
Investigating the Impact of Cyber Security Attacks

on Cryptocurrency Markets

A thesis submitted in partial fulfilment of the requirement

for the degree of Master of Research

Submitted by:

Seung Ah Lee

Supervised by:

Associate Professor George Milunovich and Dr Colin Zhang

August 10, 2022

Department of Actuarial Studies and Business Analytics

Macquarie Business School

Macquarie University



i

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the
best of my knowledge and belief, the thesis contains no material previously published or written
by another person except where due reference is made in the thesis itself.

Seung Ah Lee
June 16, 2022



ii

Acknowledgements

This thesis has been completed with the support from many people that I would like to acknowl-
edge.

Firstly, special thanks to my supervisor George Milunovich. I would not have been able to
complete this thesis without his guidance and help. Whenever I faced a difficult problem, his
encouragement, insights and knowledge inspired me and became a driving force to keep moving
forward. He is the best teacher and a role model I want to emulate the most.

I would also like to thank Colin Zhang, my associate supervisor. Several years after my
coursework studies he graciously accepted my request to act as my co-supervisor. He has been
very supportive, and his feedback is always constructive.

Lastly, my dear family and friends. No words of gratitude are enough for their love and
support. My parents and big brother give me endless love and unconditional support. My big
sister and mentor, Charlotte Park, has always been by my side and has been with me through
tough times. Your encouragement, support and care give me so much strength and confidence.
Bo Sun Kim, who has always been my best friend, encourages me, gives me strength in difficult
times, and believes that I will get through it no matter what. Daseul Baek, a friend who gives
me strength more than anyone else and encourages me to keep moving forward. Thank you,
and love you all. I will never forget the support and strength you gave me.



iii

Abstract

Cryptocurrency markets have grown significantly since the introduction of Bitcoin in 2008. Cur-
rently, there are more than 500 cryptocurrency exchanges worldwide and over 19,700 different
cryptocurrencies which trade across various markets. While cryptocurrency trading is possible
via peer-to-peer transactions, more than 90 percent of trading occurs on organised exchanges.
Therefore, centralised cryptocurrency exchanges have become high-value targets to hackers and
other types of criminal activity. In this thesis, I investigate two aspects of risk associated with
cyberattacks on digital exchanges. First, I study the risk of cryptocurrency exchange closures
and attempt to predict which markets will remain active given publicly available data on their
key characteristics, including cybersecurity measures. I construct predictive models which reach
training set accuracy of up to 95.9 percent, and up to 85.7 percent accuracy when applied to
independent test data. In terms of feature importance, I find that transaction volume, ex-
change lifetime and cyber security measures such as security audit, cold storage and bug bounty
programs rank high in their contribution to the predictability of exchange closures. Second,
I examine the impact of cybersecurity breaches of cryptocurrency exchanges on the return of
Bitcoin. Using several alternative specifications, I test the hypothesis that Bitcoin returns expe-
rience a decrease on the dates associated with cybersecurity breaches of digital markets. I find a
negative and statistically significant impact at the 5 percent level, where Bitcoin price declines
between 1.29 and 1.47 percent on cyberattack days, depending on which model is applied and
what control variables are included.

Keywords: Cryptocurrency Exchanges, Closures, Digital Coin, Machine Learning, Predictive
Analytics, GARCH, Return



Contents iv

Contents

1 Introduction 1

2 Literature Review 3
2.1 The Impact of Cybersecurity Attacks on Cryptocurrency Exchange Closures . . . 4
2.2 Characteristics of Cryptocurrency Returns and Volatilities . . . . . . . . . . . . . 5
2.3 The Impact of Cyberattacks on Cryptocurrency Returns . . . . . . . . . . . . . . 8

3 Data Description 10
3.1 Predicting Cryptocurrency Exchange Closures . . . . . . . . . . . . . . . . . . . . 10
3.2 Evaluating the Impact of Cyberattacks Against Cryptocurrency Exchanges on

Bitcoin Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Methodology 15
4.1 Predicting Cryptocurrency Exchange Closures . . . . . . . . . . . . . . . . . . . . 15

4.1.1 The Prediction Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Cross-Validation and Performance Evaluation . . . . . . . . . . . . . . . . 20

4.2 Evaluating the Impact of Cyberattacks Against Cryptocurrency Exchanges on
Bitcoin Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Results and Discussion 22
5.1 Predicting Cryptocurrency Exchange Closures . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Measuring Classification Performance . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Evaluating the Impact of Cyberattacks Against Cryptocurrency Exchanges on
Bitcoin Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusions 31
6.1 Limitations of the Present Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



List of Figures v

List of Figures

1 Bitcoin Prices/Returns and Cyberbreaches of Cryptocurrency Exchanges . . . . 15
2 A Decision Tree Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 A Support Vector Machine Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 A Hypothetical Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Confusion Matrix – Random Forest Algorithm and Test Data . . . . . . . . . . . 25
6 Feature Importance According to Random Forest Classifier . . . . . . . . . . . . 25
7 Feature Importance According to Decision Tree Classifier . . . . . . . . . . . . . 26
8 Visualizing Predictions in a 3-dimensional Subspace . . . . . . . . . . . . . . . . 28



List of Tables vi

List of Tables

1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 In-sample Forecasting Performance (Training Dataset) . . . . . . . . . . . . . . . 23
5 Out-of-sample Forecasting Performance (Test Dataset) . . . . . . . . . . . . . . . 24
6 Marginal Effects Estimated by Logistic Regression . . . . . . . . . . . . . . . . . 27
7 Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 Parameter Estimates (Added Control Variables) . . . . . . . . . . . . . . . . . . 30



Introduction 1

1 Introduction

The phenomenon of cryptocurrency emerged in 2008 when Bitcoin was introduced as the first
cryptographic currency that transacts on a peer-to-peer network (Nakamoto, 2008). According
to a definition from the Reserve Bank of Australia (RBA, 2022), cryptocurrencies are digital to-
kens that allow people to make payments directly to each other through an online system without
an intermediary such as a bank. Regarding their value the RBA states that “cryptocurrencies
have no legislated or intrinsic value” and that they are worth what people are willing to pay
for them in the market. Nevertheless, the cryptocurrency market has grown significantly since
2008. Currently, there are more than 500 cryptocurrency exchanges worldwide, and over 19,700
different cryptocurrencies trade across various markets. The market is, however, concentrated
in the top 20 cryptocurrencies which account for over 90% of the overall market capitalisation
of $1.88 trillion1.

While the word cryptocurrency implies digital (virtual) currency secured by cryptography,
there is considerable debate regarding whether cryptocurrencies are in fact currencies or if they
should be classified as an asset class. For instance, Cheah and Fry (2015) highlight Bitcoin’s
speculative properties and suggest that Bitcoin is better characterised as an asset than an
alternative currency. This view is supported by Glaser et al. (2014), who argue that Bitcoin
should be considered a speculative financial asset due to its high volatility. Similar conclusions
are provided in Bouri et al. (2017), Stens̊as et al. (2019) and others.

According to trading records the initial transaction volume of Bitcoin was minimal, and
its price was close to zero USD. For instance, in one of the first Bitcoin transactions 10,000
Bitcoins were exchanged for two pizzas (Wallace, 2011). However, the concept of peer-to-peer
payment system attracted sufficient interest, the number of transactions increased, and new
cryptocurrencies were soon after created. Today, the value of 10,000 Bitcoins exceeds USD 416
million. Following the first few years of trading, the price of Bitcoin assumed a steep upward
trajectory and reached its peak of USD 68,000 in November 2021. However, such price increases
have also been accompanied by large volatility. Currently, the cryptocurrency market is still
dominated by Bitcoin, which accounts for about 41% of the total market value2.

There are several factors behind the extraordinary growth of cryptocurrencies. Their key
characteristics may be listed as follows: i) decentralisation, ii) anonymity, iii) transactions which
are irreversible and immutable, iv) security and v) fast and easy access. Each of these properties
played an important role in the fast adoption of the new technology and warrants a brief ex-
planation which is provided below in the context of Bitcoin, while the technology behind other
cryptocurrencies may differ somewhat.

Unlike traditional fiat currencies, cryptocurrency is a decentralised virtual currency (Poletti,
2018). Here decentralisation refers to both the transfer of control, and to the decision-making
regarding the supply of currency. Traditionally, fiat currency transactions are cleared by a third
party within a centralised payment system run by a bank or some other institution. In contrast,
decentralised payments are conducted directly between two counterparties (Luther and Smith,

1As of Jun, 2022. Source: https://coinmarketcap.com/.
2As of Jun, 2022. Source: https://www.tradingview.com/symbols/CRYPTOCAP-BTC.D/.

https://coinmarketcap.com/
https://www.tradingview.com/symbols/CRYPTOCAP-BTC.D/


Introduction 2

2020). A blockchain based system processes and validates transactions through an open network,
and all transactions are recorded in a publicly available ledger called blockchain. Furthermore,
the issuance of new coins, e.g. Bitcoins, is not under the control of government authority such
as a central bank, but is instead managed by the rules embedded in the open source code that
runs the network.

Cryptocurrencies can be stored in online ‘hot wallets’ or offline ‘cold wallets’ which are
accessed using a private key (Guri, 2018) and provide anonymity. In the case of traditional fiat
currencies, transactions require the identity of the remitter and recipient, while cryptocurrency
transactions do not require a proof of identity. Anyone with access to a digital wallet and
a private key can send and receive Bitcoins. The private key is a randomly generated string
used to prove ownership and allows cryptocurrency to be spent. It is always mathematically
related to a digital wallet address but is impossible to reverse engineer thanks to encryption
which provides security. Next, cryptocurrency transfers conducted on the Bitcoin network are
relatively fast, cheap and efficient, especially when compared to international transfers of fiat
currencies (Masilela et al., 2021). Once a Bitcoin transaction has been processed, it is recorded on
the blockchain and cannot be cancelled or modified, thus it becomes irreversible and immutable
(Feig, 2018).

Despite the fact that cryptocurrency trading is possible via anonymous peer-to-peer trans-
actions, most of it occurs on organised exchanges. In general, cryptocurrency markets can be
characterised as centralised and decentralised. Centralised exchanges are intermediaries, most
of which are incorporated as private companies that facilitate trading in cryptocurrencies. On
the other hand, decentralised exchanges offer trading platforms where buyers and sellers decide
the exchange rate and payment method (Matkovskyy, 2019). Nevertheless, it is estimated that
about 99 percent of transactions are made through centralised markets (Roubini, 2018), and
hence in this thesis I will limit the analysis to this type of cryptocurrency exchange. There are
several reasons for the popularity of organised exchanges. First, Barbon and Ranaldo (2021)
report that centralised exchanges have lower transaction costs and higher liquidity than decen-
tralised exchanges. Another critical factor behind the popularity of centralised exchanges is that
they simplify cryptocurrency trading by providing their clients with custodian services whereby
traders can store their cryptocurrencies in accounts provided by the exchanges. This eliminates
the need for setting up own digital wallets, which in some cases can be a technically challenging
process.

