
Distributed Edge-based Video

Analytics on the Move

By

Jayden King

A thesis submitted to Macquarie University

Masters of Research

Faculty of Science and Engineering

School of Computing

June 2022

mailto:jayden.king@students.mq.edu.au
http://www.mq.edu.au/

ii

© Jayden King, 2022.

Typeset in LATEX2ε.

mailto:jayden.king@students.mq.edu.au

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university.

To the best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made in the

thesis itself.

(Signed) Date:

Jayden King

iii

iv Statement of Originality

Acknowledgements

I would like to express my gratitude to my supervisor, Young Choon Lee, who has

guided and mentored me for the past several years. I would also like to thank my

family for supporting me in innumerable ways.

v

vi Acknowledgements

List of Publications

 Jayden King, Young Choon Lee. Distributed Edge-based Video Analytics on the

Move. arXiv:2206.14414 [cs.DC].

vii

https://arxiv.org/abs/2206.14414

viii List of Publications

Abstract

In recent years, dash cams have gained international popularity for personal and com-

mercial use [1, 2]. Although dash cams are primarily used to collect evidence for traffic

incidents, further value may be gained from the videos they record through video ana-

lytics. Commercial dash cams lack the resources necessary to perform video analytics,

so their video data must be offloaded elsewhere to be processed. Cloud computing is a

popular choice for offloading computationally intensive tasks, though the high latency

and bandwidth usage of cloud computing is undesirable.

These issues can be mitigated through edge computing, where processing occurs

close to the data source. A device that is likely to be in close proximity to a dash

cam is a mobile device, one belonging to either the vehicle’s driver or passengers.

Modern mobile devices such as smartphones are much more powerful than commercial

dash cams, yet they still have a fraction of the resources available to cloud servers.

A single smartphone is capable of performing video analytics on dash cam recordings,

but may be unable to produce results in a real-time manner. Instead of using a single

mobile device, multiple can form a local network to share their resources and perform

computationally intensive tasks in a shorter amount of time. With a local network of

mobile devices, video analytics can be performed on dash cam recordings while avoiding

the disadvantages of cloud computing.

In this thesis, we present EdgeDashAnalytics (EDA), an edge-based system that

enables near real-time video analytics using a network of mobile devices. In particular,

it simultaneously processes videos produced by two dash cams of different angles with

ix

x Abstract

one or more mobile devices on the move in a near real-time manner. One camera

faces outward to capture the view in front of the vehicle, while the other camera

faces inward to capture the driver. The outer videos are analysed to detect potential

driving hazards, while the inner videos are used to identify driver distractedness. It

was found that it was not possible to achieve real-time results simply by distributing

processing across a local network of mobile devices. Shortcomings of the OS and

libraries introduced delays that could be dismissed in other tasks, but cannot be ignored

in time sensitive tasks such as video analytics. We have overcome these shortcomings

by devising several optimisations. By incorporating these optimisations, EDA achieves

near real-time video analytics, mitigating the effect of such delays with a tolerable loss

in accuracy. We have implemented EDA as an Android app and evaluated it using

two dash cams and several heterogeneous mobile devices with the BDD100K dash

cam video dataset [3] and the DMD driver monitoring dataset [4]. Experiment results

demonstrate the feasibility of real-time video analytics in terms of turnaround time

and energy consumption (or battery usage), using resource-constrained mobile devices

on the move.

Contents

Statement of Originality iii

Acknowledgements v

List of Publications vii

Abstract ix

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background and Literature Review 7

2.1 Background . 7

2.1.1 Cloud Computing . 8

2.1.2 Internet of Things . 9

2.1.3 Edge Computing . 10

2.2 Mobile Device Processing . 11

2.3 Vehicular Video Analytics . 12

2.3.1 Road Hazard Detection . 12

2.3.2 Driver Distractedness Detection 15

2.3.3 Simultaneous Inner/Outer Analysis 17

xi

xii Contents

2.4 Summary . 18

3 EdgeDashAnalytics 19

3.1 Overview . 19

3.2 Design and Implementation . 21

3.2.1 Data Objects . 21

3.2.2 User Interface . 23

3.2.3 Video Analysis . 26

3.2.4 Networking . 31

3.2.5 Scheduling Algorithm . 38

4 Evaluation 41

4.1 Experimental Settings . 41

4.2 Results . 44

4.2.1 Metric Collection . 45

4.2.2 Turnaround and Skip Rate . 47

4.2.3 Energy Consumption . 52

5 Conclusion 57

6 Future Work 59

References 63

List of Figures

1.1 Brief overview of EDA. 4

2.1 A wombat crossing a road, a potential hazard to drivers [5]. 14

3.1 Detailed overview of EDA. 20

3.2 Screenshots of EDA in operation. 24

3.3 Comparison of outer detection results between MobileNetV1 and Effi-

cientDet-Lite4 models. 29

3.4 Example of visualised inner results. 30

3.5 Downloading videos from dash cam. 31

3.6 Connecting master and worker devices. 33

3.7 File transfer between master and worker devices 35

3.8 Analysis of a video split into two segments 37

3.9 Algorithm process with two devices . 39

4.1 Average time taken by tasks in one-second one-node tests. Values add

up to average turnaround. 46

4.2 Average time taken by tasks in one-second two-node tests. Values add

up to average turnaround. * indicate master device. 47

4.3 Average time taken by tasks in one-second three-node tests. Values add

up to average turnaround. * indicate master device. 48

xiii

xiv List of Figures

4.4 Average time taken by tasks in two-second one-node tests. Values add

up to average turnaround. 50

4.5 Average time taken by tasks in two-second two-node tests. Values add

up to average turnaround. 51

4.6 Average time taken by tasks in two-second three-node tests. Values add

up to average turnaround. 52

List of Tables

4.1 Hardware details and processing capacities of evaluated devices. Each

mobile device has two or more sets of heterogeneous CPU cores, e.g., 4

Ö 2.5Ghz cores and 4 Ö 1.6 Ghz cores for the Pixel 3. 42

4.2 One-second one-node test results, simulated download time of 350ms. . 47

4.3 One-second two-node test results, simulated download time of 350ms, *

indicate master device. 48

4.4 One second three-node test results, simulated download time of 350ms,

* indicate master device. 49

4.5 Two-second one-node test results. 50

4.6 Two-second two-node test results, * indicate master device. 52

4.7 Two-second three-node test results, no use of early-stopping, * indicate

master device. 53

4.8 Turnaround and energy results of one second tests, * indicate master

device. 54

4.9 Turnaround and energy results of two second tests, * indicate master

device. 55

xv

xvi List of Tables

1
Introduction

Commercial dash cams serve an important role in collecting evidence for traffic in-

cidents. Yet the vast majority of video data produced by dash cams do not capture

traffic incidents, so they are discarded. Instead of wasting this video data, further value

may be gained from them with video analytics. As the name suggests, video analytics

concerns the automated analysis of video data, typically with the use of machine learn-

ing techniques. Examples of video analytics includes tasks such as object detection,

object tracking, and facial recognition. Commercial dash cams are dedicated record-

ing devices, they lack the resources to perform these computationally intensive tasks.

Therefore, in order to perform video analytics on the video data produced by dash

cams, said video data must be offloaded to a device with greater processing capacity.

Cloud computing is a popular choice for offloading computationally intensive tasks as

it is relatively cheap and easy to use. However, as there is typically a great distance

1

2 Introduction

between cloud servers and data sources like dash cams, the latency involved in data

transmission is unsuitable for time-sensitive tasks such as live video analytics. Addi-

tionally, sending all of the video data produced by dash cams to cloud servers would

consume an enormous amount of bandwidth. This would strain network infrastructure

and may create significant problems for those with data-limited internet plans. These

issues could be avoided with edge computing, an alternative to cloud computing where

data is only transmitted a short distance. Instead of sending video data to distant

cloud servers, video data may be sent to nearby mobile devices such as smartphones.

Although smartphones have much greater processing capacities than commercial dash

cams, it is unlikely that a single smartphone would be capable of processing the video

data produced by two cameras in a real-time manner. However, this could become

possible through optimisations and distributing the video data across a local network

of smartphones for processing.

There are a number of challenges in using a mobile device to perform video ana-

lytics on dash cam video. Firstly, commercial dash cams are typically provided with

a closed-source companion app instead of offering a public API. This is a significant

complication, as it prevents direct programmatic interaction between dash cams and

mobile devices. Instead of being able to access a live video stream from a dash cam,

a mobile device can only use a HTML interface to download recorded video files. A

VIOFO A129 dash cam did provide a live stream accessible by mobile devices, but this

live stream was disabled whenever the dash cam’s secondary camera was connected.

This means that video files are the only type of data accessible on commercial dash

cams, leading to the next issue. There are no video analytics or machine learning li-

braries available on mobile platforms that directly support video files, at best they may

support the use of the device’s own camera feed. These libraries instead accept bitmap

data, meaning that in order to use video files with these libraries, the video’s frames

must first be extracted as bitmaps. Frame extraction is a relatively slow process, how-

ever, the fastest method was found to be provided by the Android standard library.

Despite this, frame extraction was slow enough to prevent real-time turnaround. Only

by optimising the other processes involved in video analysis was it possible to reach

3

near real-time turnaround. Another issue is that of video granularity, the length of

video files. While it would be desirable to have the smallest possible granularity, short-

comings inherent to mobile systems make it infeasible to use granularities below a

certain point. This is due to the overhead delays involved in handling individual video

files, delays that do not directly scale with the video file’s length. It was determined

that two seconds was the smallest granularity possible when downloading videos from

a dash cam, while one second was possible when downloads were simulated.

Additionally, the limited battery capacity of mobile devices may be considered

a problem. However, many vehicles offer multiple charging ports that can enable

mobile device to operate indefinitely. Despite this, it is still beneficial to reduce energy

consumption, so EDA will also be evaluated on its power usage.

In this research, we present EdgeDashAnalytics (EDA)1, an edge-based system that

utilises a network of mobile devices to perform video analytics on dash cam video in a

near real-time manner. The system analyses the video data from both outward and in-

ward facing cameras in order to improve the safety of driving. We have devised several

optimisations and incorporated them into EDA to overcomes the challenges described

above. These optimisations include simultaneous video download, scheduling, segmen-

tation and early stopping. By incorporating these optimisations, EDA achieves near

real-time video analytics, mitigating the effect of such delays with a tolerable loss in

accuracy. We have implemented EDA as an Android app and evaluated it using two

dash cams and several heterogeneous mobile devices with the BDD100K dash cam video

dataset [3] and the DMD driver monitoring dataset [4]. Experiment results demon-

strate the feasibility and potential of real-time video analytics in terms of turnaround

time and energy consumption (or battery usage), using resource-constrained mobile

devices on the move.

The case study chosen to demonstrate EDA involves the simultaneous analysis of

video data produced by two different cameras. Many commercial dash cams include a

secondary camera intended to record the rear of the vehicle. However, we repurposed

the secondary camera to record the driver instead. Each camera is associated with

1EDA GitHub repository: https://github.com/JaydenKing32/EdgeDashAnalytics

https://github.com/JaydenKing32/EdgeDashAnalytics

4 Introduction

Master

Download
video

Schedule
video

Return
result

Worker 1

Perform video
analytics

Worker 2

Worker n

 .
. .

 . . .

Dash cams

Figure 1.1: Brief overview of EDA.

a separate video analytics task. The task associated with the outward-facing camera

is to detect potential road hazards and identify if the driver is tailgating. The task

associated with the inward-facing camera is to detect driver distractedness, in other

words, identifying actions performed by the driver that are unrelated to operating

the vehicle. This aims to improve driving safety in two ways. The primary concern

is avoiding road hazards that may damage the vehicle or even cause a crash. The

secondary concern is preventing driver distractedness, as focusing on anything besides

driving can greatly increase the likelihood of an accident [6].

Figure 1.1 demonstrates a brief overview of EDA. It shows a master device down-

loading video files from two dash cams, then scheduling these videos to worker devices.

The devices perform video analytics with these videos and then return the results to

the master. Although this figure depicts a network of mobile devices processing video

5

files, it is feasible for a single device to perform near real-time video analytics on dash

cam video with the use of optimisations.

The specific contributions of this work are:

� We have devised four optimisation techniques to overcome resource heterogeneity

and constraints.

� We have implemented EDA on Android effectively interweaving several pre-

mature and incompatible tools and libraries.

� We have demonstrated the feasibility of edge-based near real-time video analytics

with a case study for two video analytics tasks: road hazard detection and driver

distractedness detection.

� We have evaluated EDA with four mobile devices in five different network con-

figurations.

6 Introduction

2
Background and Literature Review

This section first explores the background of technologies that EDA is based upon,

namely cloud computing, the internet of things, and edge computing. This is followed

by a review on related literature, grouped into the areas of mobile device processing

and vehicular video analytics.

2.1 Background

EDA is based on technologies that have made various innovations in recent years. Such

technologies include cloud computing, the internet of things, and edge computing.

7

8 Background and Literature Review

2.1.1 Cloud Computing

Cloud computing is a cheap and flexible method of using computer resources on de-

mand. Without cloud computing, businesses that need computer resources would have

to purchase and maintain all of the hardware by themselves. Even short-term needs

for computer resources would require significant investment in hardware. Cloud com-

puting allows businesses to pay for access to servers for a specified period of time. It

is easy to scale, a business simply needs to pay for more resources if they are required

to scale up. When more resources are provisioned than what is needed, costs can be

reduced by deprovisioning excess resources in order to scale down.

Cloud computing providers offer different service models depending on the degree of

abstraction or customisation required. Common service models include: infrastructure

as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). IaaS

is the least abstracted model, where clients have arbitrary control over the software

installed on a cloud server, including the operating system. The client can choose to

install any kind of software and configure it according to their needs. With PaaS, cloud

providers supply tools or programming languages that clients can use to create their

own applications that are hosted by the cloud provider. SaaS is the most abstracted

model, where cloud-hosted applications are made for the direct use of clients. SaaS

applications are typically accessed through web clients and includes services such as

email, text editors, and accounting software.

