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Abstract

The similarities and differences between attribute grammar systems are obscured by their
implementations. A formalism that captures the essence of such systems would allow for
equivalence, correctness, and other analyses to be formally framed and proven. We present
Saiga, a core language and small-step operational semantics that precisely captures the fun-
damental concepts of the evaluation of dynamically scheduled attribute grammars. We also
present and discuss evaluation semantics for reference, parameterised, cached, and higher-
order attribute grammars. Saiga’s utility is demonstrated through proofs about the system’s
operation, equivalence proofs between distinct Saiga attribute grammar programs, and “step
count” comparisons between such programs. The language, semantics and proofs have been
mechanised in Lean.
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Here, I’m gonna do a thing.
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1
Introduction

A programming language is an interface between a human and a computer. A human encodes
some human-readable representation of a program into a source file, typically in text form.
This source file is passed either to an interpreter, which performs some unknowable magic
and executes the task described by the source file, or to a compiler which performs some
similarly unknowable magic and produces an hieroglyphic version of that program, which
somehow can be executed. Magic.

Of course this ‘magic’ is knowable and, once known, is no longer magical. The structure
and implementation of compilers is a well-researched area, with dozens of papers published
every year at multiple international conferences (POPL, PLDI, SPLASH to name a few).
Most computer science departments offer at least one undergraduate unit in language de-
sign. Once an ad hoc endeavour, compilers are now built using various formalisms designed
specifically for the task. Language workbenches [1] bring all of these formalisms together
into a single software suite designed to aid in language design and implementation.

When teaching compiler design to undergraduates, we teach that there are three major
stages to a compiler: structuring, translation, and encoding. Structuring involves lexical and
syntactic analysis – scanning, tokenising, parsing, and tree construction. This is the part of
the compiler that reads some textual representation of a program and produces a tree repre-
senting that program. Translation involves semantic analysis – understanding the semantics
of the program tree, which includes type and name analysis. Translation also includes the
construction of a target program tree – the program tree that represents the compiled pro-
gram. Encoding involves code generation and assembly – the process of encoding a target
program tree into a product that is ready for some machine (real or virtual) to execute.

While every stage of a compiler is important, in this thesis we focus on semantic analysis;
the process of analysing a source program tree to determine if it is valid, and to prepare extra
semantic information for translation or execution, such as name bindings. Since semantic
analysis is a specialised task, a specialised formalism called attribute grammars (AGs) has
been developed to make semantic analysis easier and more consistent. AGs have been around
since the late 60s [2], and are heavily researched. The formalism allows for the productions
of a context-free grammar to be annotated with relational equations.
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Since the specification of an attribute grammar is concerned only with the relationships
between nodes and values, and is not concerned with the order of evaluation, attribute gram-
mars are considered a declarative formalism. A large portion of attribute grammar research,
especially in the first few decades of its existence, was regarding evaluation traversals; gen-
erating algorithms that could traverse any conforming tree in a finite number of passes, guar-
anteeing that every attribute could be evaluated on every node in the tree. The strategy of
analysing an attribute grammar and generating a finite evaluation traversal algorithm is called
static scheduling. This process also involves rejecting attribute grammars that the scheduler
cannot determine a schedule for – whether no such schedule exists, or if it does not fit within
the bounds set out by the scheduler.

An alternative to static scheduling is dynamic scheduling, where an evaluator uses run-
time information, such as the structure of the tree being decorated, to determine an evalu-
ation order [3]. This can take the form of on-demand evaluation, where attributes are only
evaluated once their values are required. The disadvantage of this approach is that cyclic
dependencies are often not discovered until run-time, but this also allows attribute grammar
programs to be written outside of the various attribute grammar classifications that place
restrictions on their specification. Dynamic scheduling also allows for partial evaluation –
with the rise of development environments working alongside compilers for instant error-
reporting and diagnostics, it is valuable to be able to evaluate only the attributes that are
requested; not every attribute in a tree all at once1.

Dynamic scheduling gives an attribute grammar platform the freedom to implement eval-
uation in a variety of new ways. These lifted restrictions also allow new attribute features
and notations to exist, which would not integrate so neatly into statically scheduled plat-
forms. Reference attribute grammars [4], for example, allow an attribute’s value to depend
on the value of an arbitrarily distant node, which can be selected during attribute evaluation.
Reference attribute grammars can be implemented in statically scheduled attribute grammar
systems [5], but exist more naturally in a dynamically scheduled system.

The freedom provided by dynamic scheduling has led to more variety in attribute gram-
mar platforms. Some platforms are deeply embedded in a general purpose programming
language, as in the instance of Kiama [6]. Some platforms stand alone and parse an attribute
grammar specification written in a specialised language, as in the instance of Silver [7]. This
variety is interesting, as two platforms that provide similar functionality can be expressed in
vastly different ways, allow different notation possibilities, and implement different particu-
lar evaluation strategies.

The problem created by this variety of approaches is that the essence of dynamically
schedule attribute grammar evaluation is obfuscated by its many implementations. It is dif-
ficult to reason about any attribute grammar algorithm without implementing it in some
attribute grammar platform, and being bound to the semantics of that platform’s particular
implementation, which may differ significantly to those of another platform.

1.1 Contributions
In this thesis we present a calculus that captures what is common between dynamically
scheduled attribute grammar evaluators. We present a strategy for defining attributes that

1Some static schedulers also allow for incremental evaluation, which can provide similar functionality for
IDEs.
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is flexible enough to mimic a variety of notations while exhibiting consistent evaluation se-
mantics. Our calculus is specific to the domain of dynamically scheduled attribute grammar
evaluation but general enough to represent all common notations and behaviours in the do-
main, and simple enough to allow proofs of evaluation to be easily expressed.

Specifically, the contributions of this thesis are as follows.

1. A calculus which captures the fundamental semantics of dynamically-scheduled at-
tribute grammar evaluation, without being obscured by a general purpose language or
by a particular attribute grammar platform’s implementations.

2. This calculus is defined in the form of an expression language, type rules, and a
small-step operational semantics.

3. A key feature of the semantics presented is the context function, which is a very
flexible framework for defining attribute grammar equations that is notation agnostic.

4. We begin with a core calculus which we extend by implementing some common and
representative attribute grammar extensions, including parameterised attributes, at-
tribute caching, and higher order attributes.

5. Our calculus represents a framework for reasoning about and comparing the behaviour
of attribute grammar programs, aided by a set of metatheoretic properties, for which
we provide comprehensive proofs.

6. The calculus itself, as well as proofs for the majority of these metatheoretic properties,
are mechanised in Lean [8].

7. We demonstrate the utility of these techniques through analysis of a real-world scale
problem: comparing two different approaches to name and type analysis for Feather-
weight Java [9], translated directly from implementations in two different real-world
attribute grammar platforms.

8. This comparison is primarily a proof that two particular attributes always evaluate to
the same value, but we also demonstrate Saiga’s facility for quantitative analysis by
comparing the number of evaluation steps taken for a particular computation.

1.2 Outline
This thesis is organised as follows: first, in Chapter 2, we discuss attribute grammars in
general, including their history, and review some modern attribute grammar platforms. We
examine common attribute grammar extensions, giving examples of how these extensions
can be used in Silver, JastAdd, and Kiama, three modern dynamically scheduled attribute
grammar platforms. The extensions we focus on are reference attributes, parameterised
attributes, attribute caching, higher order attributes, and attribute forwarding. We briefly
discuss circular and collection attributes.

In Chapter 3 we present Saiga, our calculus for dynamically scheduled attribute grammar
evaluation. Built on top of a simple functional calculus, we present an expression language,
type rules, and a step relation that describes small step operational semantics. We discuss
the particulars of Saiga’s implementation and the design decisions behind the calculus, and
present an example that models name analysis for a simple language.
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In Chapter 4 we show how Saiga can be extended with parameterised attributes and
attribute caching. We explore motivating examples, presenting an alternative approach to
name analysis, and showing how caching can impact the performance of an evaluation. In
Chapter 5 we show how higher order attributes can be incorporated into the calculus, and
how Saiga’s flexible strategy for defining attribute equations give attribute forwarding for
free.

Chapter 6 is concerned with proving properties of our calculus, including simple prop-
erties such as determinism and progress, as well as more involved properties such as cache
irrelevance. In Chapter 7 we present an example of Saiga’s use in analysing real-world at-
tribute grammar programs by translating two different implementations of name and type
analysis for Featherweight Java into Saiga specifications and proving their outputs to be
equivalent. These specifications were taken as direct translations from Kiama and JastAdd
programs written by the platform maintainers, and each use a different approach to name
analysis as well as a different notational standard for defining their attributes. Saiga’s ability
to capture both programs – with their distinct individual notations – into the same low-level
formalism demonstrates the strength of our approach. We also demonstrate Saiga’s ability
to perform quantitative analysis by comparing the number of evaluation steps taken by each
approach.

In Chapter 8 we briefly discuss the mechanisation of Saiga in Lean, and how the task
of mechanising our calculus acted as a useful sanity check for many of our theorems. We
demonstrate the strategies used to encode our semantics, and discuss the challenges that
come with mechanising our particular approach to equation selection and higher order eval-
uation. In Chapter 9 we summarise our findings and discuss directions for future work.



The problem with the world is that everyone is
a few drinks behind.

Humphrey Bogart

2
Background

You have a Christmas tree. You are a terrible nerd, so your Christmas tree is a binary tree.

A

B C

D E

Your tree exists, and it is the appropriate shape, but it needs some decoration. You syn-
thesise some green integers in the lab at work and bring them home. You search the attic and
find a box of red integers you inherited from your uncle Don. You will decorate your tree
with these festive integers.

Due to a terminal personality flaw, you are unable to enjoy decorations that do not follow
strict decoration rules. You decide that every node on your tree must have exactly one red
and one green integer (otherwise your tree would look ridiculous). You want the red integer
on the top node to be zero, and every other node’s red integer to be one greater than the red
integer directly above it on the tree. This way the red integers’ values will increase as they
get further down the tree.

You want every node’s green integer to be the sum of the ASCII values of the labels
of its direct children, plus the value of its own red integer. This seems obscure enough to
provoke questions from visitors, providing opportunities for you to condescendingly explain
your decoration formulae. You set down your boxes of red and green integers by the tree,
ready to decorate. But where do you begin?

The integers you are using to decorate your tree are attributes. The formulae you have
decided on to dictate the values of these attributes are attribute equations. The red integer
is an inherited attribute, as its value is determined from data higher in the tree. The green
integer is a synthesised attribute, as its value is determined from data lower in the tree. The
relationships that exist between the undecorated nodes of your original tree are a context-free
grammar, albeit a very simple one. The entirety of the scheme you have cooked up to define
your tree’s decoration is an attribute grammar.
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2.1 Early Attribute Grammars
Before the birth of the attribute grammar, language designers found themselves in a difficult
position. A context-free grammar could define what some text means, in terms of the pro-
gram it represents, or why it does not represent a program at all. What was missing was a
way to define what some program means, or if it is not valid, and why.

In a discussion with Peter Wegner in 1967, Donald Knuth spoke of formal semantics
being defined by a combination of synthesised string-valued attributes, referencing an as-
yet unpublished paper by Lewis et al. [10]. This approach, however, lacked the necessary
contextual information required for things like name binding which are so common in pro-
gramming language semantics. It was Wegner’s idea to combine bottom-up (synthesised)
definitions with top-down (inherited) definitions [11].

The following year, Knuth published the seminal paper on attribute grammars, titled
“Semantics of context-free languages” [2]. The primary issue at this stage was defining
synthesised and inherited attributes in a non-circular way, so that it is possible to derive
a tree traversal that can compute values for all attributes. By 1990, “Attribute Grammars
[had] turned into one of the most fundamental formalisms of modern Computer Science”,
according to Deransart et al. in their book “Attribute Grammars” [12], which cites about 600
attribute grammar-related research papers.

Attribute grammars are built as an extension of context-free grammars, defining both
synthesised and inherited attribute equations alongside production rules, as in the following
example, which specifies the Christmas tree decoration problem posed above.

Production Semantics
P ::= N N.red = 0
N0 ::= Int N1 N2 N0.green = N1.int + N2.int + N0.red

N1.red = N0.red + 1
N2.red = N0.red + 1

N ::= Int N.green = N.red

Above we provide a simple attribute grammar program. The two non-terminals defined
are P and N . Alongside each production rule, a set of attribute definitions are provided. red
is an inherited attribute, as its value is defined in its parent’s production rule, which means
that its data is influenced by values above it in the tree. green is a synthesised attribute, as its
value is defined in its own production rule, which means that its data is influenced by values
below it in the tree.

In the Christmas tree example, there is a simple traversal we can follow to assign red and
green values to all nodes. We start at the top, and give red values to every node on the way
to the bottom. We then start at the bottom, and give green values to every node on the way
to the top. In fact, we can use this traversal to assign values to red and green for any tree that
conforms to the above grammar.

It is the job of an attribute grammar evaluator to come up with this traversal, and to
generate code that can decorate any given tree with attribute values that conform to their
equations. However there are some attribute grammar programs that cannot be satisfied; if
a circular dependency exists between attributes, there may be no values that satisfy their
equations. For example, if we redefined the attribute equation for red attached to the pro-
duction rule for P as shown below, the attribute grammar program would become circular,
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and Knuth’s algorithm would not be able to derive a tree traversal. Consider the Christmas
tree grammar shown above, where the first production is replaced by the following produc-
tion and attribute definition.

P ::= N N.red = N.green

For a node created by the P production, its red value is determined by its green value.
However, a node’s green value is also determined by its red value. Therefore the value of
red and green is undefined for such a node. This kind of logic cycle must be avoided for an
attribute grammar program to be evaluable.

2.1.1 Statically Scheduled Attribute Grammar Categories

Over the years, a number of attribute grammar categories have developed, each with its own
strengths and evaluation strategies.

Purely Synthesised Attribute Grammars

In his seminal attribute grammars paper [2], Knuth introduced purely synthesised attribute
grammars. For an attribute to be purely synthesised, no inherited attributes can be present. It
is possible to build a time-optimal system that combines both syntactic and semantic analysis
under this category [12, 13].

Purely synthesised attribute grammars are able to encode the same semantics available to
other categories, as all data in a tree is indirectly available to the root node through synthesis
alone. However, “such a restriction leads to a very awkward and unnatural definition of
semantics” [2].

Non-Circular Attribute Grammars

The attribute grammars that were the focus of Knuth’s first paper [2] were non-circular
attribute grammars: attribute grammars that did not exhibit any dependency cycles between
attributes. Knuth provided an algorithm for testing an attribute grammar for circularity in
polynomial time, which turned out to have an error. He issued a correction [14] that shows his
algorithm was in fact exponential in complexity. It is important for static attribute grammar
evaluators to be able to detect circularities statically, as it is their job to generate an algorithm
that can decorate any input tree.

Strongly (or Absolutely) Non-Circular Attribute Grammars

Kennedy et al. introduced absolutely non-circular attribute grammars [15] in 1976. Cour-
celle et al. introduced strongly non-circular attribute grammars [16] in 1982, without prior
knowledge of Kennedy’s work. The two categories are considered equivalent [12, 17], and
Courcelle et al. also reference benign attribute grammars [18] as a similar category.

Strongly non-circular attribute grammars are a subset of non-circular attribute grammars
which consider a pessimistic view of attribute dependencies, considering an attribute’s de-
pendencies to be a union of all its productions’ dependencies, even when in reality they may
be disjoint between productions. Strong non-circularity is decidable in polynomial time,
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while deciding if an attribute grammar is benign or non-circular is exponential [16]. Inter-
estingly, the algorithm for detecting strong non-circularity is similar to the original flawed
algorithm for detecting non-circularity by Knuth in 1968 [11, 19].

As strongly non-circular attribute grammars are a subset of non-circular attribute gram-
mars, some valid non-circular attribute grammar programs are excluded. However, it has
been found in practice that these restrictions do not limit expressibility in real-world appli-
cations [16, 17].

Kennedy et al. give an iterative algorithm for evaluating strongly non-circular attribute
grammars, while Courcelle et al. take a recursive approach, showing that any strongly non-
circular attribute grammar is equivalent to a set of functions recursively defined over the
structure of a tree [16]. Jourdan takes the idea of recursive evaluation further [17] and shows
that strongly non-circular attribute grammars (and indeed any attribute grammar [3]) can
be evaluated dynamically in an “on-demand” manner, birthing the dynamically scheduled
attribute grammar that this thesis is focused on.

Ordered Attribute Grammars

In 1980, Kastens presented ordered attribute grammars [20]. An attribute grammar is con-
sidered ordered if a partial order exists over all attributes such that the attributes can be eval-
uated in an order conforming to that partial order, on any tree conforming to the grammar.
Kastens provides an algorithm for checking whether an attribute grammar is ordered, with a
polynomial time complexity over the size of the grammar. The evaluator is also generated in
polynomial time, as the test is constructive.

Ordered attribute grammars are a subset of strongly non-circular attribute grammars [21].
Kastens introduces the concept of visit-sequences, which is derived from the attributes’ par-
tial order, and describes the order in which a subtree can be traversed to evaluate its attributes,
yielding the attribute evaluation algorithm.

Other Categories

Numerous other attribute grammar categories exist. Engelfriet et al. presents l-ordered
attribute grammars [22], based on an early version of ordered attribute grammars by Kas-
tens [23]. Filé presents doubly non-circular attribute grammars [24], a supercategory of
l-ordered attribute grammars, and Barbar shows that the partially-ordered attribute gram-
mars [25] are a superset of doubly non-circular attribute grammars.

2.2 Dynamically Scheduled Attribute Grammars

In recent years, the majority of the research in attribute grammars has focused on dynam-
ically scheduled evaluation, where run-time information such as the particular tree being
decorated is used to determine which attributes are to be evaluated, and in what order [6].
The concept of dynamic attribute grammar evaluation was first introduced by Jourdan [3]
in 1984, who presented an evaluation method which discovered circular dependencies at
runtime, and performed “evaluation by need”; a lazy approach to attribute evaluation.

One advantage provided by demand-driven evaluation is non-strict conditionals. While
some statically scheduled attribute grammar systems allow for similar behaviour [26], Jour-
dan shows that demand-driven evaluation allows only one branch of a conditional to be
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evaluated, allowing evaluation of attribute grammar programs that would not be considered
non-circular in the original sense1.

Note that not all dynamically scheduled attribute grammars use demand-driven or lazy
evaluation. Some evaluators [27, 28] perform analysis of a tree at runtime to determine an
evaluation order and then execute it. In this thesis we are not interested in such evaluators, so
when we say “dynamically scheduled” we are referring to the more common demand-driven
evaluation schemes2.

There are numerous prominent examples of dynamically scheduled attribute grammar
platforms: Saraiva’s LRC [29] (1999), Hedin’s JastAdd [30–32] (2003), Baars’ UU AG [33]
(2003), Van Wyk’s Silver [7] (2008), and Sloane’s Kiama [6] (2010). These are all dynam-
ically scheduled attribute grammar platforms, but each has its own particular approach to
solving the problem. To quote Paakki, who was not speaking of these particular systems but
of attribute grammar systems in general: “Each system has its own specification language,
in a sense a special dialect of attribute grammars” [34].

On top of notational differences, each platform adopts a subset of a large set of common
attribute grammar extensions. This list includes (but is not limited to) reference attributes,
parameterised attributes, attribute caching, higher order attributes, attribute forwarding, cir-
cular attributes, and collection attributes.

In this chapter we will focus on three prominent systems: JastAdd, Silver, and Kiama. In
Section 2.2.1 we will discuss notational differences between these systems, implementing a
common example. In Section 2.3 we will discuss which extensions are supported by each of
these systems, and how they are implemented in each system.

2.2.1 Attribute Grammar Notations
Earlier in this chapter we presented an example attribute grammar written in a simple no-
tation not belonging to any particular attribute grammar platform. In a similar notation, we
present another toy program: globmin. From this point on we use sans serif text when-
ever we refer to a concrete attribute.

Production Semantics
P ::= N N.globmin = N.locmin
N0 ::= N1 N2 N0.locmin = min(N1.locmin, N2.locmin)

N1.globmin = N0.globmin
N2.globmin = N0.globmin

N ::= Int N.locmin = Int.value

The purpose of globmin is to give every node access to the value of the smallest leaf
value in the tree. The locmin attribute is synthesised, giving each subtree access to its
smallest leaf value. The globmin attribute is inherited, copying this value back down the
tree to every node.

1Again, there are some approaches in statically scheduled systems that allow for evaluating conditionals
that would not appear non-circular in the the original sense [26]. As with reference attributes, this is a feature
that is provided ‘for free’ by dynamic schedulers, rather than having a special algorithm provided to deal with
them.

2Technically, demand-driven evaluation is not “scheduled” at all, as it happens on-the-fly. We use this term,
however, as it is common in literature and helps to distinguish these approaches from traditional statically-
scheduled approaches.
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We will show how this simple attribute grammar program can be implemented in Silver,
JastAdd, and Kiama.

Silver

Silver (named for “Ag”, the chemical symbol for silver) is a fully generated attribute gram-
mar platform developed in Silver via bootstrapping. Silver is fully generated as there is no
“back-door” to any host language for writing attribute equation definitions; the entire at-
tribute grammar language is custom made. This property is helpful as allowing arbitrary
general-purpose code in expressions can lead to behaviour not supported by the attribute
grammar platform.

Silver delegates its parsing to Copper, a parser generator that usually comes bundled
with the framework. Silver supports syntax definition that builds an abstract syntax tree, and
attributes can be defined on either the concrete tree, the abstract tree, or both. In the example
we will explore, we define the attribute locmin and globmin on the abstract syntax tree.

Figure 2.1 shows globmin and locmin specified in Silver, for a binary tree made from
Expr nodes, Integer leaves, and a Root root node. Line 1 declares that locmin is a
synthesised attribute, and line 2 declares that globmin is an inherited attribute. Both are of
type integer.

Lines 4 and 5 state which attributes are applicable to which nonterminals. There are
three productions in this abstract grammar, as in the globmin example given previously.
There are five attribute equations given, which match up with the five equations given in the
previous example.

The synthesised attribute locmin is defined on lines 16 and 24. These rules have a
symbol referencing the “head” of the production rule on the left hand side of the assignment,
accessing symbols representing the node’s children on the right hand side. This means that
information flows upwards in the tree.

The inherited attribute globmin is defined on lines 10, 17, and 18. These rules have
a symbol referencing a child node on the left hand side of the assignment, accessing the
symbol representing the “head” of the production rule on the right hand side. This means
that information flows downwards in the tree.

There are two nonterminals in use in this example, but there are three sets of equations.
In Silver, an attribute’s equation at any point in the tree is selected based not on the type of
the node, but on the production rule that derived it. Sometimes that equation is given by the
derivation of the node itself (synthesised attributes), and sometimes it is given by its parent’s
derivation (inherited attributes). In our terminology, this means Silver uses production-based
equation selection.

JastAdd

JastAdd is a partially-generated attribute grammar platform developed in Java, which accepts
imperative Java snippets as part of attribute equation definitions, and compiles to Java. Jas-
tAdd is partially generated as systems are written in a JastAdd-specific language which is
parsed and processed outside of Java, but it allows a back door into Java through untranslated
code snippets. This property is helpful as it allows a combination of declarative specification
provided by attribute grammars and imperative programming provided by Java.

JastAdd works with any Java-based parser generator that supports semantic actions to
allow the parsing specification to build JastAdd ASTs [35]. Attribute definitions are sepa-
rated into inherited and synthesised definitions, as in Silver. We implement the globmin
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and locmin attributes in a working example that decorates a binary tree, as we did in Silver.
Figure 2.2 shows globmin and locmin specified in JastAdd, for a binary tree made

from EPlus fork nodes, EInt leaf nodes, and a Program root node. Line 2 declares that
locmin is a synthesised attribute, and line 3 declares that globmin is an inherited attribute.
Both are of type integer, and occur on Expr nodes. Expr is an abstract node type, consisting
of both EPlus and EInt.

Lines 5 and 6 provide equations for the locmin attribute on the two types under Expr.
On the right hand side of the assignment-style syntax, getters such as getL and getR provide
access to component (child) nodes, and attributes are accessed using method notation, as in
getL().locmin(). Generic Java code is allowed in these equations, so the Java method
Math.min is used as a semantic function. In Line 6, getV accesses the integer component
of an EInt node.

The inherited attribute globmin is defined on lines 8, 9, and 10. Line 8 specifies
globmin’s attribute equation for any node returned from the getExprmethod of a Program
node. The right-hand side of this assignment-style rule specifies a value in the context of the
parent Program node.

This is an interesting notation. JastAdd attribute equations are not written alongside
production rules; they are separated into “aspects” and use object-oriented style declarations,
defining a “method” for each appropriate “subclass”. When using this OO-style approach,
an important question to ask is: given that a node does not know about its parent, how does
one define inherited attributes?

Hedin et al. settled on the notation shown in lines 8-10, where inherited attributes are
defined in the context of the parent node, which very closely mirrors the production-based
inherited attributes of Silver and more traditional attribute grammar systems. However, Jas-
tAdd does not use production-based attribute selection; they have just implemented notation
that allows a parent to define its children’s attribute equations. Equations are defined accord-
ing to the type of the node, which means JastAdd uses symbol-based equation selection.

JastAdd also provides “autocopy” rules for inherited attributes. If lines 9 and 10 are
removed from the specification in Figure 2.2, the behaviour will not change. Inherited at-
tributes are defined to automatically query the same attribute on their parent, unless otherwise
specified. Leaving out lines 9 and 10 would mean the children of an EPlus node would re-
quest their parent’s globmin, which would request its parent’s attribute, and so on until a
node with a differently-defined equation is met.

Silver also supports autocopy inherited attributes with the autocopy keyword.

Kiama

Kiama is a fully embedded attribute grammar platform embedded in Scala [36]. Unlike
Silver and JastAdd, Kiama exists entirely within a general purpose programming language,
so is not a code generator at all. Scala has support for domain-specific notations that allow
libraries like Kiama to specify their own syntax, to an extent, which will be processed as
valid Scala code. This approach grants a great deal of flexibility, as the full functionality
of Scala is available alongside the attribution mechanics implemented in Kiama. Further,
attribution mechanics need not stand alone; they can be added to any appropriate tree in an
existing project in Scala.

Like JastAdd, Kiama works with any kind of parser or parser generator in Scala. The
“input” for Kiama attribute grammars is not a source file but any tree based on Product.
Product is a special high-level trait in Scala that represents simple classes that contain
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1 synthesized attribute locmin :: Integer;
2 inherited attribute globmin :: Integer;
3
4 nonterminal Root;
5 nonterminal Expr with globmin, locmin;
6
7 abstract production root
8 r::Root ::= e::Expr
9 {

10 e.globmin = e.locmin;
11 }
12
13 abstract production add
14 sum::Expr ::= l::Expr r::Expr
15 {
16 sum.locmin = min(l.locmin, r.locmin);
17 l.globmin = sum.globmin;
18 r.globmin = sum.globmin;
19 }
20
21 abstract production integerConstant
22 e::Expr ::= i::Integer
23 {
24 e.locmin = i;
25 }

Figure 2.1: The globmin program specified in Silver.

1 aspect GlobminLocmin {
2 syn Integer Expr.locmin();
3 inh Integer Expr.globmin();
4
5 eq EPlus.locmin() = Math.min(getL().locmin(), getR().locmin());
6 eq EInt.locmin() = getV();
7
8 eq Program.getExpr().globmin() = getExpr().locmin();
9 eq EPlus.getL().globmin() = globmin();

10 eq EPlus.getR().globmin() = globmin();
11 }

Figure 2.2: The globmin program specified in JastAdd.
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instances of other classes, with some basic scaffolding to access children arbitrarily. Kiama
does, however, provide a parser combinator library which we used to build our working
globmin program.

1 lazy val locmin : Expr => Integer =
2 attr {
3 case EPlus(l, r) => min(locmin(l), locmin(r))
4 case EInt(i) => i
5 }
6
7 lazy val globmin : Expr => Integer =
8 attr {
9 case tree.parent(p) => globmin(p)

10 case e => locmin(e)
11 }

Figure 2.3: The globmin attribute program specified in Kiama.

Figure 2.3 shows globmin and locmin specified in Kiama, for a binary tree made from
EPlus fork nodes and EInt leaf nodes. Lines 1-5 define the locmin attribute, and lines 7-
11 define the globmin attribute. Neither attribute is declared to be either synthesised or
inherited, as Kiama does not make a distinction between these two types of attribute. Both
attributes are of type Integer.

Line 1 indicates that locmin occurs on any Expr node. In our example, all nodes are
Expr nodes, so this means that locmin occurs on every node in the tree. Further, the equa-
tion(s) provided in lines 2-5 apply to every node. It is possible to define attributes that only
occur on specific types of node in Kiama. An attribute is essentially a function from node to
value, and the domain of that function specifies which nodes have an attribute “occurrence”
on them.

The function that defines locmin is defined on lines 2-5. It is normal in Kiama to phrase
this function as a pattern match on the input node, as is shown on lines 3 and 4. This pattern
provides the semantic equivalent of writing different equations for each node type, while still
allowing the attribute grammar writer to write more general expressions. Pattern matching
allows convenient access to child nodes, as seen on line 3. Attributes are accessed using a
function notation, as in locmin(l).

The globmin attribute draws information from nodes higher in the tree. In the tradi-
tional sense, globmin is an inherited attribute. Kiama provides pattern matching extractors
(also known as view patterns) to grant access to related nodes in the tree. Line 9 uses the
tree.parent extractor to attempt to retrieve p, the node’s parent. If this parent exists, its
globmin is recursively requested. If it does not exist, then the tree.parent extractor fails,
and the generic case in line 10 is matched. Line 10 exists because it is possible for there to
be a node with no parent: the root node. Instead of providing a special root node type, like
Root in the Silver example and Program in the JastAdd example, Kiama simply recognises
the absence of the parent to achieve equivalent behaviour. Kiama also supports “autocopy”
inherited attributes through the use of decorators, which describe families of attribute traver-
sals.

Kiama defines a single equation for each attribute. It is normal behaviour to define this
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equation as a set of pattern matches on node types to implement the semantics of symbol-
based attribute selection, but this is optional, and it is possible to write a single simple equa-
tion for any node type. Therefore Kiama uses attribute-based equation selection, while
providing tools to separate equations in a number of useful ways.

2.3 Attribute Grammar Extensions
The attribute grammar literature has been producing extensions to base attribute grammars
from the very beginning. In this chapter we discuss a number of common attribute grammar
extensions, and how their implementations differ in modern dynamically scheduled attribute
grammar platforms.

2.3.1 Reference Attribute Grammars
It makes sense to say that a tree is a collection of related nodes, where there are exactly two
kinds of relationship: the parent relationship and the child relationship. Attribute grammars
were designed from the beginning to facilitate computations using these two relationships.
However, after a few decades of use, it became clear that non-local dependencies were a
common concern when writing attribute grammar specifications. In other words, sometimes
there are important relationships in a tree that are not as simple as ‘parent’ or ‘child’, which
would be useful to leverage when defining attribute equations. For example, to retrieve
the type of a variable use we might want to evaluate var.decl.type, where decl is the
relationship between a variable use and its declaration.

A common solution to this problem is to allow attributes to evaluate to a reference to a
node, and to allow access to the attributes of this returned node. Poetzsh-Heffter presented
the MAX system in 1993 [37] which allowed distant attribute occurrences, enabling this be-
haviour. Boyland presented remote attribute grammars in 1996 [38], which similarly allow
access to remote nodes. Hedin presented reference attribute grammars in 2000 [4], which
allow such behaviour using an object-oriented approach. The term “reference attribute gram-
mars” is used more commonly than “remote” or “distant”, so it is the term we use in this
thesis.

Reference attribute grammars are usually implemented by allowing attribution expres-
sions to form a chain, such as node.refAttr.locAttr. To demonstrate reference at-
tributes, we define the “refmin” problem. This is similar to the “globmin” problem of Sec-
tion 2.2.1, but every node now is granted a reference to the smallest leaf in the tree. In the
same simple notation we have used before, we can express this problem as follows.

Production Semantics
P ::= N N.globrefmin = N.locrefmin
N0 ::= N1 N2 N0.locrefmin = if (N1.locrefmin.val < N2.locrefmin.val)

then N1.locrefmin
else N2.locrefmin
N1.globrefmin = N0.globrefmin
N2.globrefmin = N0.globrefmin

N ::= Int N.locrefmin = N

We implement refmin using two attributes; locrefmin and globrefmin. The strategy is
very similar to that used in the globmin example, but with references to nodes passed around,



2.3 Attribute Grammar Extensions 15

1 synthesized attribute locrefmin :: Expr;
2 autocopy attribute globrefmin :: Expr;
3 synthesized attribute val :: Integer;
4
5 nonterminal Root with locrefmin;
6 nonterminal Expr with globrefmin, locrefmin, val;
7
8 abstract production root
9 r::Root ::= e::Expr

10 {
11 r.locrefmin = e.locrefmin;
12 e.globrefmin = e.locrefmin;
13 }
14
15 abstract production add
16 sum::Expr ::= l::Expr r::Expr
17 {
18 sum.locrefmin = if (l.locrefmin.val < r.locrefmin.val)
19 then l.locrefmin
20 else r.locrefmin;
21 }
22
23 abstract production integerConstant
24 e::Expr ::= i::Integer
25 {
26 e.locrefmin = e;
27 e.val = i;
28 }

Figure 2.4: The refmin attribute program specified in Silver

1 lazy val locrefmin : Expr => EInt =
2 attr {
3 case EPlus(l, r) if locrefmin(l).i
4 < locrefmin(r).i => locrefmin(l)
5 case EPlus(_, r) => locrefmin(r)
6 case e : EInt => e
7 }
8
9 lazy val globrefmin : Expr => EInt =

10 attr {
11 case tree.parent(p) => globrefmin(p)
12 case e => locrefmin(e)
13 }

Figure 2.5: The refmin attribute program specified in Kiama.
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1 aspect Refmin {
2 syn EInt Expr.locrefmin();
3 inh EInt Expr.globrefmin();
4
5 eq Program.getExpr().globrefmin() = getExpr().locrefmin();
6
7 eq EPlus.locrefmin() {
8 EInt lmin = getL().locrefmin();
9 EInt rmin = getR().locrefmin();

10 if (lmin.getV() < rmin.getV())
11 return lmin;
12 return rmin;
13 }
14
15 eq EInt.locrefmin() = this;
16 }

Figure 2.6: The refmin attribute program specified in JastAdd.

instead of integer values. Figure 2.4 shows these attributes implemented in Silver. The
attributes locrefmin and globrefmin are defined on lines 1 and 2, and are of type Expr.
Line 18 shows that the node represented by locrefmin can have its attributes accessed, as
in l.locrefmin.val. The most interesting part of this specification is line 26, where one
of the production symbols e is the entirety of the return equation. This means the attribute
value in this instance is a reference to the node itself.

Figure 2.6 shows the same attributes implemented in JastAdd. Since the tree in JastAdd
distinguishes in type between fork and leaf nodes (unlike the Silver implementation), the
attributes locrefmin and globrefmin return an EInt node, which is specifically a leaf
node. The advantage of this is that the type system guarantees that these attributes will never
return a fork node. This also means that it is possible to directly access the non-attribute fields
of the return node, as in lmin.getV() on line 10. Line 15 shows the attribute locrefmin
returning a reference to the node being evaluated upon, using the this keyword.

Figure 2.5 shows these attributes implemented in Kiama. Again, the attributes return
specifically a leaf node, in this case of type EInt. Kiama here blurs the line between equa-
tion selection and attribute definition by allowing attributes to be evaluated as a guard on a
pattern match. This is again one of the advantages of a deep embedding in a general purpose
programming language. Lines 3 to 5 define locrefmin for fork nodes, and Line 6 returns
the pattern matched metavariable e to provide a reference to the node being evaluated upon.

The calculus we present in this thesis implements reference attribute grammars in a sim-
ilar way to the examples depicted here; attributes can simply return a node reference, and
this reference can have its attributes evaluated. In fact, our calculus uses reference attributes
to implement all kinds of relative access, such as the parent or child relatives, not just
remote node access. See Chapter 3 for more detail.
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1 aspect CountLess {
2 syn Integer Expr.countless(Integer i);
3 eq EPlus.countless(Integer i) = getL().countless(i)
4 + getR().countless(i);
5 eq EInt.countless(Integer i) = (getV() < i) ? 1 : 0;
6 }

Figure 2.7: The countless attribute specified in JastAdd.

1 lazy val countless : Integer => Expr => Integer =
2 paramAttr {
3 cap => {
4 case EPlus(l, r) => countless(cap)(l) + countless(cap)(r)
5 case EInt(i) => if (i < cap) 1 else 0
6 }
7 }

Figure 2.8: The countless attribute implemented in Kiama.

1 aspect CountLess {
2 syn Integer Expr.countless(Integer i);
3 eq EPlus.countless(Integer i) = getL().countless(i)
4 + getR().countless(i);
5 eq EInt.countless(Integer i) {
6 System.out.println("countless("+i+") eval’d on leaf " + getV());
7 return (getV() < i) ? 1 : 0;
8 }
9 }

Figure 2.9: The countless attribute specified in JastAdd, with debug printing.

1 tree: 9 + 7 + 4 + 3 + 99
2 countless(15) eval’d on leaf 9
3 countless(15) eval’d on leaf 7
4 countless(15) eval’d on leaf 4
5 countless(15) eval’d on leaf 3
6 countless(15) eval’d on leaf 99
7 countless(15)’s value on root node: 4
8 countless(15)’s value on root node: 4
9 countless(5) eval’d on leaf 9

10 countless(5) eval’d on leaf 7
11 countless(5) eval’d on leaf 4
12 countless(5) eval’d on leaf 3
13 countless(5) eval’d on leaf 99
14 countless(5)’s value on root node: 2

Figure 2.10: The output of running the JastAdd implementation of countless with debug
printing, on the tree parsed from 9 + 7 + 4 + 3 + 99.
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2.3.2 Parameterised Attribute Grammars
If you approach attribute grammars from an object-oriented point of view, then attributes
can be considered parameterless methods on a node. Parameterised attributes [4] emerge
when these “methods” become parameterised. Parameterised attributes are not implemented
in statically scheduled attribute grammar systems, as adding parameterisation changes the
number of attribute dependencies each attribute can have from definitely finite to potentially
infinite.

While it may be an intractable task to implement parameterisation in a statically sched-
uled system, object-oriented attribute grammar platforms like JastAdd and Kiama implement
them quite simply. Silver does not support parameterised attributes in the same sense that
Kiama and JastAdd do; attributes can have a type parameter, and attributes can return a
function, but attributes themselves can not be parameterised.

Generally speaking, the syntax for calling a parameterised attribute is similar to the fa-
miliar syntax of method calling, as in node.parAttr(param). To demonstrate parame-
terised attributes, we define the “countless” problem. This is set on a binary tree with integer
leaves, as in previous examples, but involves only the parameterised synthesised attribute
countless, which counts the number of leaves under a certain value in a subtree.

Production Semantics
P ::= N P.countless(c) = N.countless(c)
N0 ::= N1 N2 N0.countless(c) = N1.countless(c) + N2.countless(c)
N ::= Int N.countless(c) = Int.value < c ? 1 : 0

Figure 2.7 shows countless implemented in JastAdd. The implementation is straight-
forward, with attribute parameter declarations written between previously empty parentheses
on lines 2, 3, and 5. Java’s ternary conditional operator is used at leaf nodes.

Figure 2.8 shows countless implemented in Kiama. The type signature of the attribute
on line 1 shows that an integer is expected as well as an Expr node as an input to the compu-
tation. It is required in Kiama that parameters be placed before nodes when specifying pa-
rameterised attributes. Line 2 shows the use of the paramAttr wrapper instead of the usual
attr. The integer is matched by the metavariable cap and used in expressing the attribute’s
equation. As Kiama calls attributes using a function notation, parameterised attributes are
called in a curried way, as seen in countless(cap)(l) on line 4.

The calculus we present in this thesis implements parameterised attributes by requiring
all attributes to take a single parameter, and using the unit type and tuples to accommodate
attributes with zero or multiple parameters. See Chapter 4 for more detail.

2.3.3 Attribute Caching
Statically scheduled attribute grammar evaluators evaluate every attribute on every node in
a tree, usually in multiple passes. Multiple passes are only useful if each pass has the side
effect of decorating the tree some with computed attribute values. When using a recursive
demand-driven approach to evaluation, as most dynamically scheduled platforms use, it is
no longer strictly necessary to store computed attribute values; as long as there are no side
effects, recomputing attributes will not change any outputs.

However, recomputing values is usually slower than recalling stored attribute values.
The seminal paper on demand-driven evaluation [3] did not use the words “caching” or
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“memoisation”, but makes its time-optimal claims based on the same strategy. Silver, Jas-
tAdd and Kiama all support attribute caching transparently. Both JastAdd and Kiama sup-
port the caching of parameterised attributes, where the value for each attribute, and for
each set of parameter values for that attribute, are cached upon evaluation. For example
node.parAttr(1) might be cached, but node.parAttr(2) might still be uncached, and
would be computed on demand.

As caching is not a notation-level extension, but a behaviour that happens silently during
evaluation, we will not implement any new examples to demonstrate this feature. However,
we will show the output when evaluating the JastAdd implementation of countless, with
the extra line 6 as shown in Figure 2.9.

Figure 2.10 shows the output when running our compiled version of countless imple-
mented in JastAdd, when the input tree is a binary tree representation of 9 + 7 + 4 + 3
+ 99. First, countless(15) is evaluated on the root node. Lines 2-6 show that each of the
leaves are accessed in left-to-right order, as their values for countless(15) are evaluated.
The output value of 4 is shown in line 7.

Then countless(15) is evaluated on the root again. Notice on line 8 that the output
value of 4 is given without any intermediary leaf evaluations. This is because the value for
countless(15) has been cached for every node in the tree, meaning evaluation is no longer
necessary, so the output side-effect from line 6 of Figure 2.9 is never triggered.

Finally, countless(5) is evaluated on the root node. Since countless(5) has not
been evaluated on any nodes in the tree yet, we again see that evaluation reaches each leaf
node in left-to-right order, before finally a value of 2 is found for the root node, as shown on
line 14. This demonstrates that JastAdd is silently caching parameterised attributes during
evaluation.

The calculus we present in this thesis implements attribute caching, including the caching
of parameterised attributes. See Chapter 4 for more detail.

2.3.4 Higher Order Attribute Grammars
While reference attribute grammars allow an attribute to return a reference to a node in the
existing tree, higher order attribute grammars allow attribute evaluation to construct new
nodes (and therefore trees), which can in turn be decorated. Higher order attribute grammars
were introduced by Vogt and Swierstra in the late 1980s [39, 40], and are sometimes referred
to as non-terminal attributes.

There are statically scheduled attribute grammar platforms that support higher-order at-
tributes, such as in the work of Vogt et al. [39], which uses ordered attribute grammars.
However, statically defining a traversal for a tree that grows during evaluation can be a com-
plex task. Dynamic scheduling, however, can take higher-order evaluation in its stride.

Higher order attribute grammars are implemented in Silver, JastAdd, and Kiama. Silver
uses higher order attributes as part of a normal work flow, to generate an abstract syntax tree
as a higher order attribute of a concrete syntax tree. We used this feature to build the abstract
syntax we wrote attributes for in all of the Silver examples in this chapter so far.

To demonstrate this extension, we present the repmin problem, which is similar to
globmin, but every subtree is given a clone of itself, in which all leaves now hold the value
of the smallest leaf node in the original tree. We adjust the notation we have been using for
platform-independent grammar specifications to include a name with each production, which
can be used as a constructor for new nodes. These constructors are used in the definition of
the repmin attribute below. We assume the attribute globmin is available.
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1 val repmin : Expr => Expr =
2 attr {
3 case EPlus(l, r) => EPlus(repmin(l), repmin(r))
4 case n : EInt => EInt(globmin(n))
5 }

Figure 2.11: The repmin attribute implemented in Kiama, assuming globmin is already
implemented.