While providing convenience, the practice of storing digital currencies on cryptocurrency
exchanges presents a source of risk to cryptocurrency traders. Oosthoek and Doerr (2020)
suggest that the lack of regulation in the cryptocurrency market and the fact that cryptocurrency
prices have grown exponentially have made this market a high-value target for many types of
cybercrime. Empirically, digital exchanges have a high incidence of being hacked or becoming
a victim to some other form of a cybersecurity breach in which client funds are stolen from the
exchange. From a cryptocurrency trader’s point of view, this creates two types of risk. First,
there is the risk of having investor funds stolen in a cryptocurrency exchange security breach.
Second, cryptocurrency prices may be negatively impacted by successful cyberattacks on digital
exchanges resulting in capital losses. For instance, the cybersecurity heist of Mt. Gox exchange
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in 2014 led to a 36% drop in Bitcoin price (Hu et al., 2020). This can happen for several reasons.
First, there is the possibility that a large amount of stolen cryptocurrency will be placed on the
market resulting in a temporary oversupply. Another cause of such price reaction can be linked
to the fact that many cryptocurrency exchanges faced closure following a cybersecurity breach
thus undermining the infrastructure of the system. Lastly, as discussed in Kamiya et al. (2021),
cyberattacks which involve the loss of personal financial information have large reputation costs
that far exceed the out-of-pocket costs associated with the cyberattack itself.

As cryptocurrencies become a more mainstream form of investment and finance many market
participants remain unaware of specific risks encountered in the cryptocurrency markets. In this
thesis, I investigate the two types of risks associated with cryptocurrency exchange cybersecurity
breaches mentioned above using cross-sectional data and time series data, namely i) the risk of
potentially losing funds to digital market closures, and ii) the risk of cryptocurrency capital
loss resulting from a price drop associated with successful cyberattacks on digital exchanges. In
particular, I address the risk investors face due to closures of digital exchanges by attempting
to forecast such closures on the basis of publicly available data. If it is possible to accurately
predict which markets will remain open, and which ones will go out of business, then investors
can account for this information and avoid exchanges that are likely to face closure. Here I show
that it is possible to predict which cryptocurrency exchanges will face closure with relatively high
accuracy using publicly available data. Next, I proceed to study the indirect effect of Bitcoin
price reaction to cyberattacks on digital exchanges. I show that this is indeed a risk investors
need to be aware of as successful cyberattacks on cryptocurrency markets have a significant
and negative effect on Bitcoin price. Bitcoin price is found to be negative and range between
-1.288% and -1.470%, depending on model specification, on the days of successful cyberattacks
on cryptocurrency exchanges. The findings provided in this thesis can be taken into account by
cryptocurrency market participants when formulating risk management policies.

This thesis consists of 6 chapters. Chapter 1 is the introduction and Chapter 2 provides a
literature review. Data collection methods and the summary of the dataset are presented in
Chapter 3, Chapter 4 outlines empirical techniques used in the thesis, while empirical results
are contained in Chapter 5. Finally, Chapter 6 concludes and discusses some limitations of the
study.

2 Literature Review

This literature review contains three subsections which cover three related topics on cryptocur-
rency markets. In the first subsection I discuss the literature which examines the impact of
cybersecurity attacks on cryptocurrency exchanges. This is followed by an overview of the stud-
ies that investigate empirical characteristics of cryptocurrency returns and volatilities. Finally,
I review the literature examining the impact of cyberattacks on cryptocurrency returns.



Literature Review 4

2.1 The Impact of Cybersecurity Attacks on Cryptocurrency Exchange Clo-
sures

Cryptocurrency exchanges typically operate as private companies in a largely unregulated mar-
ket. Since a large majority of cryptocurrency transactions are conducted on centralised ex-
changes, which also often store currencies for their clients, exchanges are being targeted by
cybercriminals as high-value targets. Consequently there has been a large number of digital
exchange closures resulting in the loss of investor funds. In this section I review several studies
that investigate links between cryptocurrency market closures and various exchange character-
istics, and seek to uncover the factors behind the high incidence of cryptocurrency exchange
closures.

Moore and Christin (2013) is one of the first papers to study the risk of cryptocurrency
exchange closures. They examine 40 Bitcoin exchanges from 2011 to 2013 and employ survival
analysis to identify which factors are behind Bitcoin exchange closures. Their model uses three
variables to explain Bitcoin exchange closures, namely: i) average daily trading volume, ii)
experiencing a previous security breach, and iii) Anti-Money-Laundering and Combating the
Financing of Terrorism (AML/CFT) compliance. Using these variables the authors estimate a
proportional hazards model and report that daily volume negatively impacts closures, i.e. the
higher the trading volume the lower the exchange closure probability. They also use a logistic
regression to examine which factors contribute to exchange cybersecurity breaches (without nec-
essarily resulting in exchange closures) where the average daily transaction volume and months
operational are the explanatory variables. The results show that transaction volume is the key
factor behind cryptocurrency exchange cybersecurity breaches impacting the probability of ex-
periencing a new breach with a positive coefficient, while the coefficient on months operational
is negative. In summary, Moore and Christin (2013) find that cryptocurrency exchanges with
high transaction volume are less likely to close down, but that they have a greater chance of
being breached.

Moore et al. (2018) extend Moore and Christin (2013) to a longitudinal study over the
2010 — 2015 period. Their dataset includes the following variables: incidence of previous
cyber breach, average daily trading volume, security properties of exchanges such as two-factor-
authentication, bug-bounty program, security audit, and the implementation of cold storage.
An additional predictor is the anti-money laundering and combating the financing of terrorism
(AML/CFT) index for the home country of each exchange. In this study’s data sample there are
25 exchanges that have been victims of hacking attacks (or other types of criminal activity), 15
of which subsequently closed and 10 markets that survived. In addition, another 23 exchanges
closed without a breach experience. A critical aspect of exchange closures is whether they
reimburse clients after the closure. In only 16 cases of all 38 exchanges that closed, customers
were reimbursed either fully or partially. Moore et al. (2018) apply a methodology consisting of
a logistic regression with fixed effects which is estimated using maximum likelihood estimation
in R (pglm). In their baseline model, the authors include an intercept, breached in the current
quarter variable, log of transaction volume and time trend. They report all estimated coefficients
to be statistically significant at the 10 percent level, while breached in the quarter variable
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is statistically significant at the 1 percent level. In addition, the coefficients on the log of
transaction volume and the time trends are negative. At the same time, the breached in the
quarter parameter is positive, indicating that experiencing a previous security breach in the
quarter increases the probability of closure.

Another study that investigates cybersecurity breaches of digital exchanges but in the context
of attack pattern is Oosthoek and Doerr (2020). Their methodology is based on attack vector
analysis using the Vocabulary for Event Recording and Incident Sharing (VERIS) technology
for post-breach assessment and impact analysis. VERIS is a Cyber Threat Intelligence (CTI)
provided by Verizon and provides breach incidents in a structured form. CTI is used to analyse
the tools, tactics, and procedures of cybersecurity breaches. The attack vector analysis yields
four key findings. First, the increase in breach incidents reduces disclosure details. Authors
suggest that when a breach incident is dated in the early years of the sample period, the details
of the breach are typically unavailable due to the closure of those exchanges. However, the
information is scarce even in more recent incidents because the exchanges are reluctant to
share incident details in order to protect their reputation. Second, they find a decrease in
the use of stolen credentials over time (in the early incidents most breaches were performed
using stolen credentials). Third, there is a decrease in the abuse of functionality where attackers
use legitimate methods to effectively abuse native functionality on an exchange. This type of
breach is usually performed due to inadequate monitoring software or security audits of the
exchanges. Finally, the authors find that in the case of Bitcoin exchanges, funds are stolen more
often than in cyberbreaches of any other type of financial institution. However, in the case of
recent breaches, investors have received either partial or full reimbursement from the affected
exchanges and the amount of stolen BTC has decreased over time.

The final paper I review is Milunovich and Lee (2022) which is based on a preliminary version
of this thesis. In that paper I use four classifiers: decision tree, random forest, logistic regres-
sion and support vector machine to predict which digital exchanges will close down and which
ones will remain in business based on their publicly available attributes. The paper employs a
database on 238 digital exchange which is collected manually from various media portals and
internet searches. In contrast in this final version of the thesis I extend the number of predictive
models from four to ten, and update the dataset to include 279 exchanges. Milunovich and Lee
(2022) find that the four classifies they employ perform well, but that random forest outperforms
the other models reaching training accuracy of 0.904 and 0.861 accuracy on independent test
data. Critical features for predicting which exchanges will stay in business are: i) average trad-
ing volume, ii) lifetime of exchange, iii) security audit, iv) bug-bounty, and v) cold storage. In
comparison, two-factor authentication and AML/CFT index do not appear to contribute much
to the forecast accuracy.

2.2 Characteristics of Cryptocurrency Returns and Volatilities

The literature investigating empirical characteristics of the cryptocurrency markets is consid-
erably larger than the above reviewed literature on cryptocurrency exchange closures, which is
relatively new. Below I review a number of relevant papers that study first and second moment
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dynamics of various cryptocurrencies.
Koutmos (2018) studies the relationship between Bitcoin returns and trading activity using

a bivariate vector autoregression (VAR). The study is based on a dataset consisting of Bitcoin
spot prices and transaction volumes over the period 2013 – 2017, comprising 1,231 observations.
The author employs two different bivariate VAR models. The first model is specified for Bit-
coin returns (percent changes in log price) and percent changes in the total number of Bitcoin
transactions. The second model is Bitcoin percent returns and percent changes in the number
of Bitcoin addresses. The author finds a significant relationship between Bitcoin returns and its
transaction activity. Bitcoin returns typically increase by 0.3% three days following a simulated
shock to trading activity.

The relationship between cryptocurrencies and macro-financial market risk factors is studied
in Koutmos (2020). The study is conducted within the framework of Markov regime-switching
regression analysis. In particular, the author investigates whether Bitcoin is a unique asset
class that is not linked to economic fundamentals as represented by commonly used market
factors. The study concludes asset pricing risk factors such as interest rates, implied stock
market volatility and foreign exchange market variables are important determinants of Bitcoin
returns. However, Bitcoin returns are more difficult to explain during periods of high volatility
than during periods of low volatility. The effect of macroeconomic news announcements on
Bitcoin returns is also reported in Pyo and Lee (2020).

Another study that investigates the relationship between Bitcoin and macro-financial factors
is Van Wijk (2013) who finds significant long-run effect from the Dow Jones index, WTI oil and
USD exchange rate to the price of Bitcoin. The finding that cryptocurrency markets are not
isolated from macro-financial factors is also found in Bouri et al. (2018). They estimate STGAR-
BTGARCH-M model and find spillover effects between Bitcoin, commodities, stocks, currencies
and bonds, where the estimated links are stronger for returns than volatilities. Furthermore
Bitcoin is typically found to be the recipient of the estimated spillovers, rather than a transmitter.
Additional evidence against the hypothesis that cryptocurrency markets are isolated is found in
Corbet et al. (2020b) where the Bitcoin market is found to respond to macroeconomic news and
in Zhou (2021) who concludes that Bitcoin is likely to move with global financial markets at
times of uncertainty. Similarly, Klein et al. (2018) applies BEKK-GARCH specification to six
time series including Bitcoin, gold and silver prices in USD, crude oil prices for the West Texas
Intermediate (WTI), the S&P 500 index, MSCI World and the MSGI Emerging Markets 50 index
between July 2011 and December 2017. They report that Bitcoin returns show asymmetrical
movements in response to market shocks in the same direction as precious metals. Moreover,
they find Bitcoin returns to be positively correlated with the US equities during downward
trending markets.

