 7129

Table 3.1: Summaries of all real datasets.

3.5.2 Simulated Data

The simulated datasets are designed to demonstrate the feature selection as well as

the prediction ability of the new model in this research. The simulated datasets are

generated by the following distribution:

T „ exppαpvJXq
2

` βuJXq

where T is the survival time, X is the feature space, and exppq is the exponential

distribution. v and u are two vectors, and α and β are two arbitrary positive real

numbers.

Suppose there are 100 features, and these features follow a multivariate normal

distribution:

X „ Npµ, Iq
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where each elements of µ follows the uniform distribution Ur0, 1s.

Vectors v and u control how many features determine the survival time. In this

research, the first 20 features are supposed to decide the survival time, so

uJ
“ pu1, u2, . . . , u20, 0, . . . , 0q

vJ
“ pv1, v2, . . . , v20, 0, . . . , 0q

To imitate censoring, around 20% samples are randomly assigned a survival time

which is shorter than the real survival time.

3.6 Comparison Methods

This section introduces the related popular state-of-the-art methods for survival

analysis, including two Cox models as the benchmark statistical methods, random

survival forest and gradient boosted model as the benchmark ML methods, and Multi-

Task Learning model for Survival Analysis (MTLSA) proposed in Li et al. (2016).

3.6.1 Cox Regression

In survival analysis, when the survival distribution is continuous and differentiable,

the hazard function λptq is defined as (Klein and Klein, 2013):

λptqdt “ PpT ă t ` dt|T ě tq

where t is the variable representing time and T is the event time. Intuitively, if

the patient does not experience the event at time t, then the hazard function is the

probability that the patient will experience the event between time t and t ` dt. Cox

regression (Cox, 1972) assumes that the hazard function of all patients satisfies the

proportional hazards assumption:

λpt|Xq “ λ0ptq exppXJβq

where λ0ptq is the baseline hazard function, X is the covariates matrix, and β is the

coefficients vector. β̂ is estimated by maximising the partial likelihood function ℓpβq.
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3.6.2 Cox-LASSO

When the dimension of the covariates X is high, some feature selection methods

can be applied to Cox regression to reduce the dimension of the covariates space (Klein

and Klein, 2013). The Cox-LASSO puts the ℓ1 constraints on β, and β is estimated

by minimising

´ℓpβq ` λ}β}1

where λ ą 0 is the parameter of the ℓ1 penalty.

3.6.3 Cox-EN

The Elastic Net penalty is to solve the problem that Cox-LASSO can only identify

one feature when two highly correlated features are both critical to the survival function

(Klein and Klein, 2013). EN penalty is a mixture of ℓ1 and ℓ2 norm, and the β̂ in the

Cox-EN is estimating by minimising

´ℓpβq ` λ1}β}1 ` λ2}β}
2
2

3.6.4 Gradient Boosted Model

Gradient boosted model is a branch of ML model which combines a series of base

learners to improve the overall model (Pölsterl, 2020). Base learners are usually simple

models which are not very powerful when used alone. The gradient boosted model has

the form:

fpxq “

n
ÿ

i“1

βigpx; θiq

where gpx; θiq is a base learner and βi is the weight of the base learner. The base

learner chosen in this research is the accelerated failure time model, and thus will be

referred as accelerated failure time model in this research.

3.6.5 Random Survival Forest

Random Survival Forest (Ishwaran et al., 2008) is a benchmark ML method for

survival analysis. It is an alternative of the standard Random Forest and is specially
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designed for survival analysis.

3.6.6 Multi-task Learning

The detailed description of MTL and its variants for survival analysis can be found

in Section 2.4. The model MTLSA from Li et al. (2016) will be compared with the

new model proposed in this thesis.

3.7 Evaluation Metric

The concordance index (C-index) is used in this research to compare the prediction

accuracy of survival analysis, rather than the absolute error (Harrell et al., 1982). The

absolute error is defined as |T̂ ´ T |, where T̂ is the predicted survival time and T

is the real survival time. C-Index is similar to the area under the receiver operating

characteristic (ROC) curve but takes into account censored data.

Definition 3.7.1 (Concordance Index). The C-index is calculated by:

C-index “ PpT̂1 ą T̂2|T1 ą T2q

where T1, T2 are the survival time or censored time of an arbitrary pair of patients, and

T̂1, T̂2 are the predicted survival time of them. Two kinds of patient pairs satisfy the

rules. First, both patients are not censored. Second, one of the patient is censored, and

the censored time is larger than then survival time of another patient.