Cloud computing is certainly convenient, but it does come with downsides. The

most immediate shortcoming is the lack of control over hired resources. When someone

outright purchases computer resources, they have total control over everything. They

decide on all the components of a system, such as specific hardware, operating sys-

tems, and various software configurations. In contrast, clients of cloud computing are

restricted in their control, only being able to select from a range of options. However,

lower-level service models such as IaaS do provide freedom in the use of software and

their configuration. There are also concerns over security and privacy. Since clients do

not own the cloud resources that they hire, they are limited in the extent that they can

protect their data. Cloud providers have physical control over hired resources, so they

2.1 Background 9

determine what is the minimum level of security. Finally, there is the issue of latency.

There may be a great distance between a client and the cloud servers they have hired.

Regardless of whatever optimisations are applied, there will always be some amount of

delay in transferring data across this distance. Such transfer delays may be inconsis-

tent due to factors affecting internet routing outside of the control of cloud providers

and clients. For latency-sensitive tasks, cloud computing is not an ideal choice.

2.1.2 Internet of Things

Internet of Things (IoT) refer to devices that support network connectivity. Examples

of IoT devices include smart fridges, security cameras, and dash cams. IoT devices are

typically embedded with sensors that are constantly collecting data. However, most

IoT devices lack the computational resources that are needed to process this data.

In order to gain insight through analysis of data produced by IoT devices, this data

must be offloaded to devices with greater computational resources. IoT data could be

offloaded to distant cloud servers, though they may also be offloaded to nearby devices.

An enormous amount of video data is constantly produced by dash cams across the

world. Dash cams have gained international popularity in recent years [2, 7], with 1 in

5 Australians having them installed in their cars [8]. One method of creating further

value from these videos is through video analytics. Video analytics is a computationally

intensive task due to the nature of video data. Video data is dense as it is comprised of

many frames, sequences of still images. A 10 second video with 30 frames per second

(FPS) has 300 frames. In order to perform exact computation of video analytics on

this video, all 300 frames must be analysed for the desired task. Video data is often

produced by sensor nodes such as dash cams that lack the resources to perform video

analytics. Thus, sensor nodes must transmit their video data to devices with greater

resources in order to perform video analytics.

10 Background and Literature Review

2.1.3 Edge Computing

Edge computing is a type of distributed computing where data is processed physically

close to its source. Many data sources, such as IoT devices, lack the computational

resources to process the data they produce. These devices must offload their data to

other devices that have the computational capacity needed to process said data. This

data could be offloaded to cloud servers, edge devices, or any number of other machines.

Edge devices are typically mobile, with greater computational resources than IoT de-

vices, but less computational resources than immobile desktop PCs and cloud servers.

Examples of edge devices include smartphones, tablets, and laptops. Edge computing

can supplement other kinds of distributed computing such as cloud computing, or it

can completely replace it, depending on the circumstance. Most advantages of edge

computing over cloud computing are due to the short distance between data sources

and edge devices, in contrast to the potentially vast distances between data sources and

cloud servers. Although edge devices have more computational resources than the data

sources they are associated with, they typically have much less computational resources

than what is available to cloud servers. This means that while edge computing may

have much lower network latency, cloud computing may have lower processing latency.

In addition to the low network latency, edge computing has much lower bandwidth

consumption and is more stable than cloud computing as it does not need to send

data to a remote location. Therefore, edge computing is most suitable for tasks that

require low network latency and bandwidth usage, yet which do not have extremely

high computational resource requirements.

Edge computing is a natural choice for video analytics due to the large size of video

data. Transmitting all video data from a source to cloud servers would result in high

bandwidth consumption and latency. Edge computing mitigates these problems by

processing the video data close to the source. Fortunately, many modern dash cams

support Wi-Fi connectivity so that their videos may be accessed by smartphone apps.

This can allow a smartphone to act as an edge device by downloading and analysing

the dash cam’s videos. However, while modern smartphones generally have a greater

processing capability than dash cams, they are still greatly limited when compared to

2.2 Mobile Device Processing 11

non-mobile computers. A number of works have attempted to make up for this deficit

by distributing tasks among a local network of smartphones [9–12].

2.2 Mobile Device Processing

In recent years, researchers have performed various machine-learning based tasks on

mobile devices. This has been enabled by increasing interest in the use of machine-

learning and the development of mobile-focused libraries such as TensorFlow Lite [13].

A FemtoCloud [12] is a local network where a control device coordinates and sched-

ules tasks to a group of mobile phone workers. It has been evaluated for processing

tasks such as object recognition and running video games. While FemtoCloud and

EDA share many similarities, the key difference is that FemtoCloud requires the use

of a dedicated controller, whereas any EDA node may act as a master.

Machine learning systems using smartphone sensors have been used for medical

purposes such as detecting Parkinson’s [14], assisting the visually impaired by alert-

ing them to obstructions [15], and assessing retinal disease [9]. The last instance [9]

utilises an offline smartphone network framework with a scheduling algorithm that

takes hardware information into account, such as available RAM and battery levels.

The main similarity between this framework and EDA is that one node is responsible

for gathering data.

Some virtual and augmented reality applications on smartphones offload their pro-

cessing to edge servers [16, 17]. However, one augmented reality facial recognition

application captures video data from a Google Glass, which is then offloaded to a

smartphone for processing [18].

Koukoumidis et al. [19] developed an application whereby a network of dash-

mounted smartphones can predict traffic light changes. The system uses a lightweight

algorithm to identify traffic light signals from the smartphone’s camera feed. Smart-

phones in nearby vehicles share their detection results with one another. The accu-

mulated detection results are then passed to a support vector regression model that

will predict the time at which upcoming traffic lights will change. The main similarity

12 Background and Literature Review

between EDA and this system is the use of a distributed network of mobile devices to

process vehicle-based video data. Since this system only transmits detection results,

it is able to utilise a network that covers a much greater distance than EDA, which

transmits whole video files to nearby devices.

2.3 Vehicular Video Analytics

The use of video analytics in conjunction with vehicles can serve a number of roles,

the majority of which are safety-focused. However, this area of research comes with

challenges, mostly due to the mobile nature and restricted space of vehicles. As dash

cams lack the resources to process their own videos and it is inconvenient or outright

impossible to install a server in a vehicle, live video data must be processed by alter-

native means. Cloud servers are unfit for vehicle-based video analytics due to their

high latency, while edge-based methods such as those used by EDA are more suitable

thanks to their low latency.

Vehicular video analytics can be grouped into three different categories. The first

category involves outward-facing cameras that are used to detect road hazards such as

other vehicles, pedestrians, and general road obstructions. The second category uses

inward-facing cameras that monitor the driver and detect distracted driver behaviour.

The third categories combines inward and outward-facing cameras to perform video

analytics tasks that involve the outside of a vehicle as well as its driver.

2.3.1 Road Hazard Detection

The vast majority of vehicular object detection systems were designed to detect pedes-

trians [20–22] or other vehicles [23–25], while a much smaller number identify general

road obstructions [26–28].

Vehicle Detection

Other vehicles are one of the common obstacles a driver will encounter. It is intuitive

that a lot of research has been conducted on identifying vehicles.

2.3 Vehicular Video Analytics 13

Chadwick et al. [29] created a ResNet-based model that is particularly suited to

detecting distant vehicles.

Rybski et al. [30] designed a system for identifying vehicles and their orientation.

This was achieved by extracting features from video frames with a histogram of ori-

ented gradients (HOG). The extracted features are then passed on to a support vector

machine (SVM) to detect vehicles and their orientation. Unlike this system, EDA does

not detect a vehicle’s orientation. This feature was not found to be necessary to achieve

EDA’s task related to hazard detection.

Tehrani Niknejad et al. [31] also used a HOG and SVM to detect vehicles, though

their system is capable of tracking multiple vehicles.

Zhang et al. [32] utilised a HOG alongside the AdaBoost classification model and

Kalman filter model to detect vehicles. Again, a HOG extracted features from video

frames. These features are passed on to an AdaBoost model to identify vehicles, while

the Kalman filter enables the tracking of said vehicles across adjacent frames. The

authors claim that their system is capable of producing real-time results at a frame

rate of 16 FPS. However, they do not specify the hardware that they used to evaluate

their system. EDA currently lacks the ability to track vehicles across adjacent frames,

though this is a planned addition as mentioned in Chapter 6.

Pedestrian Detection

Pedestrians are another common obstacle, however, the detection of pedestrians differs

from the detection of vehicles.

Dominguez-Sanchez et al. [33] created a framework for detecting pedestrians and

their direction of movement with convolutional neural networks (CNN). They evaluated

their framework with three different CNNs: AlexNet, GoogLeNet, and ResNet-10.

With the fastest model, ResNet-10, they achieved a processing speed of 18 FPS when

executed on a NVIDIA GTX 1070 GPU.

Tomè et al. [34] designed a pedestrian detection system utilising CNN models.

The system was evaluated on a desktop PC with a NVIDIA GTX 980 GPU. While

their first CNN model was slow with a processing speed under 2 FPS, their optimised

14 Background and Literature Review

Figure 2.1: A wombat crossing a road, a potential hazard to drivers [5].

CNN model was much faster with a processing speed of 21.7 FPS. Similar to EDA,

this system required various optimisations in order to reach near real-time processing

speeds. However, while this system utilises a powerful GPU, EDA is restricted to the

relatively weaker hardware of mobile devices.

Liu et al. [35] developed a method for pedestrian detection which is effective at

night. This method involves the use of SVM classifiers and feature extraction through

pyramid entropy weighted HOGs. When evaluated on a desktop PC, the method ran

at an average of 5 FPS.

General Obstruction Detection

The detection of general obstructions, such as a wombat crossing a road as depicted in

Figure 2.1, differs significantly from the detection of vehicles or pedestrians. Instead of

focusing on a consistent shape, many different shapes must be taken into consideration.

2.3 Vehicular Video Analytics 15

Creusot and Munawar [26] designed a system for real-time detection of small ob-

structions on the road in front of the host vehicle. This system uses a restricted

Boltzmann machine neural network to reconstruct the road’s appearance, which helps

to identify small anomalous objects. The test dataset comprised of videos recorded by

the authors as well as videos downloaded from YouTube. A desktop PC was utilised to

evaluate this system with videos of various resolutions. Additionally, some tests were

performed with a mask applied to video frames, so that only the portion of frames that

depict the road were processed. The fastest processing time of 103ms was achieved

with masked videos at a resolution of 1360Ö768, resulting in a frame rate just below

10 FPS.

Morales Rosales et al. [27] created a general on-road obstacle detection system that

is intended to work well in real-world conditions. An extended Kalman filter is used to

detect and track objects in each frame. The test dataset consisted of videos recorded

by the authors with a dash-mounted webcam. The system was evaluated on a low

resource desktop PC, with a 2GHz CPU and 2GB of RAM. This system was found

to be fairly slow, as it took an average of 960ms to process a single frame. Without

significant optimisations, this system would be unable to operate in a near real-time

manner as EDA is able to.

Jia et al. [28] developed a method of detecting on-road obstacles by comparing

adjacent frames. Named as the “two consecutive frames model”, this method uses the

motion features present in consecutive frames to differentiate obstacles from the road

itself. Evaluation was conducted on a laptop PC with videos recorded by the authors

in addition to two other video datasets, KITTI [36] and CamVid [37]. This method

was able to process frames in under 50ms, roughly equivalent to 15 FPS.

2.3.2 Driver Distractedness Detection

When drivers perform actions that divert their focus away from driving, they greatly

increase the likelihood of causing an accident [6]. It would be helpful to curb this

behaviour by automating its detection through automated processes. Such automated

16 Background and Literature Review

detection has been achieved through video analytics, where machine-learning tech-

niques are applied to video data from inward-facing cameras. Some of these systems

are based on estimating the driver’s gaze to determine if they are paying attention to

the road [38–40], while others detect actions unrelated to driving such as talking on

the phone [41–44].

Yan et al. [41] developed a driver behaviour recognition system that identifies if the

driver performs actions such as talking on the phone, eating, or smoking. The system

extracts skin-like regions from video frames with a Gaussian mixture model which are

then passed on to a R*CNN model for classification. The system was evaluated on a

desktop PC, however, the authors did not provide results on processing time.

Tran et al. [42] created a framework that alerts drivers when it identifies distracted

driving behaviour. The framework passes each frame of a video to a CNN model

that determines what kind of action the driver is performing. Several CNN models

are compatible with the framework. The authors demonstrated this compatibility

by evaluating it with VGG-16, AlexNet, GoogLeNet, and ResNet. To evaluate the

framework, the authors constructed a testbed that simulates a driving environment

while recording the driver. In addition to the cameras, the testbed included a NanoPi

M3 running Android that delivered alerts to the driver, and a NVIDIA Jetson TX1

developer kit which processed video frames. The VGG-16 model was found to have the

fastest processing speed of 14 FPS. While a mobile Android device was involved in this

project, all video processing was performed on a powerful developer kit. In contrast,

EDA achieved a similar task with all processing being performed by mobile devices.

Kapoor et al. [43] designed a driver distraction detection system that identifies

actions such as eating or texting. This system was implemented on a software defined

cockpit powered by Android in-vehicle-experience, though the authors omitted specific

hardware details. The authors compared the results of running their system with

several CNN models. These models were MobileNetV1, MobileNetV2, InceptionV3,

and VGG-16. MobileNetV1 was found to be the most efficient, so it was further

optimised to process video data faster and with greater accuracy. The authors claim

2.3 Vehicular Video Analytics 17

that their system can process in real-time with this fine-tuned model, however, they

do no provide processing time results.

Huang et al. [44] developed a hybrid CNN framework for distracted driver recog-

nition. This framework combines the ResNet-50, InceptionV3, and Xception models.

The models are first used to extract behaviour features from video frames, then converts

them one-dimensional vectors, finally classifying the detected behaviour. Evaluated on

a desktop PC, the framework was able to process frames in 41ms on average, roughly

equivalent to 24 FPS.

2.3.3 Simultaneous Inner/Outer Analysis

A few papers have utilised the analysis of both inner and outer vehicular video feeds.

While they bear a resemblance to EDA, none have been found that utilise a distributed

network of mobile devices in a similar manner to EDA.

Trivedi et al. [45] discussed various potential video analytics tasks such as: estimat-

ing the driver’s head-pose by processing the inner video with a hidden Markov model,

applying a Kalman filter to the outer video to detect and track lanes, as well as using

both inner and outer video to predict lane-changing.

