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Abstract

Next point-of-interest (POI) recommendation has attracted a considerate amount of

attention in the area of research recently to recommend the next POI where users are

most likely to visit at the next time step. However, most existing next POI recommen-

dation algorithms suffer from severe data sparsity issues, due to the scarcity of historical

check-in data. Existing studies mainly resort to side information, such as POI cate-

gories, to mitigate the data sparsity problem, but ignores the rich check-in information

from other cities. To this end, we explore how knowledge transfer from data-rich cities

with diverse user patterns can help improve the next POI recommendation perfor-

mance for cities with sparse check-ins. Accordingly, we propose a novel Meta-learning

Enhanced next POI Recommendation (MERec) framework by leveraging check-in data

from auxiliary cities, which incorporates the correlation of check-in behaviors among

cities into the meta-learning paradigm. Concretely, the MERec framework takes into

account the user check-in patterns of the target and auxiliary cities in terms of culture,

urban structure, resident behaviour, etc., and transfers more relevant knowledge from

more correlated cities. Extensive experiments on four real-world datasets demonstrate

the superiority of our proposed MERec framework.
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1
Introduction

The next POI recommendation [Islam et al. (2020)], which is to recommend a user a

location where they are most likely to go at a specific time in the upcoming hours,

benefits many location-based companies and individuals. However, the data in many

cities is extremely sparse due to the limited number of user-POI interactions, which

is a major challenge for the next POI recommendation tasks. Table 1.1 shows the

number of user-POI interactions for four different cities on Foursquare1, where we can

clearly see that the user check-in data density in some cities are extremely low, such as

Singapore with density being 0.05%. Consequently, with only the historical check-in

data, it is not possible to train comparable models for these data-insufficient cities.

To this end, most of the current research is devoted to augmenting the check-in

1https://foursquare.com/

1
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2 Introduction

Table 1.1: Statistics of four datasets from Foursquare.

#User #POI #Check-in #Category Density

Calgary 435 3,013 13,911 293 1.06%

Phoenix 2,945 7,247 47,980 344 0.22%

Singapore 8,648 33,712 355,337 398 0.12%

New York 16,387 56,252 511,431 420 0.05%

data of cities with side information, e.g., POI category, to alleviate the data sparsity

issue. They are built upon various techniques, ranging from the simple matrix decom-

position [Lian et al. (2014); Wang et al. (2021)], Markov chain models [Cheng et al.

(2013)], to advanced deep learning frameworks, e.g., graph neural networks [Qian et al.

(2019); Xie et al. (2016)] and recurrent neural networks [Huang et al. (2019); Zhang

et al. (2021); Liu et al. (2021)]. Despite great success of those methods, they heavily

rely on sufficient training data, thus merely achieving limited improvements because

of the restriction of data sparsity issue.

To ease this shortcoming, we thus conduct in-depth data analysis on the check-

in data across different cities in Chapter 3, where we surprisingly find out that the

check-in behaviors among different cities may share certain common patterns. That

is, there are overlapping behavioral patterns across different cities, for instance, the

transition pattern DrinkÑTravel&Transport is shared by the four cities in Table 1.1,

which suggests that users of different cities may always take public transport home

after drinking. This, consequently, inspires us to leverage data-rich cities to facilitate

data-sparse cities, so as to further improve the performance of the next POI recom-

mendations. On the other hand, non-overlapping behavioural patterns can be also

noted from city to city despite of the shared patterns due to the inherent diversity

of culture, structure and geographical location of cities [Chen et al. (2021); Tan et al.

(2021)]. For instance, the transition pattern Travel&TransportÑShop is quite common

in Singapore due to the convenient public transportation, while rare in the other three

cities. In this sense, blindly leveraging all check-ins in the data-rich city to augment
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the data-sparse city may inversely hurt the recommendation accuracy.

Therefore, we are facing with two major challenges when transferring knowledge

from data-rich cities to augment data-sparse cities for performance-enhanced next POI

recommendation.

• What to Transfer. As observed from the data, different cities do not have over-

lapping POIs, making the knowledge (i.e., check-ins) transfer challenging. In

contrast to the context of e-commerce, overlapping items can be found on shop-

ping sites in different regions [Bonab et al. (2021)]. In our study, there is no

intersection of POIs from different cities. Furthermore, according to the analysis

of the dataset [Chen et al. (2021)], most user’s next POI is within the city, which

greatly reduces the interaction of POIs across cities.

• How to Transfer. Cultural and structure and geographical diversity of cities

make users have different check-in patterns among cities, while only the common

patterns may help enhance the next POI recommendation accuracy. In other

words, although data-rich cities can be used as a source city to enrich the target

data-sparse city, different cities differ greatly in the distribution regarding user

check-in patterns. Simply transferring the entire data from data-rich cities may

not bring satisfying recommendation results. As a result, it inevitably increases

the difficulty in developing suitable transfer algorithms.

Although some existing methods exploit transfer-based approaches to enhance the

target cities [Ding et al. (2019); Zhang et al. (2020a)] for better next POI recommen-

dation, the results are not satisfying due to the limited number of overlapping POIs

among cities. For example, tea-houses that are popular in Asian cities are hard to

find in American cities. Besides, there are also some meta-learning based approaches

that adopt knowledge transfer to provide potential solutions to address the above chal-

lenges [Chen et al. (2021); Tan et al. (2021); Cui et al. (2021)]. Nevertheless, they

directly ingore the difference of user behavior patterns across cities.

In this thesis, to supply more precise next POI recommendation via addressing
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the above challenges, we introduce a novel Mete-learning Enhanced next POI Rec-

ommendation (MERec) framework by leveraging check-in data from auxiliary cities to

augment target cities. Most importantly, it delicately takes into account the correlation

of behavioral patterns across different cites into the meta-learning paradigm by stick-

ing to “paying more attention to more correlated knowledge”. Specifically, MERec is

mainly composed of two components, including a two-channel encoder (i.e., category-

and POI-level encoders) and a city-specific decoder. Firstly, the category-level encoder

consists of the meta-leaning paradigm and long-short term networks (LSTM), and is

designed to obtain expressive representations of categories by capturing the shared cat-

egory transition patterns across different cities. Secondly, the POI-level encoder aims

to learn accurate representations of POIs in target cities through LSTM. Lastly, the

city-specific decoder aggregates the latent representations of two channels to perform

next POI prediction task on the target city.