Compared with the absolute error, C-index has two advantages. First, C-index

assumes that patients with smaller survival time have higher risks, thus combines two

aspects of survival problems: survival time and relative risk. Second, C-index takes

into account censored data.
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4
Results and Analysis

This chapter is designed as follows. Section 4.1 introduces the model validation

technique cross-validation. Section 4.2 lists the results of the real datasets. Section 4.3

gives the results of the simulated datasets.

4.1 Cross-Validation

When training the model, the hyperparameters λ1 and λ2 in the proposed new

model should be chosen so that the model has the highest prediction accuracy. After

choosing suitable hyperparameters, model performance should be evaluated in a generalised

manner and biases should be avoided. Cross-validation (CV) is a model validation

technique in statistics designed to evaluate the performance of a model when tested on

independent datasets. Independent here means that the test set is independent of the

57
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training set. CV can also be used to select hyperparameters. In this research, a branch

of CV called Nested CV is applied to evaluate model performance and select appropriate

hyperparameters to avoid data ‘dredging’ and overfitting. The first objective is called

model evaluation and the second objective is called model selection. CV and Nested

CV will be introduced below.

Figure 4.1: 5-Fold Cross-Validation

The basic idea of CV is to split the dataset into k folds, take k-1 folds as the training

set and the other fold as the test set, and repeat the process k times until all k folds

are used as the test set. The overall error of the model is the arithmetic mean of the

errors for k iterations. Figure 4.1 illustrates the structure of the 5-fold CV.

In K-fold CV, the training and test sets are separated, thus avoiding overfitting.

In addition, all folds are used as the test sets in different iterations. This reduces

bias in model evaluation, as it reduced the risk of accidentally finding a test set with

good performance. CV also reduces the risk of data ‘dredging’ by repeating the model

evaluation process and taking the average error. In short, applying CV in model

evaluation can reduce the risk of overfitting and data ‘dredging’.
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Figure 4.2: The Nested Cross-Validation

However, model evaluation and model selection cannot be processed simultaneously

in one K-fold CV, as this may lead to ‘information leakage’. ‘Information leakage’

occurs because of manual selection of hyperparameters when error is at its lowest or

prediction accuracy is at its highest. And in the step of choosing hyperparameters, the

test set is no longer independent of the training set. Thus, the test set leaks information

if it is used again for model evaluation. Nested CVs (Krstajic et al., 2014) are designed

to avoid ‘information leakage’ and reduce bias. The structure of a Nested 3 ˆ 4 Folds

CV is shown in Figure 4.2.

As shown in Figure 4.2, each iteration of the Nested CV is a K-fold CV. For

each iteration, the inner training and test sets are used for choosing hyperparameters.

The hyperparameters are chosen such that the error reaches lowest or the prediction

accuracy reaches the highest at the inner test set. After choosing the hyperparameters,

the model is run on the the outer test set for model evaluation. Therefore, the model

selection and model evaluation are separated and independent. The overall error is

the average of the errors for all the iterations. In a word, the inner training and test

sets are used to choose hyperparameter, and the outer test sets are used to estimate

performance.

The following algorithm summaries the Nested K ˆ I Folds CV (Krstajic et al.,
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2014).

Algorithm 2: Nested K ˆ I Folds Cross-Validation

Randomly divide the dataset into K folds;

for i “ 1, . . . , K do

Let fold i be the outer test set;

Randomly divide the other K ´ 1 folds into I folds;

for j “ 1, . . . , I do

Let fold j be the inner test set and the remaining be the training sets;

Train all hyperparameters on the training sets and records the error on

test set;

Choose the best hyperparameters when the error reaches the lowest;

end

Train a model with the best hyperparameters on the K ´ 1 folds and

record the error on the test fold i;

end

Return the average error;

4.2 Real Data

This section introduces the results of real datasets.

4.2.1 NSBCD

The dataset NSBCD contains gene expression measurements of 115 women with

breast cancer, and 77 patients are censored. The censorship percentage is 70.0%. The

response variable is survival time, and the maximum survival time is 188 months. The

dataset contains 549 features. According to the sample size, a Nested 4ˆ3 Folds CV is

reasonable to be applied to the NSBCD dataset. The detailed procedure is as follows.