Jain et al. [46] applied an auto-regressive input-output hidden Markov model on

inner and outer video data as well as GPS data to predict predict future lane changes

and turns. The authors state that this work could be incorporated within an advanced

driver assistance system that could warn drivers of potentially dangerous manoeuvres.

This system utilises multiple types of sensor data in addition to video data, whereas

EDA only processes video data.

Rezaei and Klette [47] designed a system whereby inner and outer video data is

analysed to predict the risk of an accident. Asymmetric appearance modelling is ap-

plied to inner video to detect drowsiness or distractedness, while global Haar classifiers

are used with outer video to identify vehicles and their distance from the host vehicle.

The outputs of these processes are combined through fuzzy fusion to determine the

level of risk, alerting the driver when risk meets a certain threshold.

18 Background and Literature Review

2.4 Summary

Various methods of video analytics have been proposed and evaluated for the purpose

of improving driver safety. Some of these methods utilise outward-facing cameras to

detect road hazards. These methods focus on detecting a specific type of hazard, such

as other vehicles [29–32] and pedestrians [33–35], or general road obstructions [26–28].

An alternative avenue for improving driver safety is to use inward-facing cameras to

detect instances of driver distractedness [41–44]. A few systems have combined outward

and inward-facing cameras in order to detect outside dangers in addition to monitoring

driver behaviour [46, 47]. EDA is one such system, though it is able to achieve near

real-time processing with off-the-shelf commercial dash cams and mobile devices.

Unlike EDA, many of these reviewed works do not take into account the constraints

of a vehicular environments. In order for a video analysis-based system to operate in a

mobile vehicle, the video data must either be processed in a local resource-constrained

device, or in a remote cloud server. Outside of one study that used a laptop [28], the

others either used desktop PCs or specialised hardware to evaluate their systems. In

contrast, EDA uses a local network of mobile devices to process video data in near

real-time.

3
EdgeDashAnalytics

In this chapter, we present EdgeDashAnalytics (EDA) in detail. In particular, we

describe the design and implementation of EDA in the context of an Android mobile

app.

3.1 Overview

EDA consists of four key functionalities: simultaneous video download and analysis,

scheduling, segmentation and early stopping (Figure 3.1). Currently, EDA is designed

to deal with two dash cams simultaneously. In particular, one captures the outer

forward view of the vehicle, while an inner camera records the driver. Fortunately, many

commercial dash cams are packaged with a secondary camera, avoiding the need to

purchase an entirely separate dash cam. Therefore, a master mobile device downloads

19

20 EdgeDashAnalytics

Simultaneous
video download

Outer camera

Inner camera

Master

Worker 1

Worker 2

Worker n

…

Scheduling

Segmentation

Early stopping

Figure 3.1: Detailed overview of EDA.

the videos produced by each dash cam concurrently. The outer videos are analysed to

identify road hazards, while instances of distracted driver behaviour are detected with

inner videos. The analysis of these videos are finished before the next pair of videos are

produced, thereby achieving near real-time turnaround. Simultaneously downloading

and analysing two separate sources of video data is computationally intensive. It would

be difficult for a single mobile device to process this video data in a real-time manner.

However, it is much more feasible to achieve near real-time processing by utilising the

shared resources of a local network of mobile devices.

Whenever a video is downloaded by the master device, it makes a scheduling de-

cision based on the video source and the circumstances of the network. Outer videos

are prioritised for assignment to devices with the greatest processing capacity. This

prioritisation is made as road hazards are likely to be more dangerous than distracted

driver behaviour. Inner videos are assigned to the computationally weaker devices in

the network. When there are at least two devices in the network, each video from the

downloaded pair is assigned to a different device so that the videos are concurrently

processed. Similarly, if there are at least three devices in the network, then videos

3.2 Design and Implementation 21

are segmented to ensure that all devices are analysing videos simultaneously. This

concurrent analysis helps to achieve the low turnaround of results necessary for near

real-time processing. In EDA’s context, near real-time processing is achieved when the

turnaround time of processed videos is below the length of said videos.

In situations where EDA’s network is comprised of too few devices, or the devices

are computationally weak, videos may not be analysed fast enough to achieve near real-

time processing. In such circumstances, the optimisation technique of early stopping

ensures that videos are analysed at a speed that make it possible to reach near real-time

processing. Essentially, early stopping works by associating the time taken to analyse a

video with a period of time that is proportional to the video’s length. If video analysis

is not completed when this time is reached, then analysis is terminated early and the

remainder of the unprocessed video is discarded.

3.2 Design and Implementation

In this section, we detail the design and implementation of EDA. The four key func-

tionalities of EDA are actually implemented through the user interface, video analysis,

networking, and the scheduling algorithm.

The Android operating system was chosen as the platform on which to develop

EDA. This decision was made due to the widespread use of Android for various mobile

devices, the abundance of supporting libraries, as well as familiarity with the Java

programming language. However, Android applications have many constraints on how

they may be implemented. Despite such constrains restricting the options available in

developing EDA, it was still able to function according to its design.

3.2.1 Data Objects

EDA utilises several objects to represent various types of data. These objects will be

referred to throughout this chapter, and are described in the following list.

� Video: represents a video file, stores the video’s name and file path.

22 EdgeDashAnalytics

� Result: represents a result file, storing its file name and path.

� Command: an enum, instances are sent to devices to provide instructions. The

commands are:

– ANALYSE: requests that the video paired with this command should be

analysed.

– SEGMENT: similar to ANALYSE, requests that the paired video should be

analysed and that it is a video segment.

– COMPLETE: indicates that the file transfer of an associated video was

successful.

– RETURN: paired with a result file.

– HW INFO REQUEST: a command requesting that the receiver responds

with hardware information.

– HW INFO: indicates that the message contains JSON-encoded hardware

information.

� Message: container class holding a Command instance and a Video or Result

instance.

� Endpoint: the Nearby Connections API identifies devices through strings known

as endpoint IDs. Endpoint objects store this ID, along with a unique human-

readable name and a boolean value indicating connection status.

� HardwareInfo: class representing the hardware information of a device. It con-

tains a device’s: CPU frequency, number of CPU cores, total RAM, currently

available RAM, total storage, currently available storage, and current battery

level.

� Payload: a class defined by the Nearby Connections API that represents mes-

sages. They are identified through long payload IDs. Two types of payload are

used by EDA, file and byte.

3.2 Design and Implementation 23

– File payload: contains a file that is intended for delivery using the Nearby

Connections API. File payloads are created using files, and a file can be

extracted from a file payload.

– Byte payload: contains an array of bytes. These are used to send colon-

delimited strings which are composed of commands, payload IDs, and file-

names (i.e. “command:ID:filename”).

* The command is a string representation of a Command object. This

indicates what should be done with a paired file payload, or a standalone

instruction if sent alone.

* The payload ID is copied from a file payload that is paired with this

byte payload. This ID is used as the key for several dictionaries used

throughout the transfer process to match the file payload and byte pay-

load together. This field is omitted for command messages that are sent

alone.

* The filename is the original name of the video file. This must be sent

in a byte payload as file payloads do not preserve filenames.

3.2.2 User Interface

EDA’s user interface informs the user which videos are in the network and their current

state. This is managed by three lists: raw videos, processing videos, and results. The

raw list shows all of the unprocessed videos that are stored on the device. Clicking on

a video in the raw list will manually initiate scheduling with this video. The processing

list displays all videos that are currently being processed, meaning that they are being

transmitted or analysed. The results list includes all of the results files produced from

video analysis. Clicking on an entry in the results list will open and display the results

file. Additionally, connecting to other devices is managed through a menu in the UI.

24 EdgeDashAnalytics

(a) Raw video list. (b) Connection prompt. (c) Results list.

Figure 3.2: Screenshots of EDA in operation.

Navigation and Preferences

The UI is set up by MainActivity which creates fragments and handles fragment se-

lection. Interactable UI elements include a BottomNavigationView used to select list

fragments and a Menu used to open settings and the ConnectionFragment. The Bot-

tomNavigationView contains three clickable icons, these are used to select the raw

videos, processing videos, and results fragments. The connection button also displays

a fragment used for connectivity actions, it is located in the Menu instead of the

BottomNavigationView as it serves a different purpose than the list fragments. User

preferences are set via the interactable elements in SettingActivity which is also dis-

played through a button in the Menu. The behaviour of preference widgets are defined

in Android’s preference library, they are simply created in the root preferences layout

file. The values set by these preference widgets are accessed through the a SharedPref-

erences object whenever they are needed.

3.2 Design and Implementation 25

List Fragments

VideoFragment implements the UI for displaying and interacting with videos, while

ResultsFragment does the same for result files. There are two VideoFragment in-

stances, one for raw videos and one for processing videos. As seen in Figure 3.2a,

these VideoFragments are displayed as a list where each item includes a video’s file-

name, thumbnail, and a button to manually initiate analysis. MainActivity uses a

BottomNavigationView to switch between these fragments. The BottomNavigation-

View contains three buttons, one for each fragment. Pressing a button will hide the

current fragment and will display the selected fragment through calls to a Fragment-

Manager. The layout of these list fragments consist of a RecyclerView list which is

managed through an adapter subclass, either VideoRecyclerViewAdapter or ResultRe-

cyclerViewAdapter.

Video files are represented through Video objects which stores values such as the

video’s file path and MediaStore ID. Each VideoFragment contains a VideoRepository

which manages a MutableLiveData instance. Video objects are stored in these Muta-

bleLiveData instances, and they are accessed and updated through other classes such as

VideoRecyclerViewAdapter. A video is added or removed from a particular VideoFrag-

ment by posting AddEvents or RemoveEvents to the EventBus along with the Video

in question and an enum identifying which VideoFragment the event is intended for.

These events are received by a VideoEventHandler that updates a MutableLiveData

instance and the UI according to the contents of the message. For example, posting

a Video with an AddEvent and an enum type of RAW will make the video appear

in the rawFootageFragment. ResultsFragment is structured and behaves similarly to

VideoFragment, except Result objects take the place of Video objects.

The networking and video management processes must be active at the same time

for them to operate together. Since only a single Activity can be active at a time, it was

decided to extend Fragment instead, since Android allows multiple active fragments.

26 EdgeDashAnalytics

3.2.3 Video Analysis

This project demonstrates two video analytics tasks, one for outer videos and one for

outer videos. Outer videos are recordings made by an outward-facing dash cam that

captures the area in front of the host vehicle. Inner videos are created by an inward

facing dash cam which captures the host vehicle’s driver. When a video is processed,

its frames are extracted and analysed according to the type of video. Upon completion

of a video’s analysis, the position and category of detected objects and their flags are

written to a JSON results file.

Video analysis is handled by the VideoAnalysis class and its subclasses OuterAnaly-

sis and InnerAnalysis. The VideoAnalysis class instantiates a MediaMetadataRetriever

object from the standard Android library which it uses to extract video frames with

its getFrameAtIndex method. Each frame is extracted as a Bitmap object which is

first downscaled to match the input dimensions of the subclass’s model, then is passed

to subclass’s processFrame method. This downscaling does decrease detection accu-

racy, but is necessary in order to reduce processing time to real-time speeds. As the

subclass names suggest, OuterAnalysis is responsible for analysing outer videos, while

InnerAnalysis is responsible for analysing inner videos. Both of the subclasses pass

video frames to TensorFlow Lite libraries which performs image recognition on them.

The results from the libraries are then analysed to determine whether or not to flag an

object. These results are then written to a JSON file.

Unfortunately, none of the Android machine learning libraries appear to directly

support processing video files, though some offer limited support for video streams.

Many papers on mobile device video analytics appear to use custom frameworks built

for that particular work’s purposes. This creates the need for a lot of extra work that

would not be necessary if there were a general framework for machine learning based

video processing. As the focus of this project is on distributed processing rather than

machine learning techniques, we decided to use relatively simple video analytics tasks.

3.2 Design and Implementation 27

Outer Analysis

The outer video analysis task is to detect potential road hazards and identify if the

driver is tailgating. This involves identifying objects on the road with an object detec-

tion model. The lower-middle area of a video is marked as the road. If any non-vehicle

objects are detected in this area, then they are flagged as hazards. Additionally, any

vehicles that are identified as being too close to the host vehicle are flagged as hazards

due to potential tailgating.

OuterAnalysis uses the TensorFlow Lite task library [48] to detect potential hazards.

It first instantiates an ObjectDetector object with the selected object detection model,

such as the lightweight MobileNetV1 [49]. The Bitmap passed to processFrame is

converted to a TensorImage which is passed to the ObjectDetector’s detect method

that returns a list of Detection objects, representing all of the objects detected within

a frame. Non-vehicle objects that are detected on the road are flagged as potential

hazards. Vehicle objects that are large enough to indicate they are very close to the

host vehicle are flagged for potential tailgating. Once every frame within a video is

processed, the results are written to a JSON file that is structured as follows. The

outermost component is an array of frame objects, each of these objects contain the

frame’s index and an array of detected objects. These detected objects consist of the

object’s category, a boolean denoting if the object is a potential danger, the confidence

score of the detection, and the object’s bounding box, represented as four integers

denoting the bounding box’s bottom, left, right, and top edges.

Inner Analysis

InnerAnalysis uses the TensorFlow Lite support library [50] to detect driver distracted-

ness. It first instantiates an Interpreter object with the selected pose estimation model,

such as MoveNet Lightning [51]. The frame Bitmap accepted by processFrame is con-

verted to a TensorImage which is passed to the Interpreter’s run method along with an

output TensorBuffer. This TensorBuffer is filled with a float array that identifies the

body parts present within a frame as well as their coordinates. Distractedness is then

28 EdgeDashAnalytics

determined by identifying if the driver’s hands or eyes are not focused on driving. If

a hand is above three-quarters of the frame height, such as when a driver holds their

phone to their ear, then the driver is flagged as distracted in this frame. If the eyes

are positioned downwards relative to the ears, such as a when a driver is glancing at

their phone, then the driver is flagged as distracted in this frame. Once every frame

within a video is processed, the results are written to a JSON file that is structured as

follows. The outermost component is an array of frame objects, each of these objects

contain the frame’s index, a boolean denoting driver distractedness, and an array of

body part objects. The objects consist of the body part category, the confidence score

of its identification, as well as its X and Y coordinates.