1 syn nta Expr Expr.repmin();
2
3 eq EPlus.repmin() = new EPlus(getL().repmin(), getR().repmin());
4 eq EInt.repmin() = new EInt(globmin());

Figure 2.12: The repmin attribute implemented in JastAdd, assuming globmin is already
implemented.

1 synthesized attribute repmin<a> :: a;
2
3 nonterminal Root with locmin, repmin<Root>;
4 nonterminal Expr with globmin, locmin, repmin<Expr>;
5
6 abstract production root
7 r::Root ::= e::Expr
8 { r.repmin = root(e.repmin); }
9

10 abstract production add
11 sum::Expr ::= l::Expr r::Expr
12 { sum.repmin = add(l.repmin, r.repmin); }
13
14 abstract production integerConstant
15 e::Expr ::= i::Integer
16 { e.repmin = integerConstant(e.globmin); }

Figure 2.13: The repmin attribute implemented in Silver, assuming globmin is already
implemented.
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Name Production Semantics
root P ::= N P.repmin = root(N.repmin)
fork N0 ::= N1 N2 N0.repmin = fork(N1.repmin, N2.repmin)
leaf N ::= Int N.repmin = leaf(N.globmin)

To explore how real-world attribute grammar platforms implement higher order attributes,
we will implement repmin in Kiama, JastAdd, and Silver. First examine the Kiama imple-
mentation in Figure 2.11. Line 1 shows that the output type of the repmin attribute is Expr,
which is the same as the input type. The attribute equations construct new trees in lines 3
and 4, recursively calling repmin to construct appropriate subtrees. There is no special no-
tation to indicate that this attribute is higher order. However, there are limitations to Kiama’s
approach; new subtrees do not have access to their parent nodes, so inherited attributes of
the root cannot be evaluated in the normal way on trees created during attribution.

The JastAdd implementation of repmin is shown in Figure 2.12. Line 1 uses the nta
keyword to indicate that repmin is a nonterminal (or higher order) attribute. Otherwise, the
implementation is very similar to the Kiama implementation, with lines 3 and 4 showing tree
construction, including recursive calls to repmin.

Figure 2.13 shows the implementation of repmin in Silver, which is a little more inter-
esting. While optional, Silver allows type parameterised attributes, and repmin is declared
using this feature on line 1. Lines 3 and 4 indicate that repmin has type Root and Expr
when called on a Root or Expr node, respectively. This is useful, as the type system now
guarantees that the “clone” of each node will have the same type as its original. Such an im-
plementation is not possible in Kiama or JastAdd. Apart from this change, implementation
is similar, with new subtrees being constructed on lines 8, 12, and 16.

Higher Order Nodes in the Existing Tree

Consider the following binary tree, with fork and leaf nodes, and an additional higher order
node leaf4 (doubly outlined in red).

fork1

leaf1 fork2

leaf2 leaf3

leaf4

In the original tree, as with all trees that we aim to decorate, we assume that each node
has access to its children and its parent. The relationship between fork1 and leaf1 is a
child relationship, and the relationship between leaf2 and fork2 is a parent relationship.

How, then, do we classify the relationship between fork1 and leaf4? How do we
classify inverse relationship, between leaf4 and fork1? It might seem like a good idea
to consider leaf4 to be one of fork1’s children, and it might seem like a good idea to
consider fork1 the parent of leaf4. However, not all attribute grammar platforms offer the
same semantics in this regard.

In Kiama, leaf4 is accessible to fork1 via a higher order attribute, but it is not listed
as one of its children; if a generic traversal decorator is used to visit every node in the tree,
higher order nodes such as leaf4 will be omitted. Further, the pattern matching extractor
tree.parent(p) will not successfully recognise fork1 as the parent of leaf4. If leaf4
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had children, these would also not have access to leaf4 as a parent node. This might be
considered a shortcoming of Kiama’s approach to higher order attributes, and changes to
these semantics are intended for future versions of the platform.

In JastAdd, leaf4 is considered a child of fork1, and fork1 is considered the parent of
leaf4. To be more precise, the method-style attribute reference that yields the higher order
node leaf4 can be used to define a synthesised attribute on fork1 or an inherited attribute on
leaf4. This behaviour is recursive, with any recursively created children of leaf4 having
full “up” and “down” access between them. This is further evidence that JastAdd implements
symbol-based equation selection, as higher order attributes, even if there is no production
rule associated with them, can be used to structure the equation selection process.

Silver adheres more strongly to a grammar than either Kiama or JastAdd, and this affects
how higher order nodes can integrate into an existing tree. As attribute equation definitions
are tied directly to the productions of a grammar, the only way a node can access its parent is
if the parent was created with those children “in mind”. In Silver, leaf4 is accessible from
fork1, but is not considered a child. Conversely, as in the Kiama case, leaf4 can not access
fork1 as its parent node. However, if any nodes are recursively created or referenced under
leaf4, these will know leaf4 as their parent.

The calculus we present in this thesis implements higher order attributes such that the
new node (leaf4 in this case) is accessible as one of the “children” of fork1 – a “child”
relationship is no different to any other reference attribute, and the newly created node will
always be accessible via the attribute that created it. Optionally, fork1 can be defined as
the parent of leaf4. To allow our semantics to match the semantics of any of the systems
we have discussed, relationships between nodes can be influenced arbitrarily during higher
order construction. There could be no relationships at all between new nodes and existing
nodes, except of course via the attribute that created the new node. See Chapter 5 for more
detail.

2.3.5 Attribute Forwarding

Attribute forwarding [41] is a method of defining the semantics of one type of node in terms
of the semantics of another, via higher order construction. Of the platforms discussed in this
thesis, forwarding is only implemented in Silver. Forwarding was designed for modularity,
and involves building some subtree structure that is tied into the existing tree, and forwarding
attribute requests to the new subtree, while explicitly defining some attributes on the original
tree.

For example, let us assume we have a statement language that supports while loops,
and the semantics of while loops are already implemented. If a new production allowing
for loops was included, it would be useful to define the semantics of for loops in terms
of the semantics of while loops. Below we show a snippet of an attribute grammar which
implements the semantics of for loops by forwarding to while loops.

Name Production Semantics
while S1 ::= E S2 S1.pp = ‘while’ ++ ...

S1.eval = ...
for S1 ::= S2 E S3 S4 S1.pp = ‘for’ ++ ...

forwards to block(S2, while(E, block(S4, S3))
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Above we have defined the pp (pretty-print) attribute on both while and for produc-
tions; the new for production will have its own pretty-printing semantics. However, the
forwards to syntax indicates that any other attribute, if requested on a for node, should be
“forwarded” to the higher-order structure constructed by block(S2, while(E, block(S4,
S3)). For example if the eval attribute is requested of a for node, a higher order node will
be constructed, eval will be evaluated on that node, and the result will be returned.

The tree below represents the original for subtree, and the corresponding while tree that
will be constructed and forwarded to during evaluation. The children of the original tree are
reused as the children of the newly constructed tree.

for

stmt expr stmt stmt

block

while

block

forwards to

Figure 2.14 shows an implementation of these semantics in Silver. The two attributes
we are interested in (pp and eval) are declared on lines 1 and 2. Lines 4-8 define the
while production, which has normal definitions for the pp and eval attributes. Lines 10-14
define the for production, which defines the pp attribute in the normal way, but does not
explicitly define the eval attribute. Instead, the for attribute is forwarded to a higher order
construction, on line 13. As described previously, if any attribute except pp (for example
eval) is evaluated on a for node, this evaluation will be forwarded to its associated while
construction.

We consider forwarding to be primarily a notational extension, and as such we do not
implement forwarding explicitly in our work. We discuss this in more detail in Section 5.3.4,
and demonstrate how the semantics of forwarding can be expressed in our calculus.

2.3.6 Circular Attribute Grammars
When attribute grammars were first introduced, much emphasis was put on the restriction
that attribute dependencies could not be circular (meaning there could be no cycles in at-
tribute dependencies). However, circular attributes [42, 43] can be well defined, if a finite
fixed-point can be reached in a finite number of iterations. Dynamically scheduled attribute
grammar systems often contain run-time checks for attribute circularity, with some platforms
(including JastAdd [44] and Kiama) supporting fixed-point iteration for circular attributes.

JastAdd allows circular attributes using fixed-point iteration, with the circular keyword
and a starting value. Figure 2.15 shows the definition of the two attributes v and u, which are
mutually recursive. Both attributes are specified as circular, with a starting value of false.
Evaluation of either one of these attributes will begin the fixed-point evaluation process,
which will quickly terminate with the value false.

Kiama also implements fixed-point iteration of circular attributes. See Figure 2.16 for an
implementation of the same toy program in Kiama. Lines 2 and 7 define the attributes u and
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1 synthesized attribute eval :: Integer;
2 synthesized attribute pp :: String;
3
4 abstract production while
5 w::Stmt ::= c::Expr b::Stmt
6 { w.pp = "while" ++ ... ;
7 w.eval = ... ;
8 }
9

10 abstract production for
11 f::Stmt ::= i::Stmt c::Expr b::Expr p::Expr
12 { f.pp = "for" ++ ... ;
13 forwards to block(i, while(c, block(b, p)));
14 }
15
16 abstract production block
17 b::Stmt ::= s1::Stmt s2::Stmt
18 { ... }

Figure 2.14: Forwarding a for production, implemented in Silver.

v as circular, with base value false for both attributes. The rest of the attribute is defined
as usual, with fixed-point iteration occurring transparently through the use of the circular
keyword.

We consider circular attributes outside the scope of this thesis, and the calculus we
present does not support this extension. This decision is discussed in Section 9.2, along
with an outline for how fixed-point iteration for circular attributes might be implemented.

2.3.7 Collection attributes

Boyland introduced collection attributes in 1996 [38]. Collection attributes are a way of
aggregating attribute values from a number of nodes, either from an entire program tree
or from some sub-traversal of that tree. Collection attributes are a convenience extension,
and save attribute authors from writing traversal and collection boilerplate attributes. It is
common in compiler construction to use collection attributes for tasks such as collecting
error messages for an entire program tree.

Kiama, JastAdd, and Silver all include notations for collection attributes. Consider the
binary tree we have used for many of the examples in this chapter. We will define a collection
attribute that collects all leaf values for such a tree.

Figure 2.17 shows the collection attribute allInts implemented in JastAdd. Line 1 uses
the coll keyword to indicate that allInts is a collection attribute, and specifies it occur
on a Program node and return a collection of integers. The syntax of a JastAdd collection
attribute definition follows the pattern type contributes expr1 when expr2 to def. The
type of node to contribute is listed in type (in this case EInt). An expression to calculate
a value to contribute is given in expr1 (in this case getV()). A boolean expression that
decides whether or not to contribute is given in expr2 (in this case the literal true), and def
defines what attribute is being contributed to (in this case Program.allInts()). JastAdd’s
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1 aspect Circular {
2 syn boolean A.u() circular [false] = v();
3 syn boolean A.v() circular [false] = u();
4 }

Figure 2.15: A simple set of circular attributes defined in JastAdd.

1 lazy val u : A => Boolean =
2 circular (false) {
3 case n => v(n)
4 }
5
6 lazy val v : A => Boolean =
7 circular (false) {
8 case n => u(n)
9 }

Figure 2.16: A simple set of circular attributes defined in Kiama.

evaluator will traverse every node in the tree that can possibly contribute to allInts, evaluate
its when expression, and optionally evaluate its contributes expression and contribute its
value to the allInts list. JastAdd’s collection syntax also provides the option to contribute
a value not to the “root” of the collection, but to some other node. This allows collection
behaviour to be customised beyond the usual “collect from all children” strategy.

Figure 2.18 shows a similar collection attribute implemented in Kiama. The collectAll
decorator is used, which takes a partial function returning integers. Line 3 indicates that any
EInt node should contribute its integer to the collection. As in the JastAdd implementation,
a guard could be added to line 3 to not always contribute a value. As collectAll is just an
instance of a decorator, an attribute author can define whatever kind of nonstandard collection
behaviour they desire by defining a separate decorator for their task.

Figure 2.19 shows the allInts attribute defined in Silver. Silver’s implementation of
collection attributes is different than Kiama’s and JastAdd’s, as the traversal for collecting
attributes must be given explicitly. Line 1 indicates that the allInts attribute will calculate a
list of integers, which will be combined with the ++ (list concatenation) operator. Collection
attributes in Silver do not use the standard = operator, but use both the := and <- operators,
which define a base value and a contribution respectively.

In the implementations shown for JastAdd and Kiama, both collection attributes assume
that collection will begin with the empty list. Both JastAdd and Kiama allow for this base
value to be customised, but Silver goes one step further and allows this base value to be
defined per production. Lines 9, 15, and 21 define the base values for the allInts collec-
tion attribute, for each production. Line 22 is the only place where this list is explicitly
contributed to, yielding the value of an integerConstant node.

In this case we only contribute in one place, but Silver is designed for modular language
design. The “traversal” dictated on lines 9, 15, and 21 may be defined in one file, which lays
out the basic structure of a collection attribute, while other definition files may contribute
values here or there. A common use-case for this is compiling error messages, which may
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1 coll ArrayList<Integer> Program.allInts();
2
3 EInt contributes
4 getV()
5 when true
6 to Program.allInts();

Figure 2.17: A simple collection attribute defined in JastAdd.

1 lazy val allInts =
2 attr(collectAll {
3 case EInt(i) => i
4 })

Figure 2.18: A simple collection attribute defined in Kiama.

1 synthesized attribute allInts :: [Integer] with ++;
2
3 nonterminal Root with allInts;
4 nonterminal Expr with allInts;
5
6 abstract production root
7 r::Root ::= e::Expr
8 {
9 r.allInts := e.allInts;

10 }
11
12 abstract production add
13 sum::Expr ::= l::Expr r::Expr
14 {
15 sum.allInts := l.allInts ++ r.allInts;
16 }
17
18 abstract production integerConstant
19 e::Expr ::= i::Integer
20 {
21 e.allInts := [ ];
22 e.allInts <- [i];
23 }

Figure 2.19: A simple collection attribute defined in Silver.
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be produced by different aspects of a compiler: name checking, type checking, etc.. While
Silver’s approach is more verbose, it is also more generalised, allowing collection traver-
sal to ignore entire subtrees if required (without guarding each node in that subtree from
collection).

Collection attributes are not in the scope of this thesis, partly due to the fact that they can
be implemented using the other extensions described in this chapter. Collection attributes
can be difficult to evaluate in a dynamically scheduled system if you combine them with
reference or circular attributes, but their semantics are about evaluating a very specific kind
of value. The focus of Saiga is to model attribute grammars with as simple a calculus as
possible, and this is somewhat at odds with extensions like collection attributes, which can
be seen as almost a notational extension, with complex and specifically targeted semantics
behind them.

2.4 Previous Attempts

The primary goal of the research presented in this thesis is to provide a framework for for-
mally specifying attribute grammars such that the semantics of their evaluation can be for-
mally examined. Much work has been published that uses attribute grammars to formalise
various kinds of semantics, but we are not interested in the semantics that attribute grammars
can model, but the semantics of attribute grammars themselves; particularly, the semantics
of dynamic attribute evaluation.

A number of projects have embedded attribute grammars into functional languages to
model their evaluation semantics. De Moor et al. showed how to define compositional at-
tribute grammars in Haskell using an aspect-oriented approach [45, 46], following earlier
work from Johnsson and Jourdan on implementing attribute grammars as functional pro-
grams [3, 47]. Backhouse also defined a Haskell-based implementation of attribute gram-
mars that was used to reason in “a calculational style” and to derive a new test for defined-
ness [48].

These projects focused on embedding attribute grammar semantics into Haskell, both
to allow Haskell authors access to new kinds of declarative specification and to model new
approaches to attribute grammar construction and composition. The focus of our work, in
contrast, is to model existing attribute grammar evaluation schemes in a formalism simple
enough that their semantics are not obfuscated by their encoding. Embedding in Haskell
leads to powerful expressibility while providing a window to analyse the properties of a
particular attribute grammar program. Our work in formalising attribute grammar evalua-
tion using inference rules allows us to analyse the semantics not only of particular attribute
grammar programs, but of the semantics of attribute evaluation itself.

Schaefer et al. implements some work more closely related to ours, implementing circu-
lar reference attribute grammars as a shallow embedding in Coq [49]. They use zippers
to keep track of locations in trees, an approach that has been explored further by oth-
ers [50]. Embedding in Coq allows mechanised proofs to be written about non-trivial at-
tribute grammar programs, but this implementation suffers from the same issue as the Haskell
approaches; a tight relationship with the semantics of the host language. The evaluation se-
mantics in Schaefer’s work is considerably more complex than the semantics we present in
this thesis. In our earlier work we deeply embed our semantics in Coq [51], and we dis-
cuss a deep embedding in Lean in Chapter 8. A deep embedding allows us to mechanise
metatheoretic properties about our calculus.
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While many shallow embeddings of attribute grammars exist, and even some frameworks
for writing mechanised proofs about attribute grammars, we have found no other work that
is directly interested in reasoning about the evaluation semantics of dynamically scheduled
attribute grammars. We have certainly not found any other attempts to encode attribute
evaluation on a level as low as the calculus we present in this thesis.



Fermentation may have been a greater discovery
than fire.

David Rains Wallace

3
Saiga

In this chapter we develop a core calculus for dynamically scheduled attribute grammar
evaluation, which we call “Saiga”. We say a “core” calculus because in this chapter we will
model only the most basic attribute grammar features we can; in Chapter 4 we extend this
calculus to include caching and parameterised attributes, and in Chapter 5 we explore higher-
order attributes in Saiga. The three key design principles we aim to follow are simplicity,
generality, and domain specificity.

Simplicity dictates that our calculus will be as minimal as possible while encoding all of
the required features. For example, we want to minimise both the number of semantic
rules we implement and the complexity of each of these rules.

Generality dictates that our calculus should not be tied to any existing attribute grammar
notation or evaluation approaches. There are a number of standards for notation, for
equation selection, and for attribute evaluation (as discussed in Chapter 2). Our cal-
culus should be able to comfortably encode attribute grammar programs from any of
these families using the same calculus features.

Domain specificity dictates that our calculus should focus only on attribute grammar eval-
uation. More general computing concerns such as arithmetic, the construction of com-
plex values like lists, value comparisons etc should be delegated to an external system.

3.1 Calculus

We build our calculus on top of an assumed underlying calculus, which is explored in Sec-
tion 3.1.1. We define some types in Section 3.1.2, an expression language in Section 3.1.3,
type rules for this language in Section 3.1.4, and a set of operational semantics in Sec-
tion 3.1.5. We also demonstrate these semantics with a simple example in Section 3.1.7.
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3.1.1 An Underlying System

To satisfy the domain specificity requirement, we build our calculus on top of an assumed
underlying functional calculus. When we talk about the “underlying type system”, we refer
to the type system of this calculus. When we say “underlying function application”, we refer
to function application in the context of this calculus.

We use T to refer to the set of all types in the underlying system. In this thesis we
assume that types in T are monomorphic, but our calculus could support non-monomorphic
underlying type systems in the future. We do not specify all of the types contained in T ,
but we know that we will require T to include booleans, functions, and eventually the node
type (which we will define later in this chapter). While these three types alone are enough
to encode our semantics, we will expand T in various examples in this and later chapters.
For example, we will expand T with integers, strings, arbitrary enumerated types, as well as
monomorphic lists and tuples.

T ::= T → T
| boolean
| ...

We use the metavariables t and v, or subscripted versions thereof, to respectively indicate
a type in T or a value in some t.

Type t ∈ T
Value v ∈ t

We assume that function application exists in the underlying system. We use the notation
t1 → t2 to specify the type of a function that takes a parameter of type t1 and returns a value
of type t1. If we have some f ∈ t1 → t2 and some x ∈ t1, we use the notation f (x) to
represent the value returned by the function f when applied to the parameter x. Standard
beta reduction rules apply in the underlying system.

We allow for concrete anonymous function values to be expressed using lambda notation,
for example λx.x + 1. We also allow the definition of named functions in italics as below.

plusOne(x) = x + 1

We assume that currying is performed automatically, so if we define a multiparameter
function plus as below, this is short-hand for the curried sequence of single-parameter func-
tions.

plus(a,b) = a + b

The definition of plus above is identical to the definition of plus below.

plus = λa.λb.a + b

This allows for transparent partial function application, such that we can write plus(2)
to indicate the function that will add two to the given number. The underlying calculus is
functional, so all functions are pure.

From the perspective of Saiga, terms and values in the underlying system are indistin-
guishable. Evaluation in the underlying system is not part of Saiga’s semantics, and we
assume that it happens transparently. We are happy to treat the term min(5)(2) as equivalent
to the term 2, as underlying evaluation is transparent to Saiga. We use the phrase “underlying
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values” or “values in the underlying system” to refer to either terms or values of the under-
lying system, as each term in the underlying system is evaluable to some value, whether we
know that value or not.

The underlying calculus is also typed. To be more verbose, we could also define plus as
follows.

plus = λ(a : integer).λ(b : integer).a + b

We allow types to be omitted however, as long as they can be sensibly assumed or inferred.

3.1.2 All Types
Type t ∈ T

Value v ∈ t
Expression e ∈ E

Attribute a ∈ A
Node n ∈ N

Attribute Type τ ∈ A→ T
Context σ ∈ N → A→ E

T ::= T → T
| boolean
| N
| ...

We start by defining the types in Saiga. We call types in T “underlying types”, as most
types inT are inherited from the underlying system (the exception to this rule is the node type
N ). The intention of T is that any Saiga expression should be evaluated some value of a type
inT . We use the term “value” to refer to values or terms of the underlying system - Saiga does
not differentiate between terms and values in the underlying system, but considers a term to
be equivalent to the value it will evaluate to. E is the expression type, whose grammar is
described in Section 3.1.3. A and N are simple enumerable types which provide labels for
attributes and nodes respectively. The function τ provides the expected (underlying) type of
any attribute in A. The context function σ provides the attribute equation expression for any
node and attribute. We also specify that functions, booleans, and nodes are types in T . We
allow that more monomorphic types can be added to T as required.

3.1.3 Expression Language
We define an expression language as follows.

e ::= JvK value
| IF e1 THEN e2 ELSE e3 conditional
| e1(e2) function application
| e.a attribution

The structure of this grammar is straightforward. We lift a value v from the underlying
system into our expression language using the syntax JvK. This notation is used to make
clear the difference between a value v and an expression that holds that value, JvK.

Conditional expressions and function application expressions are straightforward in their
structure and semantics. Attribution expressions allow the encoding of expressions that will
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request a node’s attribute. The semantics of each expression form is shown in Section 3.1.5.

3.1.4 Type Rules

As all expressions are intended to evaluate to a value expression, and value expressions use
types from the underlying type system (T ), all well-typed expressions have a type in T . We
provide type inference rules below.

v ∈ t
JvK : t

(TypeVal) e1 : boolean e2 : t e3 : t
IF e1 THEN e2 ELSE e3 : t (TypeCond)

e1 : t1 → t2 e2 : t1
e1(e2) : t2

(TypeFun) e : N
e.a : τ(a)

(TypeAttr)

There is nothing out of the ordinary in these type rules. Value expressions have the same
type as their contained underlying value. Conditional expressions require one subexpression
to have the boolean type, and the other two subexpressions to have the same type. Function
expressions require subexpressions to have types that will allow underlying function appli-
cation to occur during evaluation. Attribution expressions require their subexpression to be
of type N , as it is required to evaluate to a node. The special function τ provides the type
expected from an attribute equation.

3.1.5 Semantic Rules

We provide a small-step operational semantics for the evaluation of our expression language.
Proofs of type determinism, type preservation, step determinism, and progress for these se-
mantics are given in Chapter 6.

e1 −→ e′1
IF e1 THEN e2 ELSE e3 −→ IF e′1 THEN e2 ELSE e3

(CondStep)

IF JtrueK THEN e2 ELSE e3 −→ e2
(CondTrue)

e1 −→ e′1
e1(e2) −→ e′1(e2)

(FunStep)

IF JfalseK THEN e2 ELSE e3 −→ e3
(CondFalse) e −→ e′

JvK(e) −→ JvK(e′)
(FunParStep)

e −→ e′
e.a −→ e′.a

(AttrNodeStep)
Jv1K(Jv2K) −→ Jv1(v2)K

(FunApp)

JnK.a −→ σ(n,a)
(AttrFetch)

The general evaluation strategy used is to step all non-value subexpressions until they
reach value expressions. When all subexpressions are values, the expression itself can per-
form its own particular evaluation step. Subexpressions are evaluated from left to right in
all expression forms. The steps CondStep, CondTrue, CondFalse, FunStep, FunParStep, and
AttrNodeStep are all straightforward implementations of this strategy.
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Jv1K(Jv2K) −→ Jv1(v2)K
(FunApp)

The function application step FunApp begins with a function application expression which
has two value subexpressions containing the values v1 and v2. This step is only possible
when the expression is correctly typed according to the type rules shown in Section 3.1.4,
meaning v1 must be a function from some t1 to some t2, and v2 must be some value of type
t1. The function expression steps into a value expression, where the value held is the result
of applying the function v1 to the parameter v2. While the expressions on either side of
the arrow in this rule may look similar, the expression on the left is a function application
expression, and the expression on the right is a value expression containing the result of
applying the given function to the given parameter.

JnK.a −→ σ(n,a)
(AttrFetch)

The attribute fetch step AttrFetch begins with an attribute expression containing a value
expression holding some node n, and an attribute label a, and steps directly to whatever
expression is returned by the context function σ for those two parameters. This is Saiga’s
strategy for equation selection (explored further in Section 3.2.1).

An expression returned from a context function is Saiga’s version of an attribute equation.
There is no differentiation between inherited and synthesised attributes in Saiga; both sim-
ply step from an attribution expression into the expression that is returned from the context
function.

3.1.6 Intrinsic, Structural, and Extrinsic Attributes

Not all expressions returned from the context function will represent what is traditionally
called an attribute equation. The context function is also used to fetch what we call intrin-
sic attributes. Intrinsic attributes store everything there is to know about a node; not just
attributes that need to be evaluated. As nodes are not typed in Saiga, we might represent the
type of a node in an intrinsic attribute. If a node has some contents, such as a string value or
an integer, this is stored in an intrinsic attribute. As intrinsic attributes need no evaluation,
the context would always return a value expression for an intrinsic attribute.

For example if we are considering a binary search tree, every node will have some integer
value associated with it, which is created as part of tree construction. In this case, we might
have some intrinsic attribute value, and a context function that will always return a value
expression for the value attribute.

Another type of intrinsic attribute is what we call structural attributes. Just as some inte-
ger value may be an important property of a node, its children are also a property of that node,
and therefore are stored in an intrinsic attribute. By the same logic, we would expect that the
parent of a node is also stored in a structural attribute (usually called parent), although this
is not necessary in purely synthesised attribute grammars. The difference between intrinsic
and structural attributes is that structural attributes always return a value expression contain-
ing a node. This is the strategy we use to store an entire tree in a context function: every fact
about a node is an intrinsic attribute, and the direct relationships between nodes are stored in
structural attributes.
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On a side note, it would be expected that any structural attributes that represent a down-
ward relationship (i.e. a child relationship) and any structural attributes that represent an
upward relationship (i.e. a parent relationship) would be mirrored. Using the attributes
parent and child as an example, it would not make much sense for a context function to
have some value n2 for σ(n1,child) and have any value other than n1 for σ(n2,parent).

We use the term extrinsic attribute to refer to an attribute that is not intrinsic or structural.
Generally speaking, extrinsic attributes are those that have some associated equation(s). The
context function and the stepping semantics do not differentiate between extrinsic, intrinsic,
and structural attributes; these classifications are merely descriptors of common use patterns.

3.1.7 Simple Example

We showed an implementation of the globmin attribute for Silver, JastAdd, and Kiama in
Section 2.2.1. Here we will show an implementation of globmin in Saiga. This is only
a small example to demonstrate how evaluations can be traced. A more comprehensive
example of use of Saiga’s core semantics is given in Section 3.3, and an example of detailed
type analysis is given in Chapter 7.

We will say that σ1 is a context function that defines globmin and locmin for a binary
tree, and that there is a boolean intrinsic attribute isLeaf that differentiates between fork
and leaf nodes. We will assume a boolean intrinsic attribute isRoot to signify whether or
not a node is the root node, and an integer intrinsic attribute value, which holds the integer
value of leaf nodes. The structural attributes parent, leftChild, and rightChild are also
assumed. We also assume an underlying function min which returns the smaller of two
integers.

The attributes globmin and locmin can be defined as follows.

σ1(n,globmin) = IF JnK.isRoot
THEN JnK.locmin
ELSE JnK.parent.globmin

σ1(n, locmin) = IF JnK.isLeaf
THEN JnK.value
ELSE JminK(JnK.leftChild.locmin)(JnK.rightChild.locmin)

The context function σ1 will return the expressions shown above when the attributes
globmin or locmin are requested during evaluation. The metavariable n is replaced with
whatever node parameter is given, using standard beta reduction.

The definition here is rather verbose, using conditionals to differentiate between various
attribute behaviours. Alternatives to this strategy are explored in coming sections, but for
now we consider as simple a definition as possible.

To demonstrate evaluation of the globmin program in Saiga, we first define a tree to
evaluate upon. Say that we have some very simple binary tree, for example as shown below.
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n1

n2

5

n3

2

We can assume that the context function σ1 will return sensible results for the structural
attributes leftChild, rightChild, and parent that represent the tree above. For example,
σ1(n2,parent) would return Jn1K. We will not show the full definition of σ1, we just assume
that it will return sensible results that represent the tree above, including values for isLeaf
and isRoot.

Evaluating the expression Jn2K.globmin under these conditions will yield the sequence
of steps shown below. Each step is annotated with the semantic rule that allows the “highest”
level of each step, with following annotations for any rules that are recursively applied. To
make it easier to see what is changing over the course of many steps, we underline (the before
state) and overline (the after state) each subexpression that changes, if only a subexpression
changes over a step.

In this example, the starting expression Jn2K.globmin evaluates to the value expression
J2K in 22 steps. Once evaluation reaches a value expression, there are no more steps that can
be taken, and evaluation is considered complete. It is proven that value expressions can not
take steps in Theorem 2 (Section 6.2).

Jn2K.globmin
(1) −→ (AttrFetch)

IF Jn2K.isRoot THEN Jn2K.locmin ELSE Jn2K.parent.globmin

(2) −→ (CondStep, AttrFetch)

IF JfalseK THEN Jn2K.locmin ELSE Jn2K.parent.globmin
(3) −→ (CondFalse)

Jn2K.parent.globmin

(4) −→ (AttrNodeStep, AttrFetch)

Jn1K.globmin
(5) −→ (AttrFetch)

IF Jn1K.isRoot THEN Jn1K.locmin ELSE Jn1K.parent.globmin

(6) −→ (CondStep, AttrFetch)

IF JtrueK THEN Jn1K.locmin ELSE Jn1K.parent.globmin
(7) −→ (CondTrue)

Jn1K.locmin
(8) −→ (AttrFetch)

IF Jn1K.isLeaf THEN Jn1K.value

ELSE JminK(Jn1K.leftChild.locmin)(Jn1K.rightChild.locmin)
(9) −→ (CondStep, AttrFetch)

IF JfalseK THEN Jn1K.value
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ELSE JminK(Jn1K.leftChild.locmin)(Jn1K.rightChild.locmin)
(10) −→ (CondFalse)

JminK(Jn1K.leftChild.locmin)(Jn1K.rightChild.locmin)

(11) −→ (FunStep, FunParStep, AttrNodeStep, AttrFetch)

JminK(Jn2K.locmin)(Jn1K.rightChild.locmin)

(12) −→ (FunStep, FunParStep, AttrFetch)

JminK(IF Jn2K.isLeaf THEN Jn2K.value

ELSE JminK(Jn2K.leftChild.locmin)(Jn2K.rightChild.locmin))
(Jn1K.rightChild.locmin)

(13) −→ (FunStep, FunParStep, CondStep, AttrFetch)

JminK(IF JtrueK THEN Jn2K.value
ELSE JminK(Jn2K.leftChild.locmin)(Jn2K.rightChild.locmin))
(Jn1K.rightChild.locmin)

(14) −→ (FunStep, FunParStep, CondTrue)
JminK(Jn2K.value)(Jn1K.rightChild.locmin)

(15) −→ (FunStep, FunParStep, AttrFetch)

JminK(J5K)(Jn1K.rightChild.locmin)

(16) −→ (FunStep, FunApp)

Jmin(5)K(Jn1K.rightChild.locmin)

(17) −→ (FunParStep, AttrNodeStep, AttrFetch)

Jmin(5)K(Jn3K.locmin)

(18) −→ (FunStep, AttrFetch)

Jmin(5)K(IF Jn3K.isLeaf THEN Jn3K.value

ELSE JminK(Jn3K.leftChild.locmin)(Jn3K.rightChild.locmin))
(19) −→ (FunStep, CondStep, AttrFetch)

Jmin(5)K(IF JtrueK THEN Jn3K.value
ELSE JminK(Jn3K.leftChild.locmin)(Jn3K.rightChild.locmin))

(20) −→ (FunStep, CondTrue)
Jmin(5)K(Jn3K.value)

(21) −→ (FunStep, AttrFetch)

Jmin(5)K(J2K)
(22) −→ (FunApp)

J2K

This is quite a lengthy process, but we have examined every fine detail of evaluation.
The notation shortcuts demonstrated in coming sections will make these evaluation traces
considerably more concise, and the use of the multistep and big step relations (Sections 3.2.8
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and 3.2.9) further reduce the footwork required to trace an evaluation.

3.2 Discussion

In this section we will discuss some details, design decisions, and caveats of the calculus
presented in Section 3.1.

3.2.1 Equation Selection and the Context Function

Central to attribute grammar evaluation is the equation selection problem. Generally speak-
ing, for an attribute to be evaluated on a node, first the evaluator must select an appropriate
equation, then that equation must be used to find a value for the attribute. However, the
equation selection process can be quite sophisticated; sometimes there is more semantic
logic encoded into the equation selection process than in the equation itself.

Consider the role a type system plays in a general purpose programming language. In
many programs, types merely enable safety checks; making sure the programmer does not
assign a value of the wrong type to a variable. In some types of object-oriented programming
applications, the type of a reference variable defines which version of a method will be used;
type information here is more significant. There are applications where everything that is
known about an entity is in its type; consider the Propositional universe in Coq, where the
evaluator discards all non-type information about an entity, only caring that a value exists,
not caring about what that value is; type information here is everything.

It is possible to encode zero behaviour into a program’s types, and it is possible to en-
code almost the entirety of a program’s behaviour into its types. The same is true for equation
selection systems. Some attribute grammar programs use only the most basic equation selec-
tion features and encode their entire program logic into attribute equations. Other attribute
programs use equation selection features to express a significant portion of the program logic,
and only write simple attribute equations.

Let us consider a simple concrete example. Let’s say we have some tree of arbitrary size,
whose root node has some attribute k. It is desired that every node in the tree have access to
this same value via an attribute getK.

Encoding the traversal to the root as part of evaluation would be straightforward, as
shown below.

σ1(n,getK) = IF JnK.isRoot THEN JnK.k ELSE JnK.parent.getK

However, we can define the context function however we want to define it. We could
define some σ as follows.

σ2(_,getK) = JnrootK.k, where nroot is the root node

If it is always the root node that is required, then this approach is useful. However, it is
common to examine more fine-grained contextual information for equation selection. Let’s
say that perhaps there are multiple sub-roots, whose k is ‘copied’ to its subtree. These sub-
root nodes return true for the intrinsic attribute isSubRoot. An approach like the following
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will be useful in such a circumstance.

σ3(n,getK) =


JnK.k σ3(n, isSubRoot) = JtrueK
JnpK.getK σ3(n,parent) = JnpK
J0K otherwise

In the first case, equation selection examines the expression returned by the intrinsic
attribute isSubRoot. If this expression is a value expression, and that value expression
contains the value true, then the expression JnK.k is returned. Note that the step relation
is not used here; it is not possible for the context function to perform Saiga evaluation.
However, we do allow the definition of a context function to interrogate the values returned
by intrinsic attributes. If σ3(n, isSubRoot) returned some non-value expression e1, this
expression would not be evaluated during attribute selection; the “selector” would not match.

We perform a similar operation in the second case, interrogating the context via reflection
for the value returned by parent. This is a form of autocopy inherited attribute, similar to
autocopy attributes from Silver or JastAdd.

Note that σ must be a mathematical function – that is, it must be defined for all inputs.
With the definition of getK in σ3 above, if the definition of parent also interrogates the
value of getK, it is possible that a cycle would be formed, making σ3 undefined for some
inputs and therefore not a properly-defined function. Therefore it is best practice to only
interrogate strictly intrinsic attributes as part of equation selection.

These are only suggested implementation techniques; the context function can be any
mathematical function that returns an expression for any input node and attribute. The user
can implement this function however they like, or leave it as a black box with only some
assertions about it used to guide their reasoning. We explore more equation selection possi-
bilities in Section 3.2.2.

Demonstration

To demonstrate how the three given specifications of getK differ, we will evaluate the ex-
pression Jn4K.getK in each of the context functions σ1, σ2, and σ3. In each case, we
assume that the context function holds values for appropriate structural attributes that repre-
sent the following tree.

n1

n3

n5n4

n2

First we evaluate using the definition of getK in σ1. This evaluation reaches the expres-
sion Jn1K.k in 11 steps.

Jn4K.getK
(1) −→ (AttrFetch)

IF Jn4K.isRoot THEN Jn4K.k ELSE Jn4K.parent.getK

(2) −→ (CondStep, AttrFetch)
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IF JfalseK THEN Jn4K.k ELSE Jn4K.parent.getK
(3) −→ (CondFalse)

Jn4K.parent.getK

(4) −→ (AttrNodeStep, AttrFetch)

Jn3K.getK
(5) −→ (AttrFetch)

IF Jn3K.isRoot THEN Jn3K.k ELSE Jn3K.parent.getK

(6) −→ (CondStep, AttrFetch)

IF JfalseK THEN Jn3K.k ELSE Jn3K.parent.getK
(7) −→ (CondFalse)

Jn3K.parent.getK

(8) −→ (AttrNodeStep, AttrFetch)

Jn1K.getK
(9) −→ (AttrFetch)

IF Jn1K.isRoot THEN Jn1K.k ELSE Jn1K.parent.getK

(10) −→ (CondStep, AttrFetch)

IF JtrueK THEN Jn1K.k ELSE Jn1K.parent.getK
(11) −→ (CondTrue)

Jn1K.k

Next we evaluate Jn4K.getK using the definition of getK in σ2. The expression Jn1K.k
is reached in a single step.

Jn4K.getK
(1) −→ (AttrFetch,as nroot = n1)

Jn1K.k

Finally we evaluate Jn4K.getK using the definition of getK in σ3, assuming the only
sub-root in the tree is n1. The expression Jn1K.k is reached in three steps.

Jn4K.getK
(1) −→ (AttrFetch, as σ3(n4, isSubRoot , JtrueK and σ3(n4,parent = Jn3K)

Jn3K.getK
(2) −→ (AttrFetch, as σ3(n3, isSubRoot , JtrueK and σ3(n3,parent = Jn1K)

Jn1K.getK
(3) −→ (AttrFetch, as σ3(n1, isSubRoot = JtrueK)

Jn1K.k

There is no “winning” implementation here. The solution in σ1 is very explicit, with
many of Saiga’s evaluation steps detailing what might be considered “equation selection”
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processes such as checking intrinsic flags like isRoot. The solution in σ2 skips over all
kinds of boiler plate, and jumps immediately to an expression based at the root of the tree
n1, but assumes prior knowledge of the identity of the root node. The solution in σ3 sits
in between these extremes, skipping some of the boiler plate involved in checking intrinsic
properties, but still making its way up the structure of the tree one level at a time. In practice,
we find approaches similar to that in σ3 to be a good balance, where evaluation is less
verbose, but no “magic” is happening. We use a similar strategy in the notations explored in
Section 3.2.2.

3.2.2 Equation Selection and Node Types

It is common practice that equations be selected based on the type of the node being evaluated
upon. For example, some attribute eval may have one equation for an AddExp node, and
a different equation for a MultExp node. We have opted not to include node types in our
calculus, and allowed N to remain abstract.

There are two reasons behind this decision: simplicity and flexibility. The baseline for
equation selection is simpler without node types; the context function is not required to care
about the type of a node to select an equation. Further, allowing the context function to be as
general as it is opens up the possibility of any kind of relationship between node, type, and
equation that the user wants, instead of a predefined one.

The openness of the context function design allows for production-based, symbol-based,
and attribute-based equation selection strategies to be implemented, even synchronously.

Symbol-Based Equation Selection

JastAdd uses symbol-based equation selection, as discussed in Section 2.2.1. For example,
synthesised attributes in the JastAdd attribute grammar system may be encoded as follows,
where the node types AddExp and MultExp have different equations for eval.

1 syn int AddExp.eval() = getLeft().eval() + getRight().eval();
2 syn int MultExp.eval() = getLeft().eval() ∗ getRight().eval();

Let us consider the ways this can be encoded in Saiga. If we want to write a proof
about the process of selecting attributes, we may want to include this selection as part of the
evaluation logic. Assuming the intrinsic attribute nodeType, along with underlying helper
functions isAdd and isMult for matching against these types, we could implement eval as
follows.

σ(n,eval) = IF JisAddK(JnK.nodeType)
THEN JplusK(JnK.left.eval)(JnK.right.eval)

ELSE IF JisMultK(JnK.nodeType)
THEN JmultK(JnK.left.eval)(JnK.right.eval)
ELSE J0K

This implements the same semantics as the JastAdd example given above, but the context
function returns a large expression containing all possible targeted attribute expressions. The
user may prefer for the context function to perform this selection process implicitly and only
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return targeted attribute expressions. In this case, we could define eval as follows.

σ(n,eval) =


JplusK(JnK.left.eval)(JnK.right.eval) σ(n,nodeType) = JaddK
JmultK(JnK.left.eval)(JnK.right.eval) σ(n,nodeType) = JmultK
J0K otherwise

It is assumed here that nodeType is an intrinsic attribute. Recall that the context func-
tion cannot perform expression evaluation, and will only match against reflected expressions
that hold values. If there is a possibility of some node whose nodeType is evaluated from
a more complex expression, one could combine the two approaches shown, so that the at-
tribute nodeType is evaluated if a value is not found. Such an approach is shown below,
but is quite verbose. It is possible to abstract away this notation into the notations explored
later in this section.

σ(n,eval) =



JplusK(JnK.left.eval)(JnK.right.eval) σ(n,nodeType) = JaddK
JmultK(JnK.left.eval)(JnK.right.eval) σ(n,nodeType) = JmultK
IF JisAddK(JnK.nodeType) otherwise
THEN JplusK(JnK.left.eval)(JnK.right.eval)
ELSE IF JisMultK(JnK.nodeType)
THEN JmultK(JnK.left.eval)(JnK.right.eval)
ELSE J0K

Production-Based Equation Selection

It is also common to define attribute equations based on the grammar rule used to parse
and construct a node. Consider the following example, using syntax from the Silver at-
tribute grammar system, which uses production-based equation selection, as discussed in
Section 2.2.1.

1 concrete production add
2 sum::Expr ::= e::Expr ’+’ t::Term
3 { sum.eval = e.eval + t.eval ; }
4
5 concrete production prd
6 prd::Expr ::= e::Expr ’∗’ t::Term
7 { prd.eval = e.eval ∗ t.eval ; }

In this circumstance, it appears that nodes being created in both productions are Expr
nodes, so the type of a node is not defining the attribute equation; its production rule is.
To implement this kind of equation selection in Saiga, we would need to assume that the
context function knows what production rule was used to build each node. This could be im-
plemented with an intrinsic attribute similar to the nodeType attribute, called nodeProd
for example. So far this does not differ significantly from the symbol based approach, using
the same strategy with a different intrinsic attribute.