Step 1: As shown in Table 2, split the dataset into 4 folds randomly, each fold

should contain approximately the same number of censored and uncensored samples.
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This process is achieved by using train test split function from scikit-learn

(Pedregosa et al., 2011). Similar procedures below use the same technique.

Fold 1 Fold 2 Fold 3 Fold 4

censored 20 19 19 20

uncensored 9 10 10 9

Table 4.1: Split the dataset NSBCD into 4 folds.

Step 2: Take fold 1 as the outer test set, and conduct a 3-Fold CV on the rest folds.

λ1 and λ2 are chosen from

λ1 P t0.0001, 0.0002, . . . , 0.001u

λ2 P t0.1, 0.2, . . . , 1u

Train the model with all pairs of λ1 and λ2, and select the best λ1 and λ2 such that

the C-index reaches the highest.

Step 3: Train a model with the selected λ1 and λ2 in step 2 on folds 2, 3, and 4, then

use fold 1 as test set to calculated the C-index. Then we get the C-index for iteration

1, denoted as C1.

Step 4: Repeat steps 2 and 3 till all folds are used as outer test sets and calculated

the C-indices C2, C3 and C4.

Step 5: The final C-index is calculated as

C-index “
C1 ` C2 ` C3 ` C4

4

And the standard deviation of the overall C-index is calculated using C1, C2, C3 and

C4.

The result is as follows:
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Iteration 1 Iteration 2 Iteration 3 Iteration 4

Best λ1 0.0001 0.0001 0.0001 0.0005

Best λ2 0.1 0.1 0.1 0.2

Ci 0.721 0.683 0.756 0.688

C-index 0.712

SD 0.029

Table 4.2: The Results of the Nested 4 ˆ 3 Folds CV for dataset NSBCD.

According to Table 3, the overall C-index of the new model on dataset NSBCD is

0.712, and the standard deviation is 0.029.

4.2.2 VDV

The VDV dataset contains gene expression measurements of 78 women with breast

cancer, and 44 of them are censored. The censorship percentage is 56.4%. The dataset

contains 4707 features and the maximum survival time is 161 months. According to

the sample size, a Nested 4 ˆ 3 Folds CV is applied on the VDV dataset.

Step 1: Split the dataset into 4 folds as shown in Table 4, each fold should contain

approximately the same number of censored and uncensored data.

Fold 1 Fold 2 Fold 3 Fold 4

censored 11 11 11 11

uncensored 9 9 8 8

Table 4.3: Split the dataset VDV into 4 folds.

Step 2: Take fold 1 as the outer test set, and conduct a 3-Fold CV on the rest folds.

λ1 and λ2 are chosen from

λ1 P t0.0001, 0.0002, . . . , 0.001u

λ2 P t0.1, 0.2, . . . , 2u
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Train the model with all pairs of λ1 and λ2, and select the best λ1 and λ2 such that

the C-index reaches its highest point.

Step 3: Train a model with the selected λ1 and λ2 on folds 2, 3, and 4, then use fold

1 as the outer test set to calculated the C-index for iteration 1, denoted as C1.

Step 4: Repeat step 2 and 3 for folds 2, 3, and 4, till all folds are used as the outer

test sets, and calculated the C-indices C2, C3 and C4.

Step 5: The final C-index is calculated as

C-index “
C1 ` C2 ` C3 ` C4

4

And the standard deviation of the overall C-index is calculated using C1, C2, C3 and

C4.

The result is as follows:

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Best λ1 0.0001 0.0001 0.0009 0.0005

Best λ2 1 1 1 1

Ci 0.752 0.660 0.752 0.703

C-index 0.717

SD 0.039

Table 4.4: The Results of the Nested 4 ˆ 3 Folds CV for dataset VDV.

According to Table 5, the overall C-index of the new model on dataset VDV is 0.717,

and the standard deviation is 0.039.

4.2.3 DBCD

The DBCD dataset contains gene expression measurements of 295 women with

breast cancer, and 216 of them are censored. The censoring percentage is 73.2%. The

dataset contains 4919 features and the maximum survival time is 18 years. According

to the sample size, a Nested 5 ˆ 4 Folds CV is applied on the DBCD dataset.
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Step 1: Split the dataset into 5 folds as shown in Table 6, each fold should contain

approximately the same number of censored and uncensored samples.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

censored 44 43 43 43 43

uncensored 15 16 16 16 16

Table 4.5: Split the dataset DBCD into 5 folds.