Analysis Results

The result files can be visualised with the use of simple python scripts1. The outer

visualisation script reads each frame of the original video file and draws bounding boxes

at the coordinates specified in the result file. These bounding boxes surround detected

objects and include category labels such as “person” or “car”. The colour of the

bounding boxes are determined by the hazard classification. Potential hazards have red

bounding boxes, while non-hazards have green bounding boxes. An example of this is

shown in Figure 3.3, which also illustrates the difference in results produced by different

models. Figure 3.3a shows the output from the lightweight MobileNetV1 [49] model,

which contains several obvious errors. Its bounding boxes are incorrectly sized or are

offset, it completely missed the cyclist, and misidentifies a single car as two separate

cars. In comparison, the output produced by the larger EfficientDet-Lite4 [52] model

shown in Figure 3.3b contains fewer errors. Its bounding boxes for people are correctly

sized and positioned, though it appears to have some difficulty distinguishing between

multiple cars when they are close together. However, this increased accuracy comes at

the cost of greater computational load, leading to EfficientDet-Lite4 taking much longer

to process videos than MobileNetV1. Despite its inaccuracy, MobileNetV1 is able to

1Available in GitHub repository: https://github.com/JaydenKing32/EdgeDashAnalytics

https://github.com/JaydenKing32/EdgeDashAnalytics

3.2 Design and Implementation 29

(a) MobileNetV1 detection results.

(b) EfficientDet-Lite4 detection results.

Figure 3.3: Comparison of outer detection results between MobileNetV1 and Effi-

cientDet-Lite4 models.

produce results in a real-time manner whereas EfficientDet-Lite4 cannot. Therefore,

the lightweight MobileNetV1 model was used for evaluation instead of larger models

such as EfficientDet-Lite4.

The visualisation of inner results is demonstrated by Figure 3.4. A coloured dot

is placed at the coordinates of each detected body part, with the body part’s name

written beside it. In addition, every frame contains a coloured circle in the top-left

corner that signals the distractedness of the driver. Red indicates that the driver

is distracted, while green denotes no distraction. The MoveNet Lightning [51] pose

estimation model was used for this task for detecting the position of various body

parts. It was designed to process images depicting the full body, instead of just the

30 EdgeDashAnalytics

Figure 3.4: Example of visualised inner results.

upper portion of the body that would be captured by an inward-facing dash cam. This

results in reduced accuracy and issues such as incorrectly identifying off-screen body

parts, as seen with the right elbow in Figure 3.4. Despite such problems, the model

serves its purpose well enough and is fast enough to produce results in a real-time

manner.

Early Stopping

The method of early-stopping was created to ensure that videos are analysed in a time

period shorter than the video’s length, thereby achieving near real-time processing.

This feature is controlled by the early-stop divisor (ESD) value. The ESD is used to

divide a video’s length, the result is the maximum running time for video analysis. If

a video is still being analysed when this time is reached, then the analysis is stopped

early and the remaining unanalysed portion of the video is discarded. Due to relatively

lengthy operations such as file transfers, the effective ESD value must be greater than

1 in order to reach near real-time turnaround. However, it may not be necessary to set

3.2 Design and Implementation 31

Master

getDashFilenames()
→ filenamesD

disjunction(filenamesD,filenamesM)
→ filenamesnew

download(filenamesnew)
→ newVideos

Dash
cam

Figure 3.5: Downloading videos from dash cam.

an ESD on devices with especially high processing capabilities, as they may be able to

fully process videos in a near real-time manner without the use of early-stopping.

3.2.4 Networking

The technology which was most often found when conducting research on smartphone

edge networks was Wi-Fi Direct, so it seemed like a good decision to utilize a Wi-

Fi Direct system for EDA. However, this proved to be difficult as documentation on

Wi-Fi Direct for Android was sparse and outdated. Instead, the Nearby Connections

API [53] was chosen for communication between smartphones as it had up-to-date

documentation and was easier to implement. This API allows smartphones to transmit

video files and command messages between one another via Bluetooth and Wi-Fi.

While the Nearby Connections API sample code [54] worked fine on any Android

device that had Google Play Services installed, they were all implemented into a sin-

gle Activity. This was a problem as only one Activity can run at a time. A user

could establish a P2P connection in one Activity, but switching to any other Activity

would terminate said connection. An attempt was made to solve this problem with

Services, a component of the Android API that enables an app to run operations in

the background. However, the Service interfaces were found to be too restrictive to for

networking purposes alongside video processing. Instead, Fragments were determined

to be more suitable. Fragments are a different component of the Android API with

fewer restrictions than services. They operate similarly to Activities, but they are able

to run concurrently with one another. This allows a connection that is established

within one fragment to persist through other fragments in the app.

32 EdgeDashAnalytics

Dash Cam Download

Before videos can be downloaded, a device must connect to the dash cam via Wi-Fi.

The dash cams act as a Wi-Fi access point, so mobile devices can connect to them

just like a wireless router. This is currently achieved manually through the device’s

Wi-Fi settings, though this process could be automated in the future. As the tested

dash cam does not offer a direct API, downloads must be processed through a HTML

interface. The jsoup [55] and Fetch [56] libraries are used for this purpose. The

DashCam class passes the IP address of the connected dash cam to jsoup’s connect

method which returns a Document object representing the dash cam’s HTML interface

web page. This web page lists all of the videos recorded by the dash cam, so it is a

simple matter of parsing the Document object to identify these videos and obtain their

URLs. DashCam’s downloadVideo method can then download these videos by passing

their URLs to Fetch’s enqueue method.

Upon initiation of automatic downloading, the startDashDownload method will

pass the downloadLatestVideos method to a ScheduledExecutorService. downloadLat-

estVideos is illustrated in Figure 3.5. It identifies which videos are new by performing

a disjunction on the list of videos stored on the dash cam and the list recording the

names of downloaded videos. downloadLatestVideos will then download these videos

from the dash cam in sequence, starting with older videos. The videos are downloaded

in concurrent pairs of outer and inner videos, waiting the duration of a video before

initiating the next pair of downloads. On download completion, the device will make

a decision based on the circumstances, as described in Section 3.2.5.

The above describes using downloadLatestVideos to automatically download any

arbitrary set of videos stored on the dash cam. However, for the purposes of consis-

tent testing in evaluation, downloadLatestVideos is replaced with downloadTestVideos.

downloadTestVideos works similarly to downloadAll, instead it downloads a predefined

list of videos from the dash cam.

The master device is the only device that connects to the dash cam and downloads

videos. An attempt was made to connect worker devices to the dash cam so that

they could download videos directly from the dash cam as well. However, some tested

3.2 Design and Implementation 33

Master Worker

IDM,deviceNameM

requestConnection
(IDW,deviceNameW,callbackW)

acceptConnection(IDi)

startAdvertising → IDM startDiscovery → IDW

Figure 3.6: Connecting master and worker devices.

dash cams only allow a single concurrent Wi-Fi connection, while dash cams that did

allow multiple concurrent connections faced interference issues when multiple devices

attempted to download from it. A potential solution for these issues would be to devise

a system that automatically manages connections between devices and the dash cam

which would involve passing a kind of lock between the devices when they need to

establish a connection to the dash cam. Such a system was determined to be beyond

the scope of this project, so it was determined that only the master device would

connect to the dash cam and download videos.

Connection

The ConnectionFragment contains an advertising switch, a discovery switch and a

device list. Advertising and discovery in the Nearby Connections API is structured

through strategies defined by the library. The strategy used for advertising and dis-

covery in EDA is P2P STAR, as it suits the app’s star topology of one master and

multiple worker devices. The device list is controlled through a deviceAdapter which

stores a list of Endpoint objects, updates the UI, and handles user input.

Advertising is initiated by pressing the advertising switch when it is disabled. This

calls the startAdvertising method of connectionsClient, passing P2P STAR and connec-

tionLifecycleCallback, which makes the device start advertising itself. connectionLife-

cycleCallback responds to connection requests by displaying a message and a prompt to

the user as shown in Figure 3.2b. If the user approves the connection then a Payload-

Callback instance will be passed through acceptConnection call on connectionsClient,

establishing a connection between the devices. Pressing the advertising switch when it

34 EdgeDashAnalytics

is enabled simply calls the stopAdvertising method of connectionsClient, which makes

the device stop advertising.

Pressing the discovery switch when it is disabled calls the startDiscovery method of

connectionsClient, passing P2P STAR and endpointDiscoveryCallback, which makes

the device start discovering. Upon endpoint discovery, endpointDiscoveryCallback cre-

ates an Endpoint object with the information provided by the endpoint and adds it

to the discoveredEndpoints list. If an endpoint is lost, then the corresponding End-

point object is removed from the discoveredEndpoints list. Adding or removing items

from the discoveredEndpoints list updates the device list displayed in the Connection-

Fragment by calling notifyItemInserted and notifyItemRemoved on the deviceAdapter.

Pressing the discovery switch when it is enabled simply calls the stopDiscovery method

of connectionsClient, which makes the device stop discovering.

Selecting a device in the ConnectionFragment’s device list will initiate a connection

with it by passing the selected device’s endpoint to connectEndpoint. This process is

illustrated in Figure 3.6. Once the connection is complete, the devices will exchange

hardware information with one another which can be used compare the processing

capacities of the devices during the scheduling algorithm. The only thing that dis-

tinguishes master and worker devices is whether they advertise or discover. Master

devices advertise themselves to worker devices, while worker devices discover master

devices.

File Transfers

While the Nearby Connections API manages low-level networking operations, it does

not offer a ready-made protocol for handling file transfers. A simple protocol was

created for EDA, where transferred video and result files are bundled with a command

message that instructs what should be done with the associated file.

Video files can be transferred between devices manually or automatically. Manual

transfers are initiated by clicking on videos listed in the rawFootageFragment. If EDA

is not connected to any other devices, then selected videos will simply initiate local

analysis. If EDA is connected to other devices, then Message objects containing the

3.2 Design and Implementation 35

Master Worker

transferQueue.pop() → vid
schedule(vid)

analyse(vid) → res

COMPLETE, vid.name

ANALYSE, vid

RETURN, res

Figure 3.7: File transfer between master and worker devices

selected videos and ANALYSE commands are added to the transferQueue, then the

nextTransfer method is called. If video segmentation is enabled, then the video will

be split into equally sized segments, these segments are added to the transferQueue

instead of the original video. The number of segments a video is split into can be set

manually or automatically determined. nextTransfer removes the message from the

head of the transferQueue and passes it to sendFile along with the endpoint ID of a

device chosen by a scheduling algorithm. Once a file transfer is completed, the recipient

will reply with a COMPLETE command message. If pending transfers are stored in

the transferQueue, then this process will be repeated upon receiving this COMPLETE

message by calling nextTransfer again, as shown in Figure 3.7.

The sendFile method accepts a Message and an Endpoint. A file payload will be

created with the video file information from the Message. A byte payload will also be

created using the ANALYSE command to indicate that this video should be analysed,

the filename of the selected video file so that the download file will have the proper

name, as well as the ID number of the video’s file payload. Both of these payloads are

then sent to the device represented by the endpoint parameter’s ID field.

When a payload is received it is passed to the PayloadCallback’s onPayloadReceived

method. onPayloadReceived first checks if the payload is a byte payload or a file pay-

load. All file payloads are treated the exact same way when they are received and start

downloading, they are stored in the incomingFilePayloads dictionary for later retrieval.

Whenever new file payload data is received, a call is made to onPayloadTransferUpdate

to check if a file download has completed. This is necessary since a whole file typically

36 EdgeDashAnalytics

cannot fit within a single packet. When a file download has completed, its payload is

moved from the incomingFilePayloads dictionary to the completedFilePayloads dictio-

nary, and its ID is passed to processFilePayload.

When a byte payload is received, its colon delimiters are used to split it into a String

array. The first item in this array is the command which is passed through a switch

statement to take the appropriate action. For ANALYSE and RETURN commands,

the filename is stored in the filePayloadFilenames dictionary while the command itself

is stored in the filePayloadCommands dictionary. Afterwards, the payload ID is passed

to the processFilePayload method. The RETURN command also updates the UI by

removing the sent video from the processing list and adding the returned result file

to the results list to show that it has been successfully analysed. Upon receiving

COMPLETE commands the UI is updated. The video is moved from the raw footage

list to the processing list to indicate that the video was successfully transferred and

is currently being processed by the remote device, nextTransfer is also called to start

transferring the next video file

File payloads and byte payloads can arrive in any order. To address this, when

payloads finish downloading, their IDs are passed to processFilePayload. This method

first checks that both the file and byte payload for the given ID have successfully

downloaded. If they have downloaded, a COMPLETE command message is sent to

the original sender via sendCommandMessage and the video is ready for processing.

The downloaded file has a generic name, so it is renamed to the filename retrieved

from the filePayloadFilenames dictionary. The command retrieved from the filePay-

loadCommands dictionary determines what should be done with the downloaded file.

For RETURN commands, the result file is simply moved to the results directory. The

UI is also updated by removing the corresponding video item from the processing list

and adding the result to the results list. For ANALYSE commands, the video is passed

to VideoAnalysis for processing. Upon completion, the results file along with the RE-

TURN command is passed to sendFile so that it may be delivered back to the device

that sent it.

3.2 Design and Implementation 37

Master

Video segmentation

Merge results

Workers
analyse

Figure 3.8: Analysis of a video split into two segments

Segmented Analysis

Videos can be split into smaller segments by the master to ensure that there are multiple

videos to be scheduled within a short time frame. The number of segments that a video

is split into can be set by the user using a preference option or it may be automatically

determined. A simple example of analysis where a video is split into two segments is

demonstrated in Figure 3.8. Before a video is added to the transferQueue, they are

first split into equal segments with splitVideo. splitVideo will calculate the segment

duration which it will use with FFmpeg’s segment tool to split the video. The split

video files are then stored in the segment directory and are named after the original

video with a numerical suffix indicating its order. These segmented videos are then

transmitted to worker devices where they are analysed like typical videos and return

the results to the master. When the master receives the results for all video segments,

it will use mergeResults to combine the segment result files into a single result file.

This results file will be added to the result list.

38 EdgeDashAnalytics

3.2.5 Scheduling Algorithm

Upon initiation of automatic downloading, the master will start to download videos in

pairs, waiting a period of time equal to the video length before starting the next pair

of downloads. Upon download completion, the master will make a decision based on

the circumstances.