In contrast to the above mentioned studies a number of papers report that the cryptocurrency
markets are largely isolated from mainstream asset class and do not depend on macro-financial
risk factors. For instance Baek and Elbeck (2015) finds no relationship between Bitcoin and
macro-financial factors using linear regression analysis. Ciaian et al. (2016) apply VAR analysis
to find a significant impact of global macro-financial factors, as captured by the Dow Jones Index,
exchange rate and oil price, on Bitcoin price only in the short run, but conclude that traditional



Literature Review 7

risk factors do not determine Bitcoin price in the long run. Finally, Briere et al. (2015) use weekly
data over the 2010–2013 period to analyse a Bitcoin investment from the standpoint of a US
investor with a diversified portfolio including both traditional assets (worldwide stocks, bonds,
hard currencies) and alternative investments (commodities, hedge funds, real estate). Over
the period under consideration, Bitcoin investment had highly distinctive features, including
exceptionally high average return and volatility. Its correlation with other assets was remarkably
low and provided significant diversification benefits.

Another strand of the literature shows that the volatility of Bitcoin returns exhibits time-
varying dynamics. For example, Katsiampa (2017) studies the volatility characteristics of Bitcoin
using several GARCH models. The dataset used spans the time period July 2010 – October
2016 and consists of 2267 observations. Bitcoin returns are modelled using an autoregressive
(AR) model, and a first-order GARCH-type specification is employed in the conditional variance
equation. According to the information criteria the AR(1)-CGARCH(1,1) (component GARCH)
model appears to be optimal amongst several alternative specifications. The residual tests
for this best model indicate no autocorrelation remaining in the residuals and that all of the
conditional heteroskedasticity has been eliminated from the standardised residuals according
to the ARCH(5) test. In another application of GARCH models Dyhrberg (2016) employs an
asymmetric GARCH specification to demonstrate that Bitcoin may be useful in risk management
and ideal for risk averse investors in anticipation of negative shocks to the market.

Bitcoin plays a key role in the cryptocurrency market among many cryptocurrencies with
46% market dominance. Several studies examine the relationship between Bitcoin and other
major cryptocurrencies.

Kumar and Anandarao (2019) examine the return and volatility spillovers between four ma-
jor cryptocurrencies using a GARCH model. They collect daily log returns of Bitcoin, ethereum,
ripple and litecoin between August 2015 and January 2018 and estimate a DCC-IGARCH model.
They find the existence of substantial spillover effects among all cryptocurrency returns. More-
over, the volatility spillovers between Bitcoin on one hand, and Ethereum and Litecoin on the
other hand, are largest. The magnitude of the estimated volatility spillovers increases after 2017
as the trading activity in cryptocurrencies gains momentum.

Candila (2021) adopts a mixed-frequency approach within the Dynamic Conditional Corre-
lation (DCC) specification in order to model the co-movement of seven key cryptocurrencies by
adding Google queries data as a potential driver of volatility. The investigated time period is
June 2016 to December 2020. This paper solves the issue of including low frequency (monthly)
data on Google searches of each digital currency in the DCC framework modelling high fre-
quency (daily) correlations between different cryptocurrencies. Candila (2021) reports that the
inclusion of the monthly Google searches as additional determinants for the daily volatilities
of the chosen digital currencies is important. They find that only the models using Google
searches belong to the set of superior models (SSM), identified through the Model Confidence
Set (Hansen et al., 2011) procedure. Moreover, only the models employing the Google trends
and the RM model have satisfactory residual diagnostics. Finally, the estimated time-varying
correlations are relatively high, ranging between 0.6 and 0.8 on more recent data.

Finally, Gradojevic and Tsiakas (2021) study volatility transmissions between long and short
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time horizons and whether such transmissions depend on the type of volatility, i.e. low vs. high
volatility, in the context of three cryptocurrencies: Bitcoin, etherium and ripple. For instance,
one of the investigated questions involves examining whether high long-horizon volatility will
result in high short-horizon volatility and vice versa. Using a method based on a wavelet Hidden
Markov Tree model specifies a two-state regime of high and low volatility. Their main empirical
finding is that going from long to short horizons, volatility cascades tend to be mostly symmetric.
However, volatility cascades are strongly asymmetric when moving from short to long horizons.

2.3 The Impact of Cyberattacks on Cryptocurrency Returns

There is a large body of literature which investigates different types of cyberattacks on blockchain
technologies and the impact on the affected cryptocurrencies. For instance, Ramos et al. (2021)
surveys the most common types of cyberattacks on Proof of Work (PoW) cryptocurrencies.
Their empirical investigation covers three types of attack: 51 percent attack, where a group of
miners gain control of more than 50 percent of the network’s mining hash rate, hard forks, when
a blockchain splits into two separate branches, and cryptocurrency wallet attacks.

Civitarese and Mendes (2018) conduct in event study to investigate the semi-strong form
efficiency in the cryptocurrency market. They examine abnormal returns related to six negative
events, classified as the so-called Fear, Uncertainty and Doubt (FUD) incidents. The chosen
dates are related to critical technological failures and problems which received substantial media
coverage. They show that cryptocurrencies quickly adjust to negative news announcements,
possibly exhibiting a semi-strong form of market efficiency. In a related study Hasanova et al.
(2019) surveys a broad range of blockchain technology cybersecurity vulnerabilities and provides
a discussion of potential security countermeasures.

In contrast to the above mentioned studies which primarily investigate various vulnerabilities
in blockchain architectures, a smaller subset of the literature places the focus on the theft of
cryptocurrencies and cybersecurity breaches of cryptocurrency exchanges that are more relevant
to the topic of this thesis.

Brown and Douglass (2020) investigate the effect that news of a cryptocurrency theft has on
the price of cryptocurrencies. The thefts they consider include cryptocurrency thefts from digital
exchanges as well as from large holders of cryptocurrencies. They apply event study methodology
using a 3-days window from one day before to one day after each incident. Their study is
limited to 16 events over the 2014 – 2019 period and 10 major cryptocurrencies. Surprisingly
the reported results indicate that news of cryptocurrency thefts increases cryptocurrency prices
of the affected cryptocurrency. The authors note that this finding is largely counter-intuitive as
one would expect that news of cryptocurrency theft would decrease the value of cryptocurrencies
because it shows the vulnerability of cryptocurrency storage methods.

Hu et al. (2020) analyse Bitcoin price dynamics before and after 30 cyberattacks over the
2012 – 2018 period that resulted in Bitcoin theft. The authors use USD amount stolen and
proportion of the market volume to determine the size of the investigated hacks. They find a
positive correlation between the volume of cryptocurrencies stolen as a proportion of the trading
volume and the price two and three days before the hack. Moreover, 26 out of 30 investigated
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incidents are associated with a price drop from the day before the incident to the day of the
hack.

Lyócsa et al. (2020) investigate a number of related issues regarding the effect of news an-
nouncements on the volatility of Bitcoin. In particular they study whether news and sentiment
about Bitcoin regulation, the hacking of Bitcoin exchanges and scheduled macroeconomic news
announcements affect the realized variance of Bitcoin. In regards to cybersecurity related data
they include 55 cryptocurrency-related cyberattacks, including the hacking on exchanges, online
wallet providers and other types of cryptocurrency hacking. They report that the volatility of
Bitcoin reacts most strongly to news on Bitcoin regulation, positive investor sentiment regarding
Bitcoin regulation extracted using Google searches, and hacking attacks on cryptocurrency ex-
changes. Quantile regression results reveal that hacking attacks have particularly strong impact
on the upper conditional distribution of Bitcoin volatility. On the other hand the volatility of
Bitcoin is not influenced by most scheduled US macroeconomic news announcements, such as
government budget deficits, inflation, or even monetary policy announcements.

Corbet et al. (2020a) examine the effect of cryptocurrency related security breaches using
60-min frequency data for the top eight cryptocurrencies and 17 largest cryptocurrency hacking
events. The sample time period studied is September 2017 – August 2018. The return equation
is modeled as a function of past returns, a number of pricing factors such as gold, VIX, oil,
US equities and exchange rates, as well as cybersecurity breach dates via dummy (indicator)
variables. This formulation is augmented with a dynamic conditional correlation (DCC) model
to account for the time-varying nature of correlations and volatility. Hacking events are found to
increase both the price volatility of the targeted cryptocurrency and broad cross-cryptocurrency
correlations. Further, cybercrime events significantly reduce price discovery sourced within the
hacked currency relative to other cryptocurrencies. Finally, abnormal returns associated with
the hacks range between −2 percent to −24 percent, depending on the specific event. The
abnormal returns are observed 4 hours before the actual hacking event and revert back to zero
at the time and announcement of the hack.

Gandal et al. (2018) provide an interesting study of suspicious bot trading activity on Mt.
Gox cryptocurrency exchange in which approximately 600,000 Bitcoins (BTC) were fraudulently
acquired. It was later revealed that Mt. Gox exchange itself operated the fraudulent accounts
in order to boost trading volume, collect extra trading fees, and cover up a 650,000 Bitcoin
loss to hackers, which happened prior to the start of the reported bot trading. This internally
orchestrated fraudulent trading was associated with a BTC price rise when the suspicious trades
took place, compared to a slight decline on days without suspicious activity due to artificially
boosted demand via bot trading. Gandal et al. (2018) hypothesise that the fraudulent bot
trading acted as a signal to the market and encouraged others to enter and purchase Bitcoins.

Finally, Caporale et al. (2021) study dynamic linkages (interdependence) between cryp-
tocurrencies and whether shifts in their spillover parameters (contagion) are associated with the
occurrence of cyberattacks (contagion) over the period from August 2015 to January 2020. In
particular, they study mean and volatility spillovers between three cryptocurrencies, including
Bitcoin, ethereum and litecoin, and test for contagion effects, i.e. strengthening of linkages,
during episodes of cyberattacks. Their database of cybercrime is catalogued by type, including
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cybercrime, cyberespionage, cyberwarfare, and hacktivism, as well as by target such as crypto,
government, industry and financial. When cyberattacks are not taken into account there is
little evidence of spillovers between the returns of the investigated digital currencies, but there
is strong evidence of volatility spillovers. In contrast, there is a downward shift (negative conta-
gion) in the parameter measuring mean spillovers on the days associated with cyberattacks. As
for linkages between the second moments, there are significant volatility spillovers from Bitcoin
to Litecoin and Ethereum, whose size is magnified by cyberattacks.

3 Data Description

In the first part of the study, I compile a dataset on cryptocurrency exchange attributes in order
to use them in predicting which digital markets will stay in business and which ones will close
down. Some key predictor variables are cybersecurity features implemented by the exchanges,
as well as a record of previous cyberattacks on the exchanges. In the second section I describe
the data used to investigate the impact cyberattacks against cryptocurrency exchanges on the
price/return dynamics of Bitcoin.

3.1 Predicting Cryptocurrency Exchange Closures

This dataset consists of cross-sectional data on 279 exchanges collected for the June 2010 –
February 2022 time period. I construct the database by collecting information from publicly
available sources, as well as incorporating some of the data published in previous studies such
as Moore et al. (2018) and Oosthoek and Doerr (2020). In particular, I obtain information on
security breaches from online lists compiled by Hackernews (2019), Selfkey (2019) and Slowmist
(2021), and from other various media sources. Additional data on transaction volumes and
exchange lifetimes is collected from online information portals and news websites such as coin-
marketcap.com, coingecko.com, cryptowisser.com and coinpaprika.com. Lastly, each exchange
website is manually inspected for information on cyber-security programs and any additional
relevant information. To view the websites of closed exchanges, I rely on the Wayback Machine,
which is described as a digital archive of the World Wide Web (archive.org).

The variable I aim to predict, i.e. target variable, is named active and is a binary variable
signifying if an exchange remains active or has closed down, as defined below:

activei =

{
1 if cryptocurrency exchange i remains active
0 if cryptocurrency exchange i shuts down.