In summary, the main contributions of this thesis resides in three fields.

• We propose a novel Mete-learning Enhanced next POI Recommendation (MERec)

framework by leveraging user check-in data from auxiliary cities to augment tar-

get cities, thus alleviating the data sparsity issue.

• Holding the principle “paying more attention to more correlated knowledge”,

MERec transfers more relevant knowledge from more correlated cities, i.e., trans-

ferring more category-level check-in patterns (what to transfer) from more corre-

lated auxiliary cities (how to transfer) to the target city.

• We conduct extensive experiments on four real-world datasets to validate the

effectiveness of our proposed MERec. The experimental results demonstrate the

superiority of MERec against state of-the-art (SOTA) baselines.



2
Related Work

This chapter briefly reviews the related work to next POI recommendation, including

general POI recommendation, next POI recommendation, transfer learning based next

POI recommendation as well as meta-learning based next POI recommendation.

2.1 General POI Recommendation

Recently, more sophisticated approaches have been introduced to leverage additional

information for POI recommendation [Adams et al. (2010); Gu et al. (2010)], such as

social influence, geographical information, temporal information, review information

and transition between POIs. For instance, a topic model is proposed by [Kurashima

et al. (2013)], a POI is sampled according to the topics and distances of historical

POIs accessed by the target user. Levandoski et al. (2012) applied an item-based

5
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CF model for POI recommendation, taking into account a travel penalty, which is

proportional to the distance between the POI and the target user. Ye et al. (2010,

2011) models geographic influence through a Bayesian CF model in the framework

of a user-based collaborative filtering (CF) model, and also takes into account social

influence. Liu et al. (2013) approximates the geographical correlations of check-in

POIs by a power-law distribution. Zhang and Chow (2013) directly carries out kernel

density estimation for this distribution. Later, more comprehensive information is

considered by [Ye et al. (2010); Cheng et al. (2012)], such as the multi-center of user

check-in patterns, and the skewed user check-in frequency. Moreover, time preference

is introduced to boost the efficiency and effectiveness of POI recommendations [Yuan

et al. (2013); Gao et al. (2013)]. Lian et al. (2014) factorized geographic information

into the weighting matrix to boost the effectiveness of POI recommendations. Besides,

Liu et al. (2016b) designed a bi-weighted low-rank graph construction model that

combines users’ interests and their shifting sequential preferences with time interval

evaluation to provide time-specific POI recommendations.

2.2 Next POI Recommendation

The next POI recommendation is an emerging challenge that is more challenging than

the general POI recommendation. Early studies usually employ matrix factorization

models to characterize the personalized sequential patterns of users. For instance, Zhao

et al. (2016) proposed a pairwise tensor factorization technique (STELLAR) for next

POI recommendation, a ranking-based framework that can incorporate fine-grained

temporal context. A personalized ranking metric embedding (PRME) approach was

presented to reflect user preferences and POI sequential transitions [Feng et al. (2015)].

Meanwhile, Markov chain models have also been used to model the sequential influence.

For example, a personalized Markov chain model with factorization recommends contin-

uous POIs to the target user [Cheng et al. (2013)]. Similarly, an additive Markov chain

model was developed for predicting the probability of continuous transitivity [Zhang

et al. (2014)]. Besides, a hybrid Hidden Markov Model is proposed to learn the delivery
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pattern of POI categories for successive user check-ins [Ye et al. (2013)].

Recently, Recurrent neural networks (RNNs) such as long short-term memory

(LSTM) [Hochreiter and Schmidhuber (1997)] have showed breakthrough capability in

modeling sequential check-in behavior for the next POI recommendation. Since RNN

can tackle sequentially ordered data very well, existing works mainly concentrated on

leveraging users’ sequential preference on POIs by incorporating diverse context in-

formation into RNNs framework. For instance, Liu et al. (2016a) proposed Recurrent

Neural Networks based on Spatial Temporal (ST-RNN) model to capture the peri-

odical spatial and temporal contexts. The RNN was used to learn to produce new

user paths for next stop-over prediction by simulating temporal correlations between

POI categories [Palumbo et al. (2017)]. Zhang et al. (2021) devised a LSTM model

using a two-channel encoder and a task-specific decoder for catching the sequential

correlations of activities and location preferences based on side information, e.g., POIs

category information.

Despite of the great success of these methods, most of them rely on sufficient train-

ing data and require extensive types of side information. As a result, the performance

improvements are heavily restricted by the severe data sparsity issue. In this sense,

transferring knowledge from data-rich cities to data-sparse cities becomes necessary to

further help boost the performance of the next POI recommendation.

2.3 Transfer Learning for Next POI Recommenda-

tion

Transfer learning primarily concerns transferring knowledge from the source domain to

the target, so as to resolve the data sparsity issue in the target domain [Farseev et al.

(2017)]. A collaborative filtering model is proposed by Wang et al. (2018) to merge

data from different sources by using neighborhood information of common users/items.

Man et al. (2017) introduced an embedding and mapping framework for cross-domain

recommendation, which learns mapping functions through latent vector projections



8 Related Work

of different domains. However, for next POI recommendations, transfer learning in-

herently suffer from several limitations. First, the direct transfer of knowledge from

auxiliary cities to the target city ignores the fact that the structure and user behavior

patterns of different cities produce different data distributions. Second, as suggested

by [Chen et al. (2021)], transfer learning requires a sufficient number of overlapping

users and or items between the source and target domains for the knowledge to be

transferred.