When the master is not connected to any other devices, it can only process videos

by itself. No networking operations are performed, the master simply performs all

video analysis tasks locally.

If the master is connected to a single worker, then it will compare the process-

ing capacities of the devices. This comparison is made using the worker’s hardware

information that it sent to the master after their connection was established. If the

master has greater processing capacity, then it will locally process outer videos and

send the inner videos to the worker. The opposite will occur if the worker has greater

processing capacity, with the master locally processing inner videos while the worker

processes outer videos. This process is demonstrated in Figure 3.9.

If the master is connected to more than one worker and segmentation is disabled,

then it will compare the processing capacities of the devices. If the master has greater

processing capacity than all workers, then it will assign videos to itself for local process-

ing if it is not already occupied with processing a video. If the master does not have the

greatest processing capacity, then it will prioritise sending videos to workers instead,

only processing videos locally if the workers are currently busy processing videos. The

master decides which worker to assign a video to based on an algorithm that selects the

unoccupied worker with the greatest processing capacity. This algorithm utilising the

hardware information that the workers sent to the master upon joining the network.

If the master and all workers are busy processing a video, then the master will assign

the video to the worker with the greatest processing capacity and shortest job queue.

If the master is connected to more than one worker and segmentation is enabled,

then it will first assign the outer video to the device with the greatest processing

3.2 Design and Implementation 39

capacity. It will then split the inner video into two segments of equal length, assigning

them to the remaining devices.

Master

Advertise

RETURN, ResultO

Greater processing capacity

VideoI

Video download request

Worker

Discover

Outer dash cam

Connection confirmation

Connection request

Video download request

VideoO

Inner dash cam

ANALYSE, VideoO

ANALYSE, VideoI

RETURN, ResultI

Worker

RETURN, ResultI

ANALYSE, VideoI

RETURN, ResultO

ANALYSE, VideoO

Master

Figure 3.9: Algorithm process with two devices

40 EdgeDashAnalytics

4
Evaluation

EDA was evaluated through a series of tests with differing network configurations.

These tests demonstrate that EDA is capable of performing video analytics tasks on

dash cam video in near real-time. However, significant optimisations were necessary in

order to achieve this.

4.1 Experimental Settings

The tests were performed with four Android smartphones and the VIOFO A129 dash

cam. The VIOFO A129 was chosen for its inclusion of two cameras, reliability, and it

offering an interface compatible with Android smartphones. The smartphones consisted

of a Google Pixel 3, a Google Pixel 6, an OPPO Find X2 Pro, and a OnePlus 8.

These smartphones are representative of Android devices with low, medium, and high

41

42 Evaluation

processing capacities. Relevant hardware information of these devices is detailed in

Table 4.1. All of the devices have 8-core CPUs, though the clock speeds of these

CPUs as well as their RAM capacity differ from each other. The Pixel 3 has the

lowest processing capacity with four 2.5Ghz cores, four 1.6Ghz cores, and 4GB of

RAM. The Pixel 6 was found to have average performance in comparison to the other

devices, despite having two 2.8GHz cores, two 2.25GHz cores, four 1.8GHz cores and

8GB of RAM. The OnePlus 8 and Find X2 Pro both have high processing capacities

with identical CPUs of one 2.84GHz core, three 2.42GHz cores, and four 1.8GHz cores.

However, while the OnePlus 8 has 8GB of RAM, the Find X2 Pro has a greater amount

at 12GB of RAM.

Device CPU (#cores Ö Ghz) RAM (GB) Battery Android Processing

Capacity (mAh) Version Capacity

Google Pixel 3 [57] 4Ö2.5 & 4Ö1.6 4 2915 12 Low

Google Pixel 6 [57, 58] 2Ö2.8 & 2Ö2.25 & 4x1.8 8 4614 12 Medium

OnePlus 8 [59, 60] 1Ö2.84 & 3Ö2.42 & 4x1.8 8 4300 11 High

OPPO Find X2 Pro [60, 61] 1Ö2.84 & 3Ö2.42 & 4x1.8 12 4260 10 High

Table 4.1: Hardware details and processing capacities of evaluated devices. Each

mobile device has two or more sets of heterogeneous CPU cores, e.g., 4 Ö 2.5Ghz cores

and 4 Ö 1.6 Ghz cores for the Pixel 3.

The videos used to evaluate EDA are taken from the BDD100K dash cam video

dataset [3] and the DMD driver monitoring dataset [4]. Videos from BDD100K are

recorded from forward-facing dash cams, capturing urban environments in varying

levels of traffic. Videos from DMD use inward-facing cameras to record a participant

driving normally, or performing distracted actions such as talking on the phone or

eating while in a parked (or simulated) car. Videos from both datasets have a resolution

of 1280Ö720 and a frame rate of 30 FPS. The resolution and frame rate of these videos

match those that can be produced by the VIOFO A129 dash cam according to its

settings. While it would be helpful to modify the frame rate to as low as 10 FPS, the

VIOFO A129 only offers 30 FPS and 60 FPS in its settings. While both datasets have

4.1 Experimental Settings 43

the same resolution and frame rate, they have dissimilar lengths. BDD100K videos

are all 40 seconds long, while the DMD videos vary in length from 1 to 9 minutes. To

ensure consistency between these datasets and to closer achieve real-time processing,

the videos were split into segments of equal length. Two segmented sets were created,

one consisted of 1600 segments of one-second length, while the other had 800 segments

of two-second length. Half of the videos from these segmented sets were taken from

BDD100K, the other half were taken from DMD. The exact videos that were selected

from these datasets, and their relation to their segments used in testing, are described

in the filename_mapping.txt file1. For the purposes of this project, BDD100K videos

are referred to as outer videos, while DMD videos are referred to as inner videos. During

testing, videos were downloaded as inner-outer pairs in emulation of them just being

recorded from inward and outward-facing cameras.

Tests were performed with the one-second and two-second video segments. In the

one-second tests, the one-second videos were loaded onto the master device before-

hand and an artificial delay was added to simulate downloading time. The simulated

downloading time was set to 350ms, half the time it took to download a two-second

video from the dash cam, averaged between all devices. In the two-second tests, videos

loaded onto the dash cam beforehand are downloaded by the master device via Wi-Fi.

For both tests, the master waits a period of time equal to the test type’s video length

before initiating another pair of downloads, emulating the time taken for the dash cam

to record the videos in a live setting. The reason why one-second video downloads are

simulated are due to a inherent overhead delay of around 500ms between enqueuing

a download and the download actually starting. This delay makes it impossible to

download one-second videos in a real-time manner, as they cannot download faster

than they are enqueued.

The setup of one-second and two-second tests slightly differ from one another. With

one-second tests, test videos are pre-loaded onto the master device, the test video count

is set to 800 inner-outer pairs, the wait period between downloads is set to one second,

and simulated downloading is enabled with a 350ms delay. With two-second tests, the

1Available in GitHub repository: https://github.com/JaydenKing32/EdgeDashAnalytics

https://github.com/JaydenKing32/EdgeDashAnalytics

44 Evaluation

test video count is set to 400 inner-outer pairs, the wait period between downloads

is set to two seconds, and the master device is connected to the dash cam via Wi-

Fi. All other aspects of running one-second and two-second tests are identical to each

other. This starts with the master connecting with workers with Nearby Connections,

initiating downloads, collecting logs upon completion, and then wiping test-related files

to prepare for the next test.

Testing comprised of multiple configurations of the test devices, these test devices

being the Google Pixel 3, Google Pixel 6, OPPO Find X2 Pro, and OnePlus 8. One-

node tests involved a single device processing all videos from the dataset. Two-node

tests included the following configurations: two strong devices, Find X2 Pro and One-

Plus 8; a strong and a mid-range device, Find X2 Pro and Pixel 6; a mid-range and a

weak device, Pixel 6 and Pixel 3. Three-node tests included the following configura-

tions: two strong and one mid-range device, Find X2 Pro, OnePlus 8, and Pixel 6; one

strong, one mid-range, and one weak device, Find X2 Pro, Pixel 6, and Pixel 3.

4.2 Results

The results of each test run on EDA, in addition to an explanation of how the results

were collected are presented below. The specific metrics used to evaluate EDA are the

average video turnaround times, skip rates, and energy consumption. In particular,

the time taken to complete various tasks and the energy consumed to do so is recorded

for each test run. Times are recorded through the use of the Android logging tool,

Logcat. All of the time values presented here are per-video averages. While it may

seem helpful to calculate these time values as per-frame averages instead, that would

not accurately reflect the EDA’s current design. Due to the limitations of dash cams,

video data is handled in the format of video files. If the use of live-streamed video

data was possible, then it would make more sense to use per-frame averages instead.

Additionally, each device’s ESD value and the proportion of frames that are discarded

due to early-stopping, termed the “skip rate”, are included below.

4.2 Results 45

4.2.1 Metric Collection

The recorded time values are split into six types: download, transfer, return, processing,

wait, turnaround, and overhead. These values are all measured in milliseconds (ms).

Download time is simply the duration of time between a video starting to download,

and the video download finishing. A download time of 350ms was simulated for the

one-second tests, while the actual time it took to download a video from the dash cam

was recorded in the two-second tests. Transfer time is the time taken to transfer a video

from the master device to a worker. Return time is the time taken to transfer result

files from workers to the master. Processing time is the time taken to extract a video’s

frames, analyse said frames, and write the results to a JSON file. Wait time is the time

between a video being received by a device and when the video starts processing. Wait

time is primarily caused by videos waiting in a queue for their turn to be processed,

but it can also be caused by system delays that occur after a worker receives a video.

Turnaround is the duration of time between a video starting to download and that

video’s result file being received by the master. If a video’s turnaround is shorter than

the length of the video itself, then it can be said that it was processed in a near real-time

manner. Finally, overhead represents delays caused by the OS or libraries that are not

accounted for by the other time value types. The largest contributor to overhead is the

delay in between starting a file transfer and the transfer actually starting, though it has

other contributing factors such as process start-up delays. Overhead is calculated by

taking the sum of download, transfer, return, processing, and wait times, and deducting

it from the turnaround time.

Recording energy consumption is necessary due to the devices being battery pow-

ered, as the amount of time they can operate is limited. While vehicles often offer power

outlets for charging, they may not have enough for all devices. We use two methods

for recording energy consumption. The first method is based on the approach by Silva

et al. [62], taking the power readings provided by the Android API. These power val-

ues are measured in milliwatts (mW) and are presented as per-video averages. The

second method concerns battery usage and involves recording device battery levels at

the start and at the end of test runs. The difference between these values gives the

46 Evaluation

amount of battery power consumed as a percentage of total battery capacity. While

using specialised hardware to physically monitor a device’s energy consumption may

be more accurate, the use of the Android API was found to be sufficient.

We use early-stopping for some devices to ensure near real-time turnarounds. As

described in Section 3.2.3, video processing is halted if it does not complete by a speci-

fied amount of time, with the remaining unprocessed video frame being discarded. The

early-stop divisor (ESD) value determines when video analysis ends early. Essentially,

higher ESD values will result in video analysis stopping earlier, leading to more video

frames being discarded. Weaker devices such as the Pixel 3 and Pixel 6 require the

use of high ESD values in order to reach near real-time turnarounds, while stronger

devices like the Find X2 Pro and OnePlus 8 only need low ESD values.

 0

 200

 400

 600

 800

 1000

Pixel 3 Pixel 6 OnePlus 8 Find X2 Pro

Ti
m

e
 (

m
s)

Download
Processing

Wait
Overhead

972 974 947

874

Figure 4.1: Average time taken by tasks in one-second one-node tests. Values add

up to average turnaround.

4.2 Results 47

4.2.2 Turnaround and Skip Rate

Here, we present the average video turnaround times and skip rates with respect to two

video time granularities. In particular, near real-time turnaround times are significantly

enabled through the use of early stopping when the resource capacity of participating

devices are not sufficient to process videos in a real-time manner. In this context,

turnaround times are near real-time when they are below the video length. With one-

second videos, turnaround times must be below one second for it to be considered near

real-time. With two-second videos, turnaround times must be below two seconds.

 0

 200

 400

 600

 800

 1000

Find X2 Pro* OnePlus 8 Find X2 Pro* Pixel 6 Pixel 6* Pixel 3

Ti
m

e
 (

m
s)

Download
Transfer

Return
Processing

Wait
Overhead

662

976

670

996

831

981

Figure 4.2: Average time taken by tasks in one-second two-node tests. Values add

up to average turnaround. * indicate master device.

Device Processing (ms) Wait (ms) Overhead (ms) Turnaround (ms) ESD Skip rate

Pixel 3 385 211 26 972 2.8 59.2%

Pixel 6 389 208 27 974 2.6 14.5%

OnePlus 8 411 166 20 947 0 0%

Find X2 Pro 352 150 22 874 0 0%

Table 4.2: One-second one-node test results, simulated download time of 350ms.

48 Evaluation

Device Transfer (ms) Return (ms) Processing (ms) Wait (ms) Overhead (ms) Turnaround (ms) ESD Skip rate

Find X2 Pro* n/a n/a 287 1 24 662 0 0%

OnePlus 8 29 19 410 30 138 976 2.5 26.1%

Find X2 Pro* n/a n/a 293 1 26 670 0 0%

Pixel 6 81 21 216 100 228 996 5 80.5%

Pixel 6* n/a n/a 436 2 43 831 0 0%

Pixel 3 140 46 187 52 206 981 6 98.7%

Table 4.3: One-second two-node test results, simulated download time of 350ms, *

indicate master device.

One-second Tests

As seen in Figure 4.1 and Table 4.2, displaying the results of the one-node tests, the

OnePlus 8 and Find X2 Pro were able to achieve average turnarounds of 947ms and

874ms respectively, without using early-stopping. However, in order to reach near real-

time turnaround, the Pixel 3 had to use an ESD of 4 resulting in a skip rate of 78%,

while the Pixel 6 used an ESD of 3 resulting in a skip rate of 31.7%.

 0

 200

 400

 600

 800

 1000

Find X2 Pro* Pixel 6 OnePlus 8 Find X2 Pro* Pixel 6 Pixel 3

Ti
m

e
 (

m
s)

Download
Transfer

Return
Processing

Wait
Overhead

655

980

891

652

942
922

Figure 4.3: Average time taken by tasks in one-second three-node tests. Values add

up to average turnaround. * indicate master device.