Step 2: Take fold 1 as the outer test set, and conduct a 4-Fold CV on the rest folds.

λ1 and λ2 are chosen from

λ1 P t0.01, 0.02, . . . , 0.1u

λ2 P t0.1, 0.2, . . . , 1, 2u

Train the model with all pairs of λ1 and λ2, and select the best λ1 and λ2 such that

the C-index reaches its highest point.

Step 3: Train a model with the selected λ1 and λ2 on folds 2, 3, 4, and 5, then use

fold 1 as test set to calculated the C-index for iteration 1, denoted as C1.

Step 4: Repeat steps 2 and 3 till all folds are used as outer test sets, and calculated

the C-indices C2, C3, C4 and C5.

Step 5: The final C-index is calculated as

C-index “
C1 ` C2 ` C3 ` C4 ` C5

5

And the standard deviation of the overall C-index is calculated using C1, C2, C3, C4

and C5.

The result is as follows:
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Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Best λ1 0.1 0.1 0.1 0.01 0.01

Best λ2 1 1 0.5 2 0.1

Ci 0.757 0.739 0.820 0.725 0.765

C-index 0.761

SD 0.033

Table 4.6: The Results of the Nested 5 ˆ 4 Folds CV for dataset DBCD.

According to Table 7, the overall C-index of the new model on dataset DBCD is 0.761,

and the standard deviation is 0.033.

4.2.4 LUNG

The LUNG dataset contains gene expression measurements of 86 patients with

early-stage lung adenocarcinoma, and 62 patients are censored. The censorship percentage

is 72.1%. The dataset contains 7129 features and the maximum survival time is 100

months. According to the sample size, a Nested 4 ˆ 3 Folds CV is applied on the

LUNG dataset.

Step 1: Split the dataset into 4 folds as shown in Table 8, each fold should contain

approximately the same number of censored and uncensored samples.

Fold 1 Fold 2 Fold 3 Fold 4

censored 16 16 15 15

uncensored 6 6 6 6

Table 4.7: Split the dataset LUNG into 4 folds.

Step 2: Take fold 1 as the outer test set, and conduct a 3-Folds CV on the rest folds.
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λ1 and λ2 are chosen from

λ1 P t10´5, 0.0001, . . . , 0.1u

λ2 P t10´5, 0.0001, . . . , 0.1u

Train the model with all pairs of λ1 and λ2, and select the best λ1 and λ2 such that

the C-index reaches its highest point.

Step 3: Train a model with the selected λ1 and λ2 on folds 2, 3, and 4, then use fold

1 as test set to calculated the C-index for iteration 1, denoted as C1.

Step 4: Repeat steps 2 and 3 till all folds are used as outer test sets, and calculated

the C-indices C2, C3 and C4.

Step 5: The final C-index is calculated as

C-index “
C1 ` C2 ` C3 ` C4

4

And the standard deviation of the overall C-index is calculated using C1, C2, C3 and

C4.

The result is as follows:

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Best λ1 10´5 10´5 10´5 10´5

Best λ2 0.01 0.01 0.01 0.01

Ci 0.635 0.584 0.797 0.640

C-index 0.664

SD 0.080

Table 4.8: The Results of the Nested 4 ˆ 3 Folds CV for dataset LUNG.

According to Table 9, the overall C-index of the new model on dataset LUNG is 0.664,

and the standard deviation is 0.080.

4.2.5 Comparison with Other Methods

Two semi-parametric models and two state-of-the-art ML models for survival analysis

are compared with the new model in this research. The Cox-LASSO, Cox-EN, Random
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Survival Forest, and Gradient Boosted Model with Accelerated Failure Time model as

the base learner are from Python module scikit-survival (Pölsterl, 2020), and the

C-index function is from the Python module lifelines (Davidson-Pilon, 2019). The

model MTLSA (Li et al., 2016) is trained on MATLAB.

All the compared models are evaluated using K-Fold CV and the results are as

follows. Bold number in a column indicates the highest C-index, and numbers in

parentheses are standard deviations.