(1)

The list of predictors comprises eight features including, i) volume – average daily traded volume
in USD for each exchange, ii) lifetime – exchange lifetime in days and iii) breach – a binary
variable which records if there has been a previous security breach or not for each exchange in
the dataset. Amongst other predictors are binary variables representing whether or not each
of the following four cyber-security measures is implemented iv) two-factor authentication, v)

https://www.coinmarketcap.com
https://www.coinmarketcap.com
https://www.coingecko.com
https://cryptowisser.com
https://coinpaprika.com
https://web.archive.org/
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bug-bounty program3, vi) security-audit, and vii) cold-storage4. Nevertheless, not all exchanges
provide information regarding all four security programs on their website. In such cases of
missing data, and for the purpose of maximising the sample size, I take a conservative approach
and code missing samples as 0, implying that the exchange for which the data is missing does
not implement the security measure in question. This is a reasonable assumption, given that
cryptocurrency investors worry about cyber risks and that digital exchanges compete on the basis
of implemented security features. Finally, the dataset is completed with a variable capturing
the extent of financial regulation in the country of origin of each exchange. Thus, the remaining
predictor is viii) aml/cft – the anti-money laundering and combating the financing of terrorism
index of Verdugo Yepes (2011) that measures the extent of a country’s compliance with the anti-
money laundering and combating the financing of terrorism (AML/CFT) international standard.
Where an exchange operates in multiple countries, I take a conservative approach and classify
it as operating in the country with the lowest aml/cft score.

Table 1 provides some summary statistics for the dataset.

Table 1: Descriptive Statistics

mean std min 25% 50% 75% max

active 0.52 0.50 0.00 0.00 1.00 1.00 1.00
breached 0.27 0.45 0.00 0.00 0.00 1.00 1.00
two-factor 0.90 0.31 0.00 1.00 1.00 1.00 1.00
bug-bounty 0.30 0.46 0.00 0.00 0.00 1.00 1.00
security-audit 0.28 0.45 0.00 0.00 0.00 1.00 1.00
cold-storage 0.78 0.41 0.00 1.00 1.00 1.00 1.00
aml/cft 27.32 6.72 11.90 23.33 28.33 33.67 35.33
volume 273.04 810.75 0.00 0.05 8.92 132.75 7344.85
lifetime 1474.57 922.24 19.00 794.00 1326.00 1945.50 3885.00

Notes: Dataset comprises 279 cryptocurrency exchanges; volume is measured in millions
of USD.

As indicated by the first column of the table, about 52 percent of the 279 cryptocurrency
exchanges contained in the database remain active, while 27 percent of the exchanges have
suffered some form of a security breach. A majority of the exchanges implement two-factor
authentication (90 percent of all exchanges) as well as cold storage facilities (78 percent). On
the other hand, bug bounty and security audits are less commonly implemented by digital
exchanges, with respective frequencies of 30 and 28 percent. The anti-money laundering and
combating of financing of terrorism (aml/cft) index varies substantially and exhibits a mean
value of 27.32 out of 49. I can also deduce the amount of skewness by comparing the difference

3Bug bounty is a program offered by websites and software developers by which individuals can receive recog-
nition and compensation for reporting bugs, especially those pertaining to security vulnerabilities.

4Cold storage (cold storage wallet) is a hardware device used to store cryptocurrency that is kept offline, thus
protecting the funds from unauthorized access, cyberattacks and other vulnerabilities to which a system that is
connected to the internet is susceptible.
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between the 25% and the 50% percentiles on the one hand, and the 50% and the 75% on the
other hand. For instance, it is clear that the volume variable has a very long right tail.

Of particular interest are lifetime and volume variables which convey information about the
relative success of the studied exchanges. The average lifetime for the sample of cryptocurrency
exchanges appears to be about 1474.57 days, with a minimum of 19 days and a maximum of
3885 days. Thus, some exchanges have been exceptionally short lived. In addition, the standard
deviation of lifetime is 922.24 days which is large relative to its mean value. The mean daily
volume is USD 273.04 million and also varies substantially from USD 67.21 (displayed as 0.00 in
USD millions) to USD 7,344.85 million. Overall the dataset appears to be highly heterogeneous
in terms of exchange properties.

Next, I present pairwise correlations in Table 2 which contribute to prediction accuracy
discussed in Section 5.

Table 2: Correlation Matrix

active breached two-
factor

bug-
bounty

security-
audit

cold-
storage

aml/cft volume lifetime

active 1.00 -0.09 0.33 0.38 0.44 0.39 -0.09 0.28 0.53
breached -0.09 1.00 -0.21 0.04 0.09 -0.16 0.01 0.01 0.03
two-factor 0.33 -0.21 1.00 0.22 0.19 0.53 -0.07 0.11 0.35
bug-bounty 0.38 0.04 0.22 1.00 0.36 0.21 0.04 0.17 0.14
security-audit 0.44 0.09 0.19 0.36 1.00 0.25 0.01 0.17 0.32
cold-storage 0.39 -0.16 0.53 0.21 0.25 1.00 -0.07 0.15 0.26
aml/cft -0.09 0.01 -0.07 0.04 0.01 -0.07 1.00 -0.04 -0.01
volume 0.28 0.01 0.11 0.17 0.17 0.15 -0.04 1.00 0.08
lifetime 0.53 0.03 0.35 0.14 0.32 0.26 -0.01 0.08 1.00

Notes: Computations based on a dataset comprising 279 cryptocurrency exchanges.

Considering the correlations between the target variable and various predictors provided in the
first row of the table, I observe that the highest correlation of 0.53 is recorded between the
target active and the predictor lifetime. Other features such as security-audit and cold-storage
also exhibit relatively large and positive correlations with the target, which are respectively 0.44
and 0.39. These are followed in magnitude by bug-bounty and two-factor with the correlations
of 0.38 and 0.33. Additionally, volume also has a positive and moderate correlation with active
of 0.28, while breached and aml/cft variables are negatively correlated with the target variable.
Thus, it would appear that implementing cyber-security features, having a longer trading track
record and a greater transaction volume is positively associated with exchanges that succeed at
remaining active. On the other hand, experiencing a security breach and operating in countries
with greater emphasis on anti-money laundering regulation is negatively related with the variable
active, although these correlations are rather small in magnitude. In the second row of Table 2, I
observe that experiencing a security breach is negatively related to two-factor and cold-storage,
as expected. These correlations are, however, not large in magnitude with the estimates of -0.21
and -0.16.
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Rows 3 – 6 suggest that the four cybersecurity measures are positively correlated, implying
that digital exchanges that implement sound security practices tend to do so across multiple
measures. The lowest of these correlations (0.19) is found between security-audit and two-factor,
which can be explained by the fact that two-factor authentication is easy to implement internally
while a security audit is costly and requires engagement with external security auditors. In
contrast, the highest correlation of 0.53 is recorded between cold-storage and two-factor features.
Although the magnitude of this correlation may present some difficulty in disentangling the
individual effects of cold-storage and two-factor on the target active, it will have no impact on
the overall classification performance5. Given that I aim to maximize the forecasting ability, I
decide to leave all four security features in the dataset. Lastly, while volume exhibits relatively
low correlations with other predictors, lifetime seems to be moderately and positively correlated
with two-factor and security-audit.

3.2 Evaluating the Impact of Cyberattacks Against Cryptocurrency Exchanges
on Bitcoin Returns

In this subsection I define the dataset that is used in the second part of this study to assess the
impact of cyberattacks against cryptocurrency exchange on Bitcoin returns.

I collect daily time series for the following five variables: i) dates on cybersecurity breaches
of major cryptocurrency exchanges, ii) the price of Bitcoin (BTC)6, iii) a US Dollar index7, iv)
the price of gold8, and v) a value-weighted US equities index9. Variables ii) - v) are expressed
as percent returns rt = 100× (Pt/Pt−1 − 1), which are used in equations (6) and (7) in Section
4.

The main variable – the dates of cryptocurrency exchange breaches – is related to the variable
breached discussed in the previous section and now collects breach dates as a time series across
all exchanges included in our dataset (which occur over the 2012 – 2021 period). It is constructed
as an indicator variable that takes the value one on the dates of the recorded cyberbreaches and
the value zero for all other dates as follows:

It =

{
1 if t is a breach date of a cryptocurrency exchange,
0 otherwise.

(2)

In total there are 75 cybersecurity breaches which are accounted for by It above. Note that this
is also the number of the exchanges for which I have records of in Table 1 above, i.e. 0.27×279.

5Finding high correlations between features is termed multicollinearity and reduces the precision of the esti-
mated coefficients. Nevertheless, multicollinearity does not impact the precision of the estimated linear combina-
tion of the features which is used to generate predictions.

6The price of Bitcoin is as recorded on Bitstamp, one of the longest running cryptocurrency exchanges that
was founded in 2011. Source: https://bitcoincharts.com/charts/bitstampUSD#a1gWMAzm1g5zm2g10zl.

7Nominal broad US dollar index. Source: Federal Reserve Bank of St. Louis https://fred.stlouisfed.org/series/
DTWEXBGS.

8COMEX gold. Source: https://finance.yahoo.com/quote/GC%3DF/history?p=GC%3DF.
9This is a value-weight return index of all CRSP firms incorporated in the US and listed on the NYSE, AMEX,

or NASDAQ as provided by Kenneth R. French from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data library.html.

https://bitcoincharts.com/charts/bitstampUSD#a1gWMAzm1g5zm2g10zl
https://fred.stlouisfed.org/series/DTWEXBGS
https://fred.stlouisfed.org/series/DTWEXBGS
https://finance.yahoo.com/quote/GC%3DF/history?p=GC%3DF
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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The total amount stolen across these 75 major incidents is USD $2.25 billion. This estimate
is nevertheless a conservative figure as not all recorded cybersecurity breaches have disclosed
stolen amounts. The final dataset covers the time period from January 3, 2012 to December 28,
2021, and contains 2470 daily observations. As explained in the previous section this data is
obtained from publicly available sources such as the lists compiled by Hackernews (2019), Selfkey
(2020) and Slowmist (2022). The veracity of these preliminary dates is checked manually against
various media sources and digital exchange websites.

The fact that traditional markets do not trade on weekends and public holidays, while Bitcoin
does, implies that in order to combine Bitcoin returns with the control variables, such as the US
equities index, I had to remove weekend and public holiday observations from the dataset. While
reducing the sample size this is an important step because omitting relevant control variables
can significantly bias estimation results. Similar pricing factors have been found to be important
for the formation of Bitcoin price in a number of studies such as Corbet et al. (2020b), Corbet
et al. (2020a), Bouri et al. (2018), Klein et al. (2018), etc.

Table 3 provides some basic summary statistics for the dataset. As illustrated in the first
column of the table Bitcoin experienced the highest daily mean return of about 0.46 percent
over the time period. This is accompanied by equally high volatility of 4.90 as measured by the
standard deviation. The exceptionally high levels of risk are also evident from the minimum and
maximum daily return values of -48.52 and 40.14 percent, respectively. US equities have rank
second in terms of both the return and risk, but when compared to Gold they provide a better
risk-reward ratio with marginally higher risk and seven fold increase in return. US Dollar index
and Gold exhibit more moderate returns of 0.01 percent while Gold is three times as risky with
0.99 standard deviation. Finally, Breach Day Indicator binary variable has a mean value of 0.03
signifying that about 3 percent of the sample observations are associated with cybersecurity
breaches.

Table 3: Descriptive Statistics

mean std min 25% 50% 75% max

Bitcoin 0.46 4.90 -48.52 -1.37 0.26 2.25 40.14
US Dollar (TWI) 0.01 0.31 -2.07 -0.16 -0.00 0.18 1.94
Gold 0.01 0.99 -9.35 -0.45 0.01 0.51 5.95
US Equities 0.07 1.05 -11.99 -0.34 0.09 0.55 9.35
Breach Day Indicator 0.03 0.17 0.00 0.00 0.00 0.00 1.00

Notes: Statistics computed from daily data over the January 3, 2012 – December
28 time period.