4.2 Results 49

Device Transfer (ms) Return (ms) Processing (ms) Wait (ms) Overhead (ms) Turnaround (ms) ESD Skip rate

Find X2 Pro* n/a n/a 281 1 23 655 0 0%

Pixel 6 95 24 156 104 251 980 4 90.9%

OnePlus 8 33 20 273 32 183 891 0 0%

Find X2 Pro* n/a n/a 278 1 23 652 0 0%

Pixel 6 91 23 155 84 239 942 4 89.2%

Pixel 3 85 22 220 53 192 922 3 83%

Table 4.4: One second three-node test results, simulated download time of 350ms, *

indicate master device.

For the networked tests, all workers had to use higher ESD values to compensate

for the extra time taken by network operations such as sending the videos to workers

and returning the results to the master. On the other hand, the master devices did

not use early-stopping at all, as they avoided the extra networking operations and only

had to process outer videos, offloading the inner videos to the workers.

As seen in Figure 4.2 and Table 4.3, displaying the results of the two-node tests,

the run with the OnePlus 8 acting as a worker with the Find X2 Pro master was

able to reach a turnaround of 976ms with an ESD of 2.5, resulting in a skip rate of

26.1%. When the Pixel 6 acted as a worker with the Find X2 Pro master, it achieved

a turnaround of 996ms with an ESD of 5, leading to a skip rate of 80.5%. Finally, the

Pixel 3 acting as a worker with the Pixel 6 master had a 981ms turnaround with an

ESD of 6, resulting in a high skip rate of 98.7%.

The three-node tests utilised segmentation, where the master splits inner videos

into two equal halves. All three-node tests used the Find X2 Pro as master. The first

test had the Pixel 6 and OnePlus 8 take on worker roles. As seen in Figure 4.3 and

Table 4.4, the OnePlus 8 was able to achieve a turnaround of 891ms without early-

stopping due to it only needing to process a half-second segment. The Pixel 6 still

needed to use an ESD of 3.5 to reach a turnaround of 980ms, leading to a skip rate of

90.9%. The second test utilised the Pixel 3 and Pixel 6 as workers. Again, the Pixel 6

used an ESD of 3.5, reaching a turnaround of 942ms and a skip rate of 89.2%. Oddly,

the Pixel 3 was able to use a lower ESD of 2.5 to reach a turnaround of 922ms and

a skip rate of 83%. This is due to the Pixel 3 having slightly higher network speeds

50 Evaluation

and lower overhead delays compared to to the Pixel 6, despite its analysis speeds being

lower.

 0

 500

 1000

 1500

 2000

Pixel 3 Pixel 6 OnePlus 8 Find X2 Pro

Ti
m

e
 (

m
s)

Download
Processing

Wait
Overhead

1952 1925
1828

1644

Figure 4.4: Average time taken by tasks in two-second one-node tests. Values add

up to average turnaround.

Device Download (ms) Processing (ms) Wait (ms) Overhead (ms) Turnaround (ms) ESD Skip rate

Pixel 3 893 766 259 34 1952 2.7 37.1%

Pixel 6 759 783 354 29 1925 0 0%

OnePlus 8 598 763 445 22 1828 0 0%

Find X2 Pro 613 649 359 23 1644 0 0%

Table 4.5: Two-second one-node test results.

Two-second Tests

Unlike the simulated downloads in the one-second tests, the master device in two-second

tests actually downloads video files from a dash cam. Despite the potential variance

in download times, almost all two-second tests were able to reach shorter turnarounds

4.2 Results 51

with lower skip rates thanks to the reduced overhead of dealing with fewer and larger

video files. As seen in Figure 4.4 and Table 4.5, showing the one-node test results,

only the Pixel 3 needed to use early-stopping with an ESD of 3.5 in order to achieve a

turnaround of 1710ms and a skip rate of 55.2%.

Neither the two-node test with the Find X2 Pro as master, one with a OnePlus 8

worker and the other with a Pixel 6 worker, needed early-stopping to achieve near real-

time turnaround, as seen in Figure 4.5 and Table 4.6. However, the Pixel 6 and Pixel 3

master/worker pair needed to use early-stopping to compensate for slower transfer

speeds. The Pixel 6 used an ESD of 3 to reach a turnaround of 1637ms with a skip

rate of 12.7%, while the Pixel 3 used an ESD of 4 to achieve a turnaround of 1919ms

and a skip rate of 69.2%.

 0

 500

 1000

 1500

 2000

Find X2 Pro* OnePlus 8 Find X2 Pro* Pixel 6 Pixel 6* Pixel 3

Ti
m

e
 (

m
s)

Download
Transfer

Return
Processing

Wait
Overhead

1189

1836

1197

1901

1637

1919

Figure 4.5: Average time taken by tasks in two-second two-node tests. Values add

up to average turnaround.

None of the two-second three-node tests required early-stopping to achieve near

real-time turnarounds. The test using the Find X2 Pro as master with the Pixel 6 and

OnePlus 8 as workers was able to achieve an average turnaround of 1413ms, as seen in

52 Evaluation

Figure 4.6 and Table 4.7. The test using the Find X2 Pro as master with Pixel 3 and

Pixel 6 as workers was slightly slower, with an average turnaround of 1492ms.

 0

 500

 1000

 1500

 2000

Find X2 Pro* Pixel 6 OnePlus 8 Find X2 Pro* Pixel 6 Pixel 3

Ti
m

e
 (

m
s)

Download
Transfer

Return
Processing

Wait
Overhead

1238

1604

1398

1210

1605
1660

Figure 4.6: Average time taken by tasks in two-second three-node tests. Values add

up to average turnaround.

4.2.3 Energy Consumption

Overall, the energy consumption of participating devices is insignificant in the context

of battery usage, only 1-8% of total battery capacity was consumed to analyse 1600s

of video data.

Device Download (ms) Transfer (ms) Return (ms) Processing (ms) Wait (ms) Overhead (ms) Turnaround (ms) ESD Skip rate

Find X2 Pro*
633

n/a n/a 503 0 53 1189 0 0%

OnePlus 8 51 30 985 35 102 1836 0 0%

Find X2 Pro*
625

n/a n/a 521 0 51 1197 0 0%

Pixel 6 98 39 830 96 213 1901 0 0%

Pixel 6*
824

n/a n/a 678 6 129 1637 3 12.7%

Pixel 3 270 84 523 48 170 1919 4 69.2%

Table 4.6: Two-second two-node test results, * indicate master device.

4.2 Results 53

Looking at the energy consumption results in Table 4.8 and Table 4.9, it is clear

that the Find X2 Pro consistently uses much more energy than the OnePlus 8, while

the Pixel 3 and Pixel 6 use much less energy. This is demonstrated in the single-

node section of Table 4.8’s one-second test results, with the Pixel 3 having the lowest

average power consumption of 19.175mW, followed by the Pixel 6 having a slightly

greater average power consumption of 35.935mW, followed by a large jump to the

OnePlus 8 at 110.208mW, ending with another large jump to the Find X2 Pro at

172.817mW. This trend is somewhat disrupted with the two-second one-node tests,

where the Pixel 3’s average power consumption of 96.031mW is higher than the Pixel 6’s

57.537mW consumption. However, the other devices are consistent with the trend with

the OnePlus 8’s much greater power consumption of 217.6mW, followed by the even

larger Find X2 Pro consumption of 353.838mW.

At first it would appear as though there is a strong correlation between energy use

and processing capacity. However, there is a discrepancy in regards to the networked

tests, where the Pixel 3 consumes more power than the Pixel 6, despite it having

less processing capacity. Table 4.8 demonstrates that when acting as workers, the

Pixel 3 consumed almost double the average power consumption of the Pixel 6 for the

one-second two-node tests. This difference is slightly higher with the one-second three-

node tests, where the Pixel 3 consumed just over double the Pixel 6’s average power

consumption. This trend continues with the two-second tests shown by Table 4.9,

where the Pixel 3’s single-node test consumed 38mW per-video more than the Pixel 6.

Device Download (ms) Transfer (ms) Return (ms) Processing (ms) Wait (ms) Overhead (ms) Turnaround (ms)

Find X2 Pro*

623

n/a n/a 515 1 99 1238

Pixel 6 96 27 488 110 260 1604

OnePlus 8 38 21 528 35 153 1398

Find X2 Pro*

626

n/a n/a 506 0 78 1210

Pixel 6 89 27 487 109 267 1605

Pixel 3 96 28 680 60 170 1660

Table 4.7: Two-second three-node test results, no use of early-stopping, * indicate

master device.

54 Evaluation

Node count Device Turnaround (ms) Average power (mW) Battery usage

1

Pixel 3 972 19.175 8%

Pixel 6 974 35.935 5%

OnePlus 8 947 110.208 5%

Find X2 Pro 874 172.817 5%

2

Find X2 Pro* 662 194.812 3%

OnePlus 8 976 142.679 4%

Find X2 Pro* 670 184.591 3%

Pixel 6 996 7.566 0%

Pixel 6* 831 30.347 3%

Pixel 3 981 14.994 3%

3

Find X2 Pro* 655 217.565 3%

Pixel 6 980 4.178 2%

OnePlus 8 891 119.782 3%

Find X2 Pro* 652 211.451 3%

Pixel 6 942 7.332 1%

Pixel 3 922 15.872 3%

Table 4.8: Turnaround and energy results of one second tests, * indicate master

device.

The two-second two-node tests present a smaller difference, when acting as workers, the

Pixel 3 consumed 11mW per-video more than the Pixel 6. Finally, there was a much

greater gap in the two-second three-node tests, where the Pixel 3 consumed over 65mW

per-video more than the Pixel 6. This discrepancy of the weaker Pixel 3 consuming

more power than the computationally stronger Pixel 6 could be attributed to power

inefficiencies of the Pixel 3 that were corrected later in the Pixel 6. Alternatively, the

recorded power values may have been influenced by inaccuracies present in Android’s

battery API. However, the use of specialised hardware would be required to verify these

theories with any degree of certainty.

Despite the large differences in average power consumption, all of the devices only

4.2 Results 55

Node count Device Turnaround (ms) Average power (mW) Battery usage

1

Pixel 3 1952 96.031 8%

Pixel 6 1925 57.537 5%

OnePlus 8 1828 217.600 4%

Find X2 Pro 1644 353.838 4%

2

Find X2 Pro* 1189 423.257 3%

OnePlus 8 1836 286.884 4%

Find X2 Pro* 1197 432.826 3%

Pixel 6 1901 19.140 1%

Pixel 6* 1637 32.368 3%

Pixel 3 1919 30.154 4%

3

Find X2 Pro* 1238 431.849 3%

Pixel 6 1604 11.589 3%

OnePlus 8 1398 237.435 3%

Find X2 Pro* 1210 430.991 4%

Pixel 6 1605 14.921 2%

Pixel 3 1660 80.790 5%

Table 4.9: Turnaround and energy results of two second tests, * indicate master

device.

used 5% of their total battery capacity for one-second single-node tests, except for the

Pixel 3 which used 8%, as shown in Table 4.8. Table 4.9 demonstrates similar levels

of battery consumption for the two-second single-node tests, where the Pixel 3 used

8%, the Pixel 6 used 5%, and both the OnePlus 8 and the Find X2 Pro used 4%. The

inconsistency between highly varied per-video power consumption and similar battery

usage values could be explained by different battery capacities of the devices, as shown

in Table 4.1.

56 Evaluation

5
Conclusion

In this thesis, we have addressed issues of near real-time video analytics with dash

cams and resource-constrained mobile devices. We have developed EdgeDashAnalytics

(EDA) as a solution system that incorporates several optimisation techniques, for de-

tecting road hazards and driver distractedness. Clearly, driver safety can be improved

through near real-time video analytics that are achieved with mobile devices and dash

cams. However, there are challenges present in reaching such a goal. A significant

challenge is latency, results must be produced with low latency in order for video an-

alytics to be effective. Cloud computing is unsuitable due to the high latency and

bandwidth consumption involved in transmitting video data over long distances. Edge

computing is a viable solution for dash cam video analytics as it makes it possible to

avoid high latency and bandwidth consumption. With data being processed close to its

source, data transmission should have a very small impact on latency. Although EDA

57

58 Conclusion

has room to improve, it has demonstrated the feasibility and potential for distributed

edge-based real-time video analytics on the move. These claims have been proven by

experiment results that showed low latency and energy consumption.

6
Future Work

While EDA has shown great potential for real-time video analytics on the move with

dash cams and resource-constrained mobile devices, there are a number of ways that it

can be improved. We plan to improve EDA in areas such as: dynamic adjustment of the

ESD value, modifying the amount of scaling applied to video frames, adding temporal

analysis, using specifically tuned TensorFlow models, and switching to alternate forms

of video data.

The most obvious improvement that can be made to EDA is the implementation of

dynamic ESD adjustment. Currently, the ESD value is manually set prior to executing

a test run. Instead, the ESD value should be automatically raised when a video’s

turnaround exceeds its length, eventually leading to an ESD value that results in real-

time turnaround. This would be fairly easy to implement for master devices only, as the

master device is responsible for recording turnaround times. However, this would be

59

60 Future Work

difficult to implement for workers as they are currently unaware of turnaround times.

One potential solution would be to include the previous video’s turnaround time along

with the video messages sent to workers so that they can calculate ESD adjustments by

themselves. Alternatively, the master could be responsible for adjusting worker ESD’s.

The master would calculate new ESD values based on worker turnaround times and

instruct workers to change their ESD when necessary through a new type of message.

There are several important questions regarding the implementation of dynamic ESD

adjustment:

� How much should the ESD be adjusted by? It would be simple to increment ESD

by a constant value, however, this may introduce inefficiencies. If the adjustment

value is too high then ESD could overshoot its ideal value, if its too low then

it could take a long time until the ideal ESD value is reached. Alternatively,

the ESD could be adjusted by a value that is proportional to the difference in

turnaround time and video length.