NSBCD VDV DBCD LUNG

Cox-LASSO 0.598 (0.058) 0.582 (0.063) 0.670 (0.037) 0.558 (0.098)

Cox-EN 0.603 (0.076) 0.578 (0.064) 0.684 (0.034) 0.558 (0.098)

Accelerated Failure Time 0.624 (0.071) 0.634 (0.066) 0.644 (0.056) 0.573 (0.108)

Random Survival Forests 0.732 (0.078) 0.705 (0.079) 0.760 (0.040) 0.628 (0.098)

MTLSA 0.682 (0.045) 0.701 (0.033) 0.758 (0.030) 0.633 (0.075)

The new model 0.712 (0.029) 0.717 (0.039) 0.761 (0.033) 0.664 (0.080)

Table 4.9: The C-index of all methods for real datasets. Bold number in a column

indicates the highest C-index for the dataset, and numbers in parentheses are

standard deviations.

Here is the summary of findings. First, the new model proposed in this research

outperformed the other models in 3 out of 4 real datasets. Overall, 3 ML methods

performed better than the Cox models. Second, Random Survival Forest has the best

performance on dataset NSBCD. However, the standard deviation of the Random

Survival Forest is relatively high (SD = 0.078). Third, the new model outperformed

other methods on the datasetVDV, but the improvement was marginal, 1.67% compared

with the second best method, Random Survival Forest. However, the standard deviation

of my model is significantly smaller than the Random Survival Forest. This shows that

my model is more stable. Fourth, the new model, Random Survival Forest and MTLSA

have almost the same C-index on the dataset DBCD, my model is slightly higher than

the other two methods. Also, the standard deviations are at the same level. Finally, the
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new model outperformed the other methods in the dataset LUNG by 4.90% compared

with the second highest method. In addition, the standard deviations are relatively

high for all methods because the dataset LUNG has a small sample size (N = 86) and

a large number of covariates (N = 7129).

4.3 Simulated Data

Datasets with different sample sizes (N = 200, 500, and 1000) are generated as

described in section 3.5.2. The coefficients are set as:

vJ
“ p1, 2, . . . , 20, 0, . . . , 0q

uJ
“ p1, 1, . . . , 1, 0, . . . 0q

α “ 0.1

β “ 1

µi „ Ur0, 1s for i “ 1, . . . , 20

µi “ 0 for i “ 21, . . . , 100

and the covariates follow the distribution:

X “ px1, x2, . . . , x100q „ Npµ, Iq

and the survival time follows the distribution:

T „ exppαpvJXq
2

` βuJXq

4.3.1 C-index Comparison

For each dataset, the models are trained in the same way as section 4.2, and the

results are as follows.
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N = 200 N = 500 N = 1000

Cox-LASSO 0.555 (0.037) 0.572 (0.046) 0.651 (0.048)

Cox-EN 0.555 (0.036) 0.572 (0.046) 0.651 (0.048)

Accelerated Failure Time 0.599 (0.062) 0.598 (0.047) 0.700 (0.023)

Random Survival Forests 0.581 (0.018) 0.624 (0.039) 0.682 (0.023)

MTLSA 0.613 (0.034) 0.664 (0.087) 0.699 (0.013)

The new model 0.665 (0.065) 0.695(0.023) 0.723 (0.020)

Table 4.10: The C-index of all methods for simulated datasets. Bold number in a

column indicates the highest C-index for the dataset, and numbers in parentheses are

standard deviations.

Here is the summary of findings. First, the new model outperformed others on all

simulated datasets. Overall, the three ML models outperform the Cox model. Second,

the improvements of the new model proposed in this research compared with the second

best model are mediocre on simulated datasets, 7.8%, 4.7%, and 4.7%, respectively.

Moreover, all models performed better when the sample size increased.

4.3.2 Feature Selection Comparison

In subgroup identification, it is important to select the correct predictive or prognostic

biomarkers from a relatively large set of candidate biomarkers. In the simulated

datasets, 20 out of 100 biomarkers are related to the survival time, and the other

80 are not.

As described in the Methodology, the new model proposed in this research forces

the weight matrix to be row-sparse, and important features have higher coefficients.

The process of feature selection is embedded in the training process, so no additional

training and analysis is required. The same is true for Cox models, features with higher

coefficients are more important.
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The feature selection accuracy is defined as:

F “
The number of correct biomarkers being selected

The number of correct biomarkers

For example, if 18 of the 20 biomarkers associated with the response variable are

selected, the feature selection accuracy is 90%.