Figure 1 depicts the price and returns evolution of Bitcoin over time, as well as the dates of
cybersecurity breaches. As illustrated, the Bitcoin price has experienced incredible growth over
the sample period starting at $5.29 in January 2012 and finishing at $47,543.30 in December
2021. Over the sample period, I also observe cybersecurity breaches experienced by crypto
exchanges, as depicted by vertical grey lines in the same figure. 2014 to mid 2015 and 2018 to
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2021 periods appear to experience especially high frequencies of cyberattacks. While there are
some coincidences of large negative Bitcoin returns and breach days, it is difficult to judge their
relationship based on the information provided in Figure 1 alone, and a formal statistical test
is required to draw any firm conclusions.

Figure 1: Bitcoin Prices/Returns and Cyberbreaches of Cryptocurrency Exchanges

4 Methodology

This section is divided into two parts. First, I discuss an empirical method for predicting which
cryptocurrency exchanges will remain open and which ones will close based on various exchange
attributes. In the second subsection, I present the methodology used to evaluate the impact of
cyberattacks against cryptocurrency exchanges on the return of Bitcoin.

4.1 Predicting Cryptocurrency Exchange Closures

The empirical method consists of three steps: i) training and optimising ML algorithms, ii) eval-
uating in-sample (training dataset) and out-of-sample (test dataset) classification performance
and ranking the algorithms according to their predictive ability, and iii) examining feature im-
portance and determining which predictors contribute to forecasting ability. I start by discussing
the problem of predicting which digital exchanges will remain active and which ones will face
closure.

4.1.1 The Prediction Problem

This thesis aims to predict which cryptocurrency exchanges will remain active and which will go
out of business, conditional on a set of relevant predictor variables. This task may be formulated
as a classification problem where the target variable is defined in (1).
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Forecasts of the target variable active (yi) are denoted as ŷai and are generated based on eight
available predictor variables (x1i, x2i, . . . , x8i) which are discussed in detail in Section 3.1. Thus,
the forecasts are constructed according to the following equation

ŷai = ϕa(x1i, x2i, . . . , x8i), (3)

where ϕa is a function describing the relationship between the forecast and predictor variables
that depends on which forecasting algorithm (denoted by a) is used.

While there are a plethora of classifiers one could apply to the prediction problem, in this
investigation, I decide to compare the performance of ten popular ML algorithms. These are as
listed below:

1. Logistic Regression;

2. Decision Tree;

3. Random Forest;

4. Support Vector Machine;

5. Multi-layer Perceptron;

6. KNeighbors;

7. Naive Bayes;

8. AdaBoost;

9. ExtraTrees;

10. Equally-weighted ensemble of the above 9 classifiers.

These models are flexible and capable of capturing complicated relationships between the
target variable and relevant features. A brief description of each classifier is provided next.

Logistic regression is one of the earliest and most widely employed methods used for modelling
of binary dependent variables, see, e.g. Wilson and Worcester (1943). It specifies the conditional
probability of success given the vector of predictors xi, as a sigmoid function of the following
form P (yi = 1|xi) = 1

1+e−w′xi
, where w refers to the vector of weights, including the intercept.

Prediction of class membership is then generated as follows

ŷLRi =

{
1 if P (yi = 1|x1i, x2i, . . . , x8i) ≥ 0.5
0 otherwise.

(4)

Since I do not implement any regularization in the logistic regression, I am also able to estimate
standard errors, and thus gauge the statistical significance of the estimated coefficients.

A Decision tree classifier has the ability to construct complex decision boundaries by dividing
the feature space into rectangles. The decision tree consists of a root node, decision nodes and
terminal nodes, as illustrated in Figure 2. These nodes are formed by starting at the tree root and
splitting the data on the feature that results in the largest information gain (IG). The splitting
procedure is repeated at each decision node until the leaves either contain elements from only



Methodology 17

one class or by setting a limit for the maximal depth of the tree (which avoids overfitting). In
the application I employ grid search cross-validation to optimise two hyperparameters i) tree
depth, and ii) criterion used to compute IG.

Figure 2: A Decision Tree Classifier

A random forest classifier is an ensemble of decision trees. Random forests combine predic-
tions of multiple decision trees by averaging across their estimated probabilities, thus reducing
the degree of overfitting. A random forest of k trees may be constructed via the following
algorithm:

i) Draw a random bootstrap sample of size n from the training dataset (with replacement);

ii) Grow a decision tree from the bootstrap sample:

(a) Randomly select d features without replacement;

(b) Build a tree using these d features;

iii) Repeat i) - ii) k times;

iv) Combine classifiers by averaging their probabilistic predictions. Assign class label according
to greatest probability.

In the application, I optimize three random forest hyperparameters: i) maximum tree depth, ii)
number of trees k, and iii) criterion used to compute IG.

A Support vector machine classifier is an algorithm designed to be robust to outliers. It works
by maximizing the margin, which is determined by the distance between the decision boundary
and the training examples that are closest to the boundary, i.e. support vectors, as illustrated
in Figure 3. I implement the algorithms with L2 regularization and optimize the regularization
strength parameter. In addition, I cross validate the kernel function as a hyperparameter across
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the following values {linear, rbf, polynomial, sigmoid}. This allows the support vector machine
to accurately classify linearly inseparable (nonlinear) datasets.

Figure 3: A Support Vector Machine Classifier

A multilayer perceptron (MLP) is a feed-forward neural network, consisting of three or more
layers: input layer, hidden layer(s) and output layer, see e.g. Azar and El-Said (2013), as
depicted in Figure 4. The leftmost layer, known as the input layer, consists of a set of neurons
representing the input features. Each neuron in the hidden layer transforms the values from the
previous layer with a weighted linear summation w1x1 + w2x2 + · · ·+ wnxn followed by a non-
linear activation function g(.) : R → R, for instance the hyperbolic tan function. The output
layer receives the values from the last hidden layer and transforms them into output values.
Thus the units in the hidden layer are fully connected to the input layer, and the output layer is
fully connected to the hidden layer. If such a network has more than one hidden unit, it is called
a deep artificial neural network (NN). In the application, I employ 10-fold cross validation to
find the optimal values for the number of hidden layers, choosing between 1 and 2 layers. The
number of neurons in the hidden layers is set to 8, the number of features in the data set. In
addition, I also optimise the strength of L2 regularisation and the activation function, which is
selected from the following set {identity, logistic, tanh, and relu}.
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Figure 4: A Hypothetical Multilayer Perceptron

The next method I discuss is KNeighbors (nearest neighbors) that finds a predefined number
of training samples closest in the distance to the new point and predicts the label from these.
The algorithm may be described as follows:

• Choose the number of neighbors (k) and a distance metric;

• Find k nearest neighbors of the data example I need to classify;

• Assign the class label by majority vote.

Naive Bayes is an algorithm that applies Bayes’ theorem with the assumption of conditional
independence between each pair of features given the value of the class variable,
i.e. P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y). Substituting this assumption into the Bayes’
theorem

P (y|x1, . . . , xn) =
P (y)P (x1, . . . , xn|y)

P (x1, . . . , xn)
(5)

I obtain

P (y|x1, . . . , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, . . . , xn)
.

Since P (x1, . . . , xn) is constant the classification rule may be expressed as follows:

ŷ = argmax
y

P (y)

n∏
i=1

P (xi|y)

where P (y) and P (xi|y) can be estimated using Maximum A Posteriori (MAP) method. In this
application, I use Gaussian distribution to model P (xi|y) and optimize the variance smoothing
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parameter, which is the portion of the largest variance of all features that are added to variances
for calculation stability.

Boosting methods focus on observations that are difficult to classify. An AdaBoost classifier
is a meta-estimator that begins by fitting a classifier on the original dataset and then fits
additional copies of the classifier on the same dataset, but adjusts the weights of incorrectly
classified instances such that subsequent classifiers focus more on complex cases. The base
classifiers I use in the AdaBoost are decision tree stumps, i.e. one-level decision trees where the
split at the root level is based on a specific attribute/value pair. I optimise the learning rate
and the number of base estimators via cross validation.

An ExtraTrees (extremely randomised trees) classifier is similar to the random forest, but
as its name suggests, the degree of randomness employed in splitting the data is increased. As
in random forests, a random subset of candidate features is used, but instead of looking for the
most discriminative thresholds, thresholds are drawn at random for each candidate feature, and
the best of these randomly-generated thresholds is picked as the splitting rule. I optimise the
number of base estimators used in ExtraTrees.

The final model applied is a majority voting ensemble which joins the nine previously dis-
cussed classifiers. It combines the predictions from all the other models by predicting the label
that has been predicted by the majority of classifiers (received at least 50% of votes).

In order to improve the convergence properties of the ML algorithms, I normalize all continu-
ous predictors to have zero mean and unit variance, while the binary features are left unchanged.
All algorithms are implemented in Python using scikit-learn libraries.

4.1.2 Cross-Validation and Performance Evaluation

In order to assess forecasting performance on an independent dataset, I divide the data into
training and test subsamples. The training dataset contains 70 percent of the data (195 obser-
vations), while the test dataset consists of the remaining 30 percent (84 observations). When
splitting the data, I preserve the proportions of examples in each class by stratifying the data
according to the target variable. Alternative 80:20 and 60:40 splits between the training and
test datasets have been tried and result in similar classification performance.

The models are first trained and their hyperparameters optimized using the training dataset
and K-fold cross-validation where K = 10. In the second step, I compute both in-sample
(training dataset) and out-of-sample (test dataset) forecasting performance according to the
following measures: i) classification accuracy, ii) precision, iii) recall, and iv) F1 score. These
metrics gauge somewhat different aspects of forecasting ability that cryptocurrency investors
may care about. Denoting true positives as TP, true negatives as TN, false positives as FP and
false negatives as FN, I explain the four performance metrics as follows.

i) Accuracy = number of correctly classified examples
sample size = TP+TN

TP+TN+FP+FN . Classification accuracy is
defined as the ratio of correctly predicted examples to the total sample size and is probably
the most commonly used measure of classification performance. Nevertheless, it has a
disadvantage that in situations where there is a class imbalance, the model can predict the
value of the majority class for all samples and still achieve a high classification accuracy.
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ii) Precision = TP
TP+FP . Precision computes the ratio of true positives to all positively labelled

(predicted) examples. It answers the question of how many exchanges survive out of all the
exchanges which are predicted to survive.

iii) Recall = TP
TP+FN . Recall is the ratio of correctly predicted positive example to all positive

samples. It tells us how many exchange are predicted to survive out of all exchanges that
truly survive.

iv) F1 Score = 2 × Recall×Precision
Recall+Precision . F1 score is computed as the weighted average of precision

and recall and aims to balance these two metrics.

Using the above four measures I compute in-sample (training dataset) and out-of-sample (test
dataset) classification ability of each of the ten models discussed previously. The algorithms are
then ranked according to their performances.

Having discussed the methodology employed in predicting which cryptocurrency exchanges
will remain active and which ones will close down I now turn to explain the method used to
accomplish the second task of this thesis, namely assessing the impact of cyberattacks against
cryptocurrency exchanges on Bitcoin returns.