2.4 Meta-learning for Next POI Recommendation

Inspired by human learning from previous relevant tasks to quickly learn new skills,

meta-learning [Vanschoren (2018)], designing to transfer the knowledge learned from

multiple tasks to efficiently accomplish different new tasks, has achieve significant suc-

cess mainly in few-show learning applications. The four popular approaches are listed

below: 1) learning a proper initialization from which the model parameters can be up-

dated within a couple of gradients steps [Yao et al. (2019)]. 2) learning a valid distance

metric between instances [Snell et al. (2017)]; 3) learning a meta-optimizer which can

rapidly optimize the model parameters [Ravi and Larochelle (2016)]; and 4) using a

recurrent neural network equipped with either external or internal memory storing and

querying meta-knowledge [Mishra et al. (2017); Munkhdalai et al. (2018)];

Nevertheless, only a few attempts have been introduced to alleviate the data spar-

sity issue for next POI recommendation. For instance, Curriculum Hardness Aware

Meta-Learning (CHAML) framework was proposed by Chen et al. (2021), which takes

into account a city-level curriculum and city- and user-level hardness in meta train-

ing. Tan et al. (2021) introduced a meta-learning enhanced neural ordinary differential

equation (ODE) method, which models city-irrelevant information and city side infor-

mation to achieve citywide next POI recommendation. Cui et al. (2021) proposed a

meta-learned sequential-knowledge-aware recommender (Meta-SKR), which utilizes se-

quential, spatio-temporal, and social knowledge to recommend the next POI for users.

Unfortunately, the above meta-learning based next POI recommendation methods
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completely ignore the diversity of user check-in patterns across different cities. To

this end, this thesis proposes a novel meta-learning enhanced approach – MERec by

leveraging check-ins from auxiliary cities to augment the target city. By holding the

principle “paying more attention to more correlated knowledge”, the proposed MERec

is capable of further boosting the performance of next POI recommendation via better

resolving the data sparsity issue.
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3
Data Collection and Analysis

In this chapter, we first describe in detail the data collection process and provide

statistics for the collected data. Then we conduct in-depth analysis to gain important

observations to guide our model design.

3.1 Data Collection

We collect four datasets, i.e., Calgary (CAL), Phoenix (PHO), Singapore (SIN), New

York (NYC), from Foursquare [Yang et al. (2016)], which are widely-used datasets in

the next POI recommendation Zhang et al. (2020b, 2021). It is worth noting that the

behavioural patterns of users can vary considerably from city to city, depending on the

urban structure and culture of the city. Our goal is to transfer relevant knowledge from

different cities to alleviate the data sparsity problem in the target cities. To make the

11
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selection of cities more reasonable, we first selected New York and Phoenix as the two

cities from the USA. New York has a complex urban structure and a large amount of

check-in data, while Phoenix is not as rich in the number and type of POIs as New

York. Secondly, we chose Calgary in Canada, as the third city. The reason for this

is that although Canada and the two USA cities are located at North America, they

possess slightly different cultures; besides Calgary has a much simpler city structure

than Phoenix. Lastly, we choose Singapore as the fourth city. This is mainly because

Singapore is on a different continent to the previous three cities, and there are clear

differences in culture and urban structure among them. Meanwhile, Singapore has

more POIs and categories than Phoenix, and is a suitable auxiliary city thanks to the

diversity of user behaviour patterns.

Following [Zhang et al. (2021, 2020b)], each check-in is formed as pu, p, t, c, gq mean-

ing that user u visits POI p at time t, where p is associated with category c as well

as geocoded by g (latitude and longitude of p). For each user, we order his check-in

records via the timestamp information, and then divide them into different sequences

by day. The statistics of the four datasets are shown in Table 1.1.

3.2 Data Analysis

Our goal in this section is to analyze the similarities and demonstrate differences re-

garding user behavioral patterns across cities, which could better guide the knowledge

transfer process from the auxiliary cities to the target cities for a more accurate next

POI recommendation. However, this is non-trivial due to the non-overlapping POIs

across different cities. Fortunately, the POIs in the four cities share the same set of

categories, which consequently inspires us to analyze both the distribution of POIs

and user behavioural patterns at the category level in different cities, so as to better

uncover the similarities and differences of the patterns.

Distribution of POIs at Category Level. The number of POIs under each category

varies significantly from city to city due to differences in geographical location, urban

structure culture. To better understand user behavior patterns, we first investigate the
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nature of the POI distribution in each city. According to [Zhang et al. (2020b); Sun

et al. (2021)], the POIs in the four cities are characterized by 10 first-level categories,

including Arts & Entertainment (AE), College & University (CU), Drink (DR), Food

(FO), Nightlife Spot (NS), Outdoor & Recreation (OR), Professional & Other Places

(PO), Residence (RE), Shop & Service (SS), Travel & Transport (TT).

PHO CAL NYC SIN

AE
CU

DR
FO

NS
OR

PO
RE

SS
TT

0.0373 0.0388 0.0562 0.0355

0.0218 0.0156 0.0246 0.0572

0.0208 0.0591 0.0219 0.0317

0.2365 0.2539 0.2536 0.2436

0.0506 0.0660 0.0627 0.0336

0.0658 0.0743 0.0835 0.0594

0.1624 0.1095 0.1536 0.1534

0.0693 0.0368 0.0649 0.1374

0.2500 0.2798 0.1899 0.1457

0.0854 0.0660 0.0891 0.1025

0.05

0.10

0.15

0.20

0.25

Figure 3.1: The POI distribution at category level across the four cities.

Fig. 3.1 depicts the POI distribution at category level across the four cities. We

can clearly note that there are certain similarities between the POI distribution of

the four cities, while at the same time significant differences exist to some extent.

Firstly, the proportion of Food-related POIs is quite high across the four cities. In

particular, New York and Singapore have the highest number of food-related POIs.

Regarding Phoenix and Calgary have the second highest number of food-related POIs,
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whereas Shop & Service ranks first regarding the number of POIs in the two cities.