σ(n,eval) =


JplusK(JnK.left.eval)(JnK.right.eval) σ(n,nodeProd) = JaddProdK
JmultK(JnK.left.eval)(JnK.right.eval) σ(n,nodeProd) = JmultProdK
...
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There are times where not only the type of a node matters, but the node’s position in
a subtree. This is typically the situation created by inherited attributes in a production-
based selection scheme. Consider the following simplified snippet from an attribute grammar
written in Silver, and the same attribute written in JastAdd.

1 // in Silver
2 call::Expr ::= c::Expr ’.’ i::Expr
3 { c.decl = 4 ;
4 i.decl = 6 ; }
5
6 // in JastAdd
7 inh Integer Expr.decl();
8 eq CallExpr.getLeftExpr().decl() = 4;
9 eq CallExpr.getRightExpr().decl() = 6;

Above we have given decl the value 4 for Expr nodes who are the left child of a CallExpr
node, and the value 6 for Expr nodes who are the right child of a CallExpr node. For
simplicity here we will assume that a CallExpr node has a nodeType of call. We could
describe equivalent equation selection as follows.

σ(n,decl) =



J4K σ(n,nodeType) = JexprK and σ(n,parent) = JnpK
and σ(np,nodeType) = JcallK and σ(np, leftexpr) = JnK

J6K σ(n,nodeType) = JexprK and σ(n,parent) = JnpK
and σ(np,nodeType) = JcallK and σ(np,rightexpr) = JnK

J0K otherwise

The above definition of decl may look complex, but is made from a number of simple
selectors using only intrinsic attributes. Our goal is a simple and general calculus, and here
we leverage our simple context functions to express a particular kind of equation selection. In
the first case, given some n, the context function is reflecting on its value for (n,nodeType)
(intrinsic) to ensure that n is an expr node. Then, it reflects on parent (intrinsic) to access
the identity of the parent. Using this parent node, it reflects on nodeType (again, intrinsic)
to ensure that the parent is a call node. Finally, it reflects on leftexpr (intrinsic), to compare
against the original node n. This verbose specification is given a more user-friendly notation
with selector notations, introduced below.

This entire selection process could be replaced with the following expression. However,
it is often desirable for such decisions to be made as part of attribute selection, and not as
part of evaluation.
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σ(n,decl) = IF JandK(JisExprK(JnK.nodeType))
(JandK(JisCallK(JnK.parent.nodeType))
(JnodeEqK(JnK)(JnK.parent.leftexpr)))

THEN J4K
ELSE IF JandK(JisExprK(JnK.nodeType))

(JandK(JisCallK(JnK.parent.nodeType))
(JnodeEqK(JnK)(JnK.parent.rightexpr)))

THEN J6K
ELSE J0K

Selector Notations

Given that these kinds of equation selection strategies are common, and especially given that
they can be verbose (as in the example above), we use some notations to make writing these
selections more convenient and easier to read. Below we show seven selectors, representing
selection schemes we have shown, and some extras. For each of these, we will show an
expanded selection notation, as well as an expression that would evaluate to the same result.

The definition of the attr attribute is given below, using all seven selector notations,
which will be explained individually.

σ(n,attr) =



ea n = nnull

eb (typeOne)
ec (typeTwo).*
ed (typeThree).childAttr
ee (typeFour).children*
inherited
e f otherwise

In the first selector, the expression ea is returned when the input node is nnull. The same
semantics could be achieved by the definition of attr below as an expression, assuming a
boolean underlying function nodeEq which checks two nodes for equality.

σ(n,attr) = IF JnodeEqK(JnK)(JnnullK) THEN ea ELSE ...

In the second selector, the expression eb is returned when the input node is of type type-
One. The selector notation is equivalent to the following.

σ(n,attr) =

eb σ(n,nodeType) = JtypeOneK
...
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The same semantics could be achieved without reflection by returning the following expres-
sion for attr.

σ(n,attr) = IF JisTypeOneK(JnK.nodeType) THEN eb ELSE ...

In the third selector, the expression ec is returned when the input node’s parent is of type
typeTwo. The selector notation is equivalent to the following.

σ(n,attr) =

ec σ(n,parent) = JnpK and σ(np,nodeType) = JtypeTwoK
...

The same semantics could be achieved without reflection by returning the following expres-
sion for attr.

σ(n,attr) = IF JisTypeTwoK(JnK.parent.nodeType) THEN ec ELSE ...

In the fourth selector, the expression ed is returned when the input node’s parent is of
type typeThree, and the input node is the node returned by the parent’s childAttr attribute.
The selector notation is equivalent to the following.

σ(n,attr) =


ed σ(n,parent) = JnpK

and σ(np,nodeType) = JtypeThreeK
and σ(np,childAttr) = JnK

...

The same semantics could be achieved without reflection by returning the following expres-
sion for attr, assuming an underlying function and representing boolean conjunction.

σ(n,attr) = IF JandK(JisTypeThreeK(JnK.parent.nodeType))
(JnodeEqK(JnK)(JnK.parent.childAttr))

THEN ed

ELSE ...

In the fifth selector, the expression ee is returned when the input node’s parent is of
type typeFour, and the input node is contained in the list of nodes returned by the parent’s
children attribute. We assume a boolean underlying function nodeContained, which checks
if a node is present in a list of nodes. The selector notation is equivalent to the following.

σ(n,attr) =



ee σ(n,parent) = JnpK
and σ(np,nodeType) = JtypeFourK
and σ(np,children) = JlK
and nodeContained(n)(l) = true

...

The same semantics could be achieved without reflection by returning the following expres-
sion for attr.
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σ(n,attr) = IF JandK(JisTypeFourK(JnK.parent.nodeType))
(JnodeContainedK(JnK)(JnK.parent.children))

THEN ee

ELSE ...

If none of the above selectors have matched, the “inherited” case will be used. This
selector returns an expression that calls the same attribute on the node’s parent, assuming a
node’s parent is available as a value in the context. The notation shown is equivalent to the
following.

σ(n,attr) =

JnpK.attr σ(n,parent) = JnpK
...

The same semantics could be achieved without reflection by returning the following expres-
sion for attr.

σ(n,attr) = JnK.parent.attr

If none of the previous selectors matched, then the final case e f will be returned.
These selector notations are not adding extra functionality to the context function, they

are merely a notational convenience for common use patterns. They assume the existence
of the attributes nodeType and parent. If used in a context without intrinsic attributes
nodeType and parent, these notations do not make sense.

Selector Example

To demonstrate the use of selectors, we will re-implement the globmin example from Sec-
tion 3.1.7. We assume that nodes can have one of three types (in nodeType): leaf, fork,
and root. We first define locmin as follows.

σ(n, locmin) =

JnK.value (leaf)
JminK(JnK.left.locmin)(JnK.right.locmin) otherwise

We then define globmin as follows.

σ(n,globmin) =

JnK.locmin (root)
inherited

The attributes locmin and globmin represent the same semantics as those given in
Section 3.1.7, but we have used some useful notations to more closely mimic the equation
definition schemes used in real-world attribute grammar systems. The notations shown here
demonstrate that Saiga is general enough to express attribute grammar programs using a
variety of notations.

Invalid Context Functions and Non-Terminating Evaluation

Consider the case where nodes exist that do not represent a tree, but a cyclic graph. If a node’s
parent is itself, or if a node’s parent’s parent is itself, or similar, then “following” the
parent chain can lead to non-terminating evaluation.



46 Saiga

n1

n2

n3

We will work with a “tree” (not actually a tree) represented by the graph above, with the
arrows between nodes representing the parent attribute relationship. Let us assume that all
nodes in this graph have the type leaf. We will evaluate Jn2K.globmin in this context, using
the definition of globmin from the previous example.

Jn2K.globmin
(1) −→ (AttrFetch)

Jn1K.globmin
(2) −→ (AttrFetch)

Jn3K.globmin
(3) −→ (AttrFetch)

Jn2K.globmin

Quickly we have arrived at the expression we started with. This evaluation will not
terminate. However, this is acceptable – we do not build machinery to disallow the definition
of an attribute that will not terminate. Similarly, it is possible to build an attribute grammar
program in Kiama or JastAdd that will never terminate.

Consider now a definition of globmin that reflects on itself not just to decide an attribute
equation, but to produce such an equation. The idea here is that the context function itself
will follow the parent chain as far is it can, returning an expression when it reaches the ‘top’.

σ(n,globmin) =

JnK.locmin (root)
σ(np,globmin) σ(n,parent) = JnpK

The advantage of such an approach is that the context function will follow the parent
chain all the way to its terminus in one call. Asking for some deep leaf node’s globmin
equation will ‘immediately’ return an expression based at the root. The issue here is when
there is a cycle in the parent chain. If the nodes in the above cycle are present in some context
function σ, then σ(n2,globmin) is not defined, as it is infinitely recursive.

σ(n2,globmin) = σ(n1,globmin) = σ(n3,globmin) = σ(n2,globmin) = ...

As a context function must be a mathematical function, this σ is not a valid context
function. It is still possible to create invalid context functions without including recursive
calls on the “left hand” of our attribute definitions, but it is not as common. Generally
speaking, it is always safe to reflect on attributes that are known to be simply defined - that
is, no special selection logic is applied for that attribute. If parent is always a simply
defined attribute (as all intrinsic attributes are expected to be), then reflecting on the parent
definition during attribute selection will not cause undefined outputs and therefore invalid
context functions.
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Further, recall that the context function can be a black box function. The user is free to
define any function they want for σ, as long as it produces an output for every input. Here
we are merely discussing the strengths and weaknesses of the notation standards introduced
in this section.

3.2.3 Conditional Expressions
e ::= IF e1 THEN e2 ELSE e3 conditional

One of our goals was to create as simple a calculus as possible, part of which means keeping
the expression language as simple as possible. We explored a few options for avoiding a
conditional expression, but it is not possible to implement non-strict conditional evaluation
without a specific production for this. If we had some underlying function ifthenelse which
takes the same three parameters that a conditional expression takes, the function application
semantics in Saiga would always evaluate both the then and else subexpressions to a value,
independently of the value of the conditional subexpression. This is not acceptable behaviour
when a conditional is used to guard against infinite circularity [26].

3.2.4 Multiple-Parameter Functions
e ::= e1(e2) function application

A function application expression is made up of two subexpressions: a function and
a parameter. As shown in some examples already, we use currying to implement multi-
parameter functions. Consider the following example.

JplusK(J5K)(J99K)

This is a function application expression. The “function” subexpression (a function ap-
plication expression itself) is doubly underlined above, and the “parameter” subexpression
is singly underlined. plus is an underlying function of type integer → integer → integer .
Below we show the same expression with extra parentheses to make the structure clearer,
although these parentheses are not strictly necessary.

(JplusK(J5K))(J99K)

The above expression will take two steps to evaluate. The first step will be derived from
FunApp, where the function subexpression steps from a function application expression to a
value expression, as shown.

JplusK(J5K) −→ Jplus(5)K
(FunApp)

JplusK(J5K)(J99K) −→ Jplus(5)K(J99K)
(FunApp)

Here the first subexpression has stepped to a value expression. The value expression
Jplus(5)K contains the value plus(5), which is of type integer → integer . We use this
notation to describe a partially applied function, as discussed in Section 3.1.1. The next step
is to apply the newly formed function application expression.

Jplus(5)K(J99K) −→ Jplus(5)(99)K
(FunApp)
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The value plus(5)(99) is the underlying value 104. We could also write the above step as
shown below, where we reduce the underlying function application to its final value. As our
semantics are not interested in beta reduction in the underlying system, we can assume that
plus(5)(99) and 104 are exactly the same thing.

Jplus(5)K(J99K) −→ J104K
(FunApp)

As it takes one semantic step to apply a function to its (single) parameter, it therefore
takes two semantic steps to apply a two-parameter function to its two parameters. This eval-
uation occurs in the following order: evaluate first parameter expression; (partially) apply
function; evaluate next parameter expression; (partially) apply function; and so on.

3.2.5 Tuples

Alternatively to multi-parameter functions via currying, it is possible to use functions that
take a single tuple as an argument. While not often useful for direct function application,
this technique is often required when using parameterised attributes, which are discussed in
Section 4.1.

As tuples are used often enough, we will define some notations to more conveniently
express tuple construction. We begin with an underlying function tuple, which takes two
arguments and produces a tuple from them. Since (in this thesis) we assume only monomor-
phic underlying types, a different tuple function is required for each type of tuple that is
being constructed. We will assume a tuple function is available for combining all types in T .

We define some notations to describe tuple construction, as follows.

(e1, e2) = JtupleK(e1)(e2)

As curried function application requires the first parameter to be applied before the second
parameter is evaluated, we cannot evaluate both elements of a tuple before combining them
into a tuple. We must evaluate the first element, partially apply the tuple function, evaluate
the second element, and finally use the partially applied function to finish tuple construction.
To allow our notation to accurately represent a tuple during construction, we must also define
some notation for the partially applied tuple function, as follows.

(.Jv1K, e2) = Jtuple(v1)K(e2)

Let us explore the normal process of constructing a tuple from two arbitrary expressions
e1 and e2, which we assume will evaluate to some values v1 and v2 respectively. First e1 is
evaluated to v1, then the function tuple is (partially) applied to v1, then e2 is evaluated to v2,
and then the partially applied tuple(v1) is applied to v2.

This process is shown on the left below, with the same expressions shown using our
notation on the right. We use the −→∗ symbol to represent multiple steps being taken (see
Section 3.2.8). As we use tuples in many of our examples, we will be using the notation
on the right to represent tuple construction, as well as the intermediate representation of
partially applied tuple constructors.
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JtupleK(e1)(e2) (e1, e2)

−→∗ (FunStep, FunParStep, given) −→∗ (FunStep, FunParStep, given)

JtupleK(Jv1K)(e2) (Jv1K, e2)

−→ (FunStep, FunApp) −→ (FunStep, FunApp)

Jtuple(v1)K(e2) (.Jv1K, e2)

−→∗ (FunParStep, given) −→∗ (FunParStep, given)

Jtuple(v1)K(Jv2K) (.Jv1K, Jv2K)
−→ (FunApp) −→ (FunApp)

J(v1,v2)K J(v1,v2)K

3.2.6 Functions Returning Expressions
Consider the two following versions of the FunApp rule.

Jv1K(Jv2K) −→ Jv1(v2)K
(FunAppA)

Jv1K(Jv2K) −→ v1(v2)
(FunAppB)

In FunAppA, we assume that the function v1 always returns an underlying value, and that
value is then put into a value expression. In FunAppB, we assume that the function v1 can
return a non-value expression, and we step immediately into that expression.

The reason we might want to use FunAppB is to allow for substitution. For example,
say that we have some complex expression e1 that will evaluate to some integer i1. If i1 is
less than 10, we will return i1, otherwise we will evaluate some other expensive expression
e2. Shown below are two ways to write such an expression, using each of the function
application methods shown above.

IF Jless(10)K(e1) THEN e1 ELSE e2 (FunAppA)
Jλx.IF Jless(10)K(x) THEN x ELSE e2K(e1) (FunAppB)

In the FunAppA instance, e1 may be evaluated twice (if i1 is less than 10). In the
FunAppB instance, e1 will always be evaluated exactly once. In the interest of efficiency,
we might want to choose FunAppB. However, we have opted for FunAppA, for the follow-
ing three reasons.

• For FunAppB, every underlying function would need to return an expression. This
complicates the use of simple functions in the underlying system and blurs the line be-
tween function application and attribution. This compromises the designed separation
of attribution and underlying logic.

• If an expression is expensive, it can be moved to an attribute, which will be cached
(when caching is implemented, as shown in Section 4.2). This means that it will only
be evaluated once.

• If the user desires to compute values and substitute these into expressions, this can be
achieved with parameterised attributes, as described in Section 4.1.
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3.2.7 Option Types and the Null Node
There will be cases where it will be convenient for attributes to return a value that is an op-
tion. For example, one might want many nodes to return some(np) for the intrinsic parent
attribute, while the root node returns none. Assuming the existence of some set of monomor-
phic option types (or polymorphic option in a future version of Saiga), alongside associated
isSome and getOrElse underlying functions, this is simple to implement in Saiga.

We assume the attribute parent, where τ(parent) = option(node). We can now rede-
fine the globmin attribute as described in Section 3.1.7 using option types instead of the
isRoot or a root node type.

σ(n,globmin) = IF JisSomeK(JnK.parent)
THEN JgetOrElse(nnull)K(JnK.parent).globmin
ELSE JnK.locmin

Since Saiga does not have pattern matching features, we must rely on functions like
isSome and getOrElse to manage the some and none cases of an option type. Note that
getOrElse must always return some value, so the default value nnull is supplied. We know that
this value will not be used in this case, assuming the function isSome behaves as expected.
There is some redundancy here, as getOrElse is, in a way, guarding against the none case,
which has already been guarded against with the conditional.

Given that we already need some null node to exist for this approach, we often use a null-
check approach to allow relationships to “not exist”. We can again redefine the globmin
attribute, where τ(parent) = node, and assuming an underlying function isNull which
returns true if its argument is nnull.

σ(n,globmin) = IF JisNullK(JnK.parent)
THEN JnK.locmin
ELSE JnK.parent.globmin

This approach allows us to reason about a “non existent” node nnull, without requiring
the use of getOrElse. The only complication here is the behaviour of an expression like
JnK.parent.globmin when n’s parent is nnull. This means we need to be ready for
expressions like JnnullK.globmin to be evaluated, which is not a problem if null checks are
used in the right places.

3.2.8 The Multistep Relation
Sometimes it is useful to show a relation between two expressions that represents more than
one step. Here we present the multistep relation, denoted by the −→∗ symbol.

e −→∗ e
(MultiRefl)

e1 −→ e2 e2 −→
∗ e3

e1 −→
∗ e3

(MultiStep)

This is a simple extension of the step relation which we use throughout this thesis to
express evaluations consisting of more than one step. In Section 6.7 we prove that multistep
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and big step (below) are equivalent.

3.2.9 The Big Step Relation

We use a small step operational semantics so we can examine the finer details of evaluation.
However, there is an equivalent big step semantics that can be useful when writing proofs in
Saiga. We do not modify the types, type rules, or expression language; we merely present an
alternative step relation, which we prove equivalent to the multistep relation in Section 6.7.
We use the double-headed arrow� to indicate a big step relation.

JvK� v
(BRefl) e1 � true e2 � v

IF e1 THEN e2 ELSE e3 � v
(BCondTrue)

e1 � false e3 � v

IF e1 THEN e2 ELSE e3 � v
(BCondFalse)

e1 � v1 e2 � v2
e1(e2)� v1(v2) (BFun)

e � n σ(n,a) � v
e.a � v (BAttr)

The big step relation expresses an expression evaluating to a value. Notice that on the
right hand side of the � relation indicator a value is given; not an expression. A big step
relation is always between an expression (on the left) and an underlying value (on the right).
We have found that some proofs are more easily reasoned about using the big step semantics,
as more focus is placed on the “terminals” of evaluation, and less on the intermediary stages.

3.3 Name Analysis Example

To demonstrate Saiga’s use on a larger problem, let us consider name analysis on an expres-
sion language that allows for addition and let bindings. The grammar for such a language is
shown below.

E ::= ‘let’ varName ‘=’ E ‘in’ E
::= E ‘+’ F
::= F

F ::= Integer
::= VarName

The abstract grammar for such a language might look like the following. We write this
to formalise what node types are expected, and what intrinsic and structural attributes must
be defined.

letExpr ::= name(string), eqExpr(node), inExpr(node)
plusExpr ::= leftExpr(node), rightExpr(node)
intExpr ::= val(integer)
varExpr ::= name(string)
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The above notation indicates that the attribute nodeType has four possible values:
letExpr, plusExpr, intExpr, and varExpr. letExpr nodes can be expected to have an intrinsic
attribute name of type String, and so on.

A legal expression in such a language might look like the following.

1 let x = (let z = 4 in z + 1) in x + 2

We can represent this expression in the following tree, which contains annotations for
each relevant intrinsic attribute of each node. Nodes are outlined, with their nodeType
value annotated at their root, for ease of reading. Edges represent intrinsic attributes, and are
labeled with their attribute name. The parent attribute is not shown here, but is assumed
with sensible values representing the tree below. As n0 has no parent, its parent attribute
returns nnull.

letExpr n0

“x” letExpr n1

“z” intExpr n2

4

plusExpr n3

varExpr n4

“z”

intExpr n5

1

plusExpr n6

varExpr n7

“x”

intExpr n8

2

nam
e

eq
Ex
pr

na
me

eq
E
xp
r

va
l

inExpr

le
ft
E
xp
r

n
am

e

rightE
xpr

va
l

inExpr

le
ft
E
xp
r

n
am

e

rightE
xpr

va
l

Note that not every attribute has a value shown for every node. This is because, for ex-
ample, the val attribute is not relevant to a plusExpr node, as a plus node does not have
an integer value attached to it at parsing time in this example. Since the context function
is a mathematical function, there will be an attribute expression available for val even on
plusExpr nodes, but this value will be some default value we define when defining the con-
text function. Since val is an intrinsic integer attribute, a sensible default might be a value
expression containing zero J0K.

As part of performing semantic analysis on such a tree, we need to be able to match each
use of a variable name (in this case “x” and ”z”) to their defining uses. We will define the
attribute env to generate an “environment”, which is an ordered list of tuples that bind the
name of a variable to their defining occurrences. To achieve this, we define the attribute env,
which represents the scope of available names at each node. We define env as follows.

σ(n,env) =



J[]K n = nnull

JprependK (letExpr).inExpr
((JnK.parent, JnK.parent.name))
(JnK.parent.env)

inherited
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The underlying function prepend appends a node/string tuple to a list of such tuples. The
function get searches such a list and returns the node in the first tuple whose string matches
the given string. get will return nnull when no matching entry is found. We then define the
attribute decl to link a varExpr node to its defining occurrence, using the env attribute.

σ(n,decl) = JgetK(JnK.name)(JnK.env)

To test this example we will evaluate the expression Jn4K.decl on the context described
by the tree above. Since n4 is a use of the name “z”, we expect the defining occurrence n1 to
be reached.

Jn4K.decl
(1) −→ (AttrFetch)

JgetK(Jn4K.name)(Jn4K.env)

(2) −→ (FunStep, FunParStep)

JgetK(J“z”K)(Jn4K.env)

(3) −→ (FunStep, FunApp)

Jget(“z”)K(Jn4K.env)

(4) −→ (FunParStep, AttrFetch, using the inherited case)

Jget(“z”)K(Jn3K.env)

(5) −→ (FunParStep, AttrFetch)

Jget(“z”)K(JprependK((Jn3K.parent, Jn3K.parent.name))(Jn3K.parent.env))

(6) −→ (FunParStep, FunStep, FunParStep, FunStep, AttrFetch)

Jget(“z”)K(JprependK((Jn1K, Jn3K.parent.name))(Jn3K.parent.env))

(7) −→ (FunParStep, FunStep, FunParStep, FunParStep, FunStep, FunApp, partial tuple construction)

Jget(“z”)K(JprependK((.Jn1K, Jn3K.parent.name))(Jn3K.parent.env))

(8) −→ (FunParStep, FunStep, FunParStep, FunParStep, AttrNodeStep, AttrFetch)

Jget(“z”)K(JprependK((Jn1K, Jn1K.name))(Jn3K.parent.env))

(9) −→ (FunParStep, FunStep, FunParStep, FunParStep, AttrFetch)

Jget(“z”)K(JprependK((Jn1K, J“z”K))(Jn3K.parent.env))

(10) −→ (FunParStep, FunStep, FunParStep, FunParStep, FunApp, finishing tuple construction)

Jget(“z”)K(JprependK(J(n1,“z”)K)(Jn3K.parent.env))

(11) −→ (FunParStep, FunStep, FunApp)

Jget(“z”)K(Jprepend((n1,“z”))K(Jn3K.parent.env))

(12) −→ (FunParStep, FunParStep, AttrNodeStep, AttrFetch)

Jget(“z”)K(Jprepend((n1,“z”))K(Jn1K.env))

(13) −→ (FunParStep, FunParStep, AttrFetch, inherited case)
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Jget(“z”)K(Jprepend((n1,“z”))K(Jn0K.env))

(14) −→ (FunParStep, FunParStep, AttrFetch, inherited case)

Jget(“z”)K(Jprepend((n1,“z”))K(JnnullK.env))

(15) −→ (FunParStep, FunParStep, AttrFetch, null case)

Jget(“z”)K(Jprepend((n1,“z”))K(J[]K))

(16) −→ (FunParStep, FunApp)

Jget(“z”)K(J[(n1,“z”)]K)
(17) −→ (FunApp)

Jn1K

This example has shown Saiga’s ability to model and evaluate real-world attribute gram-
mar programs.

3.4 Conclusion
We have presented the core Saiga calculus, including the underlying type system, the Saiga
expression grammar, type rules, and semantic rules, in Section 3.1. We discussed some of the
finer details of this calculus and presented the multistep and big step semantics in Section 3.2.
We showed how core Saiga can be used to express and evaluate name analysis on a simple
expression language in Section 3.3.

We believe we have achieved our goal of simplicity, with an expression language made
up of only four production rules, each with one type rule, and eight semantic rules in total.
The underlying system being assumed allowed us to forego implementing our own detailed
type system for values and function application semantics, further simplifying our approach
and allowing us to focus on only domain specific tasks; defining and evaluating attributes.
The entirety of the equation selection process, along with our method of accessing tree re-
lationships and intrinsic tree data are relegated to the context function, allowing for simple
and generalised expression of a variety of attribute grammar notations.

In Chapter 4 we present the extended Saiga calculus, which includes parameterised at-
tributes and attribute caching. In Chapter 5 we present the higher order Saiga calculus, al-
lowing decoratable nodes to be created during evaluation. These chapters will take a similar
shape to this chapter, with full semantics shown first, followed by a discussion of the details
of the system, and an example for each new feature presented.



The beer I had for breakfast wasn’t bad, so I had one more for dessert.
Sunday Morning Coming Down – Kris Kristofferson

4
Saiga Extended

In Chapter 3 we presented a core calculus for attribute grammar evaluation. However, there
is a set of common attribute extensions, as explored in Section 2.3, of which every modern at-
tribute grammar platform implements a subset, and we want to model the semantics of some
of these extensions. Attribute caching (Section 2.3.3) is one of the most fundamental exten-
sions, allowing the computed values of attributes to be stored for later use. Parameterised
attributes (Section 2.3.2) extend the semantics of attribute evaluation to allow parameters to
be passed, expanding an attribute’s output from a single value to a map of input to output
values. We choose to implement these two extensions in this chapter as they are commonly
implemented in modern platforms, integrate smoothly into our calculus, and are pure in the
sense that they are focused on the semantics of attribute evaluation rather than equation se-
lection or notation.

In Section 4.1 we present parameterised attributes, and in Section 4.2 we present attribute
caching. For each feature we will present the new expression language forms, type rules,
and operational semantics, along with a brief discussion and an example. In Section 4.3 we
discuss the reason behind some of the design choices made in developing these extensions.
We consider the full semantics shown in Chapter 3 to be “core Saiga”, and the extended
semantics shown in this chapter to be “extended Saiga”.

4.1 Parameterised Attributes

Parameterisation extends attribution mechanics to accept parameters when calling attributes
(see Section 2.3.2). Instead of each node having a single value available for each attribute,
some attributes represent a map from parameter values to output values. For example, one
could define an attribute getDecl that takes a string parameter and searches the tree for the
nearest declaration of that name.
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4.1.1 Expression Language

To allow for parameterised attributes we extend the attribution production of Saiga’s expres-
sion grammar as follows.

e ::= JvK value
| IF e1 THEN e2 ELSE e3 conditional
| e1(e2) function application
| e1.a(e2) attribution

Attribution expressions now contain a second subexpression, underlined in the grammar
above. In the attribution production, e1 is an expression that will evaluate to the node to
be evaluated upon, and e2 is an expression that will evaluate to the parameter for such an
attribute evaluation. The semantics for this new expression form are shown in Section 4.1.4.

4.1.2 All Types

To account for parameterised attributes we adjust the type signature of a context function,
and add the new type function ρ, as shown below.

Type t ∈ T
Value v ∈ t

Expression e ∈ E
Attribute a ∈ A

Node n ∈ N
Attribute Type τ ∈ A→ T

Parameter Type ρ ∈ A→ T

Context σ ∈ N → (a : A) → ρ(a) → E

Just as τ produces the expected output type of an attribute, the new ρ produces the ex-
pected parameter type for an attribute. The context function is redefined to have three param-
eters: a node, an attribute, and a parameter. The type of the parameter is defined by ρ and
the input attribute, so the context function is now dependently typed. The context function
now requires a parameter to be given for every attribute definition. See Section 4.3.1 for a
discussion of non-parameterised attributes under this model.

4.1.3 Type Rules
v : t

JvK : t
(TypeVal) e1 : boolean e2 : t e3 : t

IF e1 THEN e2 ELSE e3 : t (TypeCond)

e1 : t1 → t2 e2 : t1
e1(e2) : t2

(TypeFun)
e1 : N e2 : ρ(a)

e1.a(e2) : τ(a)
(TypeAttr)

Only a simple adjustment to Saiga’s type rules is required to account for parameterised
attributes. We add a second condition to the TypeAttr rule to ensure that the second subex-
pression of an attribution expression has a type that matches the appropriate attribute, using
the type function ρ.
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4.1.4 Semantic Rules

e1 −→ e′1
IF e1 THEN e2 ELSE e3 −→ IF e′1 THEN e2 ELSE e3

(CondStep)

IF JtrueK THEN e2 ELSE e3 −→ e2
(CondTrue)

e1 −→ e′1
e1(e2) −→ e′1(e2)

(FunStep)

IF JfalseK THEN e2 ELSE e3 −→ e3
(CondFalse) e −→ e′

JvK(e) −→ JvK(e′)
(FunParStep)

e1 −→ e′1
e1.a(e2) −→ e′1.a(e2)

(AttrNodeStep) e −→ e′
JnK.a(e) −→ JnK.a(e′)

(AttrParStep)

Jv1K(Jv2K) −→ Jv1(v2)K
(FunApp)

JnK.a(JpK) −→ σ(n,a,p)
(AttrFetch)

We extend Saiga’s operational semantics with the new AttrParStep rule, and we adjust the
AttrNodeStep and AttrFetch rules. The new rule and changes to the existing rules are un-
derlined in these semantics. The adjusted AttrNodeStep is functionally unchanged; it is only
modified to allow for the new shape of an attribution expression. The new AttrParStep rule
allows an attribution expression’s second subexpression to take steps once the first subex-
pression has reached a value. The effect of these changes is that an attribution expression
will first evaluate its node subexpression to a value, then its parameter subexpression. This
is similar semantics to the function application expression.

Once both the node and parameter subexpressions have reached values, AttrFetch per-
forms a similar task as before, stepping into whichever expression is returned by the context
function. Note that the AttrFetch rule can only proceed if n is a node and p’s type is ρ(a),
otherwise the context function has no defined output. These changes are all that is required
to add parameterised attributes to Saiga. See Section 4.3.2 for a discussion of how these
semantics differ from non-parameterised attributes that return functions.

4.1.5 Name Analysis Example Revisited

In Section 3.3, we performed name analysis by constructing a full environment (the env
attribute), and searching that environment for a variable use’s declaration. The environment
is a list of all names in scope, along with a reference to their declarations. In this example,
we begin with the same tree structure presented in Section 3.3, but we implement name
analysis using a different approach. Our new approach is to start with a name, and search
the tree specifically for that name’s declaration. Such a task is made possible with the use of
parameterised attributes.

In this example we use a number of shorthands for ‘non-parameterised attributes’ which
are discussed in Section 4.3.1. When an attribute expression is written without a parameter
included, this is shorthand for including a parameter subexpression holding the unit value,
which we use to represent non-parameterised attributes.
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We define the parameterised attribute getDecl, where ρ(getDecl) = string, below.

σ(n,getDecl, s) =



JnnullK n = nnull

IF Jeq(s)K(JnK.parent.name) (letExpr).inExpr
THEN JnK.parent
ELSE JnK.parent.getDecl(JsK)

inherited

The getDecl attribute traverses upwards in the tree, checking against any letExpr nodes,
specifically when traversing from such a node’s inExpr child. If the discovered letExpr node
is the declaration of the name given by the parameter s, this node is returned. We can now
define the simple attribute decl, which finds the declaration of any varExpr node using the
getDecl attribute.

σ(n,decl,_) =

JnK.getDecl(JnK.name) (varExpr)
JnnullK otherwise

The decl attribute, like the intrinsic attributes parent and name, ignores its parameter.
Non-parameterised attributes are discussed further in Section 4.3.1.

To test out this attribute grammar program, we will evaluate n4.decl. The tree we are
evaluating upon is shown again below. As the attributes in this example are designed to work
with the same kind of tree as in Section 3.3, we will evaluate on the same tree used in that
example. As in the example in Section 3.3, we expect the evaluation to reach the value Jn1K.
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We proceed by evaluating Jn4K.decl, using the new definitions of decl and getDecl.

Jn4K.decl
(1) −→ (AttrFetch)

Jn4K.getDecl(Jn4K.name)

(2) −→ (AttrParStep, AttrFetch)

Jn4K.getDecl(J“z”K)
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(3) −→ (AttrFetch, by inheritance)
Jn3K.getDecl(J“z”K)

(4) −→ (AttrFetch)
IF Jeq(“z”)K(Jn3K.parent.name) THEN Jn3K.parent

ELSE Jn3K.parent.getDecl(J“z”K)
(5) −→ (CondStep, FunParStep, AttrNodeStep, AttrFetch)

IF Jeq(“z”)K(Jn1K.name) THEN Jn3K.parent

ELSE Jn3K.parent.getDecl(J“z”K)
(6) −→ (CondStep, FunParStep, AttrFetch)

IF Jeq(“z”)K(J“z”K) THEN Jn3K.parent

ELSE Jn3K.parent.getDecl(J“z”K)
(7) −→ (CondStep, FunApp)

IF JtrueK THEN Jn3K.parent
ELSE Jn3K.parent.getDecl(J“z”K)

(8) −→ (CondTrue)
Jn3K.parent

(9) −→ (AttrFetch)
Jn1K

As expected, evaluation terminated with the node value n1. Implementing parameteri-
sation in Saiga has been a very simple exercise, demonstrating the flexibility of the Saiga
model. Further discussion of the implementation of parameterisation and its strengths and
caveats can be found in Section 4.3, but first we will discuss attribute caching in Saiga.

4.2 Attribute Caching
Attribute caching (or memoisation) involves storing the computed value of an attribute after
evaluation so that it does not need to be recomputed if requested again (see Section 2.3.3).
For example, after evaluating Jn4K.decl as in Section 4.1.5, we reach the value Jn1K. If there
is cause to again access Jn4K.decl, it would be desirable for the computed value Jn1K to be
returned immediately, rather than having this value computed again.

To implement caching, we need some way to record the computed value of an attribute,
and a way for evaluation to retrieve this value. Instead of implementing another storage
method for cached values, we opt to allow the context function to transform during evalu-
ation. When an attribute a on a node n with a parameter p is evaluated to some value v,
we modify σ such that σ(n,a,p) will now return JvK. We use the ⊕ operator to indicate a
context function has been modified with an overridden output value.

σ ⊕ {(n,a,p) 7→ JvK}

To implement caching behaviour, we add an expression form, appropriate type rules, and
modify and extend our operational semantics.
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4.2.1 Expression Language

We extend the expression grammar as follows.

e ::= JvK value
| IF e1 THEN e2 ELSE e3 conditional
| e1(e2) function application
| e1.a(e2) attribution
| n.a(p):= e1 cache

One production has been added to the Saiga expression grammar: the cache expression.
The new expression form has been highlighted above. The purpose of this expression is to
keep track of which attributes are being evaluated, so that their results can be written to the
cache when a value is reached. We assume, in the construction of a cache expression, that
n ∈ N , a ∈ A, and p ∈ ρ(a).

n.a(p):= e1 vs JnK.a(JpK)

Note that the syntax of a cache expression is similar to the syntax of an attribution expression.
The caching expression’s syntax is designed to represent that a particular attribute is being
calculated, and will be written to cache once its evaluation is complete. A cache expression
only has a single subexpression (e1 in the case above); the values n, a, and p are components
of a cache expression, but are not expressions themselves (and therefore their values are not
wrapped as in JnK vs n).

4.2.2 Type Rules

v : t
JvK : t

(TypeVal) e1 : boolean e2 : t e3 : t
IF e1 THEN e2 ELSE e3 : t (TypeCond)

e1 : t1 → t2 e2 : t1
e1(e2) : t2

(TypeFun)
e1 : N e2 : ρ(a)

e1.a(e2) : τ(a)
(TypeAttr)

e : τ(a)
n.a(p):= e : τ(a)

(TypeCache)

With the addition of the new expression form, we provide a new typing rule TypeCache,
which simply ensures that the single subexpression of a cache expression matches the type
associated with the given attribute. The new type rule is highlighted above.

4.2.3 Semantic Rules

The changes to Saiga’s semantic rules to allow caching are not as simple as they were for
parameterised attributes. Below we present the new semantic rules, which include a trans-
forming context function, as well as four new semantic rules.
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σ ` e1 −→ σ′ ` e′1
σ ` IF e1 THEN e2 ELSE e3 −→ σ′ ` IF e′1 THEN e2 ELSE e3

(CondStep)

σ ` IF JtrueK THEN e2 ELSE e3 −→ σ ` e2
(CondTrue)

σ ` IF JfalseK THEN e2 ELSE e3 −→ σ ` e3
(CondFalse)

σ ` e1 −→ σ′ ` e′1
σ ` e1(e2) −→ σ′ ` e′1(e2)

(FunStep)
σ ` e −→ σ′ ` e′

σ ` JvK(e) −→ σ′ ` JvK(e′)
(FunParStep)

σ ` Jv1K(Jv2K) −→ σ ` Jv1(v2)K
(FunApp)

σ ` e1 −→ σ′ ` e′1
σ ` e1.a(e2) −→ σ′ ` e′1.a(e2)

(AttrNodeStep)

σ ` e −→ σ′ ` e′

σ ` JnK.a(e) −→ σ′ ` JnK.a(e′)
(AttrParStep)

σ(n,a,p) = JvK
σ ` JnK.a(JpK) −→ σ ` JvK

(AttrFetchValue)

σ(n,a,p) is not a value
σ ` JnK.a(JpK) −→ σ ` n.a(p):= σ(n,a,p)

(AttrFetchCached)

σ ` e −→ σ′ ` e′
σ ` n.a(p):= e −→ σ′ ` n.a(p):= e′

(CacheStep)

σ ` n.a(p):= JvK −→ σ ⊕ {(n,a,p) 7→ JvK} ` JvK
(CacheWrite)

A Changing Context Function

To implement caching, we add two terms to the step relation. Previously, we would say that
some expression e steps to some expression e′ under some context function σ. This would
be written as follows, with σ considered a global variable that does not need to be written
alongside the step relation.

e −→ e′

Now that it is possible for the context function to transform during evaluation, the context
function is not only an input, but also an output of the step relation. Therefore, the step
relation now steps the pair σ and e to the pair σ′ and e′, as in the new notation.

σ ` e −→ σ′ ` e′

In the above semantics, we have added context stepping notations (highlighted) to all
of the steps for all conditional rules, function application rules, and the AttrNodeStep and
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AttrParStep rules, which remain otherwise unchanged.

Caching Rules

σ ` e −→ σ′ ` e′
σ ` n.a(p):= e −→ σ′ ` n.a(p):= e′

(CacheStep)

σ ` n.a(p):= JvK −→ σ ⊕ {(n,a,p) 7→ JvK} ` JvK
(CacheWrite)

We have added the two semantic rules CacheStep and CacheWrite. The CacheStep rule
dictates that if a cache expression contains a subexpression that can make some step, then
the cache expression carries that step, adjusting its subexpression and context function in the
process. The CacheWrite rule says that when a cache expression holds a value subexpression,
the context function is updated and the cache wrapper is removed, yielding the contained
value expression. At this point CacheWrite is the only step rule that can change a context
function, but any step that requires a substep could contain a CacheWrite step, so we account
for a context transformation on any semantic rule with a step sub-relation. In Chapter 5
we introduce some more rules that modify the context function, to implement higher order
attributes.

Two Attribution Rules

σ(n,a,p) = JvK
σ ` JnK.a(JpK) −→ σ ` JvK

(AttrFetchValue)

σ(n,a,p) is not a value
σ ` JnK.a(JpK) −→ σ ` n.a(p):= σ(n,a,p)

(AttrFetchCached)

The cache expression is designed to be produced by attribution expressions. The pattern of
attribute evaluation is now: evaluate the node; evaluate the parameter; wrap the context func-
tion results in a cache expression; evaluate the cache expression; write the result to cache;
return the result. However, if the context function returns a value, this caching operation is
redundant; we would be reading some value v1 from the context, and then writing it back to
the context in the same place, which makes no change at all. Therefore, we split attribution
into two rules; we wrap the result in a cache expression when the context function returns
a non-value expression, and we return the result directly when a value is returned. This
strategy is discussed further in Section 4.3.3.

4.2.4 Caching Example

To demonstrate the mechanics of caching, we will evaluate the decl attribute from Sec-
tion 4.1.5 on a similar tree. In this tree, the variable name “z” appears twice in the subtree
containing n4 and n5. This tree represents the following expression.

1 let x = (let z = 4 in z + z) in x + 2
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letExpr n0

“x” letExpr n1

“z” intExpr n2

4

plusExpr n3

varExpr n4

“z”

varExpr n5

“z”

plusExpr n6

varExpr n7

“x”

intExpr n8

2

nam
e

eq
Ex
pr

na
me

eq
E
xp
r

va
l

inExpr

le
ft
E
xp
r

n
am

e

rightE
xpr

n
am

e

inExpr

le
ft
E
xp
r

n
am

e

rightE
xpr

va
l

We will begin with a context function that contains a description of the tree above, as well as
the definitions of decl and getDecl from Section 4.1.5, which we will call σ1. We will first
evaluate Jn4K.decl under σ1, which produces the value v1 and “output” context function σ4.
We will then evaluate Jn5K.decl under σ4.

For simplicity of notation, we will not show the details of context transformations during
evaluation, but will instead show the numbered context functions σ1 through σ4, showing
a full definitions of these context functions below the evaluation steps. The evaluation of
Jn4K.decl will be very similar to that shown in Section 4.1.5, but computed attributes will
be cached along the way.

σ1 ` Jn4K.decl
(1) −→ (AttrFetchCached)

σ1 ` n4.decl:= Jn4K.getDecl(Jn4K.name)

(2) −→ (CacheStep, AttrParStep, AttrFetchValue)

σ1 ` n4.decl:= Jn4K.getDecl(J“z”K)
(3) −→ (CacheStep, AttrFetchCached)

σ1 ` n4.decl:= n4.getDecl(“z”):= Jn3K.getDecl(J“z”K)
(4) −→ (CacheStep, CacheStep, AttrFetchCached)

σ1 ` n4.decl:= n4.getDecl(“z”):= n3.getDecl(“z”):=
IF Jeq(“z”)K(Jn3K.parent.name) THEN Jn3K.parent

ELSE Jn3K.parent.getDecl(J“z”K)
(5) −→ (CacheStep, CacheStep, CacheStep, CondStep, FunParStep, AttrNodeStep, AttrFetchValue)

σ1 ` n4.decl:= n4.getDecl(“z”):= n3.getDecl(“z”):=

IF Jeq(“z”)K(Jn1K.name) THEN Jn3K.parent

ELSE Jn3K.parent.getDecl(J“z”K)
(6) −→ (CacheStep, CacheStep, CacheStep, CondStep, FunParStep, AttrFetchValue)

σ1 ` n4.decl:= n4.getDecl(“z”):= n3.getDecl(“z”):=
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IF Jeq(“z”)K(J“z”K) THEN Jn3K.parent

ELSE Jn3K.parent.getDecl(J“z”K)
(7) −→ (CacheStep, CacheStep, CacheStep, CondStep, FunApp)

σ1 ` n4.decl:= n4.getDecl(“z”):= n3.getDecl(“z”):=

IF JtrueK THEN Jn3K.parent
ELSE Jn3K.parent.getDecl(J“z”K)

(8) −→ (CacheStep, CacheStep, CacheStep, CondTrue)
σ1 ` n4.decl:= n4.getDecl(“z”):= n3.getDecl(“z”):= Jn3K.parent

(9) −→ (CacheStep, CacheStep, CacheStep, AttrFetchValue)

σ1 ` n4.decl:= n4.getDecl(“z”):= n3.getDecl(“z”):= Jn1K

(10) −→ (CacheStep, CacheStep, CacheWrite)

σ2 ` n4.decl:= n4.getDecl(“z”):= Jn1K

(11) −→ (CacheStep, CacheWrite)

σ3 ` n4.decl:= Jn1K

(12) −→ (CacheStep, CacheWrite)

σ4 ` Jn1K

Here evaluation has followed the same process as in Section 4.1.5, but with three extrinsic
attributes being cached along the way, in steps (10), (11), and (12). The definitions of the
context functions σ1 to σ4 are as follows. Note that in σ4, decl is cached with the special
attribute parameter (), which is the unit value (see Section 4.3.1).