4.2 Evaluating the Impact of Cyberattacks Against Cryptocurrency Exchanges
on Bitcoin Returns

In order to investigate the impact of digital exchange cyberattacks variable It, defined in equation
(2), on Bitcoin returns rBTC

t I consider the following regression:

rBTC
t = c+ δ0It +

−1∑
k=−3

δkIt+k +
3∑

k=1

δkIt+k + ϕrBTC
t−1 + εt. (6)

The contemporaneous effect of cyberbreaches is captured by the parameter δ0, while I control
for three days before and three days after the incidents using the leads (k = 1, 2, 3) and lags
(k = −1,−2,−3) of It. Finally, I include a lagged value of BTC return itself in order to account
for possible autocorrelation in the regression equation. This type of model is widely applied
in event-driven analysis across many applications, such as Nikkinen and Sahlström (2004) and
Chen and Clements (2007), and more recently in Pyo and Lee (2020) in the context of Bitcoin.

While Bitcoin is referred to as a cryptocurrency, it is also often considered to be an asset,
e.g. Glaser et al. (2014). As such, its returns may be driven by factors similar to those found in
the asset pricing literature. Omitting relevant factors from (6) may bias the estimate of δ0 and
make results unreliable. Indeed, studies such as Corbet et al. (2020b), Corbet et al. (2020a),
Bouri et al. (2018), Klein et al. (2018), etc., account for pricing factors in the context of Bitcoin
returns. Thus, I augment the model in (6) using the returns on a US equities, a US Dollar index,
and gold. These factors control for the US equities market, exchange rates and commodities,
respectively, and are amongst the factors used recently in Borri et al. (2022) and Corbet et al.
(2020a). The extended model then becomes
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rBTC
t = c+δ0It+

−1∑
k=−3

δkIt+k+
3∑

k=1

δkIt+k+θ1r
US Equities
t +θ2r

US Dollar
t +θ3r

Gold
t +ϕrBTC

t−1 +εt. (7)

I complete the specification by assuming zero conditional mean for the error term εt, i.e.
E(εt|εt−1, εt−2, ...) = 0, and considering three alternative assumptions regarding the conditional
variance var(εt|εt−1, εt−2, ...) = σ2

t

1. σ2
t = ω for all t (OLS regression model);

2. σ2
t = ω + αε2t−1 + βσ2

t−1 (GARCH model);

3. σ2
t = ω + (α+ γI[εt−1<0])ε

2
t−1 + βσ2

t−1 (GJR model).

Model 1 above makes the simplest assumption of constant conditional variance as is com-
monly assumed in the ordinary least squares (OLS) regression model. However, existing litera-
ture reports that Bitcoin returns exhibit time-varying conditional variances, see, e.g., Dyhrberg
(2016) and Katsiampa (2017), and this is what the remaining two specifications attempt to cap-
ture. Model 2 is a standard GARCH(1,1) model of Bollerslev (1986), where the current value of
the time-varying variance σ2

t is a function of past variance and a squared past error term, while
model 3 is the GRJ(1,1,1) specification of Glosten et al. (1993) that accounts for asymmetries
associated with negative returns via its γ parameter. Accounting for the time-varying volatility
property is important because it improves estimator efficiency and consequently leads to more
powerful statistical tests.

5 Results and Discussion

The results section is divided into two main parts. In the first subsection, I present the results
of modeling and predicting which cryptocurrency exchanges will remain active and which mar-
kets will close down. In the second part I provide my findings of investigating the impact of
cyberattacks against cryptocurrency exchanges on Bitcoin price/return.

5.1 Predicting Cryptocurrency Exchange Closures

I start with a discussion of classification performance results, which are then followed by the
analysis of feature importance and a visualisation of some predictions.

5.1.1 Measuring Classification Performance

Table 4 presents four measures of in-sample classification performance, which are computed
using the training dataset. While the data is split according to the 70:30 percent ratio between
the training and test datasets, alternative schemes result in similar classification performances.
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First, I note that all ten algorithms achieve satisfactory performance according to the results
presented in the table. The best performing algorithm is the ensemble classifier which combines
the predictions from the other nine models and reaches in-sample accuracy of 0.959. In the second
place is the random forest classifier, while the third place is shared by the multilayer perceptron
and support vector classifier with the accuracy of 0.949. The remaining six algorithms reach
accuracies ranging from 0.836 (ExtraTrees) to 0.944 (AdaBoost). Thus, the difference between
the highest and the lowest classification accuracy is about 12.3 percent when the accuracy is
computed using the in-sample (training) dataset.

Table 4: In-sample Forecasting Performance (Training Dataset)

Algorithm Accuracy Precision Recall F1 Score

Ensemble 0.959 0.960 0.960 0.960
Random Forest 0.954 0.960 0.950 0.955
Multilayer Perceptron 0.949 0.950 0.950 0.950
Support Vector 0.949 0.942 0.960 0.951
AdaBoost 0.944 0.941 0.950 0.946
KNeighbors 0.938 0.924 0.960 0.942
Decision Tree 0.928 0.958 0.901 0.929
Naive Bayes 0.872 0.913 0.832 0.870
Logistic Regression 0.867 0.879 0.861 0.870
ExtraTrees 0.836 0.822 0.871 0.846

Notes: Performance metrics are computed from the training dataset con-
sisting of 195 samples (70 percent of the dataset).

Although Table 4 sorts values according to classification accuracy, all four performance
measures are largely consistent in their rankings. For instance, according to the first row of
Table 4, the ensemble classifier ranks first in terms of accuracy, recall and F1 score. When
ranked by precision, the ensemble classifier shares the first place with random forest. Similarly,
the distinction between the second (random forest) and the third (multilayer perceptron) place
is evident in three out of four metrics, with recall being the only measure that ranks random
forest and multilayer perceptron equally. Nevertheless, most of the classifiers record performance
measures of roughly similar magnitudes.

Having explored in-sample classification performance, I now turn to out-of-sample metrics
provided in Table 5, computed using the test dataset. These results provide a better represen-
tation of the true predictive ability since the test dataset has not been used for the purpose
of fitting the algorithms or optimizing hyperparameter values. While there is some decrease in
classification performance relative to the training dataset, the out-of-sample accuracy figures
reported in Table 5 range between 0.738 and 0.857, suggesting that predictive models generalize
well to unseen test data.

The best performing model listed in row one of Table 5 is the random forest classifier with
the accuracy of 0.857. While this value signifies a high level of predictability, it also represents
about a 10 percent decrease in the accuracy of the best performing model when compared to



Results and Discussion 24

Table 5: Out-of-sample Forecasting Performance (Test Dataset)

Algorithm Accuracy Precision Recall F1 Score

Random Forest 0.857 0.848 0.886 0.867
Multilayer Perceptron 0.833 0.857 0.818 0.837
Ensemble 0.833 0.857 0.818 0.818
Decision Tree 0.833 0.841 0.841 0.841
Logistic Regression 0.810 0.868 0.750 0.805
Naive Bayes 0.798 0.909 0.682 0.779
ExtraTrees 0.798 0.865 0.727 0.790
Support Vector 0.774 0.791 0.773 0.782
AdaBoost 0.750 0.683 0.977 0.804
KNeighbors 0.738 0.789 0.682 0.732

Notes: Metrics are computed on test dataset consisting of 84 samples (30
percent of all data)

the results in Table 4. This is however largely expected as most machine learning models tend
to be somewhat overfitted on training data. The ensemble model, which previously recorded
the best classification performance, now shares the second place with the multilayer perception
according to accuracy, precision and recall. When the F1 score is computed using the precision
and recall values, which are not rounded to three decimal places multilayer perceptron ranks
second and above the ensemble model.

While the best three models in Table 4 remain in the top positions when evaluated on
test data, although in permuted places, some algorithms drop in rank significantly. The worst
performing model in out-of-sample comparison appears to be KNeighbors, with the recorded
accuracy of 0.738. This value may be compared to the training set accuracy of 0.938 when
KNeighbors ranked in sixth place, which suggests that this model is substantially overfitted. A
similar finding holds for AdaBoost and the support vector classifier.

Given that random forest exhibits good performance both in-sample and out-of-sample ac-
cording to multiple performance criteria, I examine its classification results in more detail by
considering the confusion matrix provided in Figure 5.

Out of the total of 84 samples contained in the test dataset, 44 exchanges that remain active
(class 1), and 40 exchanges have closed down (class 0). As can be seen from the second row, 5 of
the 44 active exchanges are misclassified as facing closure by the random forest classifier. This
corresponds to the recall value of 0.886 presented in Table 5. In contrast, of the 40 exchanges
which went out of business I successfully predict 33, while 7 exchanges are misclassified as
remaining active. This results in a true negative rate (specificity) of 0.825. Thus, while I am
able to separate the classes with high accuracy, a certain amount of risk still remains when
predicting which exchanges will close down and which ones will remain active.

In order to gain further insight into the problem, I consider which features contribute most
to the reported classification ability.
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Figure 5: Confusion Matrix – Random Forest Algorithm and Test Data

5.1.2 Feature Importance

Feature importance refers to the usefulness of predictors in forecasting the target variable.
However, there is no single method to measuring feature importance that can be applied to all
algorithms. For instance, the support vector classifier tackles potential nonlinearities via kernel
methods which make it difficult to obtain even the simplest measures of feature importance
such as the magnitude of the estimated weight coefficients10. Nevertheless, amongst the list
of the classifiers which I implement here three models have well defined measures of feature
importance that are easily computed. Should evidence from multiple algorithms suggest that a
certain feature is ”important”, then I can have greater confidence in the impact of that predictor.

Figure 6: Feature Importance According to Random Forest Classifier

10Considering the magnitude of estimated weight parameters provides information about relative feature im-
portance when the features are measured on the same scale (standardised in some way).
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Figure 6 presents the estimates of Gini importance computed from the random forest classi-
fier. These quantities are calculated as normalised reductions in node impurity (Gini impurity)
resulting from every feature and then averaged across all estimated trees. As evident from the
figure, volume (in USD) appears to be the main predictor used in separating which exchanges
will remain active and which markets will close. The second most important feature is a lifetime.
These two top predictors are followed by three cybersecurity features, namely, security-audit,
bug-bounty and cold-storage, as well as by a measure of anti-money laundering regulation for
country of origin, i.e. aml/cft. In contrast, two-factor has a much smaller effect, while breached
seems to have a negligible impact on classification ability. The result regarding two-factor does
not necessarily imply that two-factor authentication bears no importance for cybersecurity of
digital markets but is likely to be an artifact of the sample composition, 90 percent of which
implements two-factor authentication.

Next, I consider feature importance according to the decision tree classifier depicted in Figure
7. Here the importance of each feature is computed as the total reduction of Gini impurity
resulting from that feature (similar to previously discussed random forest feature importance).
I confirm the importance of volume, lifetime, cold-storage and bug-bounty predictors, which are
also featured in Figure 6. However, in the case of the decision tree classifier the importance of
volume relative to the other three predictors increases substantially. In fact, it is more than
double the importance of lifetime, which is the second most important predictor. Cold-storage
and bug-bounty play a small role in classifying exchange closures, while the remaining four
predictors play no role in the decision tree classifier.

Figure 7: Feature Importance According to Decision Tree Classifier

Lastly, I look at the logistic regression model. Table 6 reports marginal effects and their
p-values, which provide a different perspective on feature importance to what I discussed above.
Marginal effects measure how the predicted probability of a binary outcome changes with a
change in a risk factor. For instance, I can look at how the probability of remaining active
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changes with a 1-unit increase in (normalized) volume or exchange with a security audit versus
an exchange without it. Using this approach, I can comment on both the magnitude of the
impact for each predictor, i.e. the size of the marginal effect, as well as on their statistical
significance.