In contrast, New York and Singapore have slightly lower numbers of Shop & Service.

Professional & Other Places is the second most popular type of POIs in Singapore, but

is far less represented in Calgary than in the other cities. Secondly, in terms of College

& University, the distribution of Phoenix and New York are relatively similar, while

Calgary has the lowest proportion of College in the city. Unlike the other three cities,

Singapore has a much higher ratio of College & University.

Correlation of POIs at Category Level. Based on the above distribution, both

similarity and dissimilarity can be observed across different cities. The main goal of our

study is to transfer check-in data from more correlated cities to assist the target cities

by holding the principle of “paying more attention to more correlated knowledge”.

Therefore, it is essential to analyze the correlation between cities. To start, we first

analyse the correlation of POIs at category level. Given two cities, A “ rA1, A2...Ais

and B “ rB1, B2...Bis denote the number of POIs under each category for per city.

Accordingly, the correlation γcor can be calculated as below:

γcor “

ř

pAi ´ ĀqpBi ´ B̄q
a

pAi ´ Āq2
a

pBi ´ B̄q2
, (3.1)

where Ai and Bi are the number of POIs under category ci in city A and city B,

respectively.

By using Eq.(3.1), we can figure out the correlation of POIs at category-level among

the four cities, which is illustrated in Fig. 3.2. Interestingly, we observe the highest

correlation (i.e., 0.9665) is possessed by New York and Phoenix. This suggests that

cities in the same country (United States) have a higher correlation in terms of urban

structure and culture compared to cities in other countries. In addition, Calgary ranks

second in terms of correlation with cities in the United States, which mainly stems from

the fact that Canada and the United States are geographically close and share simi-

larities in culture and city structure. On the other hand, we can see that the cities on

different continents (North America and Asia) do not share much in common. In par-

ticular, we can see Calgary and Singapore exhibit low correlation, and the underlying

reason is that Asian cities and North American cities have different urban structures



3.2 Data Analysis 15

PHO CAL NYC SIN

PH
O

C
AL

N
YC

SI
N

0.9511

0.9665 0.9129

0.8573 0.7313 0.8920
0.75

0.80

0.85

0.90

0.95

1.00

Figure 3.2: The correlation of POIs at category level between four cities, where PHO,
CAL, NYC and SIN are short for Phoenix, Calgary, New York and Singpore, respectively.

due to the different cultures of their inhabitants. It can also be noted from Fig. 3.1

that Singapore has a much higher number of POIs in both Residence type and College

& University type than the other three cities, whereas the number of POIs in Nightlife

spot is less. This makes a clear difference between the correlation of Singapore and the

other three cities regarding POIs at category level.

However, the correlation of POIs at category level between cities does not indicate

that users behave in the same way. Our main goal is to predict the next POIs that

users may visit by referring to their historical check-in records. Therefore, it is the

pattern of user check-in across the four cities that can better reflect and unveil user

behavior. Based on this, we further investigate the correlation of behavioral patterns

at category level between cities.

Correlation of Behavioral Patterns at Category Level. We now examine the

correlation of user check-in behavior at category-level in different cities. Given two

cities, A “ rA1, A2...Ais and B “ rB1, B2...Bis denote the vectors of check-ins under

all types of category transition, where Ai and Bi are the number of check-ins under

category transition pattern ci Ñ cj in city A and city B, respectively. Based on
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PHO CAL NYC SIN

PH
O

C
AL

N
YC

SI
N

0.8785

0.7295 0.6351

0.8612 0.8112 0.6322

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 3.3: The correlation of behavioral patterns at category level between four cities.

Eq.(3.1), we calculate the correlation of behavior patterns at category level, and the

results are depicted in Fig. 3.3.

Interestingly, the correlation between the four cities regarding behavioral patterns is

quite different from that w.r.t. POIs. Specifically, the correlation between Calgary and

Phoenix is quite high. On the contrary, the correlation between Singapore and New

York is the lowest. To make it clearer how the four cities are correlated and different

regarding behavioral patterns at category level, we step further to compare the two

most (i.e., Calgary and Phoenix) and least (i.e., New York and Singapore) correlated

cities separately. For ease of presentation, we have selected 10 most frequent category

transition patterns for comparison as shown in Fig. 3.4 and Fig. 3.5. The x-axis

shows the 10 most frequent category transition patterns, e.g., AE2CU (i.e., Arts &

Entertainment Ñ College & University); and the y´axis shows the proportion of such

a transition within a specific city.

Fig. 3.4 compares the proportion of different category transition patterns in the two

most correlated cities, i.e., Calgary and Phoenix. Particularly, we can see that users in

Calgary and Phoenix tend to go to Nightlife spot after coming out of Shop & Services.
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Figure 3.4: Two most correlated cities.
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Figure 3.5: Two least correlated cities.

Besides, users in both cities tend to go to Professional Places after going to Arts &

Entertainment.

Fig. 3.5 compares the proportion of different category transition patterns in the

two least correlated cities, i.e., New York and Singapore. Specifically, users in New

York are more likely to take transportation after visiting Nightlife spot, the frequency

of which is four times larger than Singapore users. Meanwhile, a large proportion of

users in Singapore go to College & University after visiting Professional Places, while

the proportion in New York is quite small. Furthermore, a much higher proportion

of Singaporean users travelled from College & University to Professional Places in

comparison with New York users.

Based on the above observations, we can see that the four cities exhibit correlations

to some extent in terms of both POI and behavioral patterns at category level. This,

therefore, inspires us to leverage data-rich cities to facilitate data-sparse cities, so as

to further improve the performance of the next POI recommendation. However, there

are also dissimilarities between cities due to the inherent diversity of culture, urban

structure and geographical location. Consequently, instead of blindly transferring all

check-ins in data-rich cities to augment data-sparse cities, we hold the principle of “pay-

ing more attention to more correlated knowledge”. Accordingly, a delicately designed

meta-learning framework named MERec has been delivered for performance-enhanced
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next POI recommendation, which will be introduced in the next chapter.