σ2 = σ1 ⊕ {(n3,getDecl,“z”) 7→ Jn1K}
σ3 = σ2 ⊕ {(n4,getDecl,“z”) 7→ Jn1K}
σ4 = σ3 ⊕ {(n4,decl, ()) 7→ Jn1K}

The result of evaluating Jn4K.decl under σ1 is the value n1 and the updated context
function σ4. We will now evaluate Jn5K.decl under σ4 to make use of the values cached
during the first evaluation.

σ4 ` Jn5K.decl
(1) −→ (AttrFetchCached)

σ4 ` n5.decl:= Jn5K.getDecl(Jn5K.name)

(2) −→ (CacheStep, AttrParStep, AttrFetchValue)

σ4 ` n5.decl:= Jn5K.getDecl(J“z”K)
(3) −→ (CacheStep, AttrFetchCached)

σ4 ` n5.decl:= n5.getDecl(“z”):= Jn3K.getDecl(J“z”K)

(4) −→ (CacheStep, CacheStep, AttrFetchValue, as this attribute is cached)
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σ4 ` n5.decl:= n5.getDecl(“z”):= Jn1K

(5) −→ (CacheStep, CacheWrite)

σ5 ` n5.decl:= Jn1K
(6) −→ (CacheWrite)

σ6 ` Jn1K

The first three steps proceeded in a similar fashion to Jn4K.decl. Notice, however
that step (4) uses AttrFetchValue, as the value for Jn3K.getDecl(J“z”K) had already been
cached in σ4. The updated context functions σ5 and σ6 are defined as below.

σ5 = σ4 ⊕ {(n5,getDecl,“z”) 7→ Jn1K}
σ6 = σ5 ⊕ {(n5,decl, ()) 7→ Jn1K}

This example demonstrates that caching does not affect the output behaviour of evalu-
ation, but adds some book-keeping along the way with cache expressions, and updates the
context function every time a non-value attribute is evaluated to a value. A proof of this
property, which we call cache irrelevance, is given in Section 6.8. While allowing a context
function to transform during evaluation has added some complexity to the calculus, caching
is an important part of modern attribute grammar evaluation, so it is a necessary complica-
tion. Further, higher order attributes (Chapter 5) also require a context function to transform
during evaluation, so accounting for this transformation would not be avoidable, even if at-
tribute caching were excluded.

4.3 Discussion

In this section we will discuss some of the details, design decisions, and caveats of the
extended calculus presented in Sections 4.1 and 4.2.

4.3.1 Non-Parameterised Attributes

In Section 4.1 we extend regular attribution with parameters. Our solution for allowing at-
tributes to have one parameter, multiple parameters, or no parameters at all is to force all
attributes to have exactly one, and delegate tuples to do the work of multiple parameterisa-
tion. Tuples in Saiga are discussed in detail in Section 3.2.5.

We have shown examples of the use of attributes with one parameter. Attributes with
multiple parameters are straightforward. Let us say we want to design some attribute pattr
with two parameters of type boolean and string. In this case, ρ(pattr) = TupleBoolString.
The type TupleBoolString might also be represented using the notation boolean × string.
Evaluating such an attribute would require some expression to evaluate to a value of this
kind, and it would be passed to the context function, which can treat the parts of the tuple
separately if it chooses to.

Non-parameterised attributes can use the special type unit, which has exactly one value,
which we write like the empty tuple (). The common structural attribute parent is likely to
have no parameter. In this case we would have ρ(parent) = unit.
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As non-parameterised attributes are common, we use a number of shorthands to make
their notation more concise. In the case where the parameter is omitted from an attribution
expression, this will be considered equivalent to the full attribution expression, with a unit
value expression for the parameter subexpression.

e1.attr = e1.attr(J()K)

Similarly, omitting the parameter subexpression from a cache expression will also be short-
hand for the unit parameter, as follows.

n1.attr:= e1 = n1.attr(()):= e1

When defining an attribute, we often use the underscore to indicate that we don’t care what
some input value is. Here we define the attr attribute, which has a unit parameter, which is
not used.

σ(n,attr,_) = e1

We will use these notations for non-parameterised attributes frequently in examples through-
out this thesis.

4.3.2 Attributes Returning Functions

As an attribute can return a function, it is possible to implement something similar to param-
eterised attributes using only the core Saiga semantics. If we have τ(getDecl2) = string→
node, we can write the following expression in core Saiga.

(Jn1K.getDecl2)(J“a”K)

Note that the above expression is written using the core Saiga grammar, with no param-
eterised attribution. The doubly-underlined expression is a regular attribute fetch, which is
assumed to return a function typed expression. The singly-underlined expression is the pa-
rameter that will be used to call the result of the first expression. With this kind of format,
we can allow an attribute to return an expression that will return different results depending
on the parameter it is given.

However, consider the semantics of this scenario if getDecl2 is supposed to behave
similarly to getDecl (Section 4.1.5). The expression returned by σ(n1,getDecl2) must
evaluate to a function that is ready to return the declaration node for any input string. This
means that it cannot perform a targeted search up the tree, but must prepare all possible
outputs, before the parameter expression (J“a”K in this case) is even evaluated. This is not a
parameterised attribute; this is a function-typed attribute.

The purpose of a parameterised attribute is for a parameter to influence how the evalu-
ation of an attribute proceeds. This does not occur if all evaluation is completed before the
parameter is “received”, which is always the case for a function application expression.

Further, parameterised attributes are cached along with their parameters. With the ex-
tended calculus, if we evaluate Jn1K.getDecl(J“x”K) under σ, then the output of σ(n1,
getDecl,“x”) is modified; the attribute with that particular parameter is cached for that
particular node. Returning a function as a parameter’s value will cause the function itself to
be cached, not any of its particular outputs.



4.3 Discussion 67

Note that Silver does not support parameterised attributes (although it does support at-
tributes with type parameters). Silver does support function values, however, and could
implement getDecl2 in the manner described above.

4.3.3 Re-Caching Values and Simplicity

Let us consider a version of our caching semantics (shown in Section 4.2.3) where attribu-
tion expressions always step to a cache expression, without distinguishing between value and
non-value attribute expressions. In this instance, we would replace the two rules AttrFetch-
Value and AttrFetchCached with the following single rule.

σ ` JnK.a(JpK) −→ σ ` n.a(p):= σ(n,a,p)
(AttrFetch)

Now let us consider a context function σ1, with the following two specified entries.

σ1(n1,attr1, ()) = IF JtrueK THEN J4K ELSE J5K
σ1(n1,attr2, ()) = J6K

When evaluating attr1 and attr2 on n1 under σ1, it would make sense intuitively to
cache the results of attr1 but not to cache the results of attr2. Indeed, if we evaluate
Jn1K.attr1 under the modified ‘always cache’ semantics here, we would see the following.

σ1 ` Jn1K.attr1
(1) −→ (AttrFetch)

σ1 ` n1.attr1:= IF JtrueK THEN J4K ELSE J5K
(2) −→ (CacheStep, CondTrue)

σ1 ` n1.attr1:= J4K
(3) −→ (CacheStep, CondTrue)

σ2 ` J4K
where σ2 = σ1 ⊕ {(n1,attr1, ()) 7→ J4K}

As expected, the output context is σ2, which contains a cached value for attr1. Now,
consider the steps taken to evaluate Jn1K.attr2 under σ1.

σ1 ` Jn1K.attr2
(1′) −→ (AttrFetch)

σ1 ` n1.attr2:= J6K
(2′) −→ (CacheWrite)

σ3 ` J6K
where σ3 = σ1 ⊕ {(n1,attr2, ()) 7→ J6K}

However, we can show that σ3 = σ1. The ⊕ operator changes only one output from a
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context function. In this instance, the inputs that have been overridden (n1,attr2, ()) return
the expression J6K, which is the same as the value it is being replaced with. By functional
extensionality, as all inputs return the same output, we have σ3 = σ1.

Therefore wrapping a value expression in a cache statement takes one extra step (step (2′)
above), and results in the same output value and context. Similarly, if we were to evaluate
Jn1K.attr1 again on σ2, where it has already been cached, the newly cached value would
again be cached. While the Saiga calculus is not designed with efficiency in mind, attribute
caching is a feature that is usually implemented for the purpose of efficiency. Further, if
attributes that had already been cached were re-cached every time they were accessed, this
would not accurately mirror caching behaviour in real-world attribute grammar systems.

Consider the evaluations shown in Section 4.2.4. If we had to perform the extra caching
step every time we requested the intrinsic attributes name and parent, both the number of
steps shown would increase as well as the size of the expressions shown. Separately from
‘step efficiency’, such semantics would make analysis of these simple attribute grammar
programs more verbose; evaluation would frequently produce new context functions which
are identical, but are not written the same way (as in σ1 and σ3 above). Regularly proving
the equality of redundantly updated context functions would increase the effort of evaluation
analysis, and is avoided by the inclusion of the second attribution rule. For these reasons we
opt to implement the two separate rules AttrFetchValue and AttrFetchCached.

4.3.4 The Multistep Relation

As the step relation has changed in the extended calculus, we must also redefine the multistep
relation that was presented in Section 3.2.8. The only modification necessary is to take into
account not only a changing expression but also a changing context function.

σ ` e −→∗ σ ` e
(MultiRefl)

σ1 ` e1 −→ σ2 ` e2 σ2 ` e2 −→
∗ σ3 ` e3

σ1 ` e1 −→
∗ σ3 ` e3

(MultiStep)

4.3.5 The Big Step Relation

We extend the big step semantics presented in Section 3.2.9 to include the full semantics
of the extended Saiga calculus. As with the multistep relation, we have included a pos-
sibly transforming context function into every rule. We have also included the new rules
BAttrValue, BAttrCached, and BCache, which implement the new features presented in this
chapter.
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σ ` JvK� σ ` v
(BRefl) σ1 ` e1 � σ2 ` true σ2 ` e2 � σ3 ` v

σ1 ` IF e1 THEN e2 ELSE e3 � σ3 ` v
(BCondTrue)

σ1 ` e1 � σ2 ` false σ2 ` e3 � σ3 ` v

σ1 ` IF e1 THEN e2 ELSE e3 � σ3 ` v
(BCondFalse)

σ1 ` e1 � σ2 ` v1 σ2 ` e2 � σ3 ` v2
σ1 ` e1(e2)� σ3 ` v1(v2) (BFun)

σ1 ` e1 � σ2 ` n σ2 ` e2 � σ3 ` v1 σ3(n,a,v1) = Jv2K
σ1 ` e1.a(e2)� σ3 ` v2

(BAttrValue)

σ1 ` e1 � σ2 ` n σ2 ` e2 � σ3 ` v1

σ3 ` σ3(n,a,v1) � σ4 ` v2 σ3(n,a,v1) is not a value expression
σ1 ` e1.a(e2)� σ4 ⊕ {(n,a,v1) 7→ Jv2K} ` v2

(BAttrCached)

σ1 ` e � σ2 ` v2

σ1 ` n.a(v1):= e � σ2 ⊕ {(n,a,v1) 7→ Jv2K} ` v2
(BCache)

Big Step and Cache Expressions

An astute reader may have noticed that the big step semantics do not require the use of the
cache expression to keep track of attribute evaluations, but still includes a semantic rule to
evaluate cache expressions. Especially considering the concept of user-level expressions
(Section 4.3.6), the inclusion of these semantics in the big step relation may seem unneces-
sary.

The reason that the big step relation includes semantics for the cache expression is to
more closely match the multistep (and therefore single step) semantics. In Section 6.7 we
prove that the multistep and big step relations are equivalent for any input expression and
context function. If we did not include cache expression semantics in the big step relation, we
could prove this property about all expressions except cache expressions, but it is a stronger
property to prove that multistep and big step have completely identical semantics, and it does
not cost much to add the extra rule to the big step semantics.

The single step relation is considered the “primary” expression of Saiga’s semantics, and
the big step relation is intended to model the same semantics from a different angle, providing
alternate routes for proofs. Thus we include the evaluation of cache expressions in the big
step semantics.

4.3.6 User-Level Expressions

In Section 4.2 we introduced a new expression form to represent attribute caching. The
new step rule AttrFetchCached is the only step rule that ‘creates’ a non-value expression
form, rather than just modifying an existing expression form. AttrFetchCached steps from
an attribution expression into a new expression wrapped in a cache expression. The cache
expression is not intended to be used as a user-level expression; it is only intended to be used
as an intermediary expression state.
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One of the reasons for this is that the cache expression makes no guarantees about the
content of its subexpression. If a cache expression could come from anywhere, we would
have no guarantee of its contents, and nonsensical modifications could be made to the context
function. Caching is not intended to allow arbitrary context function modifications, but only
to write the computed value of an attribute expression over its initial form. Therefore we
say that the cache expression is not a production of user-level expressions, and we assume
that we never start evaluation with a cache expression and no context function ever directly
returns a cache expression.

4.4 Conclusion
We have presented the extended Saiga calculus, which builds on the core Saiga calculus by
introducing parameterised attributes and attribute caching. We introduced the full semantics
of parameterisation and caching in Sections 4.1 and 4.2 respectively, along with an example
showing the use of these new features for each section. In Section 4.3 we explored some of
the design decisions made while developing this calculus, and some of the implications of
these decisions.

As we did for the core calculus, we aimed to create an extended calculus that is simple,
general, and domain-specific. Introducing parameterised attributes was achieved with only
one additional semantic step rule, and modifications to one rule in the type rules and one pro-
duction rule in the expression grammar. Introducing attribute caching required all step rules
to carry a changing context function, and for one rule (CacheWrite) to modify the context
function. The simplicity of these changes to implement significant additional functionality
demonstrate the flexibility of the Saiga calculus as a base model for attribute grammar eval-
uation. All changes introduced are directly related to attribute evaluation, so the calculus
remains as domain-specific as in the core calculus.

In Chapter 5 we present the higher order Saiga calculus, allowing decoratable nodes to
be created during evaluation. The higher order calculus builds from the extended calculus
presented in this chapter and is presented in the same manner as in Chapters 3 and 4.



Behold the rain which descends from heaven upon
our vineyards, and which incorporates itself with the
grapes to be changed into wine; a constant proof that
God loves us, and loves to see us happy.

Benjamin Franklin

5
Higher Order Saiga

In this chapter we describe how higher order attributes are implemented in Saiga. We build
upon the semantics presented in Chapter 4. While the new semantic rules required to specify
higher order attribution are not complex, their implications are considerable enough to war-
rant their own chapter for discussion. Further, reasoning about programs that allow higher
order attributes can be more difficult than reasoning about programs that use the features
in our extended calculus, so it is useful to present a clear line between “extended Saiga”
(Chapter 4) and “higher order Saiga” (this chapter).

We present the higher order calculus in Section 5.1, an example of its use in Section 5.2,
and a discussion of the implications of the new semantics in Section 5.3.

5.1 Higher Order Attributes

Higher order attributes, as discussed in Section 2.3.4, allow evaluation to create new trees,
such that nodes in these new trees can have attributes evaluated upon them as if they were in
the original tree. However to allow a node to be “created”, we must first revise our notion of
what it means for a node to “exist”.

Saiga is an expression language, and all evaluation in Saiga starts with an expression.
It is reasonable to assume that the entry point to any Saiga program will be an attribution
expression, which queries some node for some attribute (as is the case in all examples in
this thesis). Therefore, to start some evaluation, we need to know about some node that the
context function has some knowledge of.

In this thesis, the set of nodes N has always been considered an abstract type; the only
property of N that we care about is that nodes can be compared to each other. Everything we
know about a particular node is stored in a context function, accessible via some attributes.
A node’s properties exist only in terms of the expressions that a given context function can
produce for it. Further, a context function is a total function – an output is available for
every possible set of inputs – so if we request the properties of any node n under any context
function σ, some expressions will be returned.

However, we would like to draw a line between nodes that “exist” and nodes that “do
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not exist”, according to our particular definition of node existence. Firstly we say that node
existence is dependent upon a particular context function; some node n might exist in σ1
but not in σ2. Secondly, we say that there is a special node nnull which exists in all context
functions. Beyond this, we say that n exists in σ iff there is some set of inputs (n1,a,p)
(where n1 is a different node that exists in σ) where σ(n1,a,p) = JnK.

In simpler terms, we say that nnull exists in all contexts, and any nodes that are structural
attributes of existent nodes are also existent. This means that for any tree rooted at n0 to exist
in σ, there must be some attribute a and parameter p for which σ(nnull,a,p) = Jn0K. It is
likely that the attribute a in this case is a tree construction attribute (see Section 5.3.3).

Definition 5.1.1.

∀n∀σ, (n exists in σ)
⇐⇒ (∃n1∃a1∃p1, (n1 exists in σ) ∧ σ(n1,a1,p1) = JnK)

∨ n = nnull

For brevity, we sometimes use the notation n ∈ σ to indicate that n exists in σ, and n < σ
to indicate that n does not exist in σ. We formally define node existence here to pave the
way for node construction, which is necessary for the construction of trees during evaluation,
which is the basis for higher order attribute evaluation.

The strategy we employ to allow higher order attributes to be defined in Saiga is to pro-
vide a mechanism for attribute evaluation to “spawn” a fresh node n, with some dynamically
defined attribute values assigned to it. These attribute values are, as usual, defined in terms
of a context function’s output expressions. The new node n can have intrinsic and extrinsic
attributes evaluated on it, which is what makes this “higher order” evaluation. Some of the
properties of the new node n may also be higher order nodes, meaning that new trees can be
created recursively.

5.1.1 Expression Language
We begin by defining a new production for Saiga’s expression grammar, as shown below.

e ::= JvK value
| IF e1 THEN e2 ELSE e3 conditional
| e1(e2) function application
| e1.a(e2) attribution
| n.a(p):= e1 cache
| MK f l node construction

We add the highlighted node construction expression, written MK f l . The metavariable
f l represents a function in N → list(Au × E). Au represents the set of attributes a where
ρ(a) = unit.

Essentially f l is a list of attribute expressions to write to a context function for a newly
created node, where each attribute must be non-parameterised (see Section 4.3.1). We add
this non-parameterisation restriction because it simplifies our semantics, and because it is
expected that only intrinsic attributes will be set during node construction, and intrinsic at-
tributes tend to be non-parameterised.

Sometimes it is useful for the attributes of a new node to reference the node itself, so
we parameterise this list over N . This allows the expressions that define a node’s attributes
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to include a reference to the node itself, which is not known until the higher order attribute
is evaluated. For example, if we wish to create a node which needs to recursively create
some child, it will need to know its own identity to set the child’s parent attribute. These
semantics will be discussed further later in this chapter.

5.1.2 Type Rules

To accommodate the new expression production we add the new type rule TypeCstr, given
below. We omit here the existing type rules that are given in Section 4.2.2.

∀(n ∈ N ), ((a,e) ∈ f l (n)), e : τ(a)
MK f l : N

(TypeCstr)

The new type rule TypeCstr restricts f l such that for any input node n, every pair of at-
tribute and expression (a,e) in f l (n) will have its expression e typed according to its attribute
a. If this is satisfied, the type of a node construction expression is always N .

5.1.3 Semantic Rules

For brevity we omit the existing semantic rules given in Section 4.2.3, showing only new and
modified semantic rules.

σ(n,a,p) is not a value or MK expression

σ ` JnK.a(JpK) −→ σ ` n.a(p):= σ(n,a,p)
(AttrFetchCached)

σ(n,a,p) = MK f l n1 < σ

σ ` JnK.a(JpK) −→ σ ⊕ {(n,a,p) 7→ Jn1K} ⊗ n1/ f l (n1) ` Jn1K
(AttrFetchHO)

Specifying higher order semantics involves modifying the AttrFetchCached rule and adding
the new rule AttrFetchHO. We now have three ways to perform an attribute fetch, given by
AttrFetchValue (simple fetch), AttrFetchCached (cached fetch), and AttrFetchHO (higher
order construction). From here on we use the phrase “e is a MK expression” to indicate that e
was derived from the node construction production, and takes the form MK f l .

The new step rule AttrFetchHO requires that the context function returns some expression
in the form MK f l . Some node n1 is selected that does not exist in σ, is used as part of a
modification to the context function, and is returned as a value expression. f l is a function
which takes some node and returns some list l. l is a list of tuples of attributes (in Au) and
expressions.

The AttrFetchHO step modifies the context function in two ways. The first modification
is to immediately cache the node, attribute, and parameter that were used to create this higher
order node with the value n1. The second modification is a new type of context function
transformation we define as follows.

σ ⊗ n/[] = σ

σ ⊗ n/((a,e) :: l) = σ ⊕ {(n,a, () 7→ e} ⊗ n/l
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The ⊗ operator used in AttrFetchHO indicates that each (a,e) in l will be written to the
context function for the new node n (n1 in AttrFetchHO) using the ⊕ operator. The unit
value () is always used as the parameter, as each attribute a is in Au by construction.

The high level effect is that when the context function σ returns some expression MK f l ,
a node n1 will be selected that does not exist in σ, the attribute occurrence being evaluated
will be cached with the value n1, and the list given by f l (n1) will be used to overwrite a
number of attribute equations for n1 in σ. This is how new nodes are constructed and given
their own attribute values. Everything known about a node is known via attributes, and this
method is used to write intrinsic, structural, and even extrinsic attributes for the new node.
A newly constructed node is indistinguishable from any other node in the tree.

5.2 Tree Optimisation Example

To demonstrate the use of higher order attributes in Saiga, we will consider an example
creating an optimised version of a simple addition tree. Let’s say we have a simple expression
language consisting of a sequence of additions. A context free grammar for such a language
might be as follows.

E ::= int ‘+’ E
::= int

We will represent trees from such a concrete grammar according to the following abstract
grammar.

plusExpr ::= leftVal(integer), rightExpr(node)
intExpr ::= val(integer)

To evaluate such a tree, we could define the eval attribute as follows.

σ(n,eval) =

JnK.val (intExpr)
JplusK(JnK.leftVal)(JnK.rightExpr.eval) (plusExpr)

Now let’s say we want to define an attribute opt which constructs and returns an op-
timised version of a subtree. We will achieve this by creating a clone of the subtree, but
replacing any plusExpr expressions containing a zero with their right-hand child only. This
will essentially remove all zeros from the expression, except for a potential zero on the far-
right of the expression. It is possible that a subtree can optimise to a single integer node, as
it would for a sequence of additions such as 0 + 0 + 5.

For example, we would want the tree below, representing the sequence of additions 1 +
0 + 5 to optimise to the sequence of additions 1 + 5, also shown in the tree below, with
the optimised subtree given by nodes with a double red border.
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In the tree above, the node n3 is evaluated from Jn0K.opt(Jn0K), and the node n4 is
evaluated from both Jn1K.opt(Jn3K) and Jn2K.opt(Jn3K). We can define the higher order
attribute opt as follows.

σ(n,opt,np) =



MKλ_, [(parent,JnpK), (intExpr)
(nodeType,JintExprK),
(val,JnK.val)]

IF JisZeroK(JnK.leftVal) (plusExpr)
THEN JnK.rightExpr.opt(JnpK)

ELSE JnK.clonePlus(JnpK)

Notice that the opt attribute has a parameter np. We implement opt this way so that a
newly created node can be anchored to the existing subtree via its parent attribute. This
may or may not be necessary for all higher order attributes, but we implement it here as
a demonstration. When opt is called on some node, the parameter given is a node value
which will be written to the parent attribute on the newly constructed node. For example
if we want to optimise the node n0 with the new subtree being rooted under n0, we evaluate
Jn0K.opt(Jn0K).

When opt is called on an intExpr node, a MK expression is returned (as shown above).
The function in this MK expression returns a static list, ignoring its parameter. This is because
an intExpr node will have no children, so we will not need access to the intExpr’s node
reference to construct it. The parameter np is used as the value for the parent attribute. The
nodeType attribute is set to the value intExpr, and the val attribute is given the non-value
expression JnK.val, specifying that the new node’s val attribute will be derived from n’s val
attribute when it is evaluated.

When opt is called on a plusExpr node, a conditional expression is returned which
checks the node’s leftVal to decide whether to return a recursively optimised version of
the right child, or to clone the node with clonePlus, which is defined below. Note that
if the former path is taken, the opt attribute on the child is called with a parameter taken
directly from the parent call (underlined above). This is because if the current addition “fork”
contains a zero, it is to be ignored entirely, and the parent of the right child should be linked
to this fork’s parent, bypassing it in the new tree. You can see an example of this in the tree
given above, where the new node n4 (the optimised version of n2) is rooted under the node
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n3 (the optimised version of n0), and n1 is bypassed entirely.

σ(n,clonePlus,np) =


MKλn1, [(parent,JnpK),

(nodeType,JplusExprK),
(leftVal,JnK.leftVal),
(rightExpr,JnK.rightExpr.opt(Jn1K))]

The clonePlus attribute is always called on a plusExpr node, and always returns a MK
expression. Note that in the above definition there are three nodes listed: n, np, and n1.
n is the node that clonePlus is being evaluated upon. np is the parameter given for that
evaluation, and in this case represents the desired parent reference for the new node. n1 is
the newly created node, which exists now as the parameter of a lambda expression, but will
be replaced with the appropriate node when the higher order evaluation takes place.

The list produced for a clonePlus construction uses the parameter np directly for the
parent attribute, and the value plusExpr for nodeType. The leftVal attribute is copied
directly, as valwas in the opt attribute. The rightExpr attribute is given an expression that
recursively optimises the rightExpr of the given node, using n1 (the newly created node)
as the parameter, meaning n1 will be its parent.

Once clonePlus is evaluated under σ on some node n, the value of σ(n,rightExpr,_)
will be the non-value expression underlined above. Higher order construction happens here
recursively, but only on-demand. If JnK.rightExpr is never evaluated, the higher order
node associated with that attribute will never be constructed, but when it is evaluated, it will
be constructed transparently, creating a new node whose parentwill reference the new node
n1. Saiga uses on-demand recursive higher order construction. For further discussion of this
design decision and its alternatives, see Section 5.3.3.

To demonstrate how such an attribute will evaluate, we will evaluate an optimisation of
the following tree, which represents the addition expression 1 + 0 + 5.
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To optimise this tree, we evaluate the expressionJn0K.opt(Jn0K), which will create an
optimised version of the n0 subtree, whose parent will be the original node n0.

σ ` Jn0K.opt(Jn0K)
(1) −→ (AttrFetchCached)

σ ` n0.opt(n0):=

IF JisZeroK(Jn0K.leftVal)

THEN Jn0K.rightExpr.opt(Jn0K)
ELSE Jn0K.clonePlus(Jn0K)

(2) −→ (CacheStep, CondStep, FunParStep, AttrFetchValue)
σ ` n0.opt(n0):=

IF JisZeroK(J1K)

THEN Jn0K.rightExpr.opt(Jn0K)
ELSE Jn0K.clonePlus(Jn0K)

(3) −→ (CacheStep, CondStep, FunApp)
σ ` n0.opt(n0):=

IF JfalseK
THEN Jn0K.rightExpr.opt(Jn0K)
ELSE Jn0K.clonePlus(Jn0K)

(4) −→ (CacheStep, CondFalse)
σ ` n0.opt(n0):=

Jn0K.clonePlus(Jn0K)

(5) −→ (CacheStep, AttrFetchHO, as n3 < σ)

σ2 ` n0.opt(n0):= Jn3K
(6) −→ (CacheWrite)

σ3 ` Jn3K

The full definitions of σ2 and σ3 are shown below. We give the definition of σ2 using the
⊗ operator instead of its expanded form using ⊕ operators, as it is a more concise notation.
The ⊗ operation is of course equivalent to repeated uses of the ⊕ operation.

σ2 = σ ⊕ {(n0,clonePlus,n0) 7→ Jn3K} ⊗ n3/[(parent,Jn0K),
(nodeType,JplusExprK),
(leftVal,Jn0K.leftVal),
(rightExpr,Jn0K.rightExpr.opt(Jn3K))]

σ3 = σ2 ⊕ {(n0,opt,n0) 7→ Jn3K}

At the end of the above evaluation, the value n3 is reached. However n3 is the only node
that has been constructed during this evaluation. The other two nodes n1 and n2 have not
been considered for cloning yet, due to the on-demand nature of Saiga’s higher order node
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construction. To test out the full semantics of the opt attribute, we will need to force eval-
uation of these attributes via some traversal. To this end, we will evaluate Jn0K.opt.eval
under σ3.

σ3 ` Jn0K.opt.eval

(1) −→ (AttrNodeStep, AttrFetchValue)

σ3 ` Jn3K.eval
(2) −→ (AttrFetchCached)

σ3 ` n3.eval:= JplusK(Jn3K.leftVal)(Jn3K.rightExpr.eval)

(3) −→ (CacheStep, FunStep, FunParStep, AttrFetchCached)

σ3 ` n3.eval:= JplusK(n3.leftVal:= Jn0K.leftVal)(Jn3K.rightExpr.eval)

(4) −→ (CacheStep, FunStep, FunParStep, CacheStep, AttrFetchValue)

σ3 ` n3.eval:= JplusK(n3.leftVal:= J1K)(Jn3K.rightExpr.eval)

(5) −→ (CacheStep, FunStep, FunParStep, CacheWrite)

σ4 ` n3.eval:= JplusK(J1K)(Jn3K.rightExpr.eval)

(6) −→ (CacheStep, FunStep, FunApp)

σ4 ` n3.eval:= Jplus(1)K(Jn3K.rightExpr.eval)

(7) −→ (CacheStep, FunParStep, AttrNodeStep, AttrFetchCached)

σ4 ` n3.eval:= Jplus(1)K((n3.rightExpr:= Jn0K.rightExpr.opt(Jn3K)).eval)

(8) −→ (CacheStep, FunParStep, CacheStep, AttrNodeStep, AttrNodeStep, AttrFetchValue)

σ4 ` n3.eval:= Jplus(1)K((n3.rightExpr:= Jn1K.opt(Jn3K)).eval)

(9) −→ (CacheStep, FunParStep, CacheStep, AttrNodeStep, AttrFetchCached)

σ4 ` n3.eval:= Jplus(1)K((n3.rightExpr:= n1.opt(n3):=

IF JisZeroK(Jn1K.leftVal)

THEN Jn1K.rightExpr.opt(Jn3K)

ELSE Jn1K.clonePlus(Jn3K)).eval)
(10) −→ (CacheStep, FunParStep, CacheStep, CacheStep, CondStep, FunParStep, AttrFetchValue)

σ4 ` n3.eval:= Jplus(1)K((n3.rightExpr:= n1.opt(n3):=

IF JisZeroK(J0K)

THEN Jn1K.rightExpr.opt(Jn3K)
ELSE Jn1K.clonePlus(Jn3K)).eval)

(11) −→ (CacheStep, FunParStep, CacheStep, CacheStep, CondStep, FunApp)
σ4 ` n3.eval:= Jplus(1)K((n3.rightExpr:= n1.opt(n3):=

IF JtrueK
THEN Jn1K.rightExpr.opt(Jn3K)
ELSE Jn1K.clonePlus(Jn3K)).eval)
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(12) −→ (CacheStep, FunParStep, CacheStep, CacheStep, CondTrue)
σ4 ` n3.eval:= Jplus(1)K((n3.rightExpr:= n1.opt(n3):=

Jn1K.rightExpr.opt(Jn3K)).eval)

(13) −→ (CacheStep, FunParStep, CacheStep, CacheStep, AttrNodeStep, AttrFetchValue)
σ4 ` n3.eval:= Jplus(1)K((n3.rightExpr:= n1.opt(n3):=

Jn2K.opt(Jn3K)).eval)

(14) −→ (CacheStep, FunParStep, CacheStep, CacheStep, AttrFetchHO, as n4 < σ4)

σ5 ` n3.eval:= Jplus(1)K((n3.rightExpr:= n1.opt(n3):= Jn4K).eval)

(15) −→ (CacheStep, FunParStep, CacheStep, CacheWrite)

σ6 ` n3.eval:= Jplus(1)K((n3.rightExpr:= Jn4K).eval)

(16) −→ (CacheStep, FunParStep, CacheWrite)

σ7 ` n3.eval:= Jplus(1)K(Jn4K.eval)

(17) −→ (CacheStep, FunParStep, AttrFetchCached)

σ7 ` n3.eval:= Jplus(1)K(n4.eval:= Jn4K.val)

(18) −→ (CacheStep, FunParStep, CacheStep, AttrFetchCached)

σ7 ` n3.eval:= Jplus(1)K(n4.eval:= n4.val:= Jn2K.val)

(19) −→ (CacheStep, FunParStep, CacheStep, CacheStep, AttrFetchValue)

σ7 ` n3.eval:= Jplus(1)K(n4.eval:= n4.val:= J5K)

(20) −→ (CacheStep, FunParStep, CacheStep, CacheWrite)

σ8 ` n3.eval:= Jplus(1)K(n4.eval:= J5K)

(21) −→ (CacheStep, FunParStep, CacheWrite)

σ9 ` n3.eval:= Jplus(1)K(J5K)

(22) −→ (CacheStep, FunApp)

σ9 ` n3.eval:= J6K
(23) −→ (CacheWrite)

σ10 ` J6K
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The full definitions of σ4 to σ10 are shown below.

σ4 = σ3 ⊕ {(n3, leftVal,_) 7→ J1K}
σ5 = σ4 ⊕ {(n2,opt,n3) 7→ Jn4K} ⊗ n4/[(parent,Jn3K),

(nodeType,JintExprK),
(val,Jn2K.val)]

σ6 = σ5 ⊕ {(n1,opt,n3 7→ Jn4K}
σ7 = σ6 ⊕ {(n3,rightExpr,_) 7→ Jn4K}
σ8 = σ7 ⊕ {(n4,val,_) 7→ J5K}
σ9 = σ8 ⊕ {(n4,eval,_) 7→ J5K}
σ10 = σ9 ⊕ {(n3,eval,_) 7→ J6K}

The expression Jn0K.opt.eval, evaluated under σ3, yielded the value J6K in 23 steps.
During evaluation, the higher order node n4 was constructed, which is a clone of n2. Below
we repeat the tree presented earlier in this section, which is a representation of σ10, the
output context function of the above evaluation.

plusExpr n0

1 plusExpr n1

0 intExpr n2

5

plusExpr n3

1 intExpr n4

5

left
Va
l

ri
gh
tE
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le
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rightE
xpr

va
l

opt(n0)

le
ft
V
al

rightE
xpr

va
l

The higher order subtree rooted at n3 contains only the integers 1 and 5, and represents
an optimised version of the tree rooted at n0.

5.3 Discussion
In this section we will discuss some of the details, design decisions, and caveats of the higher
order calculus presented in Section 5.1.

5.3.1 User-Level Expressions
In Section 4.3.6 we explained that cache expressions are not intended to be evaluated directly,
but only exist as an intermediate expression to keep track of attribute evaluation. The new MK
expression is similar in that it is not intended for wide use like other expression productions.
Indeed, a MK expression cannot be evaluated directly – notice in Section 5.1.3 that there is
no derivation of the step relation that begins with a MK expression. This also means that no
expression that has a MK expression as a subexpression will be able to fully evaluate.
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The MK expression is processed only when it is the expression returned by a context
function. Therefore we will say that the MK expression is also not a user-level expression,
unless it is being returned from the context function.

The reason for this is that higher order attributes are designed to be attributes. Our aim is
not to add the ability for our expression language to create a subtree, but for the evaluation of
a particular attribute to create a subtree. We specify node construction using an expression
production (the MK expression) because a context function always returns an expression, and
we need to encode the properties of a newly created node somehow. Therefore we only
evaluate a MK expression when it is being returned from the context function.

One of the reasons we choose to closely couple attribute fetching and node construction
is to provide a strict place to anchor a newly constructed node. When we say “anchor”, we
are not talking about the parent attribute; we are talking about a newly constructed node
necessarily existing in a new context function. If some node n1 does not exist in some context
function σ1, then there is no set of inputs (n,a,p) such that σ1(n,a,p) = Jn1K. However if
we evaluate JnK.HOattr(JpK) under σ1, which constructs the new node n1 in the new
context function σ2, then we know that n1 definitely does exist in σ2. We know this because
σ2(n,HOattr,p) = Jn1K.

If we used the same semantics but allowed a MK expression to be evaluated arbitrarily,
then it would be possible to “create” a new node and define some of its attributes, but for that
node still not to exist in the new context function. Caching the newly constructed node to
the attribute that created it forces there to be some relationship between new nodes and the
attribute that created them, and behaves well with our concept of node existence.

5.3.2 Intrinsic Attributes on Higher Order Nodes

In Section 3.1.6 we introduced the concept of intrinsic attributes: attributes which represent
information about a node that would be present before decoration in a traditional attribute
grammar context. It stands to reason that all intrinsic attributes will be fully computed at the
start of decoration, so we can always expect a value expression for an intrinsic attribute.

This changes when we start to build new nodes using higher order attributes. Consider
the following snippet from a context function constructed during evaluation in Section 5.2.

σ5 = σ4 ⊕ {(n2,opt,n3) 7→ Jn4K} ⊗ n4/[(parent,Jn3K),
(nodeType,JintExprK),
(val,Jn2K.val)]

According to the above definition, the output of σ5(n4,val, ()) is the expression Jn2K.val.
The val attribute is intrinsic, but the context function now contains a non-value expression
to compute it.

This is due to the lazy evaluation strategy we use to implement higher order attributes.
In most circumstances, this will not be an issue. When Jn4K.val is evaluated, an extra step
will be taken to determine its value, which will be cached for future use.

The only potential issue here is in the reflection that can happen during attribute selection,
if that is how we choose to define our context function. For example, if we were to write the
expression Jn2K.nodeType as the equation for the attribute Jn4K.nodeType, then the
following selector would not perform how we might like it to, as the context function could
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not always reflect on the value of a node’s nodeType attribute.

σ(n,attr,_) =

e1 (typeOne)
e2 otherwise

As discussed in Section 3.2.2, the selector notation we use above will only work on attributes
that always return a value expression. This is a shortcoming of our selector notations – that
they may not play nicely with nodes created by higher order attributes. However, if an
attribute such as nodeType is always written as a value during node construction, as it is
in every example given in this thesis, then such a selector will still work as expected, even
on higher order nodes. Further, assuming that all higher order construction happens from top
down, the parent structural attribute will always hold a value, even on higher order nodes.

Almost all of the selectors presented in Section 3.2.2 are limited to using the parent
and nodeType attributes, except for the selectors that check that a node is a particular
child of its parent. In this case, we are guaranteed that the “downward” structural attribute
that is being checked against will always be fully computed at the time of selection, as these
attribution requests are always based at the child itself, which must necessarily be evaluated
before having its attributes queried.

Finally, we will restate that the selector notations presented in Section 3.2.2 and used
throughout this thesis are merely suggestions on how a context function might be described,
and are not strictly part of the Saiga calculus. Saiga requires only that the context function is
a mathematical function1 and therefore will return an expression for any set of inputs.

5.3.3 Building Initial Trees

In a normal situation, attribute grammar evaluation begins with a tree, and decorates it using
the existing structure and contents of the tree. Since higher order attributes introduce new
tree structure in such a way that it is indistinguishable from original tree structure, there is no
difference between “initial” tree construction and higher order evaluation. Therefore Saiga
can be used to model not only attribution, but also tree construction.

If we consider the example presented in Section 5.2 of a tree representing a sequence of
additions, we can define an attribute build, which will take some external tree structure as
an argument and modify a context function to represent that tree, returning the node at its
root. Let us assume some type tt exists that represents a sequence of additions. We assume
the underlying boolean functions isPlus and isInt which determine the shape of the root of tt ,
and functions getValue, getLeftValue, and getRightTree which return a value of type integer,
integer, and tt respectively. We can therefore define the attribute build, which will “build” a

1However, for evaluation to proceed, some further conditions must be met, as discussed above.
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tt tree in a context function.

σ(n,build,vt ) =



MKλn1, [(nodeType,JplusExprK), isPlus(vt )
(parent,JnK),
(leftVal,JgetLeftValue(vt )K),
(rightExpr,Jn1K.build(JgetRightTree(vt )K))]

MKλ_, [(nodeType,JintExprK), isInt(vt )
(parent,JnK),
(val,JgetValue(vt )K)]

Note that the definition above uses the first parameter of the context function – the node that
the attribute is being evaluated upon – to determine the parent of the newly created node.
If we had some value vt1 of type tt , we could evaluate JnnullK.build(Jvt1K) under any σ1,
which would return some new node nr and context function σ2. nr would represent the root
of the tree described by tt , and σ2 would contain the full tree of tt . The changes made to σ1
would not override any existing nodes in σ1.

For example, if vt1 represented the addition 1 + 2 such that isPlus(vt1) = true, getLeft-
Value(vt1) = 1, and getRightTree(vt1) = vt2, where vt2 represents the integer tree holding 2,
then evaluating JnnullK.build(Jvt1K) under σ1 would result in σ2 as described below.

σ2 = σ1 ⊕ {(nnull,build,vt1) 7→ Jn0K} ⊗ n0/[(nodeType,JplusExprK),
(parent,JnnullK),
(leftVal,J1K),
(rightExpr,Jn0K.build(Jvt2K))]

The tree below represents the tree rooted at n0 in the above context function.

plusExpr n0

1 Jn0K.build(Jvt2K)

le
ft
V
al

rightE
xpr

Tree Construction and Parsing

Given that the semantics of the underlying functions isPlus and isInt are unspecified, they
could just as easily be performing parsing operations as some object-oriented lookup. If the
type tt is actually the string type, we would only need isPlus to check a string for the contents
of the “+” operator to return true or false, and isInt to be the negation of isPlus (as a node can
only be of type intExpr or plusExpr). If getValue parses a string as an integer, getLeftValue
returns the integer parse of the string before the first “+”, and getRightTree returns everything
after the first “+”, then the exact same build attribute that is presented above would “build”
a tree in a Saiga context function from a string.

Evaluating an expression such as JnnullK.build(J“1 + 2 + 3”K) under any context σ1
would, in a single step, produce the context function σ2, defined as follows.
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σ2 = σ1 ⊕ {(nnull,build,“1 + 2 + 3” 7→ Jn1K} ⊗ n1/[(nodeType,JplusExprK),
(parent,JnnullK),
(leftVal,J1K),
(rightExpr,Jn1K.build(J“2 + 3”K))]

Note that we already have a context function and nodes that we can begin to evaluate at-
tributes on, but parsing is not yet completed. The lazy nature of higher order construction
means that nodes will only be constructed (in this case parsed and constructed) when they
are queried.

Forcing Full Construction

We implement lazy construction because it is the most general approach. We can start with
lazy construction and force a full higher order evaluation, but we could not start with static
construction and force it to evaluate lazily. Continuing with the example of a sequence of
additions, we could define the attribute finish which recursively forces the full construction
of a tree returned by build.