Now compare the feature selection ability of my model with the Cox model. The

feature selection process is as follows:

1. During the K-Fold CV, at the end of each iteration, calculate the row norms

}w1}2, }w2}2, . . . , }w100}2 of the weight matrix W.

2. Select biomarkers wi with higher norms.

3. calculate the feature selection accuracy Fi for each iteration.

4. The final feature selection accuracy F is the average of Fi. The standard deviations

are calculated using Fi.

N = 200 N = 500 N = 1000

Cox-LASSO 0.490 (0.066) 0.615 (0.032) 0.66 (0.037)

Cox-EN 0.490 (0.066) 0.615 (0.032) 0.66 (0.037)

The new model 0.75 (0.032) 0.920 (0.020) 0.870 (0.024)

Table 4.11: The feature selection accuracy of the simulated datasets.

Below is the summary of findings. First, the new model outperformed the Cox

model in feature selection across all simulated datasets. Second, the improvements of

the feature selection accuracy of the new model compared with the Cox models are

significant, 53%, 50%, and 32% respectively.
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4.4 Subgroup Identification of Simulated Data

In this section, the subgroup identification ability of the new model will be compared

with the Cox-LASSO, Gradient Boosted Model with Accelerated Failure Time model

as base learner, and Random Survival Forest using simulated dataset.

Here are the assumptions of the simulated study. First, suppose there is a treatment

A, and the cost of A/patient is $11000, independent of survival time. Second, the

survival time of patients under treatment A is the simulated dataset with the same

distribution and coefficients as before, and the sample size is N “ 1000. Third,

40% of patients are identified as benefiting from the treatment. Fourth, the baseline

comparison is that all patients receive treatment A.

Now randomly divide the dataset into training set with sample size N “ 900, and

test set with sample size N “ 100.

The process of identifying patients with enhanced treatment effect is as follows:

1. Train each model on the training set, and predict the survival time of the test

set.

2. Select patients with predicted survival time in the top 40 centile among all

patients in the test set as the patient subgroup ‘Predict to Benefit’.

3. Select 40% of patients in the test set with shorter predictive survival time as the

patient subgroup ‘Predict to Not Benefit’.

The Kaplan-Meier curve of the real survival/censor time of the selected subgroups

and the whole test set is as follows:
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Figure 4.3: The Kaplan-Meier Curves of the Selected Patient Subgroups

The estimated median survival time based on Kaplan-Meier estimates for the entire

test set and selected patient subgroups is as follows:

Overall Predict to Benefit Predict to Not Benefit

Cox-LASSO 11 25 4

Cox-EN 11 25 4

Accelerated Failure Time 11 31 4

Random Survival Forest 11 31 4

The new model 11 45 2

Table 4.12: The Median Survival Time (Months) of the Selected Patient

Subgroups
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Based on the estimated median survival time of each method, the corresponding

ICERs are calculated using the formula:

ICER “
CA ´ CB

EA ´ EB

The effectiveness of A is evaluated by the Quality Adjusted Life Year (QALY). Suppose

the cost of A is $11000 per patient, independent of the survival time. Moreover, suppose

the comparison treatment option B cost $10000 per patient, and the median survival

time under treatment B is 11 months.The results are as follows:

Cox-LASSO Cox-EN AFT RSF The new model

Predict to Benefit $857 $857 $600 $600 $353

Table 4.13: The ICERs (per QALY) of ALL Patient Subgroups

Below is the summary of findings. In this simulated study, the new model proposed

in this research can select the patient subgroup with the highest median survival time

compared with other methods. Moreover, the ICER of the patient subgroup selected

by the new model is the lowest. According to the definition of the ICER, it can be

conclude that the treatment A is more cost-effective on the patient subgroup selected

by the new model.
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5
Discussion

5.1 Summary of Findings

In this research, a new SVM-based MTL model for survival analysis was established.

The new model was compared with 5 models, including two benchmark statistical

models: Cox-LASSO and Cox-EN, two benchmark ML models: Random Survival

Forest and Gradient Boosted Model with Accelerated Failure Time model as the

base learner, and one MTL model for survival analysis: MTLSA. Three important

features were compared, including prediction accuracy of survival time, feature selection

accuracy, and changes in ICER in the selected patient subgroup. The prediction

accuracy of survival time/risk is evaluated by the C-index, and the feature selection

accuracy is assessed by the average probability of selecting the correct biomarker.