Considering the p-values reported in the last column of the table, I see that volume, security-
audit, cold-storage, lifetime and bug-bounty all exhibit statistically significant coefficients at the
5 percent level. All of these estimated effects are positive, implying that they increase the
probability of remaining active. For instance, increasing the (normalised) volume feature by
one unit will increase the probability of remaining active by 0.566, while a 1-unit increase in
a (normalized) lifetime will result in a 0.147 change in the same probability. Of the binary
variables, I see that implementing cold-storage, bug-bounty, and security-audit, respectively,
result in 0.161, 0.145 and 0.172 improvements in the probability of remaining in business. These
variables also played an important role in the random forest classifier, while the decision tree
classifier identified a subset of them. Breached feature, which records the incidence of previous
security breaches, is negative and statistically significant at the 5 percent level. This suggests
that the digital markets which have previous experience with cyberattacks are more likely to
close down and is consistent with the findings reported in Moore et al. (2018). Interestingly the
results of the decision tree and random forest classifiers presented above do not corroborate this
finding.

Table 6: Marginal Effects Estimated by Logistic Regression

dy/dx Std. Err. z-stat. p-value

volume 0.566 0.148 3.826 0.000
security-audit 0.172 0.045 3.859 0.000
cold-storage 0.161 0.081 1.988 0.047
lifetime 0.147 0.019 7.587 0.000
bug-bounty 0.145 0.042 3.433 0.001
aml/cft -0.012 0.021 -0.538 0.591
breached -0.109 0.054 -2.000 0.045
two-factor 0.750 14.376 0.052 0.958

Notes: The columns present i) marginal effects, ii) standard
errors, iii) z-statistics and iv) p-values.

The remaining features, two-factor and aml/cft are not statistically significant at any con-
ventional level of significance. However, as I can see two-factor variable has a large and positive
estimated coefficient while aml/cft exhibits a small negative coefficient. The insignificance of
two-factor is likely to be due to relatively high correlations between this variable and other
security features making it difficult to disentangle individual effects (see Table 2), and the fact
that about 90 percent of the digital markets in the sample implement two-factor authentication.

Lastly, in Figure 8, I plot the predicted and realised samples from the entire dataset of
279 exchanges against the three features designated as important by multiple algorithms –
namely volume, lifetime and cold-storage. While the presented predictions are generated using
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all eight features, the visualisation illustrates the relationship between the forecasts and the
plotted predictors in a 3-dimensional subspace. As can be seen from the graph, the predictions
(smaller solid circles) fall inside the realized data samples (larger transparent circles). More
importantly, the colours of the larger and smaller circles mostly match, indicating a high degree
of classification accuracy.

Figure 8: Visualizing Predictions in a 3-dimensional Subspace

5.2 Evaluating the Impact of Cyberattacks Against Cryptocurrency Exchanges
on Bitcoin Returns

In this section I present the empirical results of the models specified in (6) and (7) which aim to
assess the magnitude and significance of the impact of cyberattacks on the returns of Bitcoin.

Table 7 provides the coefficients of the model specified in (6) and estimated in combina-
tion with the three alternative variance specifications discussed in the previous section. The
parameter of primary interest is δ0 which multiplies the contemporaneous indicator variable It
capturing the incidences of cyberattacks against digital exchanges. Examining δ0 across the
three estimated models, I observe that it is consistently negative and statistically significant in
all cases, at the 5% level. As expected, the effect varies across the models somewhat and ranges
between -1.307% (when estimated by OLS) and -1.425% (in the case of the GJR model). The
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interpretation of this result is that, at the 5% significance level, there is a statistically significant
decrease in Bitcoin return on the dates corresponding with cyberattacks against cryptocurrency
exchanges.

Table 7: Parameter Estimates

OLS GARCH GJR
Coef. p-value Coef. p-value Coef. p-value

Breach Day (δ0) -1.307 0.036 -1.422 0.018 -1.425 0.018
Breach Day Minus 1 (δ−1) 0.003 0.996 -0.814 0.206 -0.816 0.207
Breach Day Minus 2 (δ−2) 0.640 0.211 0.862 0.124 0.859 0.123
Breach Day Minus 3 (δ−3) -0.335 0.591 -0.155 0.785 -0.158 0.781
Breach Day Plus 1 (δ1) -0.088 0.860 -0.038 0.934 -0.042 0.927
Breach Day Plus 2 (δ2) 0.375 0.428 0.200 0.666 0.196 0.673
Breach Day Plus 3 (δ3) 0.136 0.772 0.006 0.990 0.007 0.988
BTC Minus 1 (ϕ) -0.046 0.418 -0.051 0.200 -0.052 0.202
Const (c) 0.499 0.000 0.375 0.000 0.377 0.000
ARCH (α) - - 0.160 0.000 0.162 0.000
GARCH (β) - - 0.786 0.000 0.787 0.000
GJR (γ) - - - - -0.004 0.909
Const (ω) - - 1.386 0.005 1.383 0.005
BIC 14,923.293 - 14,140.165 - 14,147.942 -
R2 0.005 - 0.003 - 0.003 -
Wald Test p-value 0.141 - 0.060 - 0.061 -

Notes: Estimates of (6) are based on 2470 observations covering the January 03, 2012 to December 28,
2021 period.

Considering the parameters denoting the effects of three days before and three days after the
experienced cybersecurity breach, they are all statistically insignificant at any conventional level
of significance. Thus it would appear that the Bitcoin market quickly and efficiently absorbs
the information relating to the cyberattacks on cryptocurrency exchanges. Parameter ϕ, which
accounts for autocorrelation in Bitcoin returns, is small, negative and statistically insignificant
across all three models. Finally, considering the conditional volatility parameters and observe
that α and β coefficients in GARCH and GJR models are positive, statistically significant and
sum up to less than one, as expected according to the existing literature, e.g. Dyhrberg (2016).
Interestingly, the GJR asymmetric volatility coefficient γ is statistically insignificant at any
conventional level, implying that positive and negative news shocks produce the same impact
on Bitcoin volatility. In terms of model fit, the BIC criterion (Schwarz, 1978) is smallest for
the GARCH model, and thus, this model is preferred over OLS and GRJ. R2 estimates suggest
that little variation of the Bitcoin return is captured by the regression equations. Finally, I
present the p-values for the Wald test of overall significance of equation (6) in the last row of
the table. While the OLS model’s p-value exceeds 10 percent, the smaller p-values computed
by the GARCH and GRJ equations suggest that equation (6) provides a better fit to the data
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than a model consisting only of the intercept, at the 10 percent significance level.
Next, I consider Table 8, which presents the estimates of the model specified in equation (7)

that augments the previously discussed baseline model with three control variables, namely the
returns on US equities, US Dollar and gold. As before, of main interest is δ0 which captures
contemporaneous impact from recorded cybersecurity beaches of digital exchanges on Bitcoin
returns. As evident from the table, δ0 is estimated to be negative and statistically significant
at the 5% level in all three cases. The estimated parameters are similar to those reported
in Table 7 and now range from -1.470 (GRJ) to -1.288 (OLS). Given that the BIC criterion
again favours the GARCH model, the effect of cyberattacks against cryptocurrency exchanges
on Bitcoin return is estimated to be -1.459% on the day of the related cybersecurity breach.
Furthermore, the market incorporates the negative news quickly with the estimated effects on
the three subsequent days being statistically insignificant.

Table 8: Parameter Estimates (Added Control Variables)

OLS GARCH GJR
Coef. p-value Coef. p-value Coef. p-value

Breach Day (δ0) -1.288 0.037 -1.458 0.025 -1.470 0.023
Breach Day Minus 1 (δ−1) -0.026 0.969 -0.903 0.164 -0.901 0.165
Breach Day Minus 2 (δ−2) 0.614 0.241 0.885 0.132 0.868 0.131
Breach Day Minus 3 (δ−3) -0.409 0.524 -0.582 0.327 -0.597 0.320
Breach Day Plus 1 (δ1) -0.033 0.947 -0.037 0.940 -0.053 0.915
Breach Day Plus 2 (δ2) 0.458 0.325 0.321 0.527 0.309 0.548
Breach Day Plus 3 (δ3) 0.055 0.906 -0.156 0.744 -0.152 0.749
BTC Minus 1 (ϕ) -0.048 0.405 -0.030 0.337 -0.032 0.325
US Equities (θ1) 0.546 0.000 0.731 0.001 0.732 0.001
US Dollar (θ2) 0.336 0.423 0.420 0.121 0.416 0.123
Gold (θ3) 0.206 0.189 0.264 0.015 0.265 0.016
Const (c) 0.461 0.000 0.147 1.000 0.153 1.000
ARCH (α) - - 0.210 0.000 0.218 0.000
GARCH (β) - - 0.746 0.000 0.748 0.000
GJR (γ) - - - - -0.020 0.669
Const (ω) - - 1.346 0.001 1.333 0.002
BIC 14,911.344 - 14,055.180 - 14,062.501 -
R2 0.019 - 0.015 - 0.015 -
Wald Test p-value 0.019 - 0.007 - 0.007 -

Notes: Estimates of (7) are based on 2470 daily return observations covering the January 03, 2012 to
December 28, 2021 period.

Considering the coefficients related to the three factors, I observe that the US equities market
has a positive and statistically significant impact at the 1% level in all three models. The
estimated coefficient varies between 0.546 in the case of OLS to 0.732 estimated by the GJR
model. The effect of gold is also statistically significant in the GARCH and GRJ equations,
albeit at the 5% level, while the return on the US Dollar index does not seem to influence the
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return on Bitcoin at any conventional level of significance. In line with the estimates of (6),
the leads and lags of the cybersecurity breach variable (It), as well as the lagged BTC return
itself, continue to be statistically insignificant with large p-values. Finally, ARCH and GARCH
coefficients are statistically significant, positive, and sum to less than one. The asymmetric γ
coefficient in the GJR model is again statistically insignificant.

I complete the analysis by commenting briefly on model fit. First, the BIC criterion (Schwarz,
1978) is smallest for GARCH, implying that this specification is preferred over OLS and GRJ
models. Second, despite the low estimates of R2 which are comparable to those reported in
Van Wijk (2013) and Pyo and Lee (2020) for daily return series, the Wald test of overall signif-
icance suggests that equation (7) provides a better fit to the data than a model consisting only
of the intercept, at the 5 percent level.

6 Conclusions

Digital coins, such as Bitcoin, are cryptographic currencies that transact on peer-to-peer net-
works and allow for direct transfer of funds through online systems without an intermediary, such
as a bank. Despite privacy benefits that such decentralisation provides more than 90 percent of
cryptocurrency transactions still occur on centralised exchanges. This is due to convenience that
organised markets offer such as easy excess, low transaction costs, and liquidity. Another key
facility that centralised exchanges provide is cryptocurrency accounts where traders can store
digital assets, and thus avoid the process of setting up own cryptocurrency wallets which can
be technically challenging. However, the more investors enter cryptocurrency markets via cen-
tralised exchanges, the greater is the amount of client funds that is stored on online platforms
run by cryptocurrency exchanges. This has led to centralised exchanges becoming attractive
high-value targets to criminals, experiencing cybersecurity attacks, and having investor funds
stolen.

In this thesis I investigate two types of risk associated with cyberattacks on cryptocurrency
exchanges. First, I study the risk of cryptocurrency exchange closures which may result from a
number of factors, one of which is weak cybersecurity programs. Historically investor funds have
been either fully or partially lost when an exchange is forced to close down, and this represents
a major concern that cryptocurrency traders need to take into account when choosing a digital
exchange. Second, I analyse the issue of potential capital loss resulting from a price drop due
to cyberattacks on cryptocurrency exchanges. This may be regarded as an indirect form of risk
resulting from a market reaction to the news that a cryptocurrency exchange has been breached.