σ(n,finish) = JnK.finishAndReturn(JnK)

σ(n,finishAndReturn,nr ) =

JnK.rightExpr.finishAndReturn(JnrK) (plusExpr)
JnrK otherwise

The finish attribute will recursively traverse the tree, evaluating the rightExpr at-
tribute, and will finally return the root node. Semantically this attribute is the identity func-
tion, but its evaluation forces caching of the only non-value attribute constructed by the
higher order build. If we want to start with a context function that describes a fully parsed
tree for this problem, we can evaluate JnnullK.build(J“1 + 2 + 3”K).finish to obtain the
root node of the constructed (and fully cached) tree.

5.3.4 Forwarding
Attribute forwarding, as discussed in Section 2.3.5, is an extension that is closely related to
higher order attributes. According to Van Wyk “... the only substantial difference [between
forwarding and higher order attributes] is that here the ‘copy rules’ for all relevant attributes
are automatically generated” [41]. Our interpretation of the difference between forwarding
and “normal” higher order attribution is that forwarding provides the notational convenience
of forwarding all attributes to a higher order node (except for attributes that are explicitly
defined on it).

To account for a range of different notations for defining attribute equations, we have
relegated equation selection to the context function, which can be defined however we want
it to be defined. Consider that not a single semantic rule presented in this thesis has been
interested in the notations used to define an attribute; the semantics are only interested in the
output of a context function. By abstracting equation notation away from attribute evaluation,
we have created a calculus whose semantics are orthogonal to notation-focused extensions
such as forwarding.
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This said, we will show how a forwarding example such as the one presented in Sec-
tion 2.3.5 might be implemented in Saiga. The example we refer to involves implementing
the “for” iteration structure by forwarding it to an equivalent “while” structure. The diagram
below from Section 2.3.5 demonstrates the desired forwarding pattern.

for

stmt expr stmt stmt

block

while

block

forwards to

We can define a context function that provides the semantics of such a forwarding as
follows. We assume nodeType may have at least the values whileStmt, forStmt, and block-
Stmt.

σ(n,forwardsTo) =

MKλn1, [(stmt1,JnK.initStmt), ...] (forStmt)
JnK otherwise

σ(n,eval) =

... (whileStmt)
JnK.forwardsTo.eval (forStmt)

σ(n,pp) =

Jconcat(“while”)K(...) (whileStmt)
Jconcat(“for”)K(...) (forStmt)

The above definitions will implement the same semantics as the example shown in Sec-
tion 2.3.5, except that we have manually “forwarded” the eval attribute in the underlined
attribute equation. The pp attribute is still defined explicitly for both whileStmt and forStmt
nodes. As the context function can be defined however we want, we could “automate” this
process with a definition like the following, assuming only the definition of forwardsTo
from above.

σ(n,a,p) =


Jconcat(“for”)K(...) (forStmt) and a = pp
JnK.forwardsTo.a (forStmt)
... otherwise

Note that the above definition is not defining the output for any single attribute, but
is defining the behaviour of the context function for any inputs. The first selector defines
specific pretty-printing behaviour for the pp attribute, as in the example in Section 2.3.5.
The second selector forwards any other attribute requests on a forStmt node to the higher
order subtree returned by forwardsTo. Thus we have implemented notational convenience
similar to that provided by traditional forwarding.
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5.3.5 The Multistep Relation
While the semantics of the step relation have changed, the notation remains the same as
in Chapter 4. We define the multistep relation again below, but it appears identical to the
multistep semantics shown in Section 4.3.4. Of course the step relation we refer to in the
following semantics is the higher order step relation, defined in Section 5.1.3.

σ ` e −→∗ σ ` e
(MultiRefl)

σ1 ` e1 −→ σ2 ` e2 σ2 ` e2 −→
∗ σ3 ` e3

σ1 ` e1 −→
∗ σ3 ` e3

(MultiStep)

5.3.6 The Big Step Relation
We extend the big step semantics presented in Sections 3.2.9 and 4.3.5 to include the new
semantics presented in this chapter.

σ ` JvK� σ ` v
(BRefl) σ1 ` e1 � σ2 ` true σ2 ` e2 � σ3 ` v

σ1 ` IF e1 THEN e2 ELSE e3 � σ3 ` v
(BCondTrue)

σ1 ` e1 � σ2 ` false σ2 ` e3 � σ3 ` v

σ1 ` IF e1 THEN e2 ELSE e3 � σ3 ` v
(BCondFalse)

σ1 ` e1 � σ2 ` v1 σ2 ` e2 � σ3 ` v2
σ1 ` e1(e2)� σ3 ` v1(v2) (BFun)

σ1 ` e1 � σ2 ` n σ2 ` e2 � σ3 ` v1 σ3(n,a,v1) = Jv2K
σ1 ` e1.a(e2)� σ3 ` v2

(BAttrValue)

σ1 ` e1 � σ2 ` n σ2 ` e2 � σ3 ` v1 σ3 ` σ3(n,a,v1) � σ4 ` v2

σ3(n,a,v1) is not a value or a MK expression
σ1 ` e1.a(e2)� σ4 ⊕ {(n,a,v1) 7→ Jv2K} ` v2

(BAttrCached)

σ1 ` e1 � σ2 ` n σ2 ` e2 � σ3 ` v1 σ3(n,a,v1) = MK f l

n2 does not exist in σ3

σ1 ` e1.a(e2)� σ3 ⊕ {(n,a,v1) 7→ Jn2K} ⊗ n2/ f l (n2) ` n2
(BAttrHO)

σ1 ` e � σ2 ` v2

σ1 ` n.a(v1):= e � σ2 ⊕ {(n,a,v1) 7→ Jv2K} ` v2
(BCache)

Once again these semantics mirror those presented in Section 5.1.3. Proof of the equiva-
lence of these two semantics is given in Section 6.7.



A good beer can be judged in only one sip...
but it’s better to be thoroughly sure.

Czech Proverb

6
Metatheoretic Properties

In this chapter we present proofs for a number of metatheoretic properties about the Saiga
calculus. As the calculus has been split into three stages: core, extended and higher order, we
prove many of our theorems in three stages. For most theorems, the proof we present for the
core calculus covers most cases for the extended calculus, and the extra proof steps provided
for the extended calculus covers most cases for the higher order calculus. As the syntax
for the step relation in the extended and higher order calculi are identical, we sometimes
combine theorems for these two calculi together, if the proofs are the same.

The primary theorems we prove in this chapter are determinism of the step relation (The-
orem 6), type determinism (Theorem 9), type preservation (Theorem 12), progress (Theo-
rem 15), equivalence between the big step and multistep relations (Theorem 25), and cache
irrelevance (Theorem 33). Most of these theorems relate to the step relation, whose seman-
tics are given in Sections 3.1.5, 4.2.3 and 5.1.3. We use the terminology of “stepping” in
this chapter. We say that some expression e1 steps to some expression e2 if the step relation
e1 −→ e2 holds.

6.1 Axioms

We present a simple axiom about the underlying type system, which we use in some of the
proofs presented in this chapter.

Axiom 1. Axiom 1 is a simple axiom of the underlying type system which states that if two
function types are equal, and their first component type is equal, then their second component
type is also equal.

∀(t1, t2, t3 ∈ T ),
t1 → t2 = t1 → t3 (1.1)
=⇒ t3 = t2 (1.2)
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6.2 Values Can Not Step
Theorems 2 and 3 show that it is not possible for a step relation to have a value expression
on its left. Theorem 2 states this theorem for the core calculus, and Theorem 3 states this
theorem for the extended and higher order calculi.

Theorem 2.

∀(t ∈ T ), (v ∈ t), (e ∈ E),
JvK −→ e =⇒ False (2.1)

Proof. Proof for this theorem is straightforward by examining all derivations of the step
relation in the core calculus, given in Chapter 3. There are no step rules that allow a step
relation with a value expression on the left. Therefore, such a relation is not possible.

Theorem 3.

∀(t ∈ T ), (v ∈ t), (e ∈ E),
∀σ1,σ2 ∈ N → (a : A) → ρ(a) → E, (3.1)

σ1 ` JvK −→ σ2 ` e =⇒ False (3.2)

Proof. Proof of this theorem for the extended and higher order semantics is the same as in
Theorem 2. There is no rule that allows a value expression on the left of a step relation.

6.3 Step Determinism
We will prove determinism of the step relation with all three presented versions of our cal-
culus. In all cases, the property we explore is that for any expression, if it can step into
a new expression, there is only one expression that can be stepped to. We will prove this
property first with the core semantics in Theorem 4, then with the extended and higher order
semantics in Theorems 5 and 6.

6.3.1 Proof for the Core Calculus
Theorem 4. Assuming all evaluations are operating under the same context function σ, we
have the following.

∀(e1,e2,e3 ∈ E),
e1 −→ e2 (4.1)
e1 −→ e3 (4.2)

=⇒ e3 = e2 (4.3)

Proof. We introduce the quantified variables e1, e2, and e3, and proceed by structural in-
duction on the derivation of e1 −→ e2 (4.1), generalising e3. Each step rule will provide
information about the forms of e1 and e2, so for each case examined we will present updated
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versions of (4.1) to (4.3) to account for these transformations. If the derivation requires some
secondary step relation, this will also be included.

Our induction principle is that Theorem 4 is given for any subrelation of (4.1). As there
are eight derivations of the step relation in the core calculus, there are eight cases for us to
consider.

Case 4.1 (CondStep). If e1 −→ e2 is an instance of CondStep, then we know that e1 has the
form IF e1a THEN e1b ELSE e1c and e2 has the form IF e′1a THEN e1b ELSE e1c, and
e1a −→ e′1a (4.5).

IF e1a THEN e1b ELSE e1c −→ IF e′1a THEN e1b ELSE e1c (4.4)
e1a −→ e′1a (4.5)
IF e1a THEN e1b ELSE e1c −→ e3 (4.6)

=⇒ e3 = IF e′1a THEN e1b ELSE e1c (4.7)

Now, there are three possible derivations for (4.6); CondStep, CondTrue, and CondFalse.
CondTrue and CondFalse can only apply if e1a is a value expression containing true or
false, but (4.5) tells us that e1a can step, so it must not be a value, according to Theorem 2.
Therefore its derivation came from CondStep. (4.6) coming from CondStep tells us that e3
has the form IF e′′1a THEN e1b ELSE e1c and provides the additional relation e1a −→ e′′1a
(4.10).

IF e1a THEN e1b ELSE e1c −→ IF e′1a THEN e1b ELSE e1c (4.8)
e1a −→ e′1a (4.9)
e1a −→ e′′1a (4.10)
IF e1a THEN e1b ELSE e1c −→ IF e′′1a THEN e1b ELSE e1c (4.11)

=⇒ IF e′′1a THEN e1b ELSE e1c = IF e′1a THEN e1b ELSE e1c (4.12)

We can now use our inductive hypothesis on (4.9) and (4.10) to produce e′′1a = e′1a. Using
this equality to rewrite terms in (4.12) produces a reflexive equality.

Case 4.2 (CondTrue and CondFalse). If e1 −→ e2 is an instance of CondTrue, then we know
that e1 has the form IF JtrueK THEN e2 ELSE e1a.

IF JtrueK THEN e2 ELSE e1a −→ e2 (4.13)
IF JtrueK THEN e2 ELSE e1a −→ e3 (4.14)

=⇒ e3 = e2 (4.15)

The subexpression JtrueK cannot step, according to Theorem 2, and is trivially not equal
to JfalseK, so (4.14) must be derived from CondTrue. This means that e3 must be equal to e2,
which is the goal. The same strategy is used to solve the CondFalse case.

Case 4.3 (FunStep, FunParStep, and AttrNodeStep). The steps FunStep, FunParStep, and
AttrNodeStep all involve stepping some subexpression, which requires recursive use of the
step relation. In all of these cases, the approach used for Case 4.1 will similarly solve the
goal.
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Case 4.4 (FunApp). If e1 −→ e2 is an instance of FunApp, then we know that e1 has the
form Jv1K(Jv2K) and e2 has the form Jv1(v2)K.

Jv1K(Jv2K) −→ Jv1(v2)K (4.16)
Jv1K(Jv2K) −→ e3 (4.17)

=⇒ e3 = Jv1(v2)K (4.18)

Now, the only possible derivation of (4.17) is FunApp, as both the function and parameter
subexpressions are values, so FunStep and FunParStep are not possible derivations. This
immediately tells us that e3 = Jv1(v2)K, which solves the goal.

Case 4.5 (AttrFetch). If e1 −→ e2 is an instance of AttrFetch, then we know that e1 has the
form Jn1K.a1 and e2 has the form σ(n1,a1).

Jn1K.a −→ σ(n1,a1) (4.19)
Jn1K.a −→ e3 (4.20)

=⇒ e3 = σ(n1,a1) (4.21)

(4.20) can not be derived from AttrNodeStep, as this would require Jn1K to step, which is
not possible. Therefore (4.20) is derived from AttrFetch, which tells us that e3 = σ(n1,a1),
which is the goal.

All possible derivations of e1 −→ e2 have been considered, and the target has been shown
in each case. Therefore Theorem 4 is proven.

6.3.2 Proof for the Extended Calculus
Theorem 5 presents step determinism for the extended calculus. Since the extended calculus
involves a context function on both sides of the step relation, step determinism states that not
only the output expression is deterministic, but so is the output context function.

Theorem 5.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1,e2,e3 ∈ E),

σ1 ` e1 −→ σ2 ` e2 (5.1)
σ1 ` e1 −→ σ3 ` e3 (5.2)

=⇒ e3 = e2 ∧ σ3 = σ2 (5.3)

Proof. As in the core theorem, we will proceed by structural induction on the derivation of
σ1 ` e1 −→ σ2 ` e2 (5.1), generalising both e3 and σ3.

The proofs for the derivations CondStep, CondTrue, CondFalse, FunApp, FunStep, Fun-
ParStep, and AttrNodeStep follow the same process as in Theorem 4, except that facts about
the context function changing are also produced by inductive hypotheses and used for rewrit-
ing. Proof for the AttrParStep case also follows very similar logic. As such, the only cases
examined here are AttrFetchValue, AttrFetchCached, CacheStep, and CacheWrite.
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Case 5.1 (AttrFetchValue). If σ1 ` e1 −→ σ2 ` e2 is derived from AttrFetchValue, then we
know that e1 has the form Jn1K.a1(Jv1K) and e2 is σ1(n1,a1,v1), and σ2 = σ1. Also we
know that σ1(n1,a1,v1) = Jv2K for some v2.

σ1 ` Jn1K.a1(Jv1K) −→ σ1 ` Jv2K (5.4)
σ1(n1,a1,v1) = Jv2K (5.5)
σ1 ` Jn1K.a1(Jv1K) −→ σ3 ` e3 (5.6)

=⇒ e3 = Jv2K ∧ σ3 = σ1 (5.7)

Given that σ1(n1,a1,v1) is a value, (5.6) must also be derived from AttrFetchValue.
Satisfying such a derivation requires σ3 and e3 to take forms that make the two equalities in
the goal reflexive, after rewriting with (5.5).

Case 5.2 (AttrFetchCached). If σ1 ` e1 −→ σ2 ` e2 is derived from AttrFetchCached, then
we know that e1 has the form Jn1K.a1(Jv1K) and e2 has the form n1.a1(v1):= σ1(n1,a1,v1),
and σ2 = σ1. We also know that σ1(n1,a1,v1) is not a value.

σ1 ` Jn1K.a1(Jv1K) −→ σ1 ` n1.a1(v1):= σ1(n1,a1,v1) (5.8)
σ1(n1,a1,v1) is not a value (5.9)
σ1 ` Jn1K.a1(Jv1K) −→ σ3 ` e3 (5.10)

=⇒ e3 = n1.a1(v1):= σ1(n1,a1,v1) ∧ σ3 = σ1 (5.11)

Given that σ1(n1,a1,v1) is not a value, (5.10) must be also derived from AttrFetch-
Cached. Satisfying such a derivation requires σ3 and e3 to take forms that make the two
equalities in the goal reflexive.

Case 5.3 (CacheStep). If σ1 ` e1 −→ σ2 ` e2 is derived from CacheStep, then we know
that e1 has the form n1.a1(v1):= e1a and e2 has the form n1.a1(v1):= e′1a. We also have
σ1 ` e1a −→ σ2 ` e′1a (5.13).

σ1 ` n1.a1(v1):= e1a −→ σ2 ` n1.a1(v1):= e′1a (5.12)
σ1 ` e1a −→ σ2 ` e′1a (5.13)
σ1 ` n1.a1(v1):= e1a −→ σ3 ` e3 (5.14)

=⇒ e3 = n1.a1(v1):= e′1a ∧ σ3 = σ2 (5.15)

(5.13) means that e1a is not a value (Theorem 3), so (5.14) cannot be derived from
CacheWrite, and must be derived from CacheStep. Such a derivation assigns necessary
values to σ3 and e3 as shown below.
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σ1 ` n1.a1(v1):= e1a −→ σ2 ` n1.a1(v1):= e′1a (5.16)
σ1 ` e1a −→ σ2 ` e′1a (5.17)
σ1 ` n1.a1(v1):= e1a −→ σ3 ` n1.a1(v1):= e′′1a (5.18)
σ1 ` e1a −→ σ3 ` e′′1a (5.19)

=⇒ n1.a1(v1):= e′′1a = n1.a1(v1):= e′1a ∧ σ3 = σ2 (5.20)

The inductive hypothesis, with (5.17) and (5.19), produces equalities that solve the goal.

Case 5.4 (CacheWrite). If σ1 ` e1 −→ σ2 ` e2 is derived from CacheWrite, then we
know that e1 has the form n1.a1(v1):= Jv2K and e2 has the form Jv2K. We also know that
σ2 = σ1 ⊕ {(n1,a1,v1 7→ Jv2K}.

σ1 ` n1.a1(v1):= Jv2K −→ σ1 ⊕ {(n1,a1,v1 7→ Jv2K} ` Jv2K (5.21)
σ1 ` n1.a1(v1):= Jv2K −→ σ3 ` e3 (5.22)

=⇒ e3 = Jv2K ∧ σ3 = σ1 ⊕ {(n1,a1,v1 7→ Jv2K} ` Jv2K (5.23)

(5.22) can only be derived from CacheWrite, as a value cannot step. By examining the
necessary values of e3 and σ3 under CacheWrite, the goal becomes reflexive.

As all cases have been satisfied, Theorem 5 is proven.

6.3.3 Proof for the Higher Order Calculus

Theorem 6 appears identical to Theorem 5, but is framed in the higher order context, so the
expressions and type rules in question include the new forms described in Chapter 5.

Theorem 6.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1,e2,e3 ∈ E),

σ1 ` e1 −→ σ2 ` e2 (6.1)
σ1 ` e1 −→ σ3 ` e3 (6.2)

=⇒ e3 = e2 ∧ σ3 = σ2 (6.3)

Proof. We proceed by structural induction on the derivation of the step relation (6.1), gen-
eralising e3 and σ3, which produces 13 cases. All cases bar AttrFetchHO are proved in the
same fashion as in Theorem 5, so will be omitted here. We need only consider the case for
AttrFetchHO.

Case 6.1 (AttrFetchHO). If σ1 ` e1 −→ σ2 ` e2 is derived from AttrFetchHO, then we
know that e1 has the form Jn1K.a1(Jv1K), we know σ1(n1,a1,v1) = MK f l and we know e2
has the form Jn1K, as well as the form of σ2, as shown below.
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σ1 ` Jn1K.a1(Jv1K) −→ σ1 ⊕ {(n1,a1,v1) 7→ Jn2K} ⊗ n2/ f l (n2) ` Jn2K (6.4)
σ1(n1,a1,v1) = MK f l (6.5)
n2 does not exist in σ1 (6.6)
σ1 ` Jn1K.a1(Jv1K) −→ σ3 ` e3 (6.7)

=⇒ e3 = Jn2K ∧ σ3 = σ1 ⊕ {(n1,a1,v1) 7→ Jn2K} ⊗ n2/ f l (n2) (6.8)

Given that σ1(n1,a1,v1) is a MK expression, (6.7) must be also derived from AttrFetchHO.
Satisfying such a derivation requires σ3 and e3 to take forms that make the two equalities in
the goal reflexive.

Theorem 6 is now proven, and the step relation is proven deterministic in the core, ex-
tended, and higher order calculi.

6.4 Type Determinism

We want to prove that the type inference rules for Saiga expressions are deterministic. That
is to say that each expression can have at most one type. We prove this first with core
Saiga semantics in Theorem 7, then with extended semantics and higher order semantics in
Theorems 8 and 9.

6.4.1 Proof for the Core Calculus

Theorem 7.

∀(t1, t2 ∈ T ), (e ∈ E),
e : t1 (7.1)
e : t2 (7.2)

=⇒ t2 = t1 (7.3)

Proof. We proceed by structural induction on e. The inductive hypothesis is that the type
rules are deterministic for any subexpression of e. This produces four cases, which we will
examine individually. These cases will make use of core Saiga’s type inference rules, which
are shown in Section 3.1.4.

Case 7.1 (e is a value).

JvK : t1 (7.4)
JvK : t2 (7.5)

=⇒ t2 = t1 (7.6)

Both (7.4) and (7.5) can only be derived from TypeVal, which means both t1 and t2 are
equal to whatever type v holds in the underlying system. Therefore the goal is reflexive.
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Case 7.2 (e is a conditional expression).

IF e1 THEN e2 ELSE e3 : t1 (7.7)
IF e1 THEN e2 ELSE e3 : t2 (7.8)

=⇒ t2 = t1 (7.9)

Both (7.7) and (7.8) can only be derived from TypeCond, which means, for both cases,
the first subexpression e1 is of type boolean, and that e2 and e3 are both some type t1 and t2.
Expanding these derivations yields the following.

IF e1 THEN e2 ELSE e3 : t1 (7.10)
e1 : boolean (7.11)
e2 : t1 (7.12)
e3 : t1 (7.13)
IF e1 THEN e2 ELSE e3 : t2 (7.14)
e1 : boolean (7.15)
e2 : t2 (7.16)
e3 : t2 (7.17)

=⇒ t2 = t1 (7.18)

Applying the inductive hypothesis to (7.12) and (7.16) will yield the goal exactly.

Case 7.3 (e is a function application expression).

e1(e2) : t1 (7.19)
e1(e2) : t2 (7.20)

=⇒ t2 = t1 (7.21)

Both (7.19) and (7.20) can only be derived from TypeFun, which means, for both cases,
that the first subexpression is of some function type, and the second subexpression is of the
respective input type.

e1(e2) : t1b (7.22)
e1 : t1a → t1b (7.23)
e2 : t1a (7.24)
e1(e2) : t2b (7.25)
e1 : t2a → t2b (7.26)
e2 : t2a (7.27)

=⇒ t2b = t1b (7.28)

The inductive hypothesis on (7.24) and (7.27) yields t2a = t1a. Rewriting this, and then
applying the inductive hypothesis to (7.23) and (7.26) yields t1a → t2b = t1a → t1b. We can
then apply Axiom 1, which provides t2b = t1b, which is the goal.
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Case 7.4 (e is an attribution expression).

e1.a : t1 (7.29)
e1.a : t2 (7.30)

=⇒ t2 = t1 (7.31)

Both (7.29) and (7.30) can only be derived from TypeAttr, which means, for both cases,
that their subexpression is of type N , and both t1 and t2 are τ(a).

e1.a : τ(a) (7.32)
e1 : N (7.33)
e1.a : τ(a) (7.34)
e1 : N (7.35)

=⇒ τ(a) = τ(a) (7.36)

The goal is now reflexive.

All subcases are shown, so Theorem 7 is proven.

6.4.2 Proof for the Extended Calculus
Theorem 8 presents type determinism for the extended calculus. Theorem 8 looks identical
to Theorem 7, but the expression e here is from the extended calculus, so can include the
new productions introduced in Section 4.1.1.

Theorem 8.

∀(t1, t2 ∈ T ), (e ∈ E),
e : t1 (8.1)
e : t2 (8.2)

=⇒ t2 = t1 (8.3)

Proof. Recall the type rules for extended Saiga (including both parameterisation and caching)
from Section 4.2.2. The only new rule is TypeCache, and TypeAttr has been updated.

As in Theorem 7, we proceed by structural induction on e, generalising t1 and t2. Value,
conditional, and function application expressions are typed the same way as in the core
calculus, and their proofs for this theorem are the same as in Theorem 7, so will be omitted
here.

Case 8.1 (e is an attribution expression).

e1.a1(e2) : t1 (8.4)
e1.a1(e2) : t2 (8.5)

=⇒ t2 = t1 (8.6)

Both (8.4) and (8.5) can only be derived from TypeAttr, which tells us that both t1 and t2
are equal to τ(a1). The goal is therefore reflexive.
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Case 8.2 (e is a cache expression).

n1.a1(v1):= e1 : t1 (8.7)
n1.a1(v1):= e1 : t2 (8.8)

=⇒ t2 = t1 (8.9)

Both (8.7) and (8.8) can only be derived from TypeCache, which tells us that both t1 and
t2 are equal to τ(a1). The goal is therefore reflexive.

The cases for attribution and cache expressions have been proven here, and all other
expression forms have been covered in Theorem 7. Therefore Theorem 8 is proven.

6.4.3 Proof for the Higher Order Calculus
Theorem 9 presents type determinism for the higher order calculus. Theorem 9 looks identi-
cal to Theorems 7 and 8, but the expression e here is from the higher order calculus, so can
include the new productions introduced in Section 5.1.1.

Theorem 9.

∀(t1, t2 ∈ T ), (e ∈ E),
e : t1 (9.1)
e : t2 (9.2)

=⇒ t2 = t1 (9.3)

Proof. Recall the type inference rules for higher order Saiga from Section 5.1.2. The only
new rule is TypeCstr. As in Theorems 7 and 8, we proceed by structural induction on e.
Value, conditional, function application, attribution, and caching expressions are typed the
same way as in the extended calculus, and their proofs here are the same as in Theorem 8, so
will not be covered again here. This leaves only the case for MK expressions.

Case 9.1 (e is a MK expression).

MKλn, f l : N (9.4)
MKλn, f l : t2 (9.5)

=⇒ t2 = N (9.6)

The only possible derivation of (9.5) is TypeCstr, which tells us that t2 = N , which is
exactly our goal.

Theorem 9 is now proven, and Saiga’s type inference rules are now proven deterministic
in the core, extended, and higher order calculi.

6.5 Type Preservation over the Step Relation
Here we want to prove that the “output” (right hand side) expression of a step relation is
always the same type as the ”input’ (left hand side) expression. In other words, if e1 steps
into e2, and e1 has the type t, then e2 also has the type t. For this property to hold, the context
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function under which evaluation occurs must be type safe. Type safety for context functions
is defined below.

Definition 6.5.1. A context function σ is type safe iff for any set of inputs n1 and a1, (and
v1 in the extended calculus), it produces an expression of type τ(a1). We use this definition
for context functions from both the core and extended calculi, where the parameter variable
v1 is ignored in the core case.

∀(n1 ∈ N ), (a1 ∈ A), (v1 ∈ ρ(a)),
σ(n1,a1,v1) : τ(a1)

We will prove type preservation first with the core calculus in Theorem 10, and then with
the extended and higher order calculi in Theorems 11 and 12.

6.5.1 Proof for the Core Calculus
Theorem 10.

∀(σ ∈ N → A→ E), (e1,e2 ∈ E), (t1 ∈ T ),
σ is type safe (10.1)
e1 : t1 (10.2)
e1 −→ e2 (10.3)

=⇒ e2 : t1 (10.4)

Proof. We will proceed by induction on the derivation of the step relation (10.3), generalis-
ing t1. The inductive hypothesis is that Theorem 10 holds for any substeps required by the
step relation (10.3). In each case, the derivation requires e to take some particular form, and
often there are related steps that are required for the derivation. The proof state after rewrit-
ing such terms and including new predicates will be shown for each subcase below. Further,
for each case below there is only one possible derivation of (10.2). This derivation will be
expanded before showing the proof state for each case. Type safety (10.1) will be ignored in
all cases except Case 10.7, which is the only case that needs this result.

Case 10.1 (CondStep).

IF e1a THEN e1b ELSE e1c : t1 (10.5)
e1a : boolean (10.6)
e1b : t1 (10.7)
e1c : t1 (10.8)
IF e1a THEN e1b ELSE e1c −→ IF e′1a THEN e1b ELSE e1c (10.9)
e1a −→ e′1a (10.10)

=⇒ IF e′1a THEN e1b ELSE e1c : t1 (10.11)

The inductive hypothesis, with (10.10) and (10.6) tells us that e′1a : boolean. This fact,
along with (10.7) and (10.8), are the prerequisites needed for TypeCond to solve the goal.
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Case 10.2 (CondTrue and CondFalse). In the CondTrue case we have the following:

IF JtrueK THEN e1b ELSE e1c : t1 (10.12)
JtrueK : boolean (10.13)
e1b : t1 (10.14)
e1c : t1 (10.15)
IF JtrueK THEN e1b ELSE e1c −→ e1b (10.16)

=⇒ e1b : t1 (10.17)

The target here is given immediately by (10.14). The same logic is used to solve the
CondFalse case.

Case 10.3 (FunApp).

Jv1K(Jv2K) : t1 (10.18)
Jv1K : t2 → t1 (10.19)
Jv2K : t2 (10.20)
Jv1K(Jv2K) −→ Jv1(v2)K (10.21)

=⇒ Jv1(v2)K : t1 (10.22)

We can immediately solve the goal using TypeFun with (10.19) and (10.20).

Case 10.4 (FunStep).

e1a(e1b) : t1 (10.23)
e1a : t2 → t1 (10.24)
e1b : t2 (10.25)
e1a(e1b) −→ e′1a(e1b) (10.26)
e1a −→ e′1a (10.27)

=⇒ e′1a(e1b) : t1 (10.28)

To derive the target using TypeFun, we need to know e′1a : t2 → t1, which can be obtained
by applying the inductive hypothesis to (10.24) and (10.27). We also need to know e1b : t2,
which is given by (10.25).

Case 10.5 (FunParStep).

Jv1K(e1a) : t1 (10.29)
Jv1K : t2 → t1 (10.30)
e1a : t2 (10.31)
Jv1K(e1a) −→ v1(e′1a) (10.32)
e1a −→ e′1a (10.33)

=⇒ Jv1K(e′1a) : t1 (10.34)

To derive the target using TypeFun, we need to know (10.30) and e′1a : t2, which can be
obtained by applying the inductive hypothesis to (10.31) and (10.33).
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Case 10.6 (AttrNodeStep).

e1a.a : τ(a) (10.35)
e1a : N (10.36)
e1a.a −→ e′1a.a (10.37)
e1a −→ e′1a (10.38)

=⇒ e′1a.a : τ(a) (10.39)

To derive the target using TypeAttr, we need only to know e′1a : N , which can be obtained
by applying the inductive hypothesis to (10.36) and (10.38).

Case 10.7 (AttrFetch).

σ is type safe (10.40)
Jn1K.a : τ(a) (10.41)
Jn1K.a −→ σ(n,a) (10.42)

=⇒ σ(n,a) : τ(a) (10.43)

We know that σ is type safe from (10.40). The definition of type safety is exactly the
goal here. If σ was not type safe, then Theorem 7 would not hold, as it would be possible
for evaluation to step into a new expression with a different type via the context function.

Each case has been satisfied, so Theorem 7 is proven.

6.5.2 Proof for the Extended Calculus

Theorem 11 is similar to Theorem 10, but expressed for the extended calculus.

Theorem 11.

∀(σ1,σ2 ∈ N → A→ E), (e1,e2 ∈ E), (t1 ∈ T ),
σ1 is type safe (11.1)
e1 : t1 (11.2)
σ1 ` e1 −→ σ2 ` e2 (11.3)

=⇒ e2 : t1 (11.4)

Proof. As in the proof for Theorem 10, we proceed by induction on the derivation of the
step relation (11.3), generalizing t1, and extract what information can be extracted from the
produced terms. The result of this initial analysis will be shown as a starting point for each
case below.

The proofs for the cases CondStep, CondTrue, CondFalse, FunStep, FunParStep, Fu-
nApp, and AttrNodeStep are similar enough from the same cases in the proof for Theorem 10
that they will be omitted in this section. The remaining cases starting from AttrParStep are
shown below.



100 Metatheoretic Properties

Case 11.1 (AttrParStep).

Jn1K.a1(e1a) : τ(a1) (11.5)
Jn1K : N (11.6)
e1a : ρ(a1) (11.7)
σ1 ` Jn1K.a1(e1a) −→ σ2 ` Jn1K.a1(e′1a) (11.8)
σ1 ` e1a −→ σ2 ` e′1a (11.9)

=⇒ Jn1K.a1(e′1a) : τ(a1) (11.10)

To derive the goal using TypeAttr, we need (11.6) and e′1a : ρ(a1), which can be obtained by
applying the inductive hypothesis to (11.7) and (11.9).

Case 11.2 (AttrFetchValue and AttrFetchCached). In the AttrFetchValue case we have the
following:

σ1 is type safe (11.11)
Jn1K.a1(Jv1K) : τ(a1) (11.12)
Jv1K : ρ(a1) (11.13)
Jn1K : N (11.14)
σ1 ` n1.a1(v1) −→ σ1 ` Jv2K (11.15)
σ1(n1,a1,v1) = Jv2K (11.16)

=⇒ Jv2K : τ(a1) (11.17)

The target here is given by the definition of type safety, which we have from (11.11), af-
ter rewriting (11.16). The AttrFetchCached case is also solved via type safety, along with
TypeCache.

Case 11.3 (CacheStep).

n1.a1(v1):= e1a : τ(a1) (11.18)
e1a : τ(a1) (11.19)
σ1 ` n1.a1(v1):= e1a −→ σ2 ` n1.a1(v1):= e′1a (11.20)
σ1 ` e1a −→ σ2 ` e′1a (11.21)

=⇒ n1.a1(v1):= e′1a : τ(a1) (11.22)

To derive the goal using TypeCache, we need e′1a : τ(a1), which can be obtained by applying
the inductive hypothesis to (11.19) and (11.21).

Case 11.4 (CacheWrite).

n1.a1(v1):= Jv2K : τ(a1) (11.23)
Jv2K : τ(a1) (11.24)
σ1 ` n1.a1(v1):= Jv2K −→ σ2 ` Jv2K (11.25)

=⇒ Jv2K : τ(a1) (11.26)

In this case the goal is known immediately from (11.24).
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All cases have been satisfied, so Theorem 8 is proven.

6.5.3 Proof for the Higher Order Calculus

Theorem 12 appears identical to Theorem 11, but is framed in the higher order calculus, so
expressions and type rules include the productions introduced in Chapter 5.

Theorem 12.

∀(σ1,σ2 ∈ N → A→ E), (e1,e2 ∈ E), (t1 ∈ T ),
σ1 is type safe (12.1)
e1 : t1 (12.2)
σ1 ` e1 −→ σ2 ` e2 (12.3)

=⇒ e2 : t1 (12.4)

Proof. As for Theorems 10 and 11, we will proceed by induction on the derivation of the
step relation (12.3) generalising t1, and extract what information can be extracted from the
produced terms. The result of this initial analysis will be shown as a starting point for each
case below.

The proofs for all cases except AttrFetchCached and AttrFetchHO are identical to the
proofs presented in Theorem 11, so will be omitted here. The proof for the AttrFetchCached
case is also functionally the same as the proof for AttrFetchCached shown in Theorem 11,
so will also be omitted. Here we consider the only new case AttrFetchHO.

Case 12.1 (AttrFetchHO).

σ1 is type safe (12.5)
Jn1K.a1(Jv1K) : τ(a1) (12.6)
Jv1K : ρ(a1) (12.7)
Jn1K : N (12.8)
σ1 ` n1.a1(v1) −→ σ1 ⊕ {(n1,a1,v1) 7→ Jn2K} ⊗ n2/ f l (n2) ` Jn2K (12.9)
σ1(n1,a1,v1) = MK f l (12.10)
n2 does not exist in σ1 (12.11)
σ1(n1,a1,v1) : τ(a1) (12.12)
MK f l : τ(a1) (12.13)

=⇒ Jn2K : τ(a1) (12.14)

We produce (12.12) from (12.5), and we rewrite (12.10) in (12.12) to create (12.13). The
only possible derivation of (12.13) is TypeCstr, which means that τ(a) = N . Rewriting this
fact in the goal gives us Jn2K : N , which is derived trivially from TypeVal.

Theorem 12 is now proven, and type preservation over the step relation has been proven
in the core, extended, and higher order calculi.
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6.6 Progress
Here we prove that for any well-typed expression, either that expression can step into another
expression, or it is a value expression. For the extended case, we say for any pair of context
function and expression, either the expression is a value expression or the pair can step to
some other context/expression pair. For the higher order case, we say that either the context
and expression can step, the expression is a value expression, or the expression contains a MK
expression.

6.6.1 Proof for the Core Calculus
For the core calculus, we assert that for any well-typed expression e1, either e1 is a value,
or there exists some e2 such that e1 −→ e2. When we say “e1 is a value”, we mean there is
some v such that e1 = JvK.

Theorem 13.

∀(e1 ∈ E), (t1 ∈ T ),
e1 : t1 (13.1)

=⇒ (∃e2,e1 −→ e2) ∨ (e1 is a value) (13.2)

Proof. We proceed by structural induction on e1, generalising t1. This produces four cases
for the four production rules for expressions: value, conditional, function application, and
attribution.

Case 13.1 (e1 is a value expression). If e1 is a value expression, the right branch is trivially
true. All following cases will consider the left branch.

Case 13.2 (e1 is a conditional expression).

IF e1a THEN e1b ELSE e1c : t1 (13.3)
e1a : boolean (13.4)
e1b : t1 (13.5)
e1c : t1 (13.6)

=⇒ ∃e2,IF e1a THEN e1b ELSE e1c −→ e2 (13.7)

First, we can apply the inductive hypothesis to e1a, which tells us that it is either a value
expression or must step to another expression. If e1a can step to some other expression e′1a,
we can solve the goal with IF e′1a THEN e1b ELSE e1c, which is derived from CondStep.
If e1a is a value expression, (13.4) tells us it must be a boolean value. If its value is true, we
can solve the goal with e1b, derived from CondTrue. If its value is false, we can solve the
goal with e1c, derived from CondFalse.

Case 13.3 (e1 is a function application expression).

e1a(e1b) : t1b (13.8)
e1a : t1a → t1b (13.9)
e1b : t1a (13.10)

=⇒ ∃e2,e1a(e1b) −→ e2 (13.11)



6.6 Progress 103

By induction, we know that both e1a and e1b are either values or step into some other
expressions. If e1a steps into some expression e′1a, we can solve the goal with e1a(e1b) −→
e′1a(e1b), which is derived from FunStep. If e1a is a value and e1b steps into some expression
e′1b, we can solve the goal with e1a(e1b) −→ e1a(e′1b), derived from FunParStep. If both
e1a and e1b are the values v1 and v2, we can solve the goal with Jv1K(Jv2K) −→ Jv1(v2)K,
derived from FunApp.

Case 13.4 (e1 is an attribution expression).

e1a.a : τ(a) (13.12)
e1a : N (13.13)

=⇒ ∃e2,e1a.a −→ e2 (13.14)

Inductively, we know that e1a either is a value or steps into some other expression. If
e1a is a value, it must be some n1 ∈ N according to (13.13), and we can solve the goal with
Jn1K.a −→ σ(n1,a), derived from AttrFetch. If e1a steps into some expression e′1a, we can
solve the goal with e1a.a −→ e′1a.a, derived from AttrNodeStep.

All cases have been considered, so Theorem 13 is proven.

6.6.2 Proof for the Extended Calculus
For the extended calculus, we assert that for any context function σ1 and well-typed expres-
sion e1, either e1 is a value, or there exists some σ2 and e2 such that σ1 ` e1 −→ σ2 ` e2.

Theorem 14.

∀(σ1 ∈ N → (a : A) → ρ(a) → E), (e1 ∈ E),
e1 : t1 (14.1)

=⇒ (∃e2,σ2.σ1 ` e1 −→ σ2 ` e2) ∨ (e1 is a value) (14.2)

Proof. As in the case for the core calculus, we proceed by structural induction on the expres-
sion e1, generalising t1. This time there are five cases to consider. The value, conditional,
and function application expressions are unchanged, so their proofs will not be shown here.
We will examine the attribution and caching cases below. In both of these cases, we prove
the left branch of the disjunction in the goal.

Case 14.1 (e1 is an attribution expression).

e1a.a1(e1b) : τ(a1) (14.3)
e1a : N (14.4)
e1b : ρ(a1) (14.5)

=⇒ ∃e2,σ2.σ1 ` e1a.a1(e1b) −→ σ2 ` e2 (14.6)

There are two subexpressions to the attribution expression, e1a and e1b. Inductively, we
know that each of these must either be a value expression or step to some other context/ex-
pression pair. This creates a number of subcases to consider.

• If σ1 ` e1a steps to some σ2 ` e′1a, we can solve the goal with σ1 ` e1a.a1(e1b) −→
σ2 ` e′1a.a1(e1b), derived from AttrNodeStep.
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• If e1a is some value Jn1K but σ1 ` e1b steps to some σ2 ` e′1b, we can solve the goal
with σ1 ` Jn1K.a1(e1b) −→ σ2 ` Jn1K.a1(e′1b), derived from AttrParStep.

• If e1a is some value expression Jn1K and e1b is some value expression Jv1K, there are
two possibilities still.

– If σ1(n1,a1,v1) is a value expression Jv2K, we can solve the goal with σ1 `

Jn1K.a1(Jv1K) −→ σ1 ` Jv2K, derived from AttrFetchValue.

– If σ1(n1,a1,v1) is not a value expression, we can solve the goal with σ1 `

Jn1K.a1(Jv1K) −→ σ1 ` n1.a1(v1):= σ1(n1,a1,v1), derived from AttrFetch-
Cached.

Case 14.2 (e1 is a caching expression).

n1.a1(v1):= e1a : τ(a1) (14.7)
e1a : τ(a1) (14.8)

=⇒ ∃e2,σ2.σ1 ` n1.a1(v1):= e1a −→ σ2 ` e2 (14.9)

We know by induction that e1a is a value expression or steps to some e′1a. If e1a is
some value expression Jv2K, we can solve the goal with σ1 ` n1.a1(v1):= Jv2K −→ σ1 ⊕

{(n1,a1,v1) 7→ Jv2K} ` Jv2K, derived from CacheWrite. If σ1 ` e1a steps to some σ2 ` e′1a,
we can solve the goal with σ1 ` n1.a1(v1):= e1a −→ σ2 ` n1.a1(v1):= e′1a, derived
from CacheStep.

All cases have been satisfied, so Theorem 14 is proven.

6.6.3 Proof for the Higher Order Calculus

For the higher order calculus, we assert that for any context function σ1 and well-typed
expression e1, either e1 is a value, e1 contains a MK expression, or there exists some σ2 and
e2 such that σ1 ` e1 −→ σ2 ` e2. When we say “e1 contains a MK expression”, we mean that
there is some f l such that e1 = MK f l , or that this is true for some subexpression of e1.

Theorem 15.

∀(σ1 ∈ N → (a : A) → ρ(a) → E), (e1 ∈ E),
e1 : t1 (15.1)

=⇒ (∃e2,σ2.σ1 ` e1 −→ σ2 ` e2) ∨ (e1 is a value) ∨ (e1 contains a MK expression)
(15.2)

Proof. Theorem 15 is similar to Theorems 13 and 14, with an extra disjunction: if e1 contains
a MK expression, then the expression will not step. As before, we proceed by structural
induction on the expression e1, generalising t1. The only cases with any new proof work
are the attribution and MK expression cases. We will not examine in detail the case for the
MK expression, as in this case the third disjunction in the goal is immediately satisfied. We
examine here only the attribution expression case.
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Case 15.1 (e1 is an attribution expression).

e1a.a1(e1b) : τ(a1) (15.3)
e1a : N (15.4)
e1b : ρ(a1) (15.5)

=⇒ (∃e2,σ2.σ1 ` e1a.a1(e1b) −→ σ2 ` e2) ∨ (e1 is a value) ∨ (e1 is a MK expression)
(15.6)

There are two subexpressions to the attribution expression, e1a and e1b. Inductively, we
know that each of these must either step to some other context/expression pair, be a value
expression, or contain MK expression. This creates a number of subcases to consider.