Two types of datasets were used in this research – the high dimension gene expression

75



76 Discussion

datasets and the simulated datasets with different sample size. To avoid data ‘dredging’

and overfitting, the models were trained using Nested Cross-Validation.

The prediction accuracy comparison using the real datasets shows that my model

outperformed the other 5 models in 3 of the 4 datasets when evaluated by the C-

index. Also, the comparison of standard deviations of the C-index shows that my

model is stable, since the standard deviations are relatively small. However, the overall

improvement is marginal at less than 3% in two datasets and around 5% in one dataset.

Three datasets with sample sizes N “ 200, 500, and 1000 were simulated, each

with a censorship percentage of 20%. The prediction accuracy comparison shows that

my model outperforms the other 5 models when evaluated by the C-index across all

simulated datasets. The C-index improvements for the three datasets are 7.8%, 4.7%,

and 4.7%, respectively.

The feature selection accuracy of my model was compared with the Cox models

on the simulated datasets. The feature selection accuracy is defined as the average

probability of selecting correct biomarkers in the simulated datasets. The result shows

that my model outperforms the Cox model in feature selection, with impressive improvements

of 53%, 50% and 32% respectively.

In the simulated dataset, each method selected a patient subgroup consisting of

40% samples with longer predicted survival times. Then the ICER was calculated for

each selected subgroup. The effectiveness was the median survival time, which was

estimated using the Kaplan-Meier method. The results show that my model can select

a patient subgroup with longest median survival time compared with other methods.

Therefore, the patient subgroup selected by my model has the lowest ICER.

5.2 Strengths

This is the first research on applying the state-of-the-art ML method MTL in

subgroup identification, as well as health economics. In the era of big data and artificial

intelligence, the use of ML to improve data analytics in different fields is of global

interest (Williamson et al., 2018). It is foreseeable that developing ML models for
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health economics will become increasingly important in the near future (Chen et al.,

2020).

One of the strengths of the new model proposed in this research is that it predicts

survival time. When given data from a new patient, the new model can directly predict

survival time without estimating the baseline function, whereas other comparison

methods only predict risk scores.

Another strength is that the new model has a relatively high C-index compared

with other methods, and an impressively high feature selection accuracy compared

with the Cox models.

As a result of these strengths, the patient subgroup selected by the model has a

longer median survival time and a lower ICER compared with other methods. Therefore,

the model presented in this study can be used as a tool in the analysis of data from

early clinical trials by pharmaceutical companies to find potential predictive/prognostic

biomarkers. The result of the analysis could inform the design of further trials regarding

patient subgroups.

5.3 Limitations

There are five limitations of this research.

First, the convergence rate of the algorithm can be slow, and the computation can

be intensive when the dataset is large. This is because the optimisation technique for

the new model is sub-gradient descent, a first-order method. Sub-gradient descent uses

all samples at each iteration to update the weight matrix, which is computationally

intensive and can be slow when the sample size is large. Therefore, the new model has

the same weakness as the first-order optimisation.

Second, the new model is not specially designed for recognising predictive biomarkers.

It may have difficulty in selecting predictive biomarkers if the predictive biomarkers are

much weaker than the prognostic biomarkers. Therefore, after important biomarkers

have been selected, additional analysis is required to identify predictive biomarkers.

Third, this model can only predict the survival time up to the longest observation
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point. For example, if the longest survival time for the observed patients is 10 years,

then the maximum survival time predicted by my model is 10 years.

Fourth, all the real datasets are small size with high amount of censoring. The

sample sizes of all real datasets are 78, 86, 115, and 295, respectively. Meanwhile, all

the real datasets are highly censored, with censorship percentages ranging from 56%

to 73%. The simulated datasets are all based on exponential distribution.

Fifth, experiments showed that C-index tend to overestimate the performance

when the censorship percentage exceeds approximately 66% for small sample datasets

(Pölsterl, 2020).

5.4 Further Research

As mentioned in the limitations, the real datasets in this research are all high

dimensional gene expression datasets with small sample sizes. So, the ability and

stability of the new model can be further studied with additional real world datasets.