� Should the ESD only be increased, or should it be decreased as well? The

turnaround of videos is not constant, it can vary due to the inconsistency of

some processes such as download times. If ESD is always raised whenever a

video’s turnaround exceeds its length, then infrequently high turnarounds may

result in the ESD being set might higher than its ideal value. Instead, when-

ever a video’s turnaround is lower than its length by some threshold, the ESD

value could be lowered. However, this adjustment should not be too sensitive,

otherwise the ESD may fluctuate wildly throughout execution of many videos.

� What should occur when turnaround time cannot be reduced below a video’s

length? This is caused by situations such as the use of a device with low com-

putational resources, or interferences resulting in very slow download times. It

would not make sense to constantly increase ESD even after it’s high enough

that all frames are skipped and turnaround is not reduced any further. A proce-

dure could be added whereby ESD adjustments are halted when ESD reaches the

point that all frames in a video are skipped. However, what comes after this is

61

another issues. One solution could be that EDA recognises that it is not capable

of processing any frames in a real-time manner and so it halts its operation and

may display some kind of error message. Alternatively, it could reduce ESD so

that some frames are still processed even with high turnarounds.

Further testing should be performed with the amount of scaling applied to video

frames prior to passing them on for analysis. Downscaling frames was one of the

optimisations made to reduce processing times, however, this reduces the accuracy of

results. Currently, frames are downscaled to match the width of the TensorFlow model

that will process it. A potential improvement could be adjusting the amount of scaling

based on a device’s processing capacity.

A significant improvement could be made through the addition of temporal analy-

sis. Currently each frame is processed individually without any consideration of prior

frames. With temporal analysis, the context of prior frames is used in analysis, im-

proving detection results.

Only general-purpose TensorFlow models such as MobileNet and MoveNet have

been used thus far. Detection accuracy could be greatly improved if models that were

tailored to the task were used instead.

The use of alternative forms of video data instead of video files should be investi-

gated. A lot of processing time is wasted by extracting frames from video files, this

time could be saved if the data was transmitted in a form that could be immediately

analysed. It was necessary to use video files due to the tested dash cams lacking a

proper API that allows data streaming. This may be solved by finding a dash cam or

similar device that does offer such an API. A simple solution may be to just use another

smartphone as a recording device. Smartphones are certainly capable of livestream-

ing video to one another and this would allow greater coordination between all of the

devices in the network as they would all share the same operating system (Android)

and codebase. In addition, the use of a smartphone camera would allow for fine-tuned

control of important aspects of the video data such as its frame rate. Adding support

for livestreaming of video data, whether from a specialised camera device or a smart-

phone, would require significant changes to the project’s design and implementation.

62 Future Work

However, the proposed solution of using a local network of mobile devices to process

dash cam video data in a near real-time manner would still be applicable.

The scope of EDA could be greatly expanded by extending the network to involve

other vehicles including their cameras and mobile devices. This would likely require

switching from Wi-Fi to a longer-distance wireless medium such as 5G. However, all in-

vestigated dash cams only support Wi-Fi connectivity, so such an inter-vehicle network

would need camera devices that support 5G.

References

[1] Ambuj Mehrish, Prerna Singh, Puneet Jain, A. V. Subramanyam, and Mohan

Kankanhalli. Egocentric Analysis of Dash-Cam Videos for Vehicle Forensics.

IEEE Transactions on Circuits and Systems for Video Technology, 30(9):3000–

3014, September 2020. ISSN 1558-2205. doi:10.1109/TCSVT.2019.2929561. ix

[2] Sangkeun Park, Joohyun Kim, Rabeb Mizouni, and Uichin Lee. Motives and

concerns of dashcam video sharing. In Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems, CHI ’16, pages 4758–4769, New York,

NY, USA, 2016. Association for Computing Machinery. ISBN 978-1-4503-3362-7.

doi:10.1145/2858036.2858581. ix, 9

[3] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen

Liu, Vashisht Madhavan, and Trevor Darrell. BDD100K: A Diverse Driving

Dataset for Heterogeneous Multitask Learning. In 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2633–2642, June

2020. doi:10.1109/CVPR42600.2020.00271. x, 3, 42

[4] Juan Diego Ortega, Neslihan Kose, Paola Cañas, Min-An Chao, Alexander Un-

nervik, Marcos Nieto, Oihana Otaegui, and Luis Salgado. DMD: A Large-Scale

Multi-modal Driver Monitoring Dataset for Attention and Alertness Analysis. In

Adrien Bartoli and Andrea Fusiello, editors, Computer Vision – ECCV 2020

Workshops, Lecture Notes in Computer Science, pages 387–405, Cham, 2020.

63

https://doi.org/10.1109/TCSVT.2019.2929561
https://doi.org/10.1145/2858036.2858581
https://doi.org/10.1109/CVPR42600.2020.00271

64 References

Springer International Publishing. ISBN 978-3-030-66823-5. doi:10.1007/978-3-

030-66823-5 23. x, 3, 42

[5] Maksym Kozlenko. Wombat crossing road, near Thredbo, May 2012. URL

https://commons.wikimedia.org/wiki/File:Wombat_crossing_road.jpg. Li-

cense: CC BY-SA 4.0. xiii, 14

[6] Thomas A. Dingus, Feng Guo, Suzie Lee, Jonathan F. Antin, Miguel Perez, Mindy

Buchanan-King, and Jonathan Hankey. Driver crash risk factors and prevalence

evaluation using naturalistic driving data. Proceedings of the National Academy

of Sciences, 113(10):2636–2641, March 2016. doi:10.1073/pnas.1513271113. 4, 15

[7] Ambuj Mehrish, Prerna Singh, Puneet Jain, A. V. Subramanyam, and Mohan

Kankanhalli. Egocentric Analysis of Dash-cam Videos For Vehicle Forensics. IEEE

Transactions on Circuits and Systems for Video Technology, 2019. ISSN 1558-

2205. doi:10.1109/TCSVT.2019.2929561. 9

[8] Allianz. The rise of the dash cam: New data reveals 1 in 5 Aussies

are using dash cams on our roads, September 2019. URL https:

//www.allianz.com.au/media/news/2019/the-rise-of-the-dash-cam-

new-data-reveals-1-in-5-aussies-are-using-dash-cams-on-our-roads. 9

[9] Renátó Besenczi, Kristóf Szitha, and András Hajdu. A framework for distributed

processing on an offline cell phone network. In 2014 5th IEEE Conference on

Cognitive Infocommunications (CogInfoCom), pages 257–262. IEEE, November

2014. doi:10.1109/CogInfoCom.2014.7020457. 11

[10] Nikhil Dange, Kailas Devadkar, and Dhananjay Kalbande. Scheduling of

task in collaborative environment using mobile cloud. In 2016 Interna-

tional Conference on Global Trends in Signal Processing, Information Comput-

ing and Communication (ICGTSPICC), pages 579–583. IEEE, December 2016.

doi:10.1109/ICGTSPICC.2016.7955367.

https://doi.org/10.1007/978-3-030-66823-5_23
https://doi.org/10.1007/978-3-030-66823-5_23
https://commons.wikimedia.org/wiki/File:Wombat_crossing_road.jpg
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1073/pnas.1513271113
https://doi.org/10.1109/TCSVT.2019.2929561
https://www.allianz.com.au/media/news/2019/the-rise-of-the-dash-cam-new-data-reveals-1-in-5-aussies-are-using-dash-cams-on-our-roads
https://www.allianz.com.au/media/news/2019/the-rise-of-the-dash-cam-new-data-reveals-1-in-5-aussies-are-using-dash-cams-on-our-roads
https://www.allianz.com.au/media/news/2019/the-rise-of-the-dash-cam-new-data-reveals-1-in-5-aussies-are-using-dash-cams-on-our-roads
https://doi.org/10.1109/CogInfoCom.2014.7020457
https://doi.org/10.1109/ICGTSPICC.2016.7955367

References 65

[11] Niroshinie Fernando, Seng W. Loke, and W. Rahayu. Mobile Crowd Com-

puting with Work Stealing. In 2012 15th International Conference on

Network-Based Information Systems, pages 660–665. IEEE, September 2012.

doi:10.1109/NBiS.2012.122.

[12] Karim Habak, Mostafa Ammar, Khaled A. Harras, and Ellen Zegura. Femto

Clouds: Leveraging Mobile Devices to Provide Cloud Service at the Edge. In 2015

IEEE 8th International Conference on Cloud Computing, pages 9–16. IEEE, June

2015. doi:10.1109/CLOUD.2015.12. 11

[13] Google. TensorFlow Lite — ML for Mobile and Edge Devices, 2021. URL https:

//www.tensorflow.org/lite. 11

[14] C. Stamate, G.D. Magoulas, S. Kueppers, E. Nomikou, I. Daskalopoulos,

M.U. Luchini, T. Moussouri, and G. Roussos. Deep learning Parkinson’s

from smartphone data. In 2017 IEEE International Conference on Perva-

sive Computing and Communications (PerCom), pages 31–40, March 2017.

doi:10.1109/PERCOM.2017.7917848. 11

[15] Yueng Delahoz and Miguel A. Labrador. A real-time smartphone-based floor

detection system for the visually impaired. In 2017 IEEE International Symposium

on Medical Measurements and Applications (MeMeA), pages 27–32. IEEE, May

2017. doi:10.1109/MeMeA.2017.7985844. 11

[16] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. Deep-

Decision: A Mobile Deep Learning Framework for Edge Video Analytics. In IEEE

INFOCOM 2018 - IEEE Conference on Computer Communications, pages 1421–

1429, April 2018. doi:10.1109/INFOCOM.2018.8485905. 11

[17] Yong Li and Wei Gao. MUVR: Supporting Multi-User Mobile Virtual Reality

with Resource Constrained Edge Cloud. In 2018 IEEE/ACM Symposium on Edge

Computing (SEC), pages 1–16, October 2018. doi:10.1109/SEC.2018.00008. 11

https://doi.org/10.1109/NBiS.2012.122
https://doi.org/10.1109/CLOUD.2015.12
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://doi.org/10.1109/PERCOM.2017.7917848
https://doi.org/10.1109/MeMeA.2017.7985844
https://doi.org/10.1109/INFOCOM.2018.8485905
https://doi.org/10.1109/SEC.2018.00008

66 References

[18] Bappaditya Mandal, Shue-Ching Chia, Liyuan Li, Vijay Chandrasekhar, Cheston

Tan, and Joo-Hwee Lim. A Wearable Face Recognition System on Google Glass

for Assisting Social Interactions. In C. V. Jawahar and Shiguang Shan, editors,

Computer Vision - ACCV 2014 Workshops, Lecture Notes in Computer Science,

pages 419–433, Cham, 2015. Springer International Publishing. ISBN 978-3-319-

16634-6. doi:10.1007/978-3-319-16634-6 31. 11

[19] Emmanouil Koukoumidis, Li-Shiuan Peh, and Margaret Rose Martonosi. Sig-

nalGuru: Leveraging mobile phones for collaborative traffic signal schedule ad-

visory. In Proceedings of the 9th International Conference on Mobile Systems,

Applications, and Services, MobiSys ’11, pages 127–140, New York, NY, USA,

June 2011. Association for Computing Machinery. ISBN 978-1-4503-0643-0.

doi:10.1145/1999995.2000008. 11

[20] Sarfraz Ahmed, M. Nazmul Huda, Sujan Rajbhandari, Chitta Saha, Mark Elshaw,

and Stratis Kanarachos. Pedestrian and Cyclist Detection and Intent Estimation

for Autonomous Vehicles: A Survey. Applied Sciences, 9(11):2335, January 2019.

ISSN 2076-3417. doi:10.3390/app9112335. License: CC BY 3.0. 12

[21] Antonio Brunetti, Domenico Buongiorno, Gianpaolo Francesco Trotta, and Vi-

toantonio Bevilacqua. Computer vision and deep learning techniques for pedes-

trian detection and tracking: A survey. Neurocomputing, 300:17–33, July 2018.

ISSN 0925-2312. doi:10.1016/j.neucom.2018.01.092.

[22] Patrick Hurney, Peter Waldron, Fearghal Morgan, Edward Jones, and Martin

Glavin. Review of pedestrian detection techniques in automotive far-infrared

video. IET Intelligent Transport Systems, 9(8):824–832, 2015. ISSN 1751-9578.

doi:10.1049/iet-its.2014.0236. 12

[23] Amir Mukhtar, Likun Xia, and Tong Boon Tang. Vehicle Detection Techniques

for Collision Avoidance Systems: A Review. IEEE Transactions on Intelli-

gent Transportation Systems, 16(5):2318–2338, October 2015. ISSN 1558-0016.

doi:10.1109/TITS.2015.2409109. 12

https://doi.org/10.1007/978-3-319-16634-6_31
https://doi.org/10.1145/1999995.2000008
https://doi.org/10.3390/app9112335
https://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1016/j.neucom.2018.01.092
https://doi.org/10.1049/iet-its.2014.0236
https://doi.org/10.1109/TITS.2015.2409109

References 67

[24] Sayanan Sivaraman and Mohan Manubhai Trivedi. Looking at Vehicles on the

Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Anal-

ysis. IEEE Transactions on Intelligent Transportation Systems, 14(4):1773–1795,

December 2013. ISSN 1558-0016. doi:10.1109/TITS.2013.2266661.

[25] Zehang Sun, G. Bebis, and R. Miller. On-road vehicle detection: A review. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28(5):694–711, May

2006. ISSN 1939-3539. doi:10.1109/TPAMI.2006.104. 12

[26] Clement Creusot and Asim Munawar. Real-time small obstacle detection on high-

ways using compressive RBM road reconstruction. In 2015 IEEE Intelligent Vehi-

cles Symposium (IV), pages 162–167, June 2015. doi:10.1109/IVS.2015.7225680.

12, 15, 18

[27] Luis Alberto Morales Rosales, Ignacio Algredo Badillo, Carlos Arturo

Hernández Gracidas, Hector Rodŕıguez Rangel, Mariana Lobato Báez, and

Srikanta Patnaik. On-road obstacle detection video system for traffic accident

prevention. Journal of Intelligent & Fuzzy Systems, 35(1):533–547, July 2018.