• If e1 steps, we can satisfy the goal using the first branch, as in Theorem 14.

• If e1 is a MK expression, we can satisfy the goal trivially with the third branch.

• If e1 is a value expression and e2 steps, we can prove the theorem using the first branch,
as in Theorem 14.

• If e1 is a value expression and e2 is a MK expression, we can satisfy the goal trivially
with the third branch.

• If e1 is a value expression Jn1K and e2 is a value expression Jv1K, there are three
ways the first branch can be satisfied. We are not using the inductive hypothesis on
σ1(n1,a1,v1), as this is not a subexpression of e1. However, we consider the three
following possibilities for this expression.

– If σ1(n1,a1,v1) is a value expression, we satisfy the goal using the first branch,
derived using AttrFetchValue.

– If σ1(n1,a1,v1) is a MK expression, we satisfy the goal using the first branch,
derived using AttrFetchHO.

– If σ1(n1,a1,v1) is any other expression form, we satisfy the goal using the first
branch, derived using AttrFetchCached.

Theorem 15 is now proven, and progress has now been proven in the core, extended, and
higher order calculi.

6.7 Big Step Multistep Equivalence

In Sections 3.2.9, 4.3.5 and 5.3.6, we presented a big step semantics for Saiga. Here we
will prove that multistep, as presented in Sections 3.2.8, 4.3.4 and 5.3.5, is equivalent to big
step, in that the same expression and context function will always reach the same final value
and output context function. First we prove that the multistep relation implies the big step
relation, then we will prove that the big step relation implies the multistep relation.

For previous theorems, we have presented proofs separately for the core, extended, and
higher order calculi. Here we will present only the higher order proof, as proof for the higher
order calculus is the most difficult, and covers all cases from the other calculi.



106 Metatheoretic Properties

6.7.1 Multistep Implies Big Step

To prove that the multistep relation implies the big step relation, we must first prove Lemma 16,
which states that a single step followed by a big step implies a big step from the source of
the single step.

Lemma 16.

∀(e1,e2 ∈ E), (σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E), (t ∈ T ), (v ∈ t),
σ1 ` e1 −→ σ2 ` e2 (16.1)
σ2 ` e2 � σ3 ` v (16.2)

=⇒ σ1 ` e1 � σ3 ` v (16.3)

Proof. We proceed by induction on the derivation of the single step relation (16.1). This
provides one case for each of the 13 step rules in the higher order single step semantics
presented in Section 5.1.3. For each case, we will examine the possible derivations of (16.2).
For most cases there will only be one possible derivation, but we will consider each case
separately when there are multiple. Usually identifying the derivation will provide some
further hypotheses, which will be shown in the proof state for each following case.

Case 16.1 (CondStep). The big step relation as part of this case has two subcases: BCondTrue
and BCondFalse.

Case 16.1.1 (CondStep followed by BCondTrue).

σ1 ` IF e1 THEN e2 ELSE e3 −→ σ2 ` IF e′1 THEN e2 ELSE e3 (16.4)
σ1 ` e1 −→ σ2 ` e′1 (16.5)
σ2 ` IF e′1 THEN e2 ELSE e3 � σ3 ` v (16.6)
σ2 ` e′1 � σ4 ` true (16.7)
σ4 ` e2 � σ3 ` v (16.8)

=⇒ σ1 ` IF e1 THEN e2 ELSE e3 � σ3 ` v (16.9)

The goal here is satisfied using BCondTrue with (16.8), and the inductive hypothesis applied
to (16.5) and (16.7).

Case 16.1.2 (BCondFalse). This case is proved in the same manner as in case 16.1.1.

Case 16.2 (CondStep followed by CondTrue).

σ1 ` IF JtrueK THEN e1 ELSE e2 −→ σ1 ` e1 (16.10)
σ1 ` e1 � σ2 ` v (16.11)

=⇒ σ1 ` IF JtrueK THEN e1 ELSE e2 � σ2 ` v (16.12)

This goal is given from (16.11) and from BRefl on JtrueK.

Case 16.3 (CondFalse). This case is proved in the same manner as in Case 16.2.

Case 16.4 (FunStep). The big step relation here can only be derived from BFun.
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σ1 ` e1(e2) −→ σ2 ` e′1(e2) (16.13)
σ1 ` e1 −→ σ2 ` e′1 (16.14)
σ2 ` e′1(e2)� σ3 ` f (p) (16.15)
σ2 ` e′1 � σ4 ` f (16.16)
σ4 ` e2 � σ3 ` p (16.17)

=⇒ σ1 ` e1(e2)� σ3 ` f (p) (16.18)

The goal here can be satisfied with BFun, using (16.17) and the inductive hypothesis applied
to (16.14) and (16.16).

Case 16.5 (FunParStep). The big step relation here can also only be derived from BFun,
which yields (16.22) and (16.23).

σ1 ` J f K(e1) −→ σ2 ` J f K(e′1) (16.19)
σ1 ` e1 −→ σ2 ` e′1 (16.20)
σ2 ` J f K(e′1)� σ3 ` f (p) (16.21)
σ2 ` J f K� σ2 ` f (16.22)
σ2 ` e′1 � σ3 ` p (16.23)

=⇒ σ1 ` J f K(e1)� σ3 ` f (p) (16.24)

The goal here can be satisfied with BFun, using (16.22) and the inductive hypothesis applied
to (16.20) and (16.23).

Case 16.6 (FunApp).

σ1 ` J f K(JpK) −→ σ1 ` J f (p)K (16.25)
σ1 ` J f (p)K� σ1 ` f (p) (16.26)

=⇒ σ1 ` J f K(JpK)� σ1 ` J f (p)K (16.27)

The goal here is satisfied immediately by BFun, with each of its requisites provided by BRefl.

Case 16.7 (AttrNodeStep). The big step relation shown by (16.30) below can be derived
in three ways: BAttrValue, BAttrCached, and BAttrHO. We consider these three subcases
separately.

Case 16.7.1 (AttrNodeStep followed by BAttrValue).

σ1 ` e1.a(e2) −→ σ2 ` e′1.a(e2) (16.28)
σ1 ` e1 −→ σ2 ` e′1 (16.29)
σ2 ` e′1.a(e2)� σ3 ` v (16.30)
σ2 ` e′1 � σ4 ` n (16.31)
σ4 ` e2 � σ3 ` p (16.32)
σ3(n,a,p) = JvK (16.33)

=⇒ σ1 ` e1.a(e2)� σ3 ` v (16.34)
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Here we can satisfy the goal using BAttrValue. The first requisite can be provided by the
inductive hypothesis applied to (16.29) and (16.31). The other requisites to BAttrValue are
provided by (16.32) and (16.33).

Case 16.7.2 (AttrNodeStep followed by BAttrCached).

σ1 ` e1.a(e2) −→ σ2 ` e′1.a(e2) (16.35)
σ1 ` e1 −→ σ2 ` e′1 (16.36)
σ2 ` e′1.a(e2)� σ6 ⊕ {(n,a,p) 7→ JvK} ` v (16.37)
σ2 ` e′1 � σ4 ` n (16.38)
σ4 ` e2 � σ5 ` p (16.39)
σ5 ` σ5(n,a,p) � σ6 ` v (16.40)
σ5(n,a,p) is not a value or MK expression (16.41)

=⇒ σ1 ` e1.a(e2)� σ6 ⊕ {(n,a,p) 7→ JvK} ` v (16.42)

Here we can satisfy the goal using BAttrCached. The first requisite can be provided by the
inductive hypothesis applied to (16.36) and (16.38). The other requisites to BAttrCached are
provided by (16.39) and (16.41).

Case 16.7.3 (AttrNodeStep followed by BAttrHO).

σ1 ` e1.a(e2) −→ σ2 ` e′1.a(e2) (16.43)
σ1 ` e1 −→ σ2 ` e′1 (16.44)
σ2 ` e′1.a(e2)� σ4 ⊕ {(n,a,p) 7→ Jn2K} ⊗ n2/ f l (n2) ` n2 (16.45)
σ2 ` e′1 � σ3 ` n (16.46)
σ3 ` e2 � σ4 ` p (16.47)
σ4(n,a,p) = MK f l (16.48)
n2 does not exist in σ4 (16.49)

=⇒ σ1 ` e1.a(e2)� σ4 ⊕ {(n,a,p) 7→ Jn2K} ⊗ n2/ f l (n2)v ` n2 (16.50)

Here we can satisfy the goal using BAttrHO. The first requisite can be provided by the
inductive hypothesis applied to (16.44) and (16.46). The other requisites to BAttrHO are
provided by (16.47), (16.48), and (16.49).

Case 16.8 (AttrParStep). As in Case 16.7, the big step relation for this case can have the three
derivations BAttrValue, BAttrCached, and BAttrHO. Proofs for these three cases follow the
same pattern as for Case 16.7, so will not be shown here.

Case 16.9 (AttrFetchValue).

σ1 ` JnK.a(JpK) −→ σ1 ` JvK (16.51)
σ1(n,a,p) = JvK (16.52)
σ1 ` JvK� σ1 ` v (16.53)

=⇒ σ1 ` JnK.a(JpK)� σ1 ` v (16.54)

Here the goal can be satisfied immediately by BAttrValue, using (16.52).
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Case 16.10 (AttrFetchCached).

σ1 ` JnK.a(JpK) −→ σ1 ` n.a(p):= σ1(n,a,p) (16.55)
σ1(n,a,p) is not a value or MK expression (16.56)
σ1 ` n.a(p):= σ1(n,a,p) � σ2 ⊕ {(n,a,p) 7→ JvK} ` v (16.57)
σ1 ` σ1(n,a,p) � σ2 ` v (16.58)

=⇒ σ1 ` JnK.a(JpK)� σ2 ⊕ {(n,a,p) 7→ JvK} ` v (16.59)

Here the goal can be satisfied immediately by BAttrCached, using (16.58) and (16.56)

Case 16.11 (AttrFetchHO).

σ1 ` JnK.a(JpK) −→ σ1 ⊕ {(n,a,p) 7→ Jn2K} ⊗ n2/ f l ` Jn2K (16.60)
σ1(n,a,p) = MK f l (16.61)
n2 does not exist in σ1 (16.62)
σ1 ⊕ {(n,a,p) 7→ Jn2K} ⊗ n2/ f l ` Jn2K� σ1 ⊕ {(n,a,p) 7→ Jn2K} ⊗ n2/ f l ` n2

(16.63)

=⇒ σ1 ` JnK.a(JpK)� σ1 ⊕ {(n,a,p) 7→ Jn2K} ⊗ n2/ f l ` n2 (16.64)

Here the goal can be satisfied immediately by BAttrHO, using (16.61) and (16.62).

Case 16.12 (CacheStep).

σ1 ` n.a(p):= e −→ σ2 ` n.a(p):= e′ (16.65)
σ1 ` e −→ σ2 ` e′ (16.66)
σ2 ` n.a(p):= e′ � σ3 ⊕ {(n,a,p) 7→ JvK} ` v (16.67)
σ2 ` e′ � σ3 ` v (16.68)

=⇒ σ1 ` n.a(p):= e � σ3 ⊕ {(n,a,p) 7→ JvK} ` v (16.69)

Here the goal can be satisfied by BCache, and with the inductive hypothesis applied to
(16.66) and (16.68).

Case 16.13 (CacheWrite).

σ1 ` n.a(p):= JvK −→ σ1 ⊕ {(n,a,p) 7→ JvK} ` JvK (16.70)
σ1 ⊕ {(n,a,p) 7→ JvK} ` JvK� σ1 ⊕ {(n,a,p) 7→ JvK} ` v (16.71)

=⇒ σ1 ` n.a(p):= JvK� σ1 ⊕ {(n,a,p) 7→ JvK} ` v (16.72)

Here the goal can be satisfied immediately by BCache.

Every case has been satisfied, so Lemma 16 is proven.

Now that we have proven Lemma 16, we can prove that the multistep relation implies the
big step relation, in Theorem 17.

Theorem 17.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E), (e ∈ E), (t ∈ T ), (v ∈ t),
σ1 ` e −→∗ σ2 ` JvK (17.1)

=⇒ σ1 ` e � σ2 ` v (17.2)
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Proof. We proceed by structural induction on the derivation of the multistep relation (17.1).
This produces two cases: one for the reflection case MultiRefl, and one for the step case
MultiStep.

Case 17.1 (MultiRefl).

σ1 ` JvK −→∗ σ1 ` JvK (17.3)
=⇒ σ1 ` JvK� σ1 ` v (17.4)

Here the goal is satisfied immediately with BRefl.

Case 17.2 (MultiStep).

σ1 ` e1 −→ σ2 ` e2 (17.5)
σ2 ` e2 −→

∗ σ3 ` JvK (17.6)
σ2 ` e2 � σ3 ` v (17.7)

=⇒ σ1 ` e1 � σ3 ` v (17.8)

The big step relation (17.7) is given by induction. Lemma 16 solves this goal, using (17.5)
and (17.7).

Both cases are satisfied, so Theorem 17 is proven.

6.7.2 Big Step Implies Multistep
To prove that the big step relation implies the multistep relation, we must first prove six
related lemmas (Lemmas 18 to 23). These lemmas are similar enough to each other in their
structure and proof strategy that we will only show one of their proofs here.

Lemma 18.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1,e2,e3 ∈ E), (t1, t2 ∈ T ), (v1 ∈ t1), (v2 ∈ t2),
σ1 ` e1 −→

∗ σ2 ` Jv1K (18.1)
σ2 ` IF Jv1K THEN e2 ELSE e3 −→

∗ σ3 ` Jv2K (18.2)
=⇒ σ1 ` IF e1 THEN e2 ELSE e3 −→

∗ σ3 ` Jv2K (18.3)

Proof. We proceed by structural induction on the derivation of the multistep relation (18.1),
generalising σ3 and Jv2K. This produces two cases, one for the MultiRefl derivation and one
for the MultiStep derivation of the multistep relation. For the MultiStep case, we have the
inductive hypothesis that this lemma holds for the nested multistep relation.

Case 18.1 (MultiRefl).

σ1 ` Jv1K −→∗ σ1 ` Jv1K (18.4)
σ1 ` IF Jv1K THEN e2 ELSE e3 −→

∗ σ3 ` Jv2K (18.5)
=⇒ σ1 ` IF Jv1K THEN e2 ELSE e3 −→

∗ σ3 ` Jv2K (18.6)

Here the goal is satisfied immediately by (18.5).
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Case 18.2 (MultiStep).

σ1 ` e1 −→ σ2 ` e′1 (18.7)
σ2 ` e′1 −→

∗ σ3 ` Jv1K (18.8)
σ3 ` IF Jv1K THEN e2 ELSE e3 −→

∗ σ4 ` Jv2K (18.9)
σ2 ` IF e′1 THEN e2 ELSE e3 −→

∗ σ4 ` Jv2K (18.10)
=⇒ σ1 ` IF e1 THEN e2 ELSE e3 −→

∗ σ4 ` Jv2K (18.11)

(18.10) is provided by the inductive hypothesis applied to (18.9). The goal is satisfied by
MultiStep, with (18.7) and (18.10).

Lemma 18 is proven.

Lemma 19.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1,e2 ∈ E), (t1, t2 ∈ T ), (v1 ∈ t1), (v2 ∈ t2),

σ1 ` e1 −→
∗ σ2 ` Jv1K (19.1)

σ2 ` Jv1K(e2) −→
∗ σ3 ` Jv2K (19.2)

=⇒ σ1 ` e1(e2) −→
∗ σ3 ` Jv2K (19.3)

Proof. This lemma is proven using the same strategy employed to prove Lemma 18.

Lemma 20.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e ∈ E), (t1, t2, t3 ∈ T ), (v1 ∈ t1), (v2 ∈ t2), (v3 ∈ t3),

σ1 ` e −→∗ σ2 ` Jv2K (20.1)
σ2 ` Jv1K(Jv2K) −→∗ σ3 ` Jv3K (20.2)

=⇒ σ1 ` Jv1K(e) −→∗ σ3 ` Jv3K (20.3)

Proof. This lemma is proven using the same strategy employed to prove Lemma 18.

Lemma 21.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1,e2 ∈ E), (t2 ∈ T ), (v2 ∈ t2), (n1 ∈ N ), (a ∈ A),

σ1 ` e1 −→
∗ σ2 ` Jn1K (21.1)

σ2 ` Jn1K.a(e2) −→
∗ σ3 ` Jv2K (21.2)

=⇒ σ1 ` e1.a(e2) −→
∗ σ3 ` Jv2K (21.3)

Proof. This lemma is proven using the same strategy employed to prove Lemma 18.
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Lemma 22.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1 ∈ E), (t1, t2 ∈ T ), (v1 ∈ t1), (v2 ∈ t2), (n1 ∈ N ), (a ∈ A),

σ1 ` e1 −→
∗ σ2 ` Jv1K (22.1)

σ2 ` Jn1K.a(Jv1K) −→∗ σ3 ` Jv2K (22.2)
=⇒ σ1 ` Jn1K.a(e1) −→

∗ σ3 ` Jv2K (22.3)

Proof. This lemma is proven using the same strategy employed to prove Lemma 18.

Lemma 23.

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1 ∈ E), (n1 ∈ N ), (a ∈ A), (v1 ∈ ρ(a)), (t1 ∈ T ), (v1 ∈ t1),

σ1 ` e1 −→
∗ σ2 ` Jv1K (23.1)

σ2 ` n1.a(v1):= Jv1K −→∗ σ3 ` Jv1K (23.2)
=⇒ σ1 ` n1.a(v1):= e1 −→

∗ σ3 ` Jv1K (23.3)

Proof. This lemma is proven using the same strategy employed to prove Lemma 18.

Theorem 24.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E), (e ∈ E), (t ∈ T ), (v ∈ t),
σ1 ` e � σ2 ` v (24.1)

=⇒ σ1 ` e −→∗ σ2 ` JvK (24.2)

Proof. We proceed by induction on the derivation of the big step relation (24.1). This pro-
duces eight cases, one for each of the derivations of the big step relation. We will not examine
the details of these cases, as they matched to Lemmas 18 to 23. The eight cases are satisfied
as follows.

• The BRefl case is solved by MultiRefl.

• The BCondTrue case is solved by Lemma 18 applied to a multistep relation given by
induction, MultiStep and CondTrue.

• The BCondFalse case is solved by Lemma 18 applied to a multistep relation given by
induction, MultiStep and CondFalse.

• The BFun case is solved by Lemmas 19 and 20 applied to two multistep relations given
by induction, MultiStep, and FunApp.

• The BAttrValue case is solved by Lemmas 21 and 22 applied to two multistep rela-
tions given by induction, MultiStep, AttrFetchValue, and the fact that the expression
returned by the context function is a value.

• The BAttrCached case is solved by Lemmas 21 and 22 applied to two multistep rela-
tions given by induction, MultiStep, AttrFetchCached, and the fact that the expression
returned by the context function is not a value.
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• The BAttrHO case is solved by Lemmas 21 and 22 applied to two multistep relations
given by induction, MultiStep, AttrFetchHO, and multiple facts provided by the ex-
pansion of BAttrHO.

• The BCache case is solved by Lemma 23 applied to a multistep relation given by
induction, MultiStep, and CacheWrite.

Theorem 24 is proven.

Through Theorems 17 and 24, we have proven that the multistep and big step relations
given in this thesis are equivalent. We combine these results into one with Theorem 25.

Theorem 25.

∀(σ1 ∈ N → (a : A) → ρ(a) → E), (e ∈ E), (t ∈ T ), (v ∈ t),
σ1 ` e � _ ` v

⇐⇒ σ1 ` e −→∗ _ ` JvK

Proof. Theorem 25 is given by Theorems 17 and 24.

6.7.3 Big Step Induction
Now that the big step and multistep relations are proven equivalent, we can choose between
two kinds of induction for all future proofs. Consider the following multistep relation.

σ1 ` e −→∗ σ2 ` JvK

If we were to perform induction on the above multistep relation, we would need to satisfy
two cases based on the MultiRefl and MultiStep derivations. Now consider an equivalent big
step relation.

σ1 ` e � σ2 ` v

If we were to perform induction on the above big step relation, we would need to satisfy
the eight derivations of the relation. We express most theorems from this point on using
the multistep relation, as it is the most closely linked to the single step relation, which is
the core of our calculus. However, we often say that we use “big step induction” on a
multistep relation, which is equivalent to using Theorem 17 to transform the relation into a
big step relation, performing induction on that big step relation, and transforming all terms
and hypotheses back into multistep relations using Theorem 24. This approach can be useful
as the big step semantics capture the “big picture” semantics of a total evaluation, which is
sometimes a focus that makes our proof easier to frame.

6.8 Cache Irrelevance
Caching is a feature designed for efficiency; when an attribute’s value is computed, it is stored
for later use, so that it does not need to be recomputed. It is expected that implementing
caching will never change the output of any attributes. However, it is useful to not assume this
property, but to prove it. It turns out that proving cache irrelevance (the property described
above) is quite complex in Saiga.
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Cache irrelevance does not apply to the core calculus, which does not implement caching.
A proof of cache irrelevance has been mechanised in Lean for the extended calculus, after
considerable effort. Cache irrelevance for the higher order calculus has a partial proof mech-
anised in Lean, but is a more complex problem.

In this section we will not explore the low-level details of this proof, as our mechanisation
lends us the confidence to explore the proof on a higher level. We start with a definition of
context equivalence (Definition 6.8.1), a property that states that two context functions, while
perhaps not equal, will always produce the same result after stepping its output expression
to a value. Theorem 33 proves that evaluation only ever creates equivalent contexts, which
implies that caching (and higher order construction) do not change the values that will be
evaluated from a context function. This is how we phrase and prove cache irrelevance for
Saiga.

For simplicity we work with the big step relation here - big step has fewer semantic rules
than small step, and breaks evaluation down into useful milestone points. Also, big step is
proven to be equivalent to multistep, so proving cache irrelevance for the big step semantics
is equivalent to proving cache irrelevance for the small step semantics.

Definition 6.8.1 (Context Equivalence). Context implication (expressed using the ≡〉 opera-
tor) means that evaluation of any context output from the left context implies an equivalent
evaluation in the right context.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E),
σ1 ≡〉 σ2

⇐⇒ ∀(n ∈ N ), (a ∈ A), (p ∈ ρ(a)), (t ∈ T ), (v ∈ t), (σ1
′ ∈ N → (a : A) → ρ(a) → E),

(σ1 ` σ1(n,a,p) � σ1
′ ` v =⇒ ∃σ2

′,σ2 ` σ2(n,a,p) � σ2
′ ` v)

Context equivalence (expressed using the ≡ operator) is the bidirectional version of con-
text implication.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E),
σ1 ≡ σ2 ⇐⇒ σ1 ≡〉 σ2 ∧ σ2 ≡〉 σ1

Proofs of transitivity, reflexivity, and symmetry of the context equivalence relation are
trivial, and will not be shown here. The primary task in proving cache irrelevance is proving
that evaluations during normal evaluation will only ever create equivalent contexts; this is to
say that the transformations of a context function never change the semantics of its outputs.
To prove this we must work through a number of related lemmas.

Lemma 26.

∀(σ,σ′ ∈ N → (a : A) → ρ(a) → E),
∀(n ∈ N ), (a ∈ A), (p ∈ ρ(a)), (t ∈ T ), (v ∈ T ), (e ∈ E),

σ(n,a,p) is a value (26.1)
σ ` e � σ′ ` v (26.2)

=⇒ σ′(n,a,p) = σ(n,a,p) (26.3)
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Proof. This theorem states that once a context function returns a value expression, evaluation
will never change that particular output. This is observable by examining the rules that can
change the context function: AttrFetchCached, AttrFetchHO, and CacheWrite. AttrFetch-
Cached and AttrFetchHO will only occur when the context function returns a non-value
expression, so these will never overwrite a value expression in the context. CacheWrite is
not a user-level expression, and is only ever created by requesting an attribute, which creates
a caching expression containing the expression taken directly from the context function – in
this case, a value. Therefore the value may be written ‘back’ into the context function, but
this will not change the context function at all.

Lemma 27.

∀(σ ∈ N → (a : A) → ρ(a) → E),
∀(n ∈ N ), (a ∈ A), (p ∈ ρ(a)), (t ∈ T ), (v ∈ T ),

σ ` σ(n,a,p) � σ ` v (27.1)
=⇒ σ(n,a,p) only requests valued attributes (27.2)

Proof. This lemma states that if an evaluation terminates without changing the context func-
tion, any attributes requested during this evaluation are valued. We use the term valued at-
tribute to refer to an attribute that a particular context function will return a value expression
for. We can observe this property intuitively: if evaluation requests an attribute that is higher
order, then that attribute will be immediately overwritten by its new node label, therefore
changing the context (by replacing a higher-order expression with a node value expression).
If evaluation requests a non-value non-higher order attribute, it will be evaluated and a value
will be written in its place to the context function, therefore also changing the context (by
replacing a non-value expression with a value expression). Therefore if the context has not
changed, then only valued attributes have been requested.

Lemma 28.

∀(σ,σ′ ∈ N → (a : A) → ρ(a) → E),
∀(e ∈ E), (t ∈ T ), (v ∈ t),

σ ` e � σ′ ` v (28.1)
=⇒ σ′ ` e � σ′ ` v (28.2)

Proof. This lemma states that once some expression e has been evaluated, producing some
new context, evaluating e under the new context will result in the same value, and an un-
changed context. The intuition behind this proof is simple: any attributes that are requested
during the evaluation of e (including any that are called recursively from a called attribute)
will be cached into the new context σ′. Evaluating e under σ′ will result in only calling
attributes that are cached and therefore valued attributes. Since calling values attributes will
not change a context function, the output context of the second evaluation will be the same
as the input.
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Lemma 29.

∀(σ,σ′ ∈ N → (a : A) → ρ(a) → E),
∀(n ∈ N ), (a ∈ A), (p ∈ ρ(a)), (t ∈ T ), (v ∈ t),

σ ` σ(n,a,p) � σ′ ` v (29.1)
=⇒ σ′(n,a,p) = σ(n,a,p) (29.2)

Proof. This lemma states that if the returned expression from a context function is evaluated
to a value, the resulting context function will not have changed its output for the attribute in
question. The intuition behind the proof of this lemma comes in two parts. Firstly, we assert
that the evaluation (29.1) will never request the attribute (n,a,p). We know this because if
it did, an infinite loop would occur, and the relation would not be possible, as a value would
never be reached. The fact that (29.1) is a terminating evaluation means that it does not
self-reference.

Secondly, we assert that an evaluation that does not request an attribute will never change
the context’s return value for that attribute. We know this because every semantic rule that
changes the value of an attribute (AttrFetchCached, AttrFetchHO, CacheWrite) only changes
the value of an attribute that has been requested. Therefore we know that the context’s output
expression will not be changed during the evaluation of that expression.

Lemma 30.

∀(σ ∈ N → (a : A) → ρ(a) → E),
∀(n ∈ N ), (a ∈ A), (p ∈ ρ(a)), (t ∈ T ), (v ∈ t),

σ ` σ(n,a,p) � σ ` v (30.1)
=⇒ σ ≡ σ ⊕ {(n,a,p) 7→ JvK} (30.2)

Proof. This lemma states that if the output of a context function is evaluated to some value
v without changing the context function, then the context function is equivalent to itself with
the value v cached to it. In this proof we will call σ the left context and σ ⊕ {(n,a,p) 7→ JvK}
the right context.

To prove that the left and right contexts are equivalent, we need to show that evaluating
any attribute under each context will yield the same value. Consider the evaluation of some
attribute under the left context. Either this evaluation will request the attribute described by
(n,a,p) or it will not. In the case where this attribute is never requested, we can intuitively
see that the single change to the right context will not affect the output value, as this change
will not be accessed, and all other outputs are the same. In the case where the attribute is
requested, we know from Lemma 27 that it will only request valued expressions during its
evaluation. Even if some other evaluation had occurred before requesting (n,a,p) producing
some new context function σ′, we know that all outputs will be identical, as all requested
attributes were values, from Lemma 26.

Now consider evaluating some expression under the right context. Again, if the attribute
(n,a,p) is never requested, evaluation will be identical to evaluation under the left. If the
attribute (n,a,p) is requested, the cached version will be used, producing the same result
immediately.
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Lemma 31. For this lemma we consider only the extended calculus, with no higher order
expressions or semantics.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E),
∀(e ∈ E), (t ∈ T ), (v ∈ t),

σ1 ` e � σ2 ` v (31.1)
=⇒ σ1 ≡ σ2 (31.2)

Proof. The hard part of this proof is provided by Lemma 30. We proceed by induction on
the derivation of the big step relation (31.1). Most cases are proved using the inductive
hypotheses and with the use of the transitivity of context equivalence. We will show the
working for the AttrFetchCached case only, as this is the difficult part of the proof.

Case 31.1 (AttrFetchCached).

σ1 ` e1.a(e2)� σ4 ⊕ {(n,a,p) 7→ JvK} ` v (31.3)
σ3(n,a,p) is not a value (31.4)
σ1 ` e1 � σ2 ` n (31.5)
σ2 ` e2 � σ3 ` p (31.6)
σ3 ` σ3(n,a,p) � σ4 ` v (31.7)

=⇒ σ1 ≡ σ4 ⊕ {(n,a,p) 7→ JvK} (31.8)

The following can be inferred.

σ1 ≡ σ2 (31.9)
σ2 ≡ σ3 (31.10)
σ3 ≡ σ4 (31.11)
σ1 ≡ σ4 (31.12)
σ4 ` σ3(n,a,p) � σ4 ` v (31.13)
σ4(n,a,p) = σ3(n,a,p) (31.14)
σ4 ` σ4(n,a,p) � σ4 ` v (31.15)

=⇒ σ4 ≡ σ4 ⊕ {(n,a,p) 7→ JvK} (31.16)

The inductive hypotheses associated with (31.5) to (31.7) provide the equivalences (31.9)
to (31.11). (31.12) is provided by the transitivity of context equivalence, and (31.5) to (31.7).
(31.13) is given by applying Lemma 28 to (31.7). (31.14) is given by applying Lemma 29 to
(31.7). We obtain (31.15) by rewriting the equality (31.14) in (31.13).

We have obtained a new goal (31.16) through the transitivity of context equivalence with
(31.12). The hypothesis (31.15) is the key ingredient for this proof, and can complete the
proof using Lemma 30.
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Lemma 32.

∀(σ ∈ N → (a : A) → ρ(a) → E),
∀(n ∈ N ), (a ∈ A), (p ∈ ρ(a)), ( f l ∈ N → (Au × E)), (n f ∈ N ),

σ(n,a,p) = MK f l (32.1)
n f does not exist in σ (32.2)

=⇒ σ ≡ σ ⊕ {(n,a,p) 7→ Jn f K} ⊗ n f / f l (n f ) (32.3)

Proof. This lemma states that if some particular attribute request (n,a,p) returns a MK ex-
pression, then the context function returning it is equivalent to the same context function with
the contents of the MK expression written to it. As in Lemma 30, we consider the evaluation
of some attribute request under the left context. First we consider the case where evaluation
does not request the attribute (n,a,p). The caching of the higher order attribute (n,a,p) will
not have any effect on evaluation, and we also know that no attributes of n f will be requested,
as the only way to obtain the node n f is by evaluating (n,a,p).

If the attribute (n,a,p) is requested, immediately the changes shown on the right context
are applied to the current context, and the value n f is returned. It does not matter what
other changes have been made to the context in the mean time, as higher order creations
are completely independent of the state of the context function (by the definition of node
existence). From this point on, all evaluations are trivially identical to those under the right
context, as the only difference between the contexts has now been matched. It is only possible
for attributes of n f to be requested after the higher order attribute n f through evaluating
(n,a,p) has been created, as creating n f is the only way to gain access to this node.

Considering the inverse is similar. Evaluating some attribute request under the right
context, if never requesting (n,a,p), will yield the same result as under the left context. If
evaluation under the right context does request (n,a,p), it will be the same to request the
cached node n f as it would be to create this node and return it.

Let us also consider that some of the properties written to the context function for the
newly created higher order node n f are not values, but non-value expressions. If some evalu-
ation creates the node n f and then evaluates one of its non-value attributes a1, then the result
is a context function that is not perfectly described by _ ⊕ {(n,a,p) 7→ Jn f K} ⊗ n f / f l (n f ).
This case is already covered by Lemma 30.

This case, where higher order context changes interact with caching context changes, has
proven to be the most difficult part of cache irrelevance to mechanise a proof for. This lemma,
Lemma 32, is the only one of the lemmas presented here that has not been mechanised1.
The mutual dependence between Lemmas 30 and 322 has proven quite difficult to express,
especially given the extra complexities needed to mechanise higher order concepts such as
the “does not exist” relation between a node and a context function.

Nevertheless, while this lemma’s proof is not mechanised, we are confident that it holds
and we are confident that a proof for it can be mechanised given enough time. We are happy
with our explanation and understanding of the proof’s structure.

Theorem 33. We now present the key theorem of what we call “big step equivalence”. This
is expressed identically as Lemma 31, but here we consider the full higher-order semantics.

1Actually, at the time of this writing, Lemma 29 is also not mechanised in the current version of the Lean
calculus, but it has been proven in earlier versions.

2Because of the way we implement higher order node creation in our mechanisation, Lemma 30 depends
on the result in Lemma 32 for its proof.
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∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E),
∀(e ∈ E), (t ∈ T ), (v ∈ t),

σ1 ` e � σ2 ` v (33.1)
=⇒ σ1 ≡ σ2 (33.2)

Proof. This theorem states that if any expression is evaluated under some context function
σ1, resulting in a new context function σ2, these two context functions are equivalent. As
this theorem has been proven for the extended calculus in Lemma 31, we need only consider
the new semantic rule in the higher order calculus; AttrFetchHO. Similarly to our proof for
Lemma 31, this proof’s heavy lifting is performed by Lemma 32.

Case 33.1 (AttrFetchHO).

σ1 ` e1.a(e2)� σ3 ⊕ {(n,a,p) 7→ Jn f K} ⊗ n f / f l (n f ) ` n f (33.3)
σ3(n,a,p) = MK f l (33.4)
n f does not exist in σ3 (33.5)
σ1 ` e1 � σ2 ` n (33.6)
σ2 ` e2 � σ3 ` p (33.7)

=⇒ σ1 ≡ σ3 ⊕ {(n,a,p) 7→ Jn f K} ⊗ n f / f l (n f ) (33.8)

The inductive hypotheses and the transitivity of context equivalence give us the new goal
(33.9).

=⇒ σ3 ≡ σ3 ⊕ {(n,a,p) 7→ Jn f K} ⊗ n f / f l (n f ) (33.9)

Lemma 32, along with (33.4) and (33.5), is sufficient to solve this goal.

Theorem 33 is proven.

Theorem 34. We proved in Theorem 33 that the big step relation always produces an output
context function that is equivalent to the input context function. Here we prove that the
multistep relation has the same property.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E),
∀(e ∈ E), (t ∈ T ), (v ∈ t),

σ1 ` e −→∗ σ2 ` v (34.1)
=⇒ σ1 ≡ σ2 (34.2)

Proof. Proof is trivial from Theorem 25. Since the the multistep and big step relations imply
each other, we can use Theorem 33 to prove Theorem 34.

Theorem 35. We present and prove this theorem, which is really a variation of Theorem 34,
so that we can more conveniently use the equivalence property in proofs. We actually present
two theorems here, which are expansions of each direction of context equivalence.
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∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1,e2 ∈ E), (t1, t2 ∈ T ), (v1 ∈ t1), (v2 ∈ t2)

σ1 ` e1 −→
∗ σ2 ` v1 (35.1)

σ1 ` e2 −→
∗ σ3 ` v2 (35.2)

=⇒ ∃σ4,σ2 ` e2 −→
∗ σ4 ` v2 (35.3)

∀(σ1,σ2,σ3 ∈ N → (a : A) → ρ(a) → E),
∀(e1,e2 ∈ E), (t1, t2 ∈ T ), (v1 ∈ t1), (v2 ∈ t2)

σ1 ` e1 −→
∗ σ2 ` v1 (35.4)

σ2 ` e2 −→
∗ σ3 ` v2 (35.5)

=⇒ ∃σ4,σ1 ` e2 −→
∗ σ4 ` v2 (35.6)

For each of the above theorems, the goal can be satisfied by applying Theorem 34 to
the first multistep relation to show equivalence, then applying that equivalence to the second
multistep relation. Since this is the natural result of context equivalence, and we use this re-
sult frequently in our proofs from now on, we will use the phrase “by multistep equivalence”
to mean that we are using this result.

Definition 6.8.2 (Alternative Context Equivalence). We also use a more generalised version
of context equivalence, represented by the ≡′ operator. The definitions given here are the
same as Definition 6.8.1, except expressing that any expression will evaluate to the same
value in both contexts, not just any attribute evaluation.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E),
σ1 ≡〉

′ σ2 ⇐⇒ ∀(e ∈ E), (t ∈ T ), (v ∈ t), (σ1
′ ∈ N → (a : A) → ρ(a) → E),

(σ1 ` e � σ1
′ ` v =⇒ ∃σ2

′,σ2 ` e � σ2
′ ` v)

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E),
σ1 ≡

′ σ2 ⇐⇒ σ1 ≡〉
′ σ2 ∧ σ2 ≡〉

′ σ1

We now prove that both definitions of context equivalence are equivalent.

Lemma 36.

∀(σ1,σ2 ∈ N → (a : A) → ρ(a) → E)
(σ1 ≡ σ2) ⇐⇒ (σ1 ≡

′ σ2) (36.1)

Proof. This lemma states that if two contexts are equivalent, they are also alternatively equiv-
alent (equivalent using the ≡′ operator). Proof that alternative equivalence implies equiva-
lence is trivial, as alternative equivalence is a more general case of equivalence.



6.9 Conclusion 121

Proof that equivalence implies alternative equivalence is given from examining the se-
mantics of the multistep relation; considering the evaluation one small step at a time. Some
step rules do not use their context function, so are trivially proven. Some step rules only use
the context function in their sub steps, so are shown via induction. Any steps that access the
context function can use the definition of context equivalence to satisfy their goal.

6.9 Conclusion
In this chapter we have presented proofs for a number of theorems about the Saiga calcu-
lus. While verbose, the proofs for step determinism, type determinism, type preservation,
and progress were simple in their approach. Showing equivalence between the big step and
multistep relations was also straightforward, and a useful result for future proofs. Cache ir-
relevance has been by far the most difficult property to prove, with only a high-level summary
of its proof given here. This effort is worthwhile, as cache irrelevance is a very important
result for further analysis, as it simplifies the analysis of evaluation with a changing context
function, showing that when a context function changes during normal evaluation, it remains
semantically equivalent.

Overall, we have shown that our operational semantics do hold these important prop-
erties, and have shown that our calculus provides a framework for proving these and other
properties of attribute grammar evaluation.
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To brew is human, to ferment is divine.
Divine Barrel Brewing – Charlotte, NC

7
Example

In this chapter we demonstrate how Saiga can be used to analyse and compare attribute
grammar programs written in different real-world attribute grammar platforms. As a basis
for this analysis, we consider type analysis for Featherweight Java, based on the calculus
presented by Igarashi et al. [9].

A working compiler for Featherweight Java programs was written based on Igarashi’s
calculus, by two experienced attribute grammar researchers, each in their own attribute gram-
mar platform. Tony Sloane, the developer of the Kiama language workbench, provided an
implementation written in Kiama. Niklas Fors, who has been involved in the maintenance of
the JastAdd attribute grammar platform, provided an implementation written in JastAdd.

As each implementation was written by an author very familiar with their platform, the
particulars of these implementations align well with the expected design style for each plat-
form. As both implementations are based on a common calculus (the Featherweight Java
calculus presented in [9]), the logical backbone of each implementation aligns with the other.
However there is a key difference between the two approaches: the Kiama implementation
uses the environment method of name analysis, while the JastAdd implementation uses the
lookup method.

The environment method of name analysis involves compiling a list of all names in each
scope for each scope-creating node in a program tree, and performing a lookup in this list
to associate name uses with their declarations. An example of this approach is given in
Section 3.3. The lookup method of name analysis involves performing a targeted search for
a particular name every time a name’s declaration is needed. An example of this approach is
given in Section 4.1.5.

A repository containing the complete code of the Kiama implementation can be found at
https://bitbucket.org/scottbuckley/fwjava-kiama, and the JastAdd implementa-
tion at https://bitbucket.org/scottbuckley/fwjava-jastadd.

The layout of this chapter is as follows. Section 7.1 discusses the abstract grammars of
the Kiama and JastAdd implementations of Featherweight Java, finding a common ground
between these systems and presenting an abstract grammar in a Saiga-friendly notation. Sec-
tion 7.2 presents the Saiga specification of the Kiama and JastAdd attributes that makes up

https://bitbucket.org/scottbuckley/fwjava-kiama
https://bitbucket.org/scottbuckley/fwjava-jastadd
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Featherweight Java’s type system. Section 7.3 presents proofs for some lemmas that set up
a framework for our major proofs for this chapter. Section 7.4 presents a series of lemmas
and theorems building to a proof that the type attribute always evaluates to the same value
between the Kiama and JastAdd specifications. Section 7.5 explores an quantitative analy-
sis of the two specifications, proving a relationship between the evaluation step counts for
identifier lookup in Featherweight Java.

7.1 The Abstract Grammar

The Kiama implementation uses the sbt-rats parser generator [52] to generate a set of Scala
case classes that represent an abstract syntax tree for a Featherweight Java program. A
sample of this specification is given in Figure 7.1. The JastAdd implementation explicitly
defines an abstract syntax tree in their own syntax, a sample of which is given in Figure 7.2.
The full text of these specifications in JastAdd and Kiama are given by Appendices A.1.1
and A.1.2 in Appendix A.1.

These two specifications describe compatible trees, which is not surprising as they are
both based on the specification given in [9]. In Figure 7.3 we present an abstract grammar in
the same form we have presented throughout this thesis. To recap this notation, the first line
indicates that Program is a possible value of nodeType, there are expected to be sensible
values for the attributes classes and expr for a Program node, τ(classes) = listNode, and
it is expected that every node contained by a value of classes will have the nodeType of
ClassDecl.

While we do not list the value Expr as a node type, we use this as a catch-all for the types
EIdn, EFld, ECall, ECast, and ENew. Such a strategy has a simple implementation: while
we can assume underlying functions isEIdn etc. to check for a particular type value, we can
similarly assume an underlying function isExpr which is returns true if any of the appropriate
types are given. Also in our notation above when we write Expr in square brackets (as in
the Program case), we mean that the node returned by expr will be of some type that would
match using the isExpr function.

Figure 7.4 shows an example of a tree that conforms to our abstract syntax.

7.2 The Attributes

The definition of all relevant attributes in each implementation is given in Appendices A.2.1
and A.2.2. We have translated these attributes into Saiga attributes in the context functions
σk and σ j , which we describe below. We have used all of the features described in this the-
sis: reference attributes, parameterised attributes, and higher order attributes. We have per-
formed this translation as a roughly one-to-one translation between Kiama/JastAdd attributes
and Saiga attributes, with some exceptions where we needed to describe auxiliary attributes
to implement some of the deeper functionalities available in Kiama and JastAdd. Some at-
tributes are defined identically between σk and σ j , such as _matchName1, which is not
surprising as both the Kiama and JastAdd versions are implementing the same semantics.