It is worth noting that since we are aiming at predicting where users are likely to go

next based on their historical check-in records, the correlation of behavioral patterns

at category level is more in line with our investigated question. Therefore, we adopt

such correlation to guide our model design hereafter.



4
The MERec Framework

In this chapter, we first provide preliminaries and definitions for our investigated re-

search question, i.e., meta-learning enhanced next POI recommendation. Then, we in-

troduce the overall framework of our proposed meta-learning framework named MERec.

Following that, the detailed components of MERec have been elaborated step by step.

4.1 Preliminaries and Definition

Each city has its unique user set U and POI set P without sharing any common users

or POIs. For each user u, all his records is ordered by timestamps as in [Zhao et al.

(2017)]. Based on this, we then split his historical check-in records as r “ pp, c, g, tq

into check-in sequences by days, where p is POI ID, c is category ID, g is the GPS

location of POI, and t is the timestamp.

19
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• The i-th category sequence of user u is denoted by a set of category tuples, i.e.,

Cu,i “ tCu
t1
, Cu

t2
, ...u, where Cu

tk
“ pcutk , t

u
kq.

• The i-th check-in sequence of user u is denoted by a set of POI tuples, i.e.,

P u,i “ tP u
t1
, P u

t2
, ...u, where P u

tk
“ pputk , d

u
tk
, tukq, where dtk is the Euclidean distance

between POIs visited at tk´1 and tk.

Given Cu,i and P u,i, our goal is to predict user u’s next POI ptk`1
at time tk`1.

Suppose we have a set of auxiliary cities YA “ ty
pmq
aux|m P 1, 2, 3, 4...u and a target

city YT “ tytaru with a limited amount of check-in sequences, where m is the ID of the

corresponding city. Our goal is to transfer knowledge from the auxiliary cities with rich

check-in sequences to augment the data-sparse city (i.e., target city), so as to further

boost the recommendation performance in the target cities.

In a meta-learning setup, recommendation within each city ym is regarded as a

single task (with its own dataset D). Since a user’s previous check-in pattern will have

an impact on the present, we divide the check-in records of users in both auxiliary

and target cities into a training set and a test set by date (the detailed data splitting

process is deferred to Chapter 5). The check-in sequences of YA and YT are divided as

training sets Dpauxq

train ,D
ptarq

train and test sets Dpauxq

test ,Dptarq

test .

Moreover, each meta-learning tasks has a support set Dspt for training and a query

set Dqry for testing. We chronologically select the first several check-in sequences of

each user to put into Dspt and the rest into Dqry. Finially, our goal is to leverage the

training set (Dpauxq

train ) to learn a meta-learner F such that, given the Dspt of a test set,

F predicts the parameters θ of recommender f to minimize the recommendation loss

L on the Dqry. Formally, it is defined as below:

w˚
“ arg min

w

ÿ

D“rDspt,DqrysPDpauxq
test

Lpfθ,Dqry
|Dtrain,Dspt

q

s.t. θ “ FwpDspt
|Dtrainq,

(4.1)

where w, θ are parameters of F and f , respectively; and Dtrain “ Dpauxq

train Y Dptarq

train.
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Figure 4.1: The overall framework of our proposed MERec.

4.2 The MERec Framework

The overall framework of our proposed MERec is outlined in Fig. 4.1, which is mainly

composed of a two-channel encoder (i.e., category-level encoder and POI-level encoder)

and a city-specific decoder. In particular, the category-level encoder exploits a meta-

learning process to capture common user check-ins transition patterns on category

level in each city by holding the principle of “paying more attention to more correlated

knowledge”. The goal of the POI-level encoder is to learn the accurate POI transition

patterns in the target city. Lastly, the city-specific decoder performs the final next POI

predictions by concatenating the hidden states of the above two encoders. The overall

algorithm of MERec is presented in Chapter 4.2.4.

4.2.1 Base Recommender

We apply the long short-term memory (LSTM) [Hochreiter and Schmidhuber (1997)]

as the base recommenders for the two-channel encoder, where f
pcatq
θ , f

ppoiq
θ denote the
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base recommenders of category- and POI-level encoders, respectively. The base recom-

menders are mainly composed of two modules, namely embedding module and output

module, as elaborated below.

Embedding Module (ri “ pp, c, g, tq ÞÝÑ ehist). Regarding the category-level en-

coder, we simply ignore the user ID and focus on modeling the user historical check-in

records at category level. In this module, the embedding matrices Ecat and Etim are

respectively adopted to map category ID ci and the timestamp ti (divide into 24 hours

for a day) into latent representations with dimension beging d, which are then concate-

nated to form the embedding vector ecat of each record, where ecathist is the embeddings

of the historical check-in sequence at category level. Similarly, for the POI-level en-

coder, the embedding matrices Euser, Epoi, Etim, Edis are adopted to map user ID ui,

POI ID pi, the timestamp ti and Euclidean distance di (the distance between two con-

secutive POIs) into d-dimensional vectors, respectively, which are then concatenated

to form the embedding vector eppoiq of each record, where e
ppoiq
hist is the embeddings of

the historical check-in sequence at POI level.

Output Module (ehist ÞÝÑ ŷi). The input embeddings are then fed into the LSTM to

predict the probability distribution ŷi (either ŷ
ppoiq
i or ŷ

pcatq
i ) on all categories or POIs

in the city, denoted as,

ŷi “ LSTMpehistq (4.2)

Note that, for category-level encoder, the parameters of f
pcatq
θ is later meta-learned as

introduced in the next subchapter.

4.2.2 Cateogry-Level Encoder

In this step, our goal is to train a sequential model to predict the possible next category

by capturing the historical category transition patterns. We mainly utilize LSTM

and extend model-agnostic meta-learning (MAML) as the framework for meta-learning

update [Finn et al. (2017)] in our scenario.