The optimisation technique applied in this research is a first-order method – sub-

gradient decent. Sub-gradient decent is a good choice for non-smooth optimisation (the

modified hinge loss in my algorithm is non-smooth), but it is slow and computationally

intensive. There are several new optimisation methods designed specifically for non-

smooth optimisation. For example, smoothing approximation of non-smoothing functions

(Nesterov, 2005), projected gradient method, and proximal gradient method. These

methods can be applied in this research to speed up the training of the algorithm.

The new model in this research can be applied in the framework of other subgroup

identification methods to replace the time-to-event prediction model. According to the

literature review of subgroup identification methods, the central step of the global

outcome modelling methods is to build models to predict the treatment outcome

function (e.g., survival time). Since the new model has a high prediction accuracy

compared with other state-of-the-art methods, it can be applied in the global outcome

modelling framework to identify predictive biomarkers in randomised controlled trials,

and to improve the general accuracy of subgroup identification.
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5.5 Conclusion

For the primary question ‘compared with existing models, can the proposed model

improve the accuracy of time-to-event prediction based on the censored dataset, as

assessed by the concordance index?’, the answer appears to be ‘yes’ according to the

results in Chapter 4. For the secondary question ‘compared with existing models, can

the proposed model select the correct predictive or prognostic biomarkers?’, according

to the results in Chapter 4, the answer appears to be ‘yes’ when compared with the

Cox models. For the secondary question ‘how will the ICER change when calculated

among selected patient subgroups and whole patient population?’, the answer appears

to be that the ICER reaches its lowest when calculated among the patient subgroup

selected by the new model.

We are still on the road to precision medicine. ‘Using genomics and precision

medicine to help Australia become the healthiest country on earth’ was identified as an

ideal national mission (Williamson et al., 2018). As part of the healthcare system, HTA

plays an important role in the allocation of medical resources by providing policymakers

with the necessary information to make better funding decisions.

This research shows the new model has enough predictivity to improve the time-

to-event estimation and feature selection for subgroup identification. As such, the

new model has the power to identify patients subgroups for which treatments are

particularly good value for money in precision medicine, and ultimately improving the

allocation of resources and quality of life for Australians.

With the dramatic increase in data collection capabilities and the variety of covariates,

machine learning and data science also play a crucial role in precision medicine. It is

foreseeable that in the near future, the development of ML models for HTA will become

increasingly popular and gain more attention (Williamson et al., 2018; Chen et al.,

2020). In addition, the model provides theoretical improvements to the application

of ML to survival analysis. Thus, this research can be applied to other areas beyond

health economics, as survival analysis is used widely in a range of other disciplines,

such as ecology and engineering.
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Appendix

A.1 Code of the New Model

def mymodel(X, Y, B, max_iter = 100, lambda1 = 1, lambda2 = 1):

N, M = X.shape

Ny, T = Y.shape

if N != Ny:

return(’wrong dimension’)

#initialise W, D

W = np.zeros((M, T))

D = np.diag(np.ones(M)) * 1000

for i in range(1, max_iter):

eta = 1 / i * lambda1
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Y_prediction = X @ W

L1 = gradient1(X, Y, B, Y_prediction, N, M, T)

L2 = gradient2(X, Y, Y_prediction, N, M, T)

dif = eta * (2 * lambda1 * D @ W + L1 + lambda2 * L2)

error = LA.norm(dif, ’fro’)

if error < 0.0001:

print(f’The optimisation end at iteration {i}’)

break

W = W - dif

D = calculate_D(W)

return W, D, error

def gradient1(X, Y, B, Y_prediction, N, M, T):

result = np.zeros((M, T))

for j in range(T):

for i in range(N):

if Y_prediction[i, j] * Y[i, j] < 1 and B[i, j] == 1:

result[:, j] -= Y[i, j] * X[i, :]

return result

def gradient2(X, Y, Y_prediction, N, M, T):

result = np.zeros((M, T))

for i in range(N):

for j in range(T-1):

if Y_prediction[i, j] < 0:

for k in range(j + 1, T):

if Y_prediction[i, k] > 0:

result[:, j] -= X[i, :]

result[:, k] += X[i, :]

return result
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def calculate_D(W):

M, T = W.shape

Diag = []

for i in range(M):

a = max(0.001, LA.norm(W[i, :]))

Diag.append(1/a)

D = np.diag(np.array(Diag))

return D
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