1We prefix _matchName (and some other attribute names) with an underscore to note that they are
performing utility tasks, independent of the semantics of the particular problem.
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1 object FWJavaParserSyntax {
2 sealed abstract class ASTNode extends Product
3
4 case class Program (optClassDecls : Vector[ClassDecl],
5 expr : Expr) extends ASTNode
6
7 case class ClassDecl (identifier : String,
8 idnUse : IdnUse,
9 optFieldOrParamDecls : Vector[FieldOrParamDecl],

10 ctorDecl : CtorDecl,
11 optMethodDecls : Vector[MethodDecl]) extends ASTNode
12
13 case class CtorDecl (idnUse : IdnUse,
14 optFieldOrParamDecls : Vector[FieldOrParamDecl],
15 optIdnUses : Vector[IdnUse],
16 optFieldInits : Vector[FieldInit]) extends ASTNode
17
18 case class MethodDecl (idnUse : IdnUse,
19 identifier : String,
20 optFieldOrParamDecls : Vector[FieldOrParamDecl],
21 expr : Expr) extends ASTNode
22
23 ...
24 }

Figure 7.1: A sample of the abstract grammar used by the Kiama implementation.

1 Program ::= ClassDecl∗ [Expr];
2
3 abstract TypeDecl;
4 ClassDecl : TypeDecl ::= <Name> Extends:TypeUse
5 FPDecl∗ CtorDecl MethodDecl∗;
6 CtorDecl ::= TypeUse FPDecl∗ Super:VarUse∗ FieldInit∗;
7 MethodDecl ::= TypeUse <Name> FPDecl∗ Expr;
8
9 ...

Figure 7.2: A sample of the abstract grammar used by the JastAdd implementation.
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Program ::= classes(list node)[ClassDecl], expr(node)[Expr]
ClassDecl ::= name(string), extUse(node)[TypeUse],

args(list node)[FPDecl], ctor(node)[CtorDecl],
methods(list node)[MethodDecl]

CtorDecl ::= typeUse(node)[TypeUse], args(list node)[FPDecl],
super(list node)[FPDecl], inits(list node)[FieldInit]

MethodDecl::= name(string), rtnUse(node)[TypeUse],
args(list node)[FPDecl], expr(node)[Expr]

EIdn ::= varUse(node)[VarUse]
EFld ::= expr(node)[Expr], nameUse(node)[VarUse]
ECall ::= expr(node)[Expr], nameUse(node)[VarUse],

exprs(list node)[Expr]
ECast ::= typeUse(node)[TypeUse], expr(node)[Expr]
ENew ::= typeUse(node)[TypeUse], exprs(list node)[Expr]

FPDecl ::= typeUse(node)[TypeUse], nameDef(node)[IdnDef]
FieldInit ::= leftUse(node)[varUse], rightUse(node)[varUse]
TypeUse ::= name(string)
VarUse ::= name(string)
IdnDef ::= name(string)

Figure 7.3: The abstract syntax tree used in this example.

Program n0

ClassDecl n1

“A” TypeUse n4

“B”

FPDecl n5 FieldInit n6

Expr n3

cl
as
se
s[
0]

na
me

ex
tU
se

n
am

e

args[0]

inits[0]

expr

Figure 7.4: An example tree that matches the abstract syntax described in Figure 7.3.
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7.2.1 The Kiama Implementation

We show the full definitions here of all attributes defined for the Saiga translation of the
Kiama implementation of the Featherweight Java type analysis semantics, as shown in Ap-
pendix A.2.1. We will not walk through every attribute’s translation into a Saiga specifi-
cation, but we will explain the translation for the env attribute. In this chapter we use the
notation e1 IFNULL e2 as a shorthand for IF isNull(e1) THEN e2 ELSE e1.

env

The env attribute computes a list of all field and parameter declarations visible to a node.
The Kiama attribute env is defined as follows.

1 val env : ASTNode => Vector[FPDecl] =
2 attr {
3 case l @ ClassDecl(c, _, _, _, _) =>
4 FPDecl(TypeUse(c), IdnDef("this")) +: fieldsRef(l).get
5 case k : CtorDecl =>
6 k.optFPDecls
7 case parent.pair(m : MethodDecl, p) =>
8 m.optFPDecls ++ env(p)
9 case parent(p) =>

10 env(p)
11 case _ =>
12 Vector()
13 }

This attribute is translated to the following Saiga specification.

σk (n,env) =



JprependK(JnK.thisFPDecl)(JnK.fields) (ClassDecl)
JnK.args (CtorDecl)
JconcatK(JnK.args)(JnK.parent.env) (MethodDecl)
J[]K (Program)
inherited

The Kiama implementation splits the attribute equation into five parts, using pattern
matching on the input node, as is standard in Kiama. The Saiga specification splits the
attribute equation into the same five parts, using our selector notation.

Line 3 in the Kiama implementation matches against a node of type ClassDecl, binding
its name to the variable c. This variable is used in constructing a higher order node of
type FPDecl, which is prepended to the list returned by the fieldsRef attribute. The first
selector in our Saiga specification delegates creation of the higher order FPDecl node to the
thisFPDecl attribute, and uses the underlying prepend function to prepend this node to the
list returned by the fields attribute. We consider this to be a faithful translation from Kiama
to Saiga.

Attribute names are not mapped exactly between the Kiama implementation and its Saiga
specification, and our syntax for prepending and concatenation in Saiga is not the same as in
Kiama, but otherwise the rest of the env attribute maps directly between Kiama and Saiga.



128 Example

decl

The decl attribute takes a class name (string parameter), and tries to find a class declaration
matching that class name.

σk (n,decl, s) =


JnK.objectClassDecl s = “Object”
JnK._matchName((.JsK, JnK.classes)) (Program)
inherited

type

The type attribute returns the type of an expression, as a reference to the node where that
type was declared.

σk (n,type) =

JnK.varUse.varUseType (EIdn)
JnK.findFP((JnK.expr.type.fields, JnK.nameUse.name)).fpType (EFld)
IF JisNullK(JnK.methodDecl) THEN JnnullK (ECall)
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.methodDecl.args))
THEN JnK.decl(JnK.methodDecl.rtnUse.name)
ELSE JnnullK
IF JisNullK(JnK.decl(JnK.typeUse.name)) THEN JnnullK (ENew)
ELSE IF JnK._exprsMatchFPs(
(JnK.exprs, JnK.decl(JnK.typeUse.name).fields))
THEN JnK.decl(JnK.typeUse.name)
ELSE JnnullK
IF JisNullK(JnK.expr.type) (ECast)
THEN JnK.decl(JnK.typeUse.name)
ELSE JnnullK

JnK.fpType (FPDecl)
JnnullK otherwise

type Aux Attributes

σk (n,fpType) =

JnnullK n = nnull

JnK.decl(JnK.typeUse.name) otherwise

σk (n,methodDecl) = JnK.expr.type.method(JnK.nameUse.name)

σk (n,varUseType) = JnK.findFP((JnK.env, JnK.name)).fpType
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σk (n,findFP, (l, s)) =

JnnullK n = nnull

JnnullK._matchName(J(s, l)K) otherwise

fields

The fields attribute, when called on a node of type ClassDecl, returns a list of the fields
visible to that class (including those it inherits).

σk (n,fields) =



IF JstrEqK(JnK.name)(J“Object”K) (ClassDecl)
THEN J[]K
ELSE JconcatK
(JnK.args)
(JnK.superClass.fields)

J[]K otherwise

superClass

The superClass attribute returns a reference to a class’s superclass.

σk (n,superClass) =


JnnullK n = nnull

IF JstrEq(“Object”)K(JnK.name) otherwise
THEN JnnullK
ELSE JnK.decl(JnK.extUse.name)

method

The method takes a string parameter and returns a reference to the declaring instance of a
method with that name

σk (n,method, s) =


JnnullK s = “Object”
JnK._matchName((JsK, JnK.methods)) (ClassDecl)
IFNULL JnK.superClass.method(JsK)

JnnullK otherwise
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subTypeOf

The subTypeOf attribute takes a parameter (the name of a class), and returns a boolean
value representing whether or not the current class is a subtype of a class of that name.

σk (n,subTypeOf, s) =



JfalseK n = nnull

JtrueK s = “Object”
IF JstrEqK(JnK.name)(J“Object”K) otherwise
THEN JfalseK
ELSE IF JstrEqK(JnK.name)(JsK)
THEN JtrueK
ELSE JnK.superClass.subTypeOf(JsK)

thisFPDecl

The thisFPDecl attribute creates a new subtree that is a FPDecl, referencing the current
class, representing the keyword “this”.

σk (np,thisFPDecl) = MKλn, [(nodeType, JFPDeclK),
(parent, JnpK),

(nameDef, JnK.buildIdnDef(J“this”K))
(typeUse, JnK.buildTypeUse(JnpK.name))]

objectClassDecl

The objectClassDecl attribute returns (and maybe constructs) a special “Object” class
declaration.

σk (n,objectClassDecl) =

JnK.buildObjectClassDecl (Program)
inherited

Aux Node Construction Attributes

σk (np,buildTypeUse, s) = MKλn, [(nodeType, JTypeUseK), (name, JsK), (parent, JnpK)]

σk (np,buildIdnDef, s) = MKλn, [(nodeType, JIdnDefK, (name, JsK), (parent, JnpK)]

σk (np,buildObjectClassDecl) = MKλn, [(nodeType, JClassDeclK),
(name, J“Object”K),

(extUse, JnK.buildTypeUse(J“”K)),
(ctor, JnK.buildObjectCtorDecl),
(args, J[]K),

(methods, J[]K),
(parent, JnpK)]
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σk (np,buildObjectCtorDecl) = MKλn, [(nodeType, JClassDeclK),
(name, J“Object”K),

(args, J[]K),
(supers, J[]K),

(inits, J[]K),
(parent, JnpK)]

Helper Attributes

σk (n,_matchName, (s, l)) =



JnnullK._matchName(J(s, l)K) n , nnull

JnnullK l = []

IF JstrEqK(Jfst(l)K.getName)(JsK) otherwise
THEN Jfst(l)K
ELSE JnK._matchName(J(s,rest(l))K)

σk (n,getName) =

JnK.nameDef.name (FPDecl)
JnK.name otherwise

σk (n,_exprsMatchFPs, (es, fps)) =

JnnullK._exprsMatchFPs(J(es, fps)K) n , nnull

JfalseK len(es) , len(fps)
JtrueK es = fps = []
IF Jfst(es)K.type.subTypeOf(Jfst(fps)K.typeUse.name) otherwise
THEN JnK._exprsMatchFPs(J(rest(es),rest(fps))K)
ELSE JfalseK
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7.2.2 The JastAdd Implementation

We show the full definitions here of all attributes defined for the Saiga translation of the
JastAdd implementation of the Featherweight Java type analysis semantics, as shown in
Appendix A.2.2. We will not walk through every attribute’s translation into a Saiga specifi-
cation, but we will explain the translation for the decl attribute.

decl

The decl attribute returns a reference to the declaring instance of a type or variable use, or
the method declaration associated with a method call expression. The JastAdd attribute decl
is defined as follows.

1 syn TypeDecl TypeUse.decl() = lookupType(getName());
2 syn FPDecl VarUse.decl() = lookup(getName());
3 syn MethodDecl ECall.decl()
4 = getExpr().type().lookupMethod(getVarUse().getName());

This attribute is translated to the following Saiga specification.

σ j (n,decl) =


JnK.lookupType(JnK.name) (TypeUse)
JnK.lookup(JnK.name) (VarUse)
JnK.expr.type.lookupMethod(JnK.nameUse.name) (ECall)
JnnullK otherwise

The JastAdd implementation splits the attribute equation into three different parts, match-
ing against nodes of type TypeUse, VarUse, and ECall. The Saiga specification of this at-
tribute uses selectors to match against these same three node types, with a fourth selector used
to specify a default value (as Saiga attributes must be defined on all nodes). It is plain from
observation that the three attribute expressions returned in our Saiga specification directly
match the semantics of the three attribute expressions listed in the JastAdd implementation.

The type attribute (on the next page) returns the type of an expression, as a reference to
the node where that type was declared.
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type

σ j (n,type) =



IF JisNullK(JnK.typeUse.decl) (ENew)
THEN JnnullK
ELSE IF JnK._exprsMatchFPs(
(JnK.exprs, JnK.typeUse.decl.fields))
THEN JnK.typeUse.decl
ELSE JnnullK

IF JisNullK(JnK.decl) (ECall)
THEN JnnullK
ELSE IF JnK._exprsMatchFPs(
(JnK.exprs, JnK.decl.args))
THEN JnK.decl.rtnUse.decl
ELSE JnnullK

JnK.varUse.decl.type (EIdn)

JnK.nameUse.decl.type (EFld)

IF JisNullK(JnK.expr.type) (ECast)
THEN JnnullK
ELSE JnK.typeUse.decl

JnK.typeUse.decl (FPDecl)

JnnullK otherwise

subTypeOf

The subTypeOf attribute takes a parameter (the name of a class), and returns a boolean
value representing whether or not the current class is a subtype of a class of that name.

σ j (n,subTypeOf, s) =



JfalseK n = nnull

JtrueK s = “Object”
IF JstrEqK(JnK.name)(J“Object”K) otherwise
THEN JfalseK
ELSE IF JstrEqK(JnK.name)(JsK)
THEN JtrueK
ELSE JnK.superClass.subTypeOf(JsK)
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lookup

The lookup attribute takes a parameter (the name of a variable) and searches up the tree for
the defining instance of that variable.

σ j (n, lookup, s) =

IF JstrEq(s)(“this”)K (MethodDecl).expr
THEN JnK.parent.enclosingClassDecl.thisFPDecl
ELSE (JnK._matchName((JsK, JnK.parent.args))
IFNULL JnK.parent.lookup(JsK))

JnK.parent.remoteLookup(JsK) (ClassDecl).methods*
JnK.parent.expr.type.remoteLookup(JsK) (EFld).nameUse
JnnullK (Program).*
inherited

fields

The fields attribute, when called on a node of type ClassDecl, returns a list of the fields
visible to that class (including those it inherits).

σ j (n,fields) =



IF JstrEqK(JnK.name)(J“Object”K) (ClassDecl)
THEN J[]K
ELSE JconcatK
(JnK.args)
(JnK.superClass.fields)

J[]K otherwise

lookupType

The lookupType attribute takes a parameter (the name of a class) and searches up the tree
for the defining instance of that class.

σ j (n, lookupType, s) =
IF JstrEq(s)(“Object”)K (Program).*
THEN JnK.parent.objectClassDecl
ELSE (JnK.parent._matchName((.JsK, JnK.parent.classes))

inherited
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lookupMethod

The lookupMethod attribute takes a parameter (the name of a method) and searches up
the tree for the defining instance of that method.

σ j (n, lookupMethod, s) =


JnnullK s = “Object”
JnK._matchName((.JsK, JnK.methods)) (ClassDecl)
IFNULL JnK.superClass.lookupMethod(JsK)

JnnullK otherwise

remoteLookup

The remoteLookup attribute takes a parameter (the name of a variable) and searches up
the inheritance chain to find the defining instance of that variable.

σ j (n,remoteLookup, s) =


JnnullK._matchName((.JsK, JnK.args)) (ClassDecl)
IFNULL JnK.superClass.remoteLookup(JsK)

JnnullK otherwise

superClass

The superClass attribute returns a reference to a class’s superclass.

σ j (n,superClass) =


JnnullK n = nnull

IF JstrEq(“Object”)K(JnK.name) otherwise
THEN JnnullK
ELSE JnK.extUse.decl

enclosingClassDecl

The enclosingClassDecl returns a reference to the class that contains the current node.

σ j (n,enclosingClassDecl) =

JnK.parent (ClassDecl).methods*
inherited

thisFPDecl

The thisFPDecl attribute creates a new subtree that is a FPDecl, referencing the current
class, representing the keyword “this”.

σ j (np,thisFPDecl) = MKλn, [(nodeType, JFPDeclK),
(parent, JnpK),

(nameDef, JnK.buildIdnDef(J“this”K))
(typeUse, JnK.buildTypeUse(JnpK.name))]
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objectClassDecl

The objectClassDecl attribute returns (and maybe constructs) a special “Object” class
declaration.

σ j (n,objectClassDecl) = JnK.buildObjectClassDecl

Aux Node Construction Attributes

σ j (np,buildTypeUse, s) = MKλn, [(nodeType, JTypeUseK), (name, JsK), (parent, JnpK)]

σ j (np,buildIdnDef, s) = MKλn, [(nodeType, JIdnDefK, (name, JsK), (parent, JnpK)]

σ j (np,buildObjectClassDecl) = MKλn, [(nodeType, JClassDeclK),
(name, J“Object”K),

(extUse, JnK.buildTypeUse(J“”K)),
(ctor, JnK.buildObjectCtorDecl),
(args, J[]K),

(methods, J[]K),
(parent, JnpK)]

σ j (np,buildObjectCtorDecl) = MKλn, [(nodeType, JClassDeclK),
(name, J“Object”K),

(args, J[]K),
(supers, J[]K),

(inits, J[]K),
(parent, JnpK)]

Helper Attributes

σ j (n,_matchName, (s, l)) =



JnnullK._matchName(J(s, l)K) n , nnull

JnnullK l = []

IF JstrEqK(Jfst(l)K.getName)(JsK) otherwise
THEN Jfst(l)K
ELSE JnK._matchName(J(s,rest(l))K)

σ j (n,getName) =

JnK.nameDef.name (FPDecl)
JnK.name otherwise
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σ j (n,_exprsMatchFPs, (es, fps)) =

JnnullK._exprsMatchFPs(J(es, fps)K) n , nnull

JfalseK len(es) , len(fps)
JtrueK es = fps = []
IF Jfst(es)K.type.subTypeOf(Jfst(fps)K.typeUse.name) otherwise
THEN JnK._exprsMatchFPs(J(rest(es),rest(fps))K)
ELSE JfalseK

7.3 Important Lemmas

The key theorem we aim to prove is Theorem 61, which says that the type attribute will
evaluate to identical results under σk and σ j . To prove this, we must first prove that a
number of other attributes evaluate to identical results under σk and σ j . To make this process
smoother, we first prove some related lemmas. We are working with the higher order calculus
for this entire chapter.

Definition 7.3.1. We have two context functions σa and σb. We say there is some set of
attributes Aa≡b, for which any attribute is evaluationally equivalent in σa and σb. This
means that for any attribute a ∈ Aa≡b, we have:

∀(n ∈ N ), (v1 ∈ ρ(a)), (t ∈ T ), (v2 ∈ t),
σa ` JnK.a(Jv1K) −→∗ _ ` Jv2K ⇐⇒ σb ` JnK.a(Jv1K) −→∗ _ ` Jv2K

Lemma 37. If there is some expression e which, when evaluating under either σa and σb,
will only reference attributes in Aa≡b, then we know that this expression will evaluate to the
same value under both context functions.

∀(σa,σa
′,σb ∈ N → (a : A) → ρ(a) → E),
∀(e ∈ E), (t ∈ T ), (v ∈ t),

e, evaluated under σa or σb, only references attributes in Aa≡b (37.1)
σa ` e −→∗ σa

′ ` JvK (37.2)
=⇒ σb ` e −→∗ _ ` JvK (37.3)

Proof. We proceed by induction on the expression e. This gives us six cases to prove. The
value and node construction cases are trivial. The conditional, function application, and
cache cases are proven using induction and multistep equivalence (Theorem 35), and have
similar proofs, so we will only show a proof for the function application case. We will also
show the attribution case, as this is the crux of the lemma.
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For each case below, we give the proof state at the start of an induction case, and we add
hypotheses with explanations for their derivations below them, in {braces}2.

Case 37.1 (e is a function application expression).

σa ` e1(e2) −→
∗ σa3 ` JvK (37.4)

{the above is (37.2), with e expanded}
σa ` e1 −→

∗ σa2 ` Jv f K (37.5)
σa2 ` e2 −→

∗ σa3 ` JvpK (37.6)
v = v f (vp) (37.7)

{the above are given by big step expansion of (37.4)}
σb ` e1 −→

∗ σb1 ` Jv f K (37.8)
σb ` e2 −→

∗ σb2 ` JvpK (37.9)
{the above are given by the inductive hypothesis and (37.5) and (37.6)}

σb1 ` e2 −→
∗ σb2

′ ` JvpK (37.10)
{from multistep equivalence for expressions with (37.8) and (37.9)}

σb ` e1(e2) −→
∗ σb2

′ ` Jv f K(JvpK) (37.11)
{from (37.8) and (37.10)}

σb2
′ ` Jv f K(JvpK) −→ σb2

′ ` Jv f (vp)K (37.12)
{derived from FunApp }

σb2
′ ` Jv f K(JvpK) −→ σb2

′ ` JvK (37.13)
{(37.7) rewritten in (37.13)}

σb ` e1(e2) −→
∗ σb2

′ ` JvK (37.14)
{by combining (37.11) and (37.13)}

=⇒ σb ` e1(e2) −→
∗ _ ` JvK (37.15)

The goal (37.15) is given by (37.14).

Case 37.2 (e is an attribution expression).

σa ` e1.a(e2) −→
∗ σa4 ` JvK (37.16)

{the above is (37.2), with e expanded}
σa ` e1 −→

∗ σa2 ` JnK (37.17)
σa2 ` e2 −→

∗ σa3 ` JvpK (37.18)
{the above are given by big step expansion of (37.16), independent of whether

value/cached/higher order is used}
σa3 ` JnK.a(JvpK) −→∗ σa4 ` JvK (37.19)

{by subbing (37.17) and (37.18) into (37.16)}
σa ` JnK.a(JvpK) −→∗ σa4′ ` JvK (37.20)

2Note that this is different to the notation shown in Section 3.1.7, which uses (parentheses) and describes
the derivation of a particular evaluation step, rather than explaining how a new hypothesis is justified.
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{from multistep equivalence for expressions with (37.17), (37.18) and (37.20)}
σb ` JnK.a(JvpK) −→∗ σb4′ ` JvK (37.21)

{from (37.20), as a must be in Aa≡b }
σb ` e1 −→

∗ σb1 ` JnK (37.22)
σb ` e2 −→

∗ σb2 ` JvpK (37.23)
{the above are given by the inductive hypothesis and (37.17) and (37.18)}

σb1 ` e2 −→
∗ σb2′ ` JvpK (37.24)

{from multistep equivalence for expressions with (37.22) and (37.23)}
σb2′ ` JnK.a(JvpK) −→∗ σb4′′ ` JvK (37.25)

{from multistep equivalence for expressions with (37.21), (37.22) and (37.24)}
σb ` e1.a(e2) −→

∗ σb4
′′ ` JvK (37.26)

{by combining (37.22), (37.24) and (37.25)}
=⇒ σb ` e1.a(e2) −→

∗ _ ` JvK (37.27)

The goal (37.27) is given by (37.26).

All cases are satisfied, so Lemma 37 is proven.

Lemma 38. We have some attribute a for which two context functions σa and σb return
identical attribute equation expressions for any node and parameter inputs. If the evaluation
of this attribute only references attributes in Aa≡b, then a ∈ Aa≡b.

∀(σa,σb ∈ N → (a : A) → ρ(a) → E), (a ∈ A),
(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (38.1)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b (38.2)

=⇒ a ∈ Aa≡b (38.3)

Proof. Since we are proving a bidirectional implication, we must prove one direction at a
time. We expand the bidirectional implication, beginning with the left-to-right case.

∀(σa,σa
′,σb ∈ N → (a : A) → ρ(a) → E),

∀(n ∈ N ), (a ∈ A), (v1 ∈ ρ(a)), (t ∈ T ), (v2 ∈ t),
(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (38.4)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b (38.5)
σa ` JnK.a(Jv1K) −→∗ σa

′ ` Jv2K (38.6)
=⇒ σb ` JnK.a(Jv1K) −→∗ _ ` Jv2K (38.7)

Expanding the first single step in (38.6), there are three possible derivations: AttrFetch-
Value, AttrFetchCached, and AttrFetchHO. We will consider these three cases individually.
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Case 38.1 (The AttrFetchValue case).

(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (38.8)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b (38.9)
σa ` JnK.a(Jv1K) −→∗ σa

′ ` Jv2K (38.10)
{the above are unchanged}

σa ` JnK.a(Jv1K) −→ σa ` JvK (38.11)
{the first single step in (38.10) is derived from AttrFetchValue }

σa (n,a,vp) = JvK (38.12)
{a requisite for (38.11)}

σa ` JvK −→∗ σa
′ ` Jv2K (38.13)

{the rest of (38.10)}
v2 = v (38.14)

{as the only derivation for (38.13) is MultiRefl}
σb ` JnK.a(Jv1K) −→ σb ` JvK (38.15)

{derived from AttrFetchValue, using (38.8) rewritten in (38.12)}
σb ` JnK.a(Jv1K) −→ σb ` Jv2K (38.16)

{(38.15), rewritten by (38.14)}
=⇒ σb ` JnK.a(Jv1K) −→∗ _ ` Jv2K (38.17)

The goal (38.17) is provided by (38.16), as a single step can trivially be used to satisfy a
multistep relation.

Case 38.2 (The AttrFetchCached case).

(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (38.18)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b (38.19)
σa ` JnK.a(Jv1K) −→∗ σa

′ ` Jv2K (38.20)
{the above are unchanged}

σa ` JnK.a(Jv1K) −→ σa ` n.a(v1):= σa (n,a,vp) (38.21)
{the first single step in (38.20) is derived from AttrFetchCached }

σa (n,a,vp) is not a value or MK expression (38.22)
{a requisite for (38.21)}

σa ` n.a(v1):= σa (n,a,vp) −→∗ σa
′ ` Jv2K (38.23)

{the rest of (38.20)}
σb ` n.a(v1):= σb(n,a,vp) −→∗ σb

′′ ` Jv2K (38.24)
{from Lemma 37, given (38.19) and equality from (38.18)}

σb ` JnK.a(Jv1K) −→ σb ` n.a(v1):= σb(n,a,vp) (38.25)
{derived from AttrFetchCached, using (38.22)}

σb ` JnK.a(Jv1K) −→∗ σb
′′ ` Jv2K (38.26)

{by combining (38.24) and (38.25)}
=⇒ σb ` JnK.a(Jv1K) −→∗ _ ` Jv2K (38.27)
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The goal (38.27) is given by (38.26).

Case 38.3 (The AttrFetchHO case).

(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (38.28)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b (38.29)
σa ` JnK.a(Jv1K) −→∗ σa

′ ` Jv2K (38.30)
{the above are unchanged}

σa ` JnK.a(Jv1K) −→ σa ⊕ {(n,a,v1) 7→ Jn2K} ⊗ n2/ f l (n2) ` Jn2K (38.31)
{the first single step in (38.30) is derived from AttrFetchHO }

σa (n,a,vp) = MK f l (38.32)
n2 does not exist in σa (38.33)

{the above are requisites for (38.31)}
v2 = n2 (38.34)

{ as Jn2K must now step to Jv2K}
n3 does not exist in σb (38.35)

{by selecting some appropriate n3}
σb ` JnK.a(Jv1K) −→ σb ⊕ {(n,a,v1) 7→ Jn3K} ⊗ n3/ f l (n3) ` Jn3K (38.36)

{derived from AttrFetchHO, using (38.33) and (38.32) rewritten by (38.28)}
=⇒ σb ` JnK.a(Jv1K) −→∗ _ ` Jv2K (38.37)

The goal (38.37) is given by (38.36), if we can prove v2 = n3. We already know v2 = n2
from (38.34), so what we need is n3 = n2. Given that we are satisfied with equality modulo
renaming, we can say that n3 and n2 are the same node, as each has had its attributes specified
using the same list of attribute expressions provided by f l .

As all cases have been satisfied, Lemma 38 is proven.

Lemma 39. We have some attribute a, which produces identical expressions in two context
functions σa and σb, for any inputs. If the evaluation of this attribute only references at-
tributes in Aa≡b and itself, then a is also in Aa≡b. This lemma is very similar to Lemma 38,
except that we now allow recursive calls to the same attribute.

∀(σa,σb ∈ N → (a : A) → ρ(a) → E), (a ∈ A),
(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (39.1)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b or a (39.2)

=⇒ a ∈ Aa≡b (39.3)

Proof. Membership in Aa≡b requires bidirectional implication of terminating evaluation. If
some attribute terminates evaluation in one context, then it must terminate evaluation with
the same value in the other context. If (for some input node and parameter) evaluation of
the attribute a always references itself, then evaluation will never terminate. In this case,
the requirement for Aa≡b is met, via ex falso quodlibet. If evaluation does not always refer-
ence itself for some input node and parameter, then there is some sequence of self-calls that
eventually does not self-call.
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We will proceed by induction on this sequence (or tree) of recursive calls. The base case
is an evaluation of a that never references a, and the inductive case is an evaluation of a,
where the theorem holds for any subsequent evaluation of a.

Case 39.1 (e does not reference a).

(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (39.4)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b or a (39.5)
σa ` JnK.a(v1) −→

∗ _ ` JvK (39.6)
{the above are unchanged}

JnK.a(v1) does not reference a (39.7)
{this is the inductive base case}

JnK.a(v1) only references attributes in Aa≡b (39.8)
{(39.5), with the a case eliminated by (39.7)}

=⇒ σb ` JnK.a(v1) −→
∗ _ ` JvK (39.9)

The goal (39.9) is given by Lemma 38 and (39.4), (39.6) and (39.8).

Case 39.2 (e references a).

(∀(n ∈ N ), (vp ∈ ρ(a)), σa (n,a,vp) = σb(n,a,vp)) (39.10)
σa (_,a,_), evaluated under σa or σb, only references attributes in Aa≡b or a (39.11)
σa ` JnK.a(v1) −→

∗ _ ` JvK (39.12)
{the above are unchanged}

further calls to a in JnK.a(v1) will behave identically in σa and σb (39.13)
{the inductive hypothesis}

=⇒ σb ` JnK.a(v1) −→
∗ _ ` JvK (39.14)

(39.13) means that, for further calls to a, a will act as though it is in Aa≡b. If a ∈ Aa≡b,
Lemma 38 is sufficient to prove the rest of this theorem.

Both cases have been satisfied, so Lemma 39 is proven.

7.4 Featherweight Java

Now that we have defined the kind of tree we are working with, we specified the attributes
in σk and σ j , and we have defined some useful lemmas, we can begin to prove our core
theorem: that name and type analysis in each implementation is equivalent. First, we will
more strictly define the context functions we start evaluation under.

We begin with a blank context function, which we will call σ0. For every input, a value
is returned, which is the default for the attribute being provided. We don’t care what these
defaults are, we only care that σ0 always returns value expressions.

σ0 = the blank context
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Now we define σtree, which describes a Featherweight Java program tree, conforming to
the abstract grammar given in Figure 7.3, rooted at the node n0. For attributes and nodes
orthogonal to this tree definition, the definition from σ0 are used.

σtree = the tree only

Now we define σk , which is the same as σtree except that all extrinsic attributes described
in Section 7.2.1 are also present. We also define σ j , which is the same as σtree except that
all extrinsic attributes described in Section 7.2.2 are also present. The context functions σk
and σ j are the starting points for our analysis.

σk = the tree and Kiama attributes

σk = the tree and JastAdd attributes

Throughout this chapter we will sometimes refer to σk as “the Kiama implementation”
and σ j as “the JastAdd implementation”.

7.4.1 Attributes in Ak≡ j

We know that all attribute described in the abstract syntax tree are intrinsic, and are defined
in σtree. Since none of the attributes defined in Sections 7.2.1 and 7.2.2 override definitions
of any of these attributes in σk or σ j , we know that all attributes from the abstract syntax
tree return identical value expressions in each implementation. Therefore we know that all
of these attributes are in Ak≡ j . Formally, we have the following.

(name,classes,expr,exprs,args,ctor,methods,super, inits,parent) ⊂ Ak≡ j

(nameDef,nameUse,rtnUse,varUse,typeUse, leftUse,rightUse,extUse) ⊂ Ak≡ j

We can now use Lemma 38 to include some more attributes in Ak≡ j , as they are defined
identically in both implementations, and all attributes they reference are already shown to be
in Ak≡ j . These attributes are as follows.

• getName, which references nameDef and name.

• buildTypeUse, which does not reference other attributes.

• buildIdnDef, which does not reference other attributes.

• thisFPDecl, which references name, buildIdnDef, and buildTypeUse.

• buildObjectCtorDecl, which does not reference other attributes.

• buildObjectClassDecl, which references buildTypeUse and buildObjectCtorDecl.

• _matchName (using Lemma 39), which references getName and_matchName.

Formally, we have the following.

(getName,buildTypeUse,buildIdnDef,thisFPDecl) ⊂ Ak≡ j

(buildObjectCtorDecl,buildObjectClassDecl,_matchName) ⊂ Ak≡ j
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From this point on, we define various lemmas that prove the inclusion of various other
attributes in Ak≡ j .

Lemma 40 (objectClassDecl for Program nodes). For any node n of type Program, we
have the following.

∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.objectClassDecl −→∗ _ ` JvK

⇐⇒ σ j ` JnK.objectClassDecl −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions.

σk ` JnK.objectClassDecl
{as n is a Program node}

−→ JnK.buildObjectClassDecl

σ j ` JnK.objectClassDecl
−→ JnK.buildObjectClassDecl

As buildObjectClassDecl ∈ Ak≡ j , we know that both implementations will evaluate
from this point to the same value. This satisfies the goal, so Lemma 40 is proven.

Lemma 41 (_matchName with different nodes). For any nx and ny, _matchName,
when called with the same parameters, will evaluate to the same result.

∀(nx ,ny ∈ N ), (t ∈ T ), (v ∈ t), (vp ∈ (listNode × string)),
σk ` JnxK._matchName(JvpK) −→∗ _ ` JvK

⇐⇒ σ j ` JnyK._matchName(JvpK) −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions.

σk ` JnxK._matchName(JvK)
−→ JnnullK._matchName(JvK)

σ j ` JnyK._matchName(JvK)
−→ JnnullK._matchName(JvK)

As _matchName ∈ Ak≡ j , we know that both implementations will evaluate from this
point to the same value. This satisfies the goal, so Lemma 41 is proven.
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Theorem 42 (decl and lookupType). For any two nodes nx and ny, but with the same
parameter s, decl in the Kiama implementation and lookupType in the JastAdd imple-
mentation will always evaluate to the same value.

∀(nx ,ny ∈ N ), (s ∈ string), (t ∈ T ), (v ∈ t),
σk ` JnxK.decl(JsK) −→∗ _ ` JvK

⇐⇒ σ j ` JnyK.lookupType(JsK) −→∗ _ ` JvK

Proof. We proceed by considering separately the cases where s is and is not equal to the
string “Object”.

Case 42.1 (s = “Object”). We proceed by evaluating both expressions in parallel.

σk ` JnxK.decl(JsK)
{as s = “Object”}

−→ JnxK.objectClassDecl
{via inheritance}

−→∗ Jn0K.objectClassDecl

σ j ` JnyK.lookupType(JsK)
{where nz is the nearest ancestor of ny whose parent is the Program root n0}
−→∗ IF JstrEq(s)(“Object”)K

THEN JnzK.parent.objectClassDecl

ELSE JnzK.parent._matchName((.JsK, JnzK.parent.classes))
{as s = “Object”}

−→ JnzK.parent.objectClassDecl

−→ Jn0K.objectClassDecl

As objectClassDecl ∈ Ak≡ j , we know that both implementations will evaluate from this
point to the same value. This satisfies the goal, so this case is satisfied.

Case 42.2 (s , “Object”). We proceed by evaluating both expressions in parallel.

σk ` JnxK.decl(JsK)
{as s , “Object”, and via inheritance}

−→∗ Jn0K._matchName((.JsK, Jn0K.classes))

σ j ` JnyK.lookupType(JsK)
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{where nz is the nearest ancestor whose parent is the Program root n0}
−→∗ IF JstrEq(s)(“Object”)K

THEN JnzK.parent.objectClassDecl
ELSE JnzK.parent._matchName((.JsK, JnzK.parent.classes))

{as s , “Object”}
−→ JnzK.parent._matchName((.JsK, Jn0K.parent.classes))

−→ Jn0K._matchName((.JsK, JnzK.parent.classes))

−→ Jn0K._matchName((.JsK, Jn0K.classes))

At this point both implementations have stepped to an identical expression, which only con-
tains the attributes _matchName and classes, which are both in Ak≡ j . Therefore we
can use Lemma 37 to satisfy this case.

As both cases have been satisfied, Theorem 42 is proven.

Lemma 43 (decl and typeUse). For any two nodes nx and n, the particular pattern of uses
of decl and typeUse shown below will always evaluate to the same value.

∀(nx ,n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnxK.decl(JnK.typeUse.name) −→∗ _ ` JvK

⇐⇒ σ j ` JnK.typeUse.decl −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions. We say that JnK.typeUse yields JntK
and JntK.name yields JstK. We know this because both typeUse and name are in Ak≡ j .
We also know that nt must be of type TypeUse, as per the abstract grammar in Figure 7.3.

σk ` JnxK.decl(JnK.typeUse.name)

−→ JnxK.decl(JntK.name)

−→ JnxK.decl(JstK)

σ j ` JnK.typeUse.decl

−→ JntK.decl
{as nt must be a TypeUse node}

−→ JntK.lookupType(JntK.name)

−→ JntK.lookupType(JstK)

At this point both implementations have stepped to expressions that allow the theorem to be
proven by Theorem 42.

Theorem 44 (superClass is in Ak≡ j).
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∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.superClass −→∗ _ ` JvK

⇐⇒ σ j ` JnK.superClass −→∗ _ ` JvK

Proof. We separately consider the cases where n is and is not equal to nnull. If n is equal to
nnull, both context functions will return JnnullK, and the theorem is proven trivially.

We say that JnK.name evaluates to some value JsK. We now consider the cases where s
is and is not equal to “Object”.

Case 44.1 (s = “Object”). We proceed by evaluating both expressions in parallel.

σk ` JnK.superClass
{as n , nnull}

−→ IF JstrEq(“Object”)K(JnK.name)

THEN JnnullK
ELSE JnK.decl(JnK.extUse.name)

−→∗ IF JstrEq(“Object”)K(JsK)
THEN JnnullK

ELSE JnK.decl(JnK.extUse.name)
{as s = “Object”}

−→∗ JnnullK

σ j ` JnK.superClass
{as n , nnull}

−→ IF JstrEq(“Object”)K(JnK.name)

THEN JnnullK
ELSE JnK.extUse.decl

−→∗ IF JstrEq(“Object”)K(JsK)
THEN JnnullK

ELSE JnK.extUse.decl
{as s = “Object”}

−→∗ JnnullK

Both implementations have stepped to the same value, so this case is satisfied.

Case 44.2 (s , “Object”). We proceed by evaluating both expressions in parallel. We
say that JnK.extUse yields Jn2K and Jn2K.name yields Js2K. We know this because both
extUse and name are in Ak≡ j . We also know that n2 must be of type TypeUse, as per the
abstract grammar in Figure 7.3.
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σk ` JnK.superClass
{as n , nnull}

−→ IF JstrEq(“Object”)K(JnK.name)

THEN JnnullK
ELSE JnK.decl(JnK.extUse.name)

−→∗ IF JstrEq(“Object”)K(JsK)
THEN JnnullK
ELSE JnK.decl(JnK.extUse.name)

{as s , “Object”}
−→ JnK.decl(JnK.extUse.name)

−→ JnK.decl(Jn2K.name)

−→ JnK.decl(Js2K)

σ j ` JnK.superClass
{as n , nnull}

−→ IF JstrEq(“Object”)K(JnK.name)

THEN JnnullK
ELSE JnK.extUse.decl

−→∗ IF JstrEq(“Object”)K(JsK)
THEN JnnullK
ELSE JnK.extUse.decl

{as s , “Object”}
−→ JnK.extUse.decl

{as n2 must be a TypeUse node}

−→ Jn2K.decl
−→ Jn2K.lookupType(Jn2K.name)

−→ Jn2K.lookupType(Js2K)

At this point both implementation have stepped to expressions that allow the theorem to be
proven by Theorem 42.

Therefore Theorem 44 is proven.
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Theorem 45 (fields is in Ak≡ j).

∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.fields −→∗ _ ` JvK

⇐⇒ σ j ` JnK.fields −→∗ _ ` JvK

Proof. This theorem is given immediately by Lemma 39. Both context functions return the
same expression for the fields attribute, and that expression only contains references to itself
and attributes in Ak≡ j (including superClass, which is in Ak≡ j according to Theorem 44).

Theorem 46 (subTypeOf is in Ak≡ j).

∀(n ∈ N ), (s ∈ string), (t ∈ T ), (v ∈ t),
σk ` JnK.subTypeOf(JsK) −→∗ _ ` JvK

⇐⇒ σ j ` JnK.subTypeOf(JsK) −→∗ _ ` JvK

Proof. σk and σ j share the same definition of subTypeOf. The expression returned by
each context function will always be the same, independent of properties of s or n. This ex-
pression references the attributes name, superClass, and subTypeOf. name is known
to be in Ak≡ j , Theorem 44 proves that superClass is in Ak≡ j , and subTypeOf is a re-
cursive call to the same attribute. Lemma 39 therefore provides subTypeOf ∈ Ak≡ j , and
Theorem 46 is proven.

Lemma 47 (findFP with cons and concat). Assuming nh , nnull, we have the following.
Note that we are not comparing the JastAdd and Kiama implementations here; both relations
use the Kiama implementation.

∀(n,nh ∈ N ), (lr ∈ listNode), (e2,es ∈ E), (t ∈ T ), (v ∈ t),
σk ` JnK.findFP((JconcatK(Jnh :: lrK)(e2), es)) −→

∗ _ ` JvK
⇐⇒ σk ` JnK.findFP((J[nh]K, es))

IFNULL JnK.findFP((JconcatK(JlrK)(e2), es)) −→
∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel. As both evaluations use the
same context function σk , we can assume that evaluating identical expressions will yield the
same result. We say that e2 evaluates to some value Jl2K, that JnhK.getName evaluates to
some value JshK, and that es evaluates to some value JsK.

σk ` JnK.findFP((JconcatK(Jnh :: lrK)(e2), es))

−→∗ JnK.findFP((JconcatK(Jnh :: lrK)(Jl2K), es))

−→∗ JnK.findFP((Jconcat(nh :: lr )(l2)K, JsK))
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{via manipulation of underlying terms}

= JnK.findFP((Jnh :: concat(lr )(l2)K, es))

−→∗ JnK.findFP((Jnh :: concat(lr )(l2)K, JsK))
−→∗ JnnullK._matchName(J(s,nh :: concat(lr )(l2))K)
−→ IF JstrEqK(JnhK.getName)(JsK) THEN JnhK

ELSE JnnullK._matchName(J(s,concat(lr )(l2))K)

−→∗ IF JstrEqK(JshK)(JsK) THEN JnhK
ELSE JnnullK._matchName(J(s,concat(lr )(l2))K)

σk ` JnK.findFP((J[nh]K, es)) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ ` JnK.findFP((J[nh]K, JsK)) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ JnnullK._matchName(J(s, [nh])K) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ (IF JstrEqK(JnhK.getName)(JsK) THEN JnhK ELSE JnnullK._matchName(J(s, [])K))

IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ (IF JstrEqK(JshK)(JsK) THEN JnhK ELSE JnnullK._matchName(J(s, [])K))
IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

At this point we consider the case where s = sh, and the case where s , sh.

Case 47.1 (s = sh).

σk ` IF JstrEqK(JsK)(JsK) THEN JnhK ELSE JnnullK._matchName(J(s,concat(lr )(l2))K)

−→∗ JnhK

σk ` (IF JstrEqK(JsK)(JsK) THEN JnhK ELSE JnnullK._matchName(J(s, [])K))

IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ JnhK IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

{as nh , nnull}
−→∗ JnhK

When s = sh, both expressions will evaluate to JnhK, so this case is satisfied.

Case 47.2 (s , sh).