Meta-learning Setup. Intuitively, MAML learns w initialized by θ0 of the base

recommender f
pcatq
θ , which could adapt to new tasks by few update steps on few support



4.2 The MERec Framework 23

samples, and predict well on the query samples. To be specific, each iteration of MAML

include two phases: local update and global update on a sampled task batch, where the

first phase updates θ0 locally on the Dspt of each task, and the second phase globally

updates θ0 by gradient descent to minimize the sum of loss on the Dqry of all tasks.

• Local Update. Firstly, we sample a batch of cites from Dtrain where each city

ym has its unique user set Uym and POI set Vym . Then we randomly sample a

group of users and from Dspt
ym and Dqry

ym . Next, we calculate the training loss on

Dspt
ym and locally updated θpcatq by one step:

θ1
ym “ θ ´ α∇θLympf

pcatq
θ ,Dspt

ymq, (4.3)

where L is the cross-entropy loss; α is the local learning rate; and θ1y is the locally

updated recommender parameters on each city. For ease of illustration, we omit

the superscript pcatq for θ in Eqs. (4.3-4.4).

• Global Update. In the second phase, we start with calculating the testing loss

on each Dqry
ym with the corresponding θ1

ym . The normal MAML global updating

aims to update the initialization θ by one gradient step on the sum of all the

testing losses, defined as,

θ “ θ ´ β∇θ

ÿ

Lympfθ1
ym
,Dqry

ym q, (4.4)

where β is the global learning rate.

Correlation Strategy. As analysed in Chapter 3, there are similar and dissimi-

lar characteristics among different cities. Blindly transferring all check-ins from the

data-rich cities to the data-sparse cities may introduce some noise thus hurting the

recommendation performance. By holding the principle of “paying more attention to

more correlated knowledge”, our proposed MERec goes a step further from MAML by

taking into account the Correlation of Behavioral Patterns at Category Level in differ-

ent cities in the global update. To be specific, we obtain a city correlation matrix γcor

based on the behavioural patterns of the users. In the meta-learning global update, we

attentively adapt the gradient across cities based on their correlation. In other words,
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if the auxiliary city is more correlated to the target city, we adapt the gradient so that

it updates faster in that direction. Therefore, the Eq.(4.3) is reformulated as :

θ1
ym “ θ ´ α∇θrLympf

pcatq
θ ,Dspt

ymq ˆ γcors. (4.5)

By doing so, a more transferable initialization of θ for fast adaption to target cities

can be learned after adequate meta-learning iterations. The meta-optimization cross

cities are calculated using check-in sequences on each cities with a meta-training step

size β. This updates the parameters of the original model so that a few gradient steps

are sufficient to tune the parameters to a specific target city.

Freezing Layers and Model Fine Tuning. After obtaining the general representa-

tion of auxiliary cities by the meta-learning process, we construct a new model and fine

tune with the check-ins of the target city only. Assuming the LSTM model contains L

layers, our objective with freezing layers is to maximize the reusability of the general

parameters. For this purpose, both Bonab et al. (2021) and Finn et al. (2017) studied

the similarity of layers between an adapted model and the general model, whereby they

suggested that the main body of the network barely changes and all the adaptation

happens in the head layers of the network. Inspired by this finding, we freeze the first

l layers of the LSTM network p1 ď l ď Lq, while adding n layers after the l layers and

fine tune with target city data only. Hence, e
ptar´catq
hist is fed into the recurrent layer to

infer the hidden state hu
tk

of category at tk, given by,

hu
tk

“ LSTMfrozenpe
ptar´catq
hist q. (4.6)

We believe that our freezing-layer operation helps generate a network, which is

capable of better balancing the parameters between the auxiliary cities and target city

after the final model fine-tuning. Meanwhile, the impact of the number of freezing

layers l is experimentally explored in our experiments as shown in Chapter 5.4. The

freezing layers operation for each target city is shown in line 13 of Algorithm 1.
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4.2.3 POI-level Encoder

In order to adapt to the target city, another channel is to train a POI-level model by

incorporating the check-in data at POI level of the target city. In this channel, we train

the basic LSTM and adopt the check-in sequences at POI-level in the target city as

input. In particular, in order to be able to obtain more accurate representation of POIs

for the target city, we concatenate the embeddings of user ID, POI ID, timestamp, and

distance between two consecutive visited POIs of each record as input. Accordingly,

the final embedding of historical check-in sequence at POI level, i.e., e
ptar´poiq
hist , is then

fed into the LSTM to infer the hidden state h̃u
tk

of POI at tk, given by,

h̃u
tk

“ LSTMpoipe
ptar´poiq
hist q (4.7)

4.2.4 City-specific Decoder

The city-specific decoder aims to perform next POI prediction based on the latent

representations earned from the two-channel encoder. Given a check-in record rk,

based on the cross entropy loss, the objective function J of next POI prediction task

is defined by:

ŷpoi “ softmaxpfphu
tk
; h̃u

tk
qq (4.8)

Jrk “ ´

|Vptarq|
ÿ

i“1

pkris ¨ logpŷpoirisq (4.9)

where f is a fully connected layer to transform phu
tk
; h̃u

tk
q into a |Vptarq|-dimensional

vector; |Vptarq| is the total number of POIs in the target city; ŷpoi represents the pre-

dicted probability distribution on all POIs in target city; pk is an one-hot embedding

of the ground-truth POI pk. Algorithm 1 summarizes the training learning process of

MERec, which is mainly composed of three parts: meta training (lines 3-11), freezing

layers and model fine tuning (lines 12-14), as well as next POI prediction (lines 15-16).
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Algorithm 1 Mete-learning Enhanced Next POI Recommendation (MERec)

Require: Dpauxq

train , D
ptarq

train; base recommender f
pcatq
θ and f

ppoiq
θ ; learning rates α, β; num-

ber of shots N ; max step of iterations M ;

1: Randomly initialize parameters θ “ θpcatq Y θppoiq;