ISSN 10641246. doi:10.3233/JIFS-169609. 15

[28] Baozhi Jia, Rui Liu, and Ming Zhu. Real-time obstacle detection with motion

features using monocular vision. The Visual Computer, 31(3):281–293, March

2015. ISSN 1432-2315. doi:10.1007/s00371-014-0918-5. 12, 15, 18

[29] Simon Chadwick, Will Maddern, and Paul Newman. Distant Vehicle Detection

Using Radar and Vision. In 2019 International Conference on Robotics and Au-

tomation (ICRA), pages 8311–8317, May 2019. doi:10.1109/ICRA.2019.8794312.

13, 18

[30] Paul E. Rybski, Daniel Huber, Daniel D. Morris, and Regis Hoffman. Visual

classification of coarse vehicle orientation using Histogram of Oriented Gradients

features. In 2010 IEEE Intelligent Vehicles Symposium, pages 921–928, June 2010.

doi:10.1109/IVS.2010.5547996. 13

https://doi.org/10.1109/TITS.2013.2266661
https://doi.org/10.1109/TPAMI.2006.104
https://doi.org/10.1109/IVS.2015.7225680
https://doi.org/10.3233/JIFS-169609
https://doi.org/10.1007/s00371-014-0918-5
https://doi.org/10.1109/ICRA.2019.8794312
https://doi.org/10.1109/IVS.2010.5547996

68 References

[31] Hossein Tehrani Niknejad, Akihiro Takeuchi, Seiichi Mita, and David McAllester.

On-Road Multivehicle Tracking Using Deformable Object Model and Parti-

cle Filter With Improved Likelihood Estimation. IEEE Transactions on In-

telligent Transportation Systems, 13(2):748–758, June 2012. ISSN 1558-0016.

doi:10.1109/TITS.2012.2187894. 13

[32] Xinyu Zhang, Hongbo Gao, Chong Xue, Jianhui Zhao, and Yuchao Liu.

Real-time vehicle detection and tracking using improved histogram of gra-

dient features and Kalman filters. International Journal of Advanced

Robotic Systems, 15(1):1729881417749949, January 2018. ISSN 1729-8806.

doi:10.1177/1729881417749949. 13, 18

[33] Alex Dominguez-Sanchez, Miguel Cazorla, and Sergio Orts-Escolano. Pedestrian

Movement Direction Recognition Using Convolutional Neural Networks. IEEE

Transactions on Intelligent Transportation Systems, 18(12):3540–3548, December

2017. ISSN 1558-0016. doi:10.1109/TITS.2017.2726140. 13, 18

[34] D. Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi, and S. Tubaro.

Deep Convolutional Neural Networks for pedestrian detection. Signal Process-

ing: Image Communication, 47:482–489, September 2016. ISSN 0923-5965.

doi:10.1016/j.image.2016.05.007. 13

[35] Qiong Liu, Jiajun Zhuang, and Jun Ma. Robust and fast pedestrian de-

tection method for far-infrared automotive driving assistance systems. In-

frared Physics & Technology, 60:288–299, September 2013. ISSN 1350-4495.

doi:10.1016/j.infrared.2013.06.003. 14, 18

[36] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-

tonomous driving? The KITTI vision benchmark suite. In 2012 IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 3354–3361, June 2012.

doi:10.1109/CVPR.2012.6248074. 15

[37] Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object classes

https://doi.org/10.1109/TITS.2012.2187894
https://doi.org/10.1177/1729881417749949
https://doi.org/10.1109/TITS.2017.2726140
https://doi.org/10.1016/j.image.2016.05.007
https://doi.org/10.1016/j.infrared.2013.06.003
https://doi.org/10.1109/CVPR.2012.6248074

References 69

in video: A high-definition ground truth database. Pattern Recognition Letters,

30(2):88–97, January 2009. ISSN 0167-8655. doi:10.1016/j.patrec.2008.04.005. 15

[38] Sung Joo Lee, Jaeik Jo, Ho Gi Jung, Kang Ryoung Park, and Jaihie Kim. Real-

Time Gaze Estimator Based on Driver’s Head Orientation for Forward Collision

Warning System. IEEE Transactions on Intelligent Transportation Systems, 12

(1):254–267, March 2011. ISSN 1558-0016. doi:10.1109/TITS.2010.2091503. 16

[39] In-Ho Choi, Sung Kyung Hong, and Yong-Guk Kim. Real-time categorization of

driver’s gaze zone using the deep learning techniques. In 2016 International Con-

ference on Big Data and Smart Computing (BigComp), pages 143–148, January

2016. doi:10.1109/BIGCOMP.2016.7425813.

[40] Sourabh Vora, Akshay Rangesh, and Mohan Manubhai Trivedi. Driver Gaze

Zone Estimation Using Convolutional Neural Networks: A General Framework

and Ablative Analysis. IEEE Transactions on Intelligent Vehicles, 3(3):254–265,

September 2018. ISSN 2379-8904. doi:10.1109/TIV.2018.2843120. 16

[41] Shiyang Yan, Yuxuan Teng, Jeremy S. Smith, and Bailing Zhang. Driver

behavior recognition based on deep convolutional neural networks. In

2016 12th International Conference on Natural Computation, Fuzzy Sys-

tems and Knowledge Discovery (ICNC-FSKD), pages 636–641, August 2016.

doi:10.1109/FSKD.2016.7603248. 16, 18

[42] Duy Tran, Ha Manh Do, Weihua Sheng, He Bai, and Girish Chowdhary. Real-time

detection of distracted driving based on deep learning. IET Intelligent Transport

Systems, 12(10):1210–1219, 2018. ISSN 1751-9578. doi:10.1049/iet-its.2018.5172.

16

[43] Khyati Kapoor, Rajendra Pamula, and Sristi Vns Murthy. Real-Time Driver Dis-

traction Detection System Using Convolutional Neural Networks. In Pradeep Ku-

mar Singh, Bijaya Ketan Panigrahi, Nagender Kumar Suryadevara, Sudhir Kumar

Sharma, and Amit Prakash Singh, editors, Proceedings of ICETIT 2019, Lecture

https://doi.org/10.1016/j.patrec.2008.04.005
https://doi.org/10.1109/TITS.2010.2091503
https://doi.org/10.1109/BIGCOMP.2016.7425813
https://doi.org/10.1109/TIV.2018.2843120
https://doi.org/10.1109/FSKD.2016.7603248
https://doi.org/10.1049/iet-its.2018.5172

70 References

Notes in Electrical Engineering, pages 280–291, Cham, 2020. Springer Interna-

tional Publishing. ISBN 978-3-030-30577-2. doi:10.1007/978-3-030-30577-2 24. 16

[44] Chen Huang, Xiaochen Wang, Jiannong Cao, Shihui Wang, and Yan

Zhang. HCF: A Hybrid CNN Framework for Behavior Detection of Dis-

tracted Drivers. IEEE Access, 8:109335–109349, 2020. ISSN 2169-3536.

doi:10.1109/ACCESS.2020.3001159. 16, 17, 18

[45] Mohan Manubhai Trivedi, Tarak Gandhi, and Joel McCall. Looking-In and

Looking-Out of a Vehicle: Computer-Vision-Based Enhanced Vehicle Safety. IEEE

Transactions on Intelligent Transportation Systems, 8(1):108–120, March 2007.

ISSN 1558-0016. doi:10.1109/TITS.2006.889442. 17

[46] Ashesh Jain, Hema S. Koppula, Bharad Raghavan, Shane Soh, and Ashutosh

Saxena. Car that Knows Before You Do: Anticipating Maneuvers via Learning

Temporal Driving Models. In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 3182–3190, December 2015. doi:10.1109/ICCV.2015.364.

17, 18

[47] Mahdi Rezaei and Reinhard Klette. Look at the Driver, Look at the Road: No

Distraction! No Accident! In 2014 IEEE Conference on Computer Vision and

Pattern Recognition, pages 129–136, June 2014. doi:10.1109/CVPR.2014.24. 17,

18

[48] Google. TensorFlow Lite Task Library, 2021. URL https://www.tensorflow.

org/lite/inference_with_metadata/task_library/overview. 27

[49] TensorFlow. SSD MobileNet v1, 2021. URL https://tfhub.dev/tensorflow/

lite-model/ssd_mobilenet_v1/1/metadata/2. License: Apache-2.0. 27, 28

[50] The TensorFlow Authors. TensorFlow Lite Support. GitHub repository, Jan-

uary 2021. URL https://github.com/tensorflow/tflite-support. License:

Apache-2.0. 27

https://doi.org/10.1007/978-3-030-30577-2_24
https://doi.org/10.1109/ACCESS.2020.3001159
https://doi.org/10.1109/TITS.2006.889442
https://doi.org/10.1109/ICCV.2015.364
https://doi.org/10.1109/CVPR.2014.24
https://www.tensorflow.org/lite/inference_with_metadata/task_library/overview
https://www.tensorflow.org/lite/inference_with_metadata/task_library/overview
https://tfhub.dev/tensorflow/lite-model/ssd_mobilenet_v1/1/metadata/2
https://tfhub.dev/tensorflow/lite-model/ssd_mobilenet_v1/1/metadata/2
https://opensource.org/licenses/Apache-2.0
https://github.com/tensorflow/tflite-support
https://github.com/tensorflow/tflite-support/blob/master/LICENSE

References 71

[51] TensorFlow. MoveNet Lightning, 2022. URL https://tfhub.dev/google/lite-

model/movenet/singlepose/lightning/tflite/float16/4. License: Apache-

2.0. 27, 29

[52] TensorFlow. EfficientDet-Lite4, 2021. URL https://tfhub.dev/tensorflow/

lite-model/efficientdet/lite4/detection/metadata/2. License: Apache-

2.0. 28

[53] Google. Nearby Connections. Google, 2021. URL https://github.com/google/

nearby. License: Apache-2.0. 31

[54] Google. Overview — Nearby Connections API, 2018. URL https://developers.

google.com/nearby/connections/overview. 31

[55] Jonathan Hedley. jsoup, May 2022. URL https://github.com/jhy/jsoup. Li-

cense: MIT. 32

[56] Tonyo Francis. Fetch, February 2022. URL https://github.com/tonyofrancis/

Fetch. License: Apache-2.0. 32

[57] Google. Pixel phone hardware tech specs, 2022. URL https://support.google.

com/pixelphone/answer/7158570. 42

[58] Shara Tibken. Google built an AI chip to make the Pixel 6 smarter and last

longer, October 2021. URL https://www.cnet.com/tech/mobile/pixel-6s-

tensor-chip-inside-the-brains-of-googles-newest-flagship/. 42

[59] OnePlus. OnePlus 8 Specs, 2020. URL https://web.archive.org/web/

20200421084636/https://www.oneplus.com/8/specs. 42

[60] Keith Kressin, Chris Patrick, and Jesse Seed. 2019 Snapdragon 865 Deep Dives

Intro, December 2019. URL https://www.qualcomm.com/content/dam/qcomm-

martech/dm-assets/documents/2019_snapdragon_865_deep_dive_-_intro_-

_keith_kressin_-_chris_patrick_-_jesse_seed.pdf. 42

https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4
https://tfhub.dev/google/lite-model/movenet/singlepose/lightning/tflite/float16/4
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/Apache-2.0
https://tfhub.dev/tensorflow/lite-model/efficientdet/lite4/detection/metadata/2
https://tfhub.dev/tensorflow/lite-model/efficientdet/lite4/detection/metadata/2
https://opensource.org/licenses/Apache-2.0
https://opensource.org/licenses/Apache-2.0
https://github.com/google/nearby
https://github.com/google/nearby
https://github.com/google/nearby/blob/master/LICENSE
https://developers.google.com/nearby/connections/overview
https://developers.google.com/nearby/connections/overview
https://github.com/jhy/jsoup
https://github.com/jhy/jsoup/blob/master/LICENSE
https://github.com/tonyofrancis/Fetch
https://github.com/tonyofrancis/Fetch
https://github.com/tonyofrancis/Fetch/blob/v3.0/LICENSE
https://support.google.com/pixelphone/answer/7158570
https://support.google.com/pixelphone/answer/7158570
https://www.cnet.com/tech/mobile/pixel-6s-tensor-chip-inside-the-brains-of-googles-newest-flagship/
https://www.cnet.com/tech/mobile/pixel-6s-tensor-chip-inside-the-brains-of-googles-newest-flagship/
https://web.archive.org/web/20200421084636/https://www.oneplus.com/8/specs
https://web.archive.org/web/20200421084636/https://www.oneplus.com/8/specs
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/2019_snapdragon_865_deep_dive_-_intro_-_keith_kressin_-_chris_patrick_-_jesse_seed.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/2019_snapdragon_865_deep_dive_-_intro_-_keith_kressin_-_chris_patrick_-_jesse_seed.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/2019_snapdragon_865_deep_dive_-_intro_-_keith_kressin_-_chris_patrick_-_jesse_seed.pdf

72 References

[61] OPPO. OPPO Find X2 Pro Specifications, 2022. URL https://www.oppo.com/

en/smartphone-find-x2-pro/specs/. 42

[62] Joaquim Silva, Eduardo R. B. Marques, Lúıs M.B. Lopes, and Fernando

Silva. Energy-aware adaptive offloading of soft real-time jobs in mobile edge

clouds. Journal of Cloud Computing, 10(38):1–21, July 2021. ISSN 2192-113X.

doi:10.1186/s13677-021-00251-9. 45

https://www.oppo.com/en/smartphone-find-x2-pro/specs/
https://www.oppo.com/en/smartphone-find-x2-pro/specs/
https://doi.org/10.1186/s13677-021-00251-9

	Statement of Originality
	Acknowledgements
	List of Publications
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Background and Literature Review
	2.1 Background
	2.1.1 Cloud Computing
	2.1.2 Internet of Things
	2.1.3 Edge Computing

	2.2 Mobile Device Processing
	2.3 Vehicular Video Analytics
	2.3.1 Road Hazard Detection
	2.3.2 Driver Distractedness Detection
	2.3.3 Simultaneous Inner/Outer Analysis

	2.4 Summary

	3 EdgeDashAnalytics
	3.1 Overview
	3.2 Design and Implementation
	3.2.1 Data Objects
	3.2.2 User Interface
	3.2.3 Video Analysis
	3.2.4 Networking
	3.2.5 Scheduling Algorithm

	4 Evaluation
	4.1 Experimental Settings
	4.2 Results
	4.2.1 Metric Collection
	4.2.2 Turnaround and Skip Rate
	4.2.3 Energy Consumption

	5 Conclusion
	6 Future Work
	References