To investigate the risk of cryptocurrency exchange closures I compile a database containing
eight publicly available exchange attributes on 279 cryptocurrency exchanges, 134 of which have
closed since 2010. Using the collected data, I build machine learning models to predict which
digital markets will remain open and which will shut down. For the prediction task I employ
ten popular machine learning classifiers including i) Logistic Regression, ii) Decision Tree, iii)
Random Forest, iv) Support Vector Machine, v) Multilayer Perceptron, vi) KNeighbors, vii)
Naive Bayes, viii) AdaBoost, ix) ExtraTrees and x) Equally-weighted ensemble of the previous
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9 classifiers. Finally, I rank the alternative algorithms according to four different measures of
classification performance and identify key predictor variables.

The top three predictive models according to classification accuracy are random forest, mul-
tilayer perceptron and an equally weighted ensemble classifier. When evaluating accuracy on
the training dataset the best model is the ensemble classifier reaching the accuracy of 95.9 per-
cent. Random forest and multilayer perceptron are only marginally lower with the accuracy
measures of 95.4 and 94.9, respectively. Considering out-of-sample (test dataset) accuracy, the
best three models still rank in the top three position, but the random forest now performs best
with 85.7 percent accuracy while multilayer perceptron, the ensemble classifier and decision tree
share the second position with 83.3 percent accuracy. Three alternative measures of performance
precision, recall and F1 score largely agree with the rankings provided by classification accuracy.

From the list of eight exchange characteristics, average traded volume, exchange lifetime, se-
curity audit and bug bounty program are found to be key predictors across multiple classifiers.
Experiencing a previous cybersecurity breach reduces the probability of survival according to
logistic regression but does not seem to impact the classification accuracy according to the deci-
sion tree and random forest classifiers. Two factor authentication and the extent of anti-money
laundering regulation in the country of origin do not seem to have an impact cryptocurrency
exchange closure.

Having developed a method to predict which cryptocurrency exchanges will remain active and
which ones will face closure that can be utilised by traders when choosing their digital market, I
next turn to analyse the impact of cybersecurity breaches of cryptocurrency exchanges on bitcoin
returns. For this purpose, I use daily data covering the period January 03, 2012 – December 28,
2021, and test the hypothesis that the dates associated with cybersecurity breaches of digital
exchanges experience statistically significant decreases in Bitcoin returns. The test equations
account for the leads and lags of the breach date dummy variable itself, as well as other control
factors such as the returns on the US equities market, US Dollar and gold. In addition, I also
estimate models with and without time-varying volatility components.

The key finding here is that cybersecurity breaches of cryptocurrency markets result in a
negative contemporaneous change in Bitcoin return, which is statistically significant at the 5
percent level. The impact on Bitcoin returns is estimated to range between -1.288% and -1.470%,
depending on which of three alternative conditional variance models is applied, and on what
control variables are included in the test equations. Interestingly the estimated coefficients
on the leads and lags of the breach date indicator variable are statistically insignificant, at
any conventional level of significance, indicating that the market processes the information of
cyberattacks on cryptocurrency exchanges relatively quickly.

In summary, this thesis demonstrates that investors may be able to reduce their risk of
exchange closures by trading on the markets that record high transaction volumes, have a
long trading track record, and implement multiple security features. Results also show that
a certain level of risk remains even after accounting for all the exchange characteristics that I
consider in this thesis. Traders should therefore aim to stay informed of any further pertinent
information, as well as consider transferring their digital assets from organised exchanges to
their own cryptocurrency wallets. In addition to exercising caution when choosing which digital
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exchange to transact on, cryptocurrency traders also need to be aware of potential capital losses
resulting from cyberattacks on digital exchanges that may impact the price of Bitcoin itself.
This type of risk may be difficult to manage as it can spread from one cryptocurrency exchange
to the entire Bitcoin market.

6.1 Limitations of the Present Study

An accurate and complete dataset is a critical factor in examining and forecasting the impact
of cyberattacks on cryptocurrency markets. In this thesis, I use a dataset that I have collected
manually from publicly accessible sources, including various types of media, hacker forums,
cryptocurrency exchange websites, and social networks. As such, there are limitations regarding
the dataset, which I list below.

First, I only include cyberattacks that have been publicly announced by exchanges or through
various media sources. However, there are likely other cybersecurity breaches of cryptocurrency
exchanges that have not been made publicly known for multiple reasons.

Second, the breach date variable, which records the date of cyberattacks on cryptocurrency
exchanges, also relies on public announcements. While in most cases, the affected exchange
would detail the circumstances and timeframe of the attack, sometimes the detection of a cy-
berattack is delayed making it difficult to verify the actual date of the attack.

Third, when collecting data, I came across a number of cryptocurrency exchanges that did
not have publicly available information on some key cybersecurity attributes, such as bug bounty
programs or external security audits. In such cases, I adopted a conservative approach. I assume
that exchanges did not implement security features if they did not publicly provide information.
This is a reasonable assumption given that cryptocurrency investors care about the security of
their funds, and digital exchanges often compete for investors based on the facilities and security
features they provide. Cases of missing data were most often encountered with cryptocurrency
exchanges that have closed down.

Lastly, as explained in Section 3.2, Bitcoin is traded on weekends, while markets for other
assets are typically only open on weekdays. An alternative way to account for this observation
is to use returns over the whole weekend for Bitcoin on the first trading day of each week. This
possible extension is left for future work.



References 34

References

Azar, A. T. and El-Said, S. A. (2013). Probabilistic neural network for breast cancer classifica-
tion. Neural Computing and Applications, 23(6):1737–1751.

Baek, C. and Elbeck, M. (2015). Bitcoins as an investment or speculative vehicle? a first look.
Applied Economics Letters, 22(1):30–34.

Barbon, A. and Ranaldo, A. (2021). On the quality of cryptocurrency markets: Centralized
versus decentralized exchanges. arXiv preprint arXiv:2112.07386.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3):307–327.

Borri, N., Massacci, D., Rubin, M., and Ruzzi, D. (2022). Crypto risk premia. Available at
SSRN.

Bouri, E., Das, M., Gupta, R., and Roubaud, D. (2018). Spillovers between bitcoin and other
assets during bear and bull markets. Applied Economics, 50(55):5935–5949.

Bouri, E., Gupta, R., Tiwari, A. K., and Roubaud, D. (2017). Does bitcoin hedge global
uncertainty? evidence from wavelet-based quantile-in-quantile regressions. Finance Research
Letters, 23:87–95.

Briere, M., Oosterlinck, K., and Szafarz, A. (2015). Virtual currency, tangible return: Portfolio
diversification with bitcoin. Journal of Asset Management, 16(6):365–373.

Brown, M. S. and Douglass, B. (2020). An event study of the effects of cryptocurrency thefts
on cryptocurrency prices. In 2020 Spring Simulation Conference (SpringSim), pages 1–12.
IEEE.

Candila, V. (2021). Multivariate analysis of cryptocurrencies. Econometrics, 9(3):28.

Caporale, G. M., Kang, W.-Y., Spagnolo, F., and Spagnolo, N. (2021). Cyber-attacks, spillovers
and contagion in the cryptocurrency markets. Journal of International Financial Markets,
Institutions and Money, 74:101298.

Cheah, E.-T. and Fry, J. (2015). Speculative bubbles in bitcoin markets? an empirical investi-
gation into the fundamental value of bitcoin. Economics Letters, 130:32–36.

Chen, E.-T. and Clements, A. (2007). S&P 500 implied volatility and monetary policy an-
nouncements. Finance Research Letters, 4(4):227–232.

Ciaian, P., Rajcaniova, M., and Kancs, d. (2016). The economics of bitcoin price formation.
Applied economics, 48(19):1799–1815.



References 35

Civitarese, J. and Mendes, L. (2018). Bad news, technical development and cryptocurrencies
stability. Technical Development and Cryptocurrencies Stability (December 1, 2018).

Corbet, S., Cumming, D. J., Lucey, B. M., Peat, M., and Vigne, S. A. (2020a). The destabilising
effects of cryptocurrency cybercriminality. Economics Letters, 191:108741.

Corbet, S., Larkin, C., Lucey, B. M., Meegan, A., and Yarovaya, L. (2020b). The impact of
macroeconomic news on bitcoin returns. The European Journal of Finance, 26(14):1396–1416.

Dyhrberg, A. H. (2016). Bitcoin, gold and the dollar–a garch volatility analysis. Finance
Research Letters, 16:85–92.

Feig, E. (2018). A framework for blockchain-based applications. arXiv preprint
arXiv:1803.00892.

Gandal, N., Hamrick, J., Moore, T., and Oberman, T. (2018). Price manipulation in the bitcoin
ecosystem. Journal of Monetary Economics, 95:86–96.

Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M. C., and Siering, M. (2014). Bitcoin-asset
or currency? revealing users’ hidden intentions. Revealing Users’ Hidden Intentions (April
15, 2014). ECIS.

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the
expected value and the volatility of the nominal excess return on stocks. The Journal of
Finance, 48(5):1779–1801.

Gradojevic, N. and Tsiakas, I. (2021). Volatility cascades in cryptocurrency trading. Journal of
Empirical Finance, 62:252–265.

Guri, M. (2018). Beatcoin: Leaking private keys from air-gapped cryptocurrency wallets. 2018
IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), pages 1308–1316.

Hackernews (2019). A huge list of cryptocurrency thefts. [online]. Available: https://hackernoon.
com/a-huge-list-of-cryptocurrency-thefts-16d6bf246389.

Hansen, P. R., Lunde, A., and Nason, J. M. (2011). The model confidence set. Econometrica,
79(2):453–497.

Hasanova, H., Baek, U.-j., Shin, M.-g., Cho, K., and Kim, M.-S. (2019). A survey on blockchain
cybersecurity vulnerabilities and possible countermeasures. International Journal of Network
Management, 29(2):e2060.

Hu, J., Luo, Q., and Zhang, J. (2020). The fluctuations of bitcoin price during the hacks.
International Journal of Applied Research in Management and Economics, 3(1):10–20.

https://hackernoon.com/a-huge-list-of-cryptocurrency-thefts-16d6bf246389
https://hackernoon.com/a-huge-list-of-cryptocurrency-thefts-16d6bf246389


References 36

Kamiya, S., Kang, J.-K., Kim, J., Milidonis, A., and Stulz, R. M. (2021). Risk management, firm
reputation, and the impact of successful cyberattacks on target firms. Journal of Financial
Economics, 139(3):719–749.

Katsiampa, P. (2017). Volatility estimation for bitcoin: A comparison of garch models. Eco-
nomics Letters, 158:3–6.

Klein, T., Thu, H. P., and Walther, T. (2018). Bitcoin is not the new gold–a comparison of
volatility, correlation, and portfolio performance. International Review of Financial Analysis,
59:105–116.

Koutmos, D. (2018). Bitcoin returns and transaction activity. Economics Letters, 167:81–85.

Koutmos, D. (2020). Market risk and bitcoin returns. Annals of Operations Research,
294(1):453–477.

Kumar, A. S. and Anandarao, S. (2019). Volatility spillover in crypto-currency markets: Some
evidences from garch and wavelet analysis. Physica A: Statistical Mechanics and its Applica-
tions, 524:448–458.

Luther, W. J. and Smith, S. S. (2020). Is bitcoin a decentralized payment mechanism? Journal
of Institutional Economics, 16(4):433–444.
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