2: Calculate the correlation of behavioral patterns at category level by Eq.(3.1);

3: while not done do

4: for all Di P Dpauxq

train Y Dptarq

train do

5: Sample N historical check-ins from Di as the adapt batch;

6: Evaluate: ∇θLympf
pcatq
θ ,Dspt

ymq using adapt batch;

7: Calculate the gradient update of θ1
ym by Eq.(4.5);

8: Sample another N historical check-ins from Di as the eval batch;

9: end for

10: Update θ using eval batch by Eq.(4.4);

11: end while

12: Freeze the first l layers as new LSTM model, i.e., LSTMfrozen;

13: Fine-tune LSTMfrozen using only the category-level training data Dptar´catq
train ;

14: Get the hidden state of POI-level encoder shown in Eq. (4.7) using Dptar´poiq
train ;

15: Predict next possible POI via Eq.(4.8);

16: Calculate the prediction loss for each check-in record via Eq.(4.9);



5
Experiments and Results

In this chapter, we conduct the experiments on four real-world datasets from Foursquare

as introduced in Chapter 3 to evaluate the performance of our proposed MERec on the

next POI recommendation task1. Our experimental evaluation is designed to answer

three research questions (RQs).

• RQ1: Does MERec outperform other state-of-the-art methods for the next POI

recommendation?

• RQ2: How do different components of MERec affect its performance?

• RQ3: How do hyper-parameter settings affect MERec?

In what follows, we introduce the experimental settings, and present the experi-

mental results followed by the corresponding in-depth analysis.

1Our code is released at https://github.com/OliverWang-Au/DAMER Framework.

27
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5.1 Experimental Setup

Datasets. We conduct extensive experiments on the four datasets as shown in Ta-

ble 1.1. We use one of the cities as the target city and the other cities as auxiliary cities

in the experiment. Following [Huang et al. (2019)], we treat the first 80% sequences

of each user as training set, the latter 10% as the validation set and the last 10% as

test set. Note that we filtered POIs with less than three check-ins and users with less

than five interactions, respectively.

Evaluation Metrics. We adopt two widely-used ranking evaluation metrics: Hit

Ratio atK pHR@Kq andNormalized Discounted Cumulative Gain atK pNDCG@Kq.

HR@K measures whether the test POI shows within the top-K ranked list while the

NDCG@K takes the position of the test POI into account and penalizes the score if it

is ranked lower in the list.

Comparison Baselines. In order to verify the effectiveness of our proposed method,

we compare the following seven state-of-the-art next POI recommendation approaches,

which can be divided into three groups: traditional methods (TM), deep learning

methods (DL), and meta-learning based methods (META).

Specifically, we consider two traditional methods.

• MostPop: recommends next POI based on the popularity of POIs.

• BPRMF [Rendle et al. (2012); Yuan et al. (2016)]: matrix factorization based

method, optimized via Bayesian personalized ranking.

Three classic deep learning methods are also compared.

• NeuMF [He et al. (2017)]: an item recommendation model combining matrix

factorization with MLP.

• ATST-LSTM [Huang et al. (2019)]: a recent next POI recommender, attending

user embedding on the LSTM outputs with distance and delta time between

successive check-ins considered.
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• iMTL [Zhang et al. (2021)]: a recently-proposed approach for next POI recom-

mendation, using two-channel encoder and a task-specific decoder for capturing

the sequential correlations of activities and location preferences.

Meanwhile, three meta-learning based methods have been taken into account.

• MAML [Finn et al. (2017)]: a model-agnostic framework based meta-learning

for few shot learning.

• CHAML [Chen et al. (2021)]: a recent framework incorporating hard sample

mining and curriculum learning into meta-learning step.

Hyper-parameter Settings. The optimal hyper-parameter settings for all methods

are empirically found out based on the performance on the validation set. In particular,

the embedding size is searched from t32, 64, 128, 256u; for BPRMF and deep learning

based methods, we set the batch size as 256; the learning rate is selected from { 0.1,

0.05, 0.01, 0.005, 0.001, 0.0001. Accordingly, for all META methods, the learning rates

α and β are selected from {0.5, 0.1, 0.01, 0.001, 0.0001}; and the batch size is set as

256 to ensure fair comparison. For our freezing step, we vary the number of freezing

layers in the range of r1, 4s stepped by one. Finally, we select freezing 3 layers of LSTM

for all datasets.

5.2 Performance Comparison (RQ1)

The comparative results of different methods are presented in Table 5.1, where the best

results are highlighted in bold; the runner-up is underlined; and the column ‘Improve’

indicates the improvements achieved by our proposed MERec relative to the runner up.

Next, we analyze the results aiming to answer the first research question, i.e., RQ1.

In terms of the four datasets, the traditional methods (MostPop, BPRMF) generally

perform worse than deep learning methods (NeuMF, ATST-LSTM, iMTL) demonstrat-

ing the efficacy of neural network on more accurate recommendation. As for RNN based

methods, ATST-LSTM and iMTL performs better than NeuMF, which indicates the
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Table 5.1: Comparative results of all approaches on the four datasets, where ‘H’ refers to
‘Hit Ratio’ and ‘N’ means ‘NDCG’; the best results are highlighted in bold and the runner up
is underlined; the column ‘Improve’ indicates the improvements achieved by MERec relative
to the runner up.

TM DL META
Improve

MostPop BPRMF NeuMF ASTA-LSTM iMTL MAML CHAML MERec

C
a
lg
a
ry

H@5 0.0988 0.1304 0.1431 0.2924 0.2652 0.3987 0.3995 0.4274 6.98%

H@10 0.1547 0.2349 0.2368 0.3705 0.3184 0.4618 0.4777 0.5054 5.80%

N@5 0.0632 0.0928 0.0989 0.2134 0.1857 0.3178 0.3093 0.3378 6.29%

N@10 0.0814 0.1672 0.1669 0.2383 0.2299 0.3362 0.3315 0.3564 6.01%

P
h
o
e
n
ix

H@5 0.0682 0.1093 0.1316 0.2366 0.2410 0.3549 0.3660 0.3928 7.32%

H@10 0.1068 0.1584 0.1852 0.3125 0.3370 0.4508 0.4419 0.4531 0.51%

N@5 0.0419 0.0688 0.0869 0.1635 0.1753 0.2633 0.2648 0.2796 5.59%

N@10 0.0547 0.0848 0.1042 0.1883 0.2065 0.2949 0.2891 0.2993 1.49%

S
in
g
a
p
o
re

H@5 0.0365 0.0848 0.1004 0.2165 0.2388 0.2991 0.3571 0.3705 3.74%

H@10 0.0635 0.1450 0.1696 0.2879 0.3080 0.3816 0.4486 0.4488 0.04%

N@5 0.0231 0.0452 0.0697 0.1532 0.1696 0.2188 0.2650 0.2707 2.15%

N@10 0.0318 0.0648 0.0925 0.1760 0.1922 0.2451 0.2981 0.2998 0.57%

N
e
w

Y
o
rk

H@5 0.0214 0.0558 0.0959 0.1763 0.2187 0.2456 0.2745 0.2991 8.96%

H@10 0.0336 0.0994 0.1495 0.2455 0.2879 0.3373 0.3526 0.3995 13.3%

N@5 0.0134 0.0265 0.0595 0.1257 0.1484 0.1652 0.1865 0.2107 12.98%

N@10 0.0173 0.0237 0.0770 0.1485 0.1705 0.2072 0.2118 0.2436 15.01%

capability of RNN on modeling the sequential dependency. iMTL performs better than

ATST-LSTM, as it leverages multi-task learning (MTL) framework to jointly learn user

preference on both activities (i.e., categories) and POIs, which exhibits the superior-

ity of MTL on better next POI recommendation. Unsurprisingly, meta-learning based

methods (MAML, CHAML) bring further enhancement compared with other methods,

owing to the specialized and efficient design of transferring knowledge for alleviating

the data sparsity issue.

Overall, our proposed model MERec observably outperforms all the other baselines,

including both deep learning and meta-learning recommenders. Specifically, the rela-

tive improvements over the runner-up baseline is respectively 6%, 4%, 2% and 4% on

four cities across the four metrics on average. This helps further confirms the benefits
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Figure 5.1: Performance comparison for variants of MERec on the four datasets.

of (1) leveraging check-ins of auxiliary cities to augment target cities, and (2) paying

more attention to more correlated knowledge, when training the meta-learner.

5.3 Ablation Study (RQ2)

To answer RQ2, we analyze the contributions of different components in MERec by

comparing following variants:

• MERecw{o cor: removes the correlation strategy from the meta-learner.

• MERecw{o frz removes the freeze and fine-tune operation from the category-level

encoder.

• MERecw{o cor´frz removes both correlation strategy and freeze/fine-tune opera-

tion from the meta-learner and category-level encoder, respectively.

• MERecw{o ctl removes the category-level encoder, but only retains the POI-level

encoder.
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Figure 5.2: The impact of local-update steps of Meta-learning.
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Figure 5.3: The impact of the number of freezing layers.

We report the results of different variants in Fig. 5.1, where MERec significantly

outperforms its variants regarding various metrics across the four datasets. In partic-

ular, we notice that MERecw{o cor´frz performs worse than either MERecw{o cor and

MERecw{o frz, which suggests that both the correlation strategy and freeze/fine-tune

operation indeed improve the recommendation performance. Generally, the perfor-

mance decrease of MERecw{o frz far exceeds that of MERecw{o cor, implying that the

freeze and fine-tune operation plays a more important role than the correlation strat-

egy. Besides, it is worth noting that MERecw{o ctl underperforms MERec, which further

helps confirms the advantages of meta-learning with auxiliary check-ins and correlation-

aware strategy. To sum up, our proposed MERec benefits from the three delicately

designed components.
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5.4 Parameter Sensitivity Analysis (RQ3)

To answer RQ3, we investigate the influence of different hyper-parameters. Partic-

ularly, we analyze the impacts of two key parameters of MERec, i.e., the number of

local-update steps in Eq.(4.3) and the number of freezing layers in Chapter 4.2.2. For

illustration, we only show the results on Calgary dataset, and similar trends can be

observed on the rest three datasets.

Figs. 5.2 (a-b) depict the model performance w.r.t. the number of local-update

steps. We empirically find out that updating only one step is sufficient to obtain

better recommendation accuracy, which also increases the model efficiency. Figs. 5.3

(a-b) display the influence of the number of layers frozen on the model performance.

We vary the number of layers frozen in the range of r1, 4s stepped by one. As observed,

with the layer increasing, the performance first goes up and then drops slightly. The

best setting for the number of freezing layer is 3 on the four datasets.
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6
Conclusion

In this paper, we propose a Meta-learning Recommendation (MERec) framework for

the next POI recommendation by leveraging check-ins from auxiliary cities to augment

the target cities, and holing the principle of “paying more attention to more corre-

lated knowledge”. In particular, we devise a two channel encoder, i.e., category-level

encoder and POI-level encoder, to capture the transition patterns of categories and

POIs, whereby a city-correlation based strategy is devised to attentively capture com-

mon knowledge (i.e., patterns) from auxiliary cities. The city-specific decoder then

concatenates the latent representations of the two-channel encoder to perform next

POI prediction for the target city. Extensive experiments on four real-word datasets

across different evaluation metrics demonstrate the superiority of our proposed MERec.

In addition, due to the limitation of computing power, we only conducted experiments

on the dataset of four cities. Also based on literature review, we only chose LSTM
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as the base recommender. Therefore, in future research we plan to extend MERec on

three directions: 1) We plan to add more different city datasets to experiment 2) we

plan to expand other sequential based model to boost the improvement. 3) We plan

to consider the use of correlation strategy as self-learning parameter for learning.
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