σk ` IF JstrEqK(JshK)(JsK) THEN JnhK ELSE JnnullK._matchName(J(s,concat(lr )(l2))K)
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{as s , sh}
−→∗ JnnullK._matchName(J(s,concat(lr )(l2))K)

σk ` (IF JstrEqK(JshK)(JsK) THEN JnhK ELSE JnnullK._matchName(J(s, [])K))

IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

{as s , sh}
−→∗ JnnullK._matchName(J(s, [])K)

IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

{as _matchName returns nnull for the empty list}

−→∗ JnnullK IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ JnK.findFP((JconcatK(JlrK)(Jl2K), es))

−→∗ JnK.findFP((JconcatK(JlrK)(Jl2K), JsK))
−→∗ JnnullK._matchName(J(s,concat(lr )(l2))K)

At this point, both instances have evaluated to the same expression. As we are evaluating
under the same context, we can use multistep determinism to satisfy this case.

Both cases have been satisfied, so Lemma 47 is proven.

Lemma 48. For any list of nodes l1 that does not contain nnull, we have the following. Once
again we are working with the same context function σk in both cases.

∀(n ∈ N ), (l1 ∈ listNode), (e2,es ∈ E), (t ∈ T ), (v ∈ t),
σk ` JnK.findFP((JconcatK(Jl1K)(e2), es)) −→

∗ _ ` JvK
⇐⇒ σk ` JnK.findFP((Jl1K, es)) IFNULL JnK.findFP((e2, es)) −→

∗ _ ` JvK

Proof. We proceed by induction on the list of nodes l1. As both evaluations use the same
context function σk , we can assume that evaluating identical expressions with yield the same
result. We say that e2 evaluates to some value l2 and that es evaluates to value JsK.

Case 48.1 (l1 is the empty list).

σk ` JnK.findFP((JconcatK(J[]K)(e2), es))

−→∗ JnK.findFP((JconcatK(J[]K)(Jl2K), JsK))

−→∗ JnK.findFP(J(l2, s)K)

σk ` JnK.findFP((J[]K, es)) IFNULL JnK.findFP((e2, es))

−→∗ JnK.findFP((J[]K, JsK)) IFNULL JnK.findFP((e2, es))
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{as findFP returns JnnullK for the empty list}

−→∗ JnnullK IFNULL JnK.findFP((e2, es))

−→∗ JnK.findFP((e2, es))

−→∗ JnK.findFP((Jl2K, JsK))

−→∗ JnK.findFP(J(l2, s)K)

At this point both evaluations have reached an identical expression. As the same context
function is being used in both cases, the result is now given from multistep determinism.

Case 48.2 (l1 has the form nh :: lr). Our goal is now the following.

σk ` JnK.findFP((JconcatK(Jnh :: lrK)(e2), es)) −→
∗ _ ` JvK

⇐⇒ σk ` JnK.findFP((Jnh :: lrK, es)) IFNULL JnK.findFP((e2, es)) −→
∗ _ ` JvK

We can use Lemma 47 to replace the first term of this goal, obtaining the following new goal.

σk ` JnK.findFP((J[nh]K, es)) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

⇐⇒ σk ` JnK.findFP((Jnh :: lrK, es)) IFNULL JnK.findFP((e2, es)) −→
∗ _ ` JvK

By induction, we have the following.

σk ` JnK.findFP((JconcatK(JlrK)(e2), es)) −→
∗ _ ` JvK

⇐⇒ σk ` JnK.findFP((JlrK, es)) IFNULL JnK.findFP((e2, es)) −→
∗ _ ` JvK

The node nh is the first item in l1. As l1 does not contain nnull, we know nh , nnull. We say
that JnhK.getName evaluates to some value JshK. Now we consider separately the cases
where sh is and is not equal to s.

Case 48.2.1 (sh = s).

σk ` JnK.findFP((J[nh]K, es)) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ JnK.findFP((J[nh]K, JsK)) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

{findFP will evaluate JnhK.getName to JshK, returning JnhK as it matches JsK}
−→∗ JnhK IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

{as nh is not nnull}
−→∗ JnhK

σk ` JnK.findFP((Jnh :: lrK, es)) IFNULL JnK.findFP((e2, es))

−→∗ JnK.findFP((Jnh :: lrK, JsK)) IFNULL JnK.findFP((e2, es))

{findFP will evaluate JnhK.getName to JshK, returning JnhK as it matches JsK}
−→∗ JnhK IFNULL JnK.findFP((e2, es))
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{as nh is not nnull}
−→∗ JnhK

When sh matches the s, both expressions evaluate to JnhK, so this case is satisfied.

Case 48.2.2 (sh , s).

σk ` JnK.findFP((J[nh]K, es)) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ JnK.findFP((J[nh]K, JsK)) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

{findFP will evaluate JnhK.getName to JshK, moving on as it does not match JsK}
−→∗ JnnullK._matchName(J(s, [])K) IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

{_matchName returns nnull for the empty list}
−→∗ JnnullK IFNULL JnK.findFP((JconcatK(JlrK)(e2), es))

−→∗ JnK.findFP((JconcatK(JlrK)(e2), es))

{using the inductive hypothesis}
� JnK.findFP((JlrK, es)) IFNULL JnK.findFP((e2, es))

−→∗ JnK.findFP((JlrK, JsK)) IFNULL JnK.findFP((e2, es))

−→∗ JnnullK._matchName(J(s, lr )K) IFNULL JnK.findFP((e2, es))

σk ` JnK.findFP((Jnh :: lrK, es)) IFNULL JnK.findFP((e2, es))

−→∗ JnK.findFP((Jnh :: lrK, JsK)) IFNULL JnK.findFP((e2, es))

{findFP will evaluate JnhK.getName to JshK, moving on as it does not match JsK}
−→∗ JnnullK._matchName(J(s, lr )K) IFNULL JnK.findFP((e2, es))

At this point both evaluations have reached an identical expression. As the same context
function is being used in both cases, the result is now given from multistep determinism.

As all cases have been satisfied, Lemma 48 is proven.

Definition 7.4.1 (The “superclass chain” and “superclass induction”). For a number of the-
orems in this chapter we use the concept of a superclass chain to structure our proofs. In
Featherweight Java, every class must specify a superclass, even if that superclass is the Ob-
ject class. If class A has superclass B, and class B has superclass C, we call the sequence
[A,B,C, ...] the “superclass chain”, sometimes abbreviated as “super chain”. The final ele-
ment in any valid superclass chain must be the Object class, as this is the only class that does
not have a superclass.

Performing induction on this finite list of classes, a process we refer to as “superclass
induction” or “induction on the superclass chain”, can be helpful for a process that recurses
to its superclass. If we want to prove some property P of a class C, it suffices to show the
following two subgoals.

• P holds for the Object class.

• We can derive that P holds for C, given that P holds for its superclass.
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Lemma 49. For any nodes nx and n and any string s that adhere to the following restrictions,
and assuming that under σk , es evaluates to JsK, we have the following.

∀(n,nx ∈ N ), (es ∈ E), (s ∈ string), (t ∈ T ), (v ∈ t),
σk ` JnxK.findFP((JnK.fields, es)) −→

∗ _ ` JvK
⇐⇒ σ j ` JnK.remoteLookup(JsK) −→∗ _ ` JvK

The restrictions are:

• n is of type ClassDecl

• JnK.name is not “Object”

• n is part of a valid super chain (to be explained). This is true of any ClassDecl node in
any valid Featherweight Java tree.

Further, we assert that v is either nnull or some node of type FPDecl.

Proof. We proceed by induction on n’s super chain. This means we need to solve the case
where n is nnull, the case where n is the “Object” class, and where n is neither, but given that
the proposition is true for its superclass.

Case 49.1 (n = nnull).

σk ` JnxK.findFP((JnnullK.fields, JsK))

−→∗ JnxK.findFP((.J[]K, es))

−→∗ JnxK.findFP((.J[]K, JsK))
{as findFP returns JnnullK for the empty list}
−→∗ JnnullK

σ j ` JnnullK.remoteLookup(JsK)
{as JnnullK.nodeType is not ClassDecl}
−→∗ JnnullK

For the nnull case, nnull is reached by both expressions, so this case is satisfied.

Case 49.2 (n is the Object Class).

σk ` JnxK.findFP((JnK.fields, es))

{as JnK.name is “Object”}

−→∗ JnxK.findFP((.J[]K, es))

−→∗ JnxK.findFP((.J[]K, JsK))
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{as findFP returns JnnullK for the empty list}
−→∗ JnnullK

σ j ` JnK.remoteLookup(JsK)
{as n is a ClassDecl node}

−→∗ JnnullK._matchName((.JsK, JnK.args))

IFNULL JnK.superClass.remoteLookup(JsK)
{the object class’s args is the empty list}

−→∗ JnnullK._matchName((.JsK, J[]K))
IFNULL JnK.superClass.remoteLookup(JsK)

−→∗ JnnullK IFNULL JnK.superClass.remoteLookup(JsK)
−→∗ JnK.superClass.remoteLookup(JsK)

{as n , nnull}
−→ (IF JstrEq(“Object”)K(JnK.name) THEN JnnullK

ELSE JnK.decl(JnK.extUse.name)).remoteLookup(JsK)

−→∗ (IF JstrEq(“Object”)K(J“Object”K) THEN JnnullK

ELSE JnK.decl(JnK.extUse.name)).remoteLookup(JsK)

−→∗ JnnullK.remoteLookup(JsK)
−→ JnnullK

For the Object case, nnull is reached by both expressions, so this case is satisfied.

Case 49.3 (The inductive case). By induction we are given the following.

σk ` JnxK.findFP((JnK.superClass.fields, es)) −→
∗ _ ` JvK

⇐⇒ σ j ` JnK.superClass.remoteLookup(JsK) −→∗ _ ` JvK

We proceed by evaluating both implementations in parallel. We say that JnK.args evaluates
to the value JlnK. We also say that JnnullK._matchName(J(s, ln)K) evaluates to the value
JvmK.

σk ` JnxK.findFP((JnK.fields, es))

−→ JnxK.findFP((JconcatK(JnK.args)(JnK.superClass.fields), es))

−→∗ JnxK.findFP((JconcatK(JlnK)(JnK.superClass.fields), es))

� JnxK.findFP((JlnK, es))

IFNULL JnK.findFP((JnK.superClass.fields, es))
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{using Lemma 48}

−→∗ JnxK.findFP((.JlnK, JsK))
IFNULL JnK.findFP((JnK.superClass.fields, es))

−→∗ JnnullK._matchName(J(s, ln)K)

IFNULL JnK.findFP((JnK.superClass.fields, es))

−→∗ JvmK IFNULL JnK.findFP((JnK.superClass.fields, es))

σ j ` JnK.remoteLookup(JsK)
{as n , nnull}

−→ JnnullK._matchName((JsK, JnK.args))

IFNULL JnK.superClass.remoteLookup(JsK)

−→ JnnullK._matchName((JsK, JlnK))
IFNULL JnK.superClass.remoteLookup(JsK)

−→ JnnullK._matchName(J(s, ln)K) IFNULL JnK.superClass.remoteLookup(JsK)

−→ JvmK IFNULL JnK.superClass.remoteLookup(JsK)

We know that vm is either nnull or a member of ln, as per the semantics of _matchName.
All members of ln must be of type FPDecl, as ln is retrieved from n4.args, according to
the abstract grammar in Figure 7.3. If vm = nnull, the theorem is proven using the inductive
hypothesis. If vm , nnull, evaluation of both expressions terminates on JvmK, so the theorem
is satisfied, as vm is a FPDecl node.

All cases have been satisfied, so Lemma 49 is proven.

Lemma 50. For any n that is nnull or is of type FPDecl, we have the following.

∀(n ∈ N ), (t ∈ T )(v ∈ t),
σk ` JnK.fpType −→∗ _ ` JvK

⇐⇒ σ j ` JnK.type −→∗ _ ` JvK

Proof. We separately consider the cases where n is an FPDecl node and where n = nnull.

Case 50.1 (n is an FPDecl node). We say that JnK.typeUse evaluates to some value Jn2K,
and that Jn2K.name evaluates to some value JsK.

σk ` JnK.fpType
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{as n , nnull}
−→ JnK.decl(JnK.typeUse.name)

−→ JnK.decl(Jn2K.name)

−→ JnK.decl(Js2K)

σ j ` JnK.type
{as n is of type FPDecl}

−→ JnK.typeUse.decl

−→ Jn2K.decl
−→ Jn2K.lookupType(Jn2K.name)

−→ Jn2K.lookupType(Js2K)

At this point both implementations have stepped to expressions that allow the goal to be
proved by Theorem 42, so this case is satisfied.

Case 50.2 (n = nnull).

σk ` JnnullK.fpType
−→ JnnullK

σ j ` JnnullK.type
−→ JnnullK

This case is shown trivially, as both attributes return immediately the null node.

Both cases are shown, so Lemma 50 is proven.

7.4.2 The type Attribute

In this section we prove that type is in Ak≡ j , which is our primary goal for proving that name
and type analysis is equivalent between σk and σ j . The type attribute is define differently
in σk and σ j , but separates its returned equations using the same seven selectors. For each of
these cases, we will prove that type evaluates to the same value for both implementations,
assuming that all subsequent uses of type evaluate identically.

The EFld Case

Theorem 51. Assuming that all subsequent calls to type evaluate identically in both con-
texts, we assert that any n of type EFld will evaluate JnK.type to the same value in both σk
and σ j .
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∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.type −→∗ _ ` JvK

⇐⇒ σ j ` JnK.type −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel. We assert the following equiv-
alent evaluations, using Ak≡ j .

• JnK.expr yields Jn3K

• JnK.nameUse yields Jn2K

• Jn3K.type yields Jn4K (the inductive case)

σk ` JnK.type
{as n is an EFld node}

−→∗ JnK.findFP((JnK.expr.type.fields, JnK.nameUse.name)).fpType

−→∗ JnK.findFP((Jn3K.type.fields, JnK.nameUse.name)).fpType

−→∗ JnK.findFP((Jn4K.fields, JnK.nameUse.name)).fpType

σ j ` JnK.type
{as n is an EFld node}

−→∗ JnK.nameUse.decl.type

−→∗ Jn2K.decl.type
{as n2 must be of type VarUse, according to the abstract grammar}

−→∗ Jn2K.lookup(Jn2K.name).type

−→∗ Jn2K.lookup(Js2K).type
{as n2 is the nameUse of n, an EFld node}

−→∗ Jn2K.parent.expr.type.remoteLookup(Js2K).type

−→∗ JnK.expr.type.remoteLookup(Js2K).type

−→∗ Jn3K.type.remoteLookup(Js2K).type

−→∗ Jn4K.remoteLookup(Js2K).type

At this point, we substitute the subexpressions JnK.findFP((Jn4K.fields,JnK.nameUse
.name)) and Jn4K.remoteLookup(Js2K) with the common value n6, using Lemma 49.
This lemma also tells us that n6 is either nnull or a node of type FPDecl.
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σk ` Jn6K.fpType

σ j ` Jn6K.type

Without performing any evaluation, we know that these two expressions will evaluate to the
same result, using Lemma 50. The use of this lemma requires the knowledge that n6 is either
nnull or a node of type FPDecl, which we know from our use of Lemma 49.

The EIdn Case

Lemma 52.

∀(n,n1 ∈ N ), (e2,es ∈ E), (t ∈ T ), (v ∈ t),
σk ` JnK.findFP((JprependK(Jn1K)(e2), es)) −→

∗ _ ` JvK
⇐⇒ σk ` JnK.findFP((JconcatK(J[n1]K)(e2), es)) −→

∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel.

σk ` JnK.findFP((JprependK(Jn1K)(e2), es)) −→
∗ _ ` JvK

−→ JnK.findFP((Jprepend(n1)K(e2), es)) −→
∗ _ ` JvK

σk ` JnK.findFP((JconcatK(J[n1]K)(e2), es)) −→
∗ _ ` JvK

−→ JnK.findFP((Jconcat([n1])K(e2), es)) −→
∗ _ ` JvK

Both expressions have stepped to the same expression in only one step. From the semantics
of concat and prepend, and via functional extensionality, we trivially have prepend(n1) =

concat([n1]). By multistep determinism, Lemma 52 is therefore proven.

Theorem 53. Assuming that all subsequent calls to type evaluate identically in both con-
texts, we assert that any n of type EIdn will evaluate JnK.type to the same value in both σk
and σ j .

∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.type −→∗ _ ` JvK

⇐⇒ σ j ` JnK.type −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel. We say that JnK.varUse
yields Jn2K and that Jn2K.name yields Js2K.
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σk ` JnK.type
{as n is an EIdn node}

−→∗ JnK.varUse.varUseType

−→∗ Jn2K.varUseType
−→∗ Jn2K.findFP((Jn2K.env, Jn2K.name)).fpType

σ j ` JnK.type
{as n is an EIdn node}

−→∗ JnK.varUse.decl.type

−→∗ Jn2K.decl.type
{as n2 must be of type VarUse, according to the abstract grammar}

−→∗ Jn2K.lookup(Jn2K.name).type

−→∗ Jn2K.lookup(Js2K).type

At this point, the Kiama implementation will evaluate Jn2K.env, while the JastAdd im-
plementation will evaluate Jn2K.decl. Evaluation begins by considering n2, and then n2’s
parent, and so on until one of the selectors match. Each implementation has four selectors,
summarised in the following table.

Kiama’s env JastAdd’s lookup
(ClassDecl) (ClassDecl).methods*
(CtorDecl) (EFld).nameUse

(MethodDecl) (MethodDecl).expr
(Program) (Program).*

We know that n2 does not match any of these nodes, as its type is VarUse and its parent
is n, whose type is EIdn. Remember that the selectors on the left of the above table are
matching against the node in question (in this case n2), while the selectors on the right are
matching against the parent of the node in question (in this case n).

We will show that inheritance for both implementations will traverse the tree and stop at
nodes n3 and n4, such that n4 is n3’s parent. It is possible that n3 = n.

There is no way that an EIdn node can be contained in the subtree of a VarUse node,
so the (EFld).nameUse case will never match. Similarly, there is no way that any type
of expression node can be contained in a CtorDecl subtree, so the (CtorDecl) case will also
never match.

Similarly, the only way that any kind of expression node can be contained in a ClassDecl
subtree is if it is nested inside a MethodDecl subtree. If this is the case, traversal up the
tree will terminate once the MethodDecl node is reached, and will not reach the ClassDecl
node. This eliminates the possibility of matching Kiama’s (ClassDecl) selector or JastAdd’s
(ClassDecl).method* selector.

This leaves only two ways that the traversal up the tree will terminate: At a MethodDecl
node, or at the Program node. We consider these two cases separately.
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Case 53.1 (n4 is a Program node).

σk ` Jn2K.findFP((Jn2K.env, Jn2K.name)).fpType
{env traverses to the root Program node}

−→∗ Jn2K.findFP((.J[]K, Jn2K.name)).fpType

−→∗ Jn2K.findFP((.J[]K, Js2K)).fpType

−→∗ JnnullK.fpType
−→ JnnullK

σ j ` Jn2K.lookup(Js2K).type
{lookup traverses to the root Program node’s child}

−→ JnnullK.type
−→ JnnullK

Both implementations have evaluated to the same value, so this case is satisfied.
In terms of the FeatherWeight Java semantics, this is the case where a program’s manda-

tory expression contains an identifier expression. This is not legal, as there are only types in
scope for this expression; no variables. So it makes sense that nnull would be returned, as no
type can be given to a semantically invalid expression.

Case 53.2 (n4 is a MethodDecl node). As a MethodDecl node can only legally exist as a
child of a ClassDecl node, we will say that n4’s parent node is some ClassDecl n5. Further,
we know that a ClassDecl’s parent must be the root Program node n0. For this case, we split
the case further into the cases where s2 is and is not equal to “this”.

We assert the following equivalent evaluations, based on the contents of Ak≡ j .

• Jn4K.args yields Jl4K

• Jn5K.fields yields Jl5 f K

• Jn5K.thisFPDecl yields Jn5tK

Further, we know from the definition of thisFPDecl that n5t is a FPDecl node, and
Jn5tK.name yields J“this”K.

Case 53.2.1 (s2 = “this”).

σk ` Jn2K.findFP((Jn2K.env, Jn2K.name)).fpType
{env traverses to a MethodDecl node}

−→ Jn2K.findFP((JconcatK(Jn4K.args)(Jn4K.parent.env), Jn2K.name)).fpType

−→ Jn2K.findFP((JconcatK(Jl4K)(Jn4K.parent.env), Jn2K.name)).fpType
{using Lemma 48}

� (Jn2K.findFP((Jl4K, Jn2K.name))

IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType



162 Example

−→ (Jn2K.findFP((Jl4K, J“this”K))

IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType
{as l4 cannot contain any nodes whose name is “this”}

−→ (JnnullK IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType
−→ Jn2K.findFP((Jn4K.parent.env, Jn2K.name)).fpType

−→ Jn2K.findFP((Jn5K.env, Jn2K.name)).fpType
{as n5 is a ClassDecl node}

−→ Jn2K.findFP((JprependK(Jn5K.thisFPDecl)(Jn5K.fields), Jn2K.name)).fpType

−→∗ Jn2K.findFP((JprependK(Jn5tK)(Jn5K.fields), Jn2K.name)).fpType

−→∗ Jn2K.findFP((JprependK(Jn5tK)(Jl5 f K), Jn2K.name)).fpType

−→∗ Jn2K.findFP(J(n5t :: l5 f ,“this”)K).fpType

{as n5t.name yields J“this”K, so the first element will match}

−→∗ Jn5tK.fpType

σ j ` Jn2K.lookup(J“this”K).type
{lookup traverses to a MethodDecl node’s child}

−→ (IF JstrEq(“this”)(“this”)K THEN Jn3K.parent.enclosingClassDecl.thisDecl

ELSE (Jn3K._matchName((J“this”K, Jn3K.parent.args))

IFNULL Jn3K.parent.lookup(J“this”K))).type
−→ Jn3K.parent.enclosingClassDecl.thisDecl.type

−→ Jn4K.enclosingClassDecl.thisDecl.type
{as n4 is one of the MethodDecl nodes contained in n5’s methods attribute}

−→ Jn4K.parent.thisDecl.type

−→ Jn5K.thisFPDecl.type

−→ Jn5tK.type

At this point each implementation has evaluated to a state that can be proven equivalent using
Lemma 50, given that we know that n5t is a FPDecl node. Therefore this case is satisfied.

Case 53.2.2 (s2 , “this”). We proceed by evaluating each expressions in parallel. We use
Lemma 41 to say that Jn?K._matchName(J(s2, l4)K) yields nm.

σk ` Jn2K.findFP((Jn2K.env, Jn2K.name)).fpType

−→ Jn2K.findFP((JconcatK(Jn4K.args)(Jn4K.parent.env), Jn2K.name)).fpType

−→ Jn2K.findFP((JconcatK(Jl4K)(Jn4K.parent.env), Jn2K.name)).fpType
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� (Jn2K.findFP((Jl4K, Jn2K.name))

IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType
{using Lemma 48}

−→ (Jn2K.findFP((Jl4K, Js2K))

IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType

−→∗ (JnnullK._matchName(J(s2, l4)K)

IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType

−→∗ (JnmK IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType

σ j ` Jn2K.lookup(Js2K).type

−→ (IF JstrEq(s2)(“this”)K THEN Jn3K.parent.enclosingClassDecl.thisDecl
ELSE (Jn3K._matchName((Js2K, Jn3K.parent.args))

IFNULL Jn3K.parent.lookup(Js2K))).type
{as s2 , “this”}

−→ (Jn3K._matchName((Js2K, Jn3K.parent.args))

IFNULL Jn3K.parent.lookup(Js2K)).type

−→ (Jn3K._matchName((Js2K, Jn4K.args))

IFNULL Jn3K.parent.lookup(Js2K)).type

−→ (Jn3K._matchName((Js2K, Jl4K))

IFNULL Jn3K.parent.lookup(Js2K)).type

−→∗ (Jn3K._matchName(J(s2, l4)K)

IFNULL Jn3K.parent.lookup(Js2K)).type

−→∗ JnmK IFNULL Jn3K.parent.lookup(Js2K).type

We know that nm is either nnull or a member of l4, and all members of l4 must be of type
FPDecl, as l4 comes from n4.args. We now consider the cases where nm = nnull and where
nm , nnull.

Case 53.2.2.1 (nm = nnull).

σk ` (JnnullK IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType
−→∗ (Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType

−→∗ (Jn2K.findFP((Jn5K.env, Jn2K.name))).fpType

−→∗ (Jn2K.findFP((JprependK(Jn5K.thisFPDecl)(Jn5K.fields), Jn2K.name))).fpType

−→∗ (Jn2K.findFP((JprependK(Jn5tK)(Jn5K.fields), Jn2K.name))).fpType
{using Lemma 52}

� (Jn2K.findFP((JconcatK(J[n5t]K)(Jn5K.fields), Jn2K.name))).fpType
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{using Lemma 48}
� (Jn2K.findFP((J[n5t]K, Jn2K.name))

IFNULL Jn2K.findFP((Jn5K.fields, Jn2K.name))).fpType

−→∗ (Jn2K.findFP((.J[n5t]K, Js2K))

IFNULL Jn2K.findFP((Jn5K.fields, Jn2K.name))).fpType
{as s2 , “this”, and Jn5tK.name yields J“this”K}

−→∗ (JnnullK IFNULL Jn2K.findFP((Jn5K.fields, Jn2K.name))).fpType
−→∗ Jn2K.findFP((Jn5K.fields, Jn2K.name)).fpType

σ j ` JnnullK IFNULL Jn3K.parent.lookup(Js2K).type
−→∗ Jn3K.parent.lookup(Js2K).type

−→∗ Jn4K.lookup(Js2K).type
{as n4 is one of the MethodDecl nodes contained in n5’s methods attribute}

−→∗ Jn4K.parent.remoteLookup(Js2K).type

−→∗ Jn5K.remoteLookup(Js2K).type

Both implementations have evaluated to two expressions which can be proved equivalent
using first Lemma 49 and then Lemma 50. Therefore this case is satisfied.

Case 53.2.2.2 (nm , nnull).

σk ` (JnmK IFNULL Jn2K.findFP((Jn4K.parent.env, Jn2K.name))).fpType

−→∗ JnmK.fpType

σ j ` JnmK IFNULL Jn3K.parent.lookup(Js2K).type

−→∗ JnmK.type

Both implementations have stepped to expressions that are proven equivalent using Lemma 50,
with the knowledge that nm is a node of type FPDecl.

All cases have been satisfied, so Theorem 53 is proven.

The ECall Case

Lemma 54. For any node n and string s, themethod attribute in the Kiama implementation
and the lookupMethod attribute in the JastAdd implementation will evaluate to the same
value.
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∀(n ∈ N ), (s ∈ string), (t ∈ T ), (v ∈ t),
σk ` JnK.method(JsK) −→∗ _ ` JvK

⇐⇒ σ j ` JnK.lookupMethod(JsK) −→∗ _ ` JvK

Proof. We will proceed using superclass chain induction. If s = “Object”, then both at-
tributes will return nnull. If n is not a ClassDecl, then both attributes will return nnull. There-
fore we need only prove the case where n is a ClassDecl node, and s , “Object”. As we
are performing induction on the superclass chain, our inductive hypothesis is that Lemma 54
holds for JnK.superClass.

Case 54.1 (The inductive case). We are given the following inductive hypothesis.

σk ` JnK.superClass.method(JsK) −→∗ _ ` JvK
⇐⇒ σ j ` JnK.superClass.lookupMethod(JsK) −→∗ _ ` JvK

We proceed by evaluating the two expressions in parallel. We say that JnK.methods yields
JlmK. As _matchName is in Ak≡ j , we say that JnK._matchName((JsK, JlmK))
yields nm.

σk ` JnK.method(JsK)
−→ JnK._matchName((JsK, JnK.methods)) IFNULL JnK.superClass.method(JsK)

−→ JnK._matchName((JsK, JlmK)) IFNULL JnK.superClass.method(JsK)

−→∗ JnmK IFNULL JnK.superClass.method(JsK)

σ j ` JnK.lookupMethod(JsK)
−→ JnK._matchName((JsK, JnK.methods))

IFNULL JnK.superClass.lookupMethod(JsK)

−→ JnK._matchName((JsK, JlmK)) IFNULL JnK.superClass.lookupMethod(JsK)

−→∗ JnmK IFNULL JnK.superClass.lookupMethod(JsK)

From this point, proof is trivial. If nm = nnull, then the inductive hypothesis will solve
the case. If not, then both expressions will evaluate to JnmK, and the case is also solved.
Therefore Lemma 54 is proven.

Lemma 55. Assuming all subsequent calls to type will evaluate to the same value for both
context functions, and assuming n is an ECall node, we have the following.
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∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.methodDecl −→∗ _ ` JvK

⇐⇒ σ j ` JnK.decl −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions. We use the following assertions, derived
from the contents of Ak≡ j .

• JnK.expr yields Jn2K

• Jn2K.type yields JntK (given by the first assumption for this theorem)

• JnK.nameUse yields Jn3K

• Jn3K.name yields Js3K

σk ` JnK.methodDecl
−→ JnK.expr.type.method(JnK.nameUse.name)

−→ Jn2K.type.method(JnK.nameUse.name)

−→ JntK.method(JnK.nameUse.name)

−→ JntK.method(Jn3K.name)

−→ JntK.method(Js3K)

σ j ` JnK.decl
−→ JnK.expr.type.lookupMethod(JnK.nameUse.name)

−→ Jn2K.type.lookupMethod(JnK.nameUse.name)

−→ JntK.lookupMethod(JnK.nameUse.name)

−→ JntK.lookupMethod(Jn3K.name)

−→ JntK.lookupMethod(Js3K)

At this point both implementations have stepped to expressions that are proven equivalent
using Lemma 54. Therefore Lemma 55 is proven.

Lemma 56. Assuming all subsequent calls to type will evaluate to the same value for both
context functions, we have the following.

∀(n ∈ N ), (es, fps ∈ listNode), (t ∈ T ), (v ∈ t),
σk ` JnK._exprsMatchFPs(J(es, fps)K) −→∗ _ ` JvK

⇐⇒ σ j ` JnK._exprsMatchFPs(J(es, fps)K) −→∗ _ ` JvK

Further, we assert that v is a boolean value.
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Proof. This theorem assumes two underlying values, each lists of nodes. The value es is a
list of expression nodes. The value fps is a list of FPDecl nodes.

If the lists es and fps have different lengths, then _exprsMatchFPs will return the
value JfalseK. For the cases where es and fps are the same length, we will proceed by
pair induction on the lists es and fps. If the lists es and fps are both the empty list, then
_exprsMatchFPs will return the value JtrueK. Therefore we need only consider the
inductive case.

Case 56.1 (The inductive case). We have the following by induction.

σk ` JnK._exprsMatchFPs(J(esr , fpsr )K) −→∗ _ ` JvK
⇐⇒ σ j ` JnK._exprsMatchFPs(J(esr , fpsr )K) −→∗ _ ` JvK

We proceed by evaluating both expressions in parallel. We use the following assertions.

• JehK.type yields JntK (given by the first assumption for this theorem)

• JfphK.typeUse.name evaluates to JnhtK (as typeUse and name are in Ak≡ j)

• JntK.subTypeOf(JnhtK) evaluates to JbK (using the inductive hypothesis)

σk ` JnK._exprsMatchFPs(J(eh :: esr , fpr :: fpsr )K)
−→ IF JehK.type.subTypeOf(JfphK.typeUse.name)

THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK

−→∗ IF JntK.subTypeOf(JfphK.typeUse.name)

THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK

−→∗ IF JntK.subTypeOf(JnhtK)

THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK
−→∗ IF JbK THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK

σ j ` JnK._exprsMatchFPs(J(eh :: esr , fpr :: fpsr )K)
−→ IF JehK.type.subTypeOf(JfphK.typeUse.name)

THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK

−→∗ IF JntK.subTypeOf(JfphK.typeUse.name)

THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK

−→∗ IF JntK.subTypeOf(JnhtK)

THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK
−→∗ IF JbK THEN JnnullK._exprsMatchFPs(J(esr , fpsr )K) ELSE JfalseK

Continuing evaluation from this point hinges on the value of the boolean value b. If b is
false, then both expressions step immediately to the value false. If b is true, then we step to
a state that is solved immediately using the inductive hypothesis. We can use the inductive
hypothesis in this case, as _exprsMatchFPs is an attribute that ignores its input node.



168 Example

Theorem 57. Assuming that all subsequent calls to type evaluate identically in both con-
texts, we assert that any n of type ECall will evaluate JnK.type to the same value in both
σk and σ j .

∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.type −→∗ _ ` JvK

⇐⇒ σ j ` JnK.type −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel. We use the following asser-
tions.

• JnK.methodDecl in σk and JnK.decl in σ j both evaluate to JndK (using Lemma 55)

• JnK.exprs yields JleK

• JndK.args yields JldK

• JnK._exprsMatchFPs((JleK, JldK)) evaluates to JbK (using Lemma 56)

• JndK.rtnUse yields JnduK

• JnduK.name yields JsduK

σk ` JnK.type
{as n is an ECall node}

−→ IF JisNullK(JnK.methodDecl) THEN JnnullK

ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.methodDecl.args))
THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

−→ IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.methodDecl.args))
THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

σ j ` JnK.type
{as n is an ECall node}

−→ IF JisNullK(JnK.decl) THEN JnnullK

ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.decl.args))
THEN JnK.decl.rtnUse ELSE JnnullK

−→∗ IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.decl.args))
THEN JnK.decl.rtnUse.decl ELSE JnnullK
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We now separately consider the cases where nd is and is not equal to nnull.

Case 57.1 (nd = nnull).

σk ` IF JisNullK(JnnullK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.methodDecl.args))
THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

−→ JnnullK

σ j ` IF JisNullK(JnnullK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.decl.args))
THEN JnK.decl.rtnUse.decl ELSE JnnullK

−→ JnnullK

This case has been shown trivially.

Case 57.2 (nd , nnull).

σk ` IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.methodDecl.args))
THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JnK.exprs, JnK.methodDecl.args))

THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

−→ IF JnK._exprsMatchFPs((.JleK, JnK.methodDecl.args))

THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((.JleK, JndK.args))

THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

−→ IF JnK._exprsMatchFPs((.JleK, JldK))

THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK
{using Lemma 56}

−→∗ IF JbK THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK

σ j ` IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.decl.args))
THEN JnK.decl.rtnUse.decl ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JnK.exprs, JnK.decl.args))

THEN JnK.decl.rtnUse.decl ELSE JnnullK

−→ IF JnK._exprsMatchFPs((JleK, JnK.decl.args))

THEN JnK.decl.rtnUse.decl ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JleK, JndK.args))
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THEN JnK.decl.rtnUse.decl ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JleK, JldK))

THEN JnK.decl.rtnUse.decl ELSE JnnullK
{using Lemma 56}

−→∗ IF JbK THEN JnK.decl.rtnUse.decl ELSE JnnullK

If b is false, then both expressions step immediately to the value nnull, and this case is satis-
fied. We will now continue evaluation assuming b is true.

σk ` IF JtrueK THEN JnK.decl(JnK.methodDecl.rtnUse.name) ELSE JnnullK
−→ JnK.decl(JnK.methodDecl.rtnUse.name)

−→∗ JnK.decl(JndK.rtnUse.name)

−→ JnK.decl(JnduK.name)

−→ JnK.decl(JsduK)

σ j ` IF JtrueK THEN JnK.decl.rtnUse.decl ELSE JnnullK
−→ JnK.decl.rtnUse.decl

−→∗ JndK.rtnUse.decl

−→ JnduK.decl
−→ JnduK.lookupType(JnduK.name)

−→ JnduK.lookupType(JsduK)

At this point, both evaluations have reached expressions which can be proven equivalent
using Theorem 42, so this case is satisfied.

All cases have been considered, so Theorem 53 is proven.

The ENew Case

Theorem 58. Assuming that all subsequent calls to type evaluate identically in both con-
texts, we assert that any n of type ENew will evaluate JnK.type to the same value in both
σk and σ j .

∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.type −→∗ _ ` JvK

⇐⇒ σ j ` JnK.type −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel. We use the following asser-
tions.
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• JnK.decl(JnK.typeUse.name) under σk and JnK.typeUse.decl under σ j both
evaluate to JndK (using Lemma 43)

• JnK.exprs yields JleK

• JndK.fields yields JldK

• JnK._exprsMatchFPs((JleK, JldK)) evaluates to JbK, and b is a boolean value
(from Lemma 56)

σk ` JnK.type
{as n is a ENew node}

−→ IF JisNullK(JnK.decl(JnK.typeUse.name)) THEN JnnullK

ELSE IF JnK._exprsMatchFPs(
(JnK.exprs, JnK.decl(JnK.typeUse.name).fields))
THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK

−→∗ IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs(
(JnK.exprs, JnK.decl(JnK.typeUse.name).fields))
THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK

σ j ` JnK.type
{as n is a ENew node}

−→ IF JisNullK(JnK.typeUse.decl) THEN JnnullK

ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.typeUse.decl.fields))
THEN JnK.typeUse.decl ELSE JnnullK

−→∗ IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.typeUse.decl.fields))
THEN JnK.typeUse.decl ELSE JnnullK

If nd is equal to nnull, then both implementations will step immediately to JnnullK, and the
goal is satisfied. We will continue evaluation assuming nd is not equal to nnull.

σk ` IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs(
(JnK.exprs, JnK.decl(JnK.typeUse.name).fields))
THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK

{as nd , nnull}
−→∗ IF JnK._exprsMatchFPs((JnK.exprs, JnK.decl(JnK.typeUse.name).fields))

THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK
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−→ IF JnK._exprsMatchFPs((JleK, JnK.decl(JnK.typeUse.name).fields))

THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JleK, JndK.fields))

THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JleK, JldK))

THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK

−→∗ IF JbK THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK

σ j ` IF JisNullK(JndK) THEN JnnullK
ELSE IF JnK._exprsMatchFPs((JnK.exprs, JnK.typeUse.decl.fields))
THEN JnK.typeUse.decl ELSE JnnullK

{as nd , nnull}
−→∗ IF JnK._exprsMatchFPs((JnK.exprs, JnK.typeUse.decl.fields))

THEN JnK.typeUse.decl ELSE JnnullK

−→ IF JnK._exprsMatchFPs((JleK, JnK.typeUse.decl.fields))

THEN JnK.typeUse.decl ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JleK, JndK.fields))

THEN JnK.typeUse.decl ELSE JnnullK

−→∗ IF JnK._exprsMatchFPs((JleK, JldK))

THEN JnK.typeUse.decl ELSE JnnullK

−→∗ IF JbK THEN JnK.typeUse.decl ELSE JnnullK

If b is false, then both expressions will step immediately to JnnullK, and the goal is satisfied.
We will continue evaluation assuming b is true.

σk ` IF JtrueK THEN JnK.decl(JnK.typeUse.name) ELSE JnnullK
−→ JnK.decl(JnK.typeUse.name)

σ j ` IF JtrueK THEN JnK.typeUse.decl ELSE JnnullK
−→ JnK.typeUse.decl

At this point both implementations have evaluated to expressions that can be proved equiva-
lent using Lemma 43. Therefore Theorem 58 is proven.
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The ECast Case

Theorem 59. Assuming that all subsequent calls to type evaluate identically in both con-
texts, we assert that any n of type ECast will evaluate JnK.type to the same value in both
σk and σ j .

∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.type −→∗ _ ` JvK

⇐⇒ σ j ` JnK.type −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel. We use the following asser-
tions.

• JnK.expr yields Jn2K (expr ∈ Ak≡ j)

• Jn2K.type evaluates to JntK (the inductive hypothesis)

σk ` JnK.type
{as n is an ECast node}

−→ IF JisNullK(JnK.expr.type) THEN JnnullK ELSE JnK.decl(JnK.typeUse.name)

−→ IF JisNullK(Jn2K.type) THEN JnnullK ELSE JnK.decl(JnK.typeUse.name)

−→∗ IF JisNullK(JntK) THEN JnnullK ELSE JnK.decl(JnK.typeUse.name)

σ j ` JnK.type
{as n is an ECast node}

−→ IF JisNullK(JnK.expr.type) THEN JnnullK ELSE JnK.typeUse.decl

−→ IF JisNullK(Jn2K.type) THEN JnnullK ELSE JnK.typeUse.decl

−→∗ IF JisNullK(JntK) THEN JnnullK ELSE JnK.typeUse.decl

Now we must separately consider the cases where nt is and is not equal to nnull. If nt is equal
to nnull, then both expressions will step immediately to the value JnnullK, and the theorem will
hold. We will continue evaluation assuming nt is not equal to nnull.

σk ` IF JisNullK(JntK) THEN JnnullK ELSE JnK.decl(JnK.typeUse.name)
−→∗ JnK.decl(JnK.typeUse.name)

σ j ` IF JisNullK(JntK) THEN JnnullK ELSE JnK.typeUse.decl
−→∗ JnK.typeUse.decl
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At this point both implementations have evaluated to expressions that can be proven equiva-
lent using Lemma 43, so Theorem 59 is proven.

Theorem 60. We assert that any node n of type FPDecl will evaluate JnK.type to the same
value in both σk and σ j .

∀(n ∈ N ), (t ∈ T ), (v ∈ t),
σk ` JnK.type −→∗ _ ` JvK

⇐⇒ σ j ` JnK.type −→∗ _ ` JvK

Proof. We proceed by evaluating both expressions in parallel.

σk ` JnK.type
−→ JnK.fpType

σ j ` JnK.type

Already both implementations have evaluated to expressions that can be proven equivalent
using Lemma 50, so Theorem 42 is proven.

The type Attribute Theorem

Theorem 61 (type ∈ Ak≡ j). We assert that type ∈ Ak≡ j .

Proof. To prove this, we break down the possible output expressions for type in both σk
and σ j , and we perform induction on the stack of recursive calls to type that could occur
during evaluation. We are evaluating type on some node n. We will consider the following
values that JnK.nodeType could hold.

• If n is an EFld node, we use Theorem 51.

• If n is an EIdn node, we use Theorem 53.

• If n is an ECall node, we use Theorem 57.

• If n is an ENew node, we use Theorem 58.

• If n is an ECast node, we use Theorem 59.

• If n is an FPDecl node, we use Theorem 60.

• If n is any other kind of node, both implementations return JnnullK, so the theorem is
proven trivially.

We have proven Theorem 61. As type will always evaluate to the same value in both
σk and σ j , and type is the attribute that performs name analysis and type checking in
both implementations of Featherweight Java, we have proven that the Kiama and JastAdd
implementations of name analysis are equivalent.
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7.5 Quantitative Analysis

Now that we have proven that type analysis in both implementations is qualitatively equiva-
lent, we will perform some quantitative analysis, to try to determine under what conditions
each implementation will evaluate faster. To do this, we will attempt to produce a formula
for the number of evaluation steps needed for each implementation to evaluate a particular
branch of type analysis.

Theorem 62. For any node n of type ClassDecl, we have the following, where Q is a constant
that is independent of the program under evaluation, but specific to the Kiama specification.

JnK.superClass evaluates in Q steps for any n (62.1)
z is the length of the superclass chain (62.2)

=⇒ σk ` JnK.fields −→5+(8+Q)z _ ` J_K (62.3)

Proof. We proceed by induction on the superclass chain (which is the same as induction on
z, as z is the length of the superclass chain). This gives us two cases: where n is the Object
class, and where n is not.

Case 62.1 (np is the Object class). We proceed by evaluating the expression.

σk ` JnK.fields
{as n is the Object class}

−→4 IF JstrEq(“Object”)(“Object”)K
THEN J[]K
ELSE JconcatK
(JnK.args)
(JnK.superClass.fields)

−→ J[]K

In the case where n is the Object class, we have z = 0.

steps taken = 5
= 5 + (8 + Q)z

Case 62.2 (n is not the Object class). We have the inductive hypothesis as follows.

(z − 1)is the length of the superclass chain of n’s superClass ns (62.4)

σk ` JnsK.fields −→5+(8+Q)(z−1) _ ` J_K (62.5)

We proceed by evaluating the expression.
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σk ` JnK.fields
{s is the name of n}

−→4 IF JstrEq(s)(“Object”)K
THEN J[]K
ELSE JconcatK(JnK.args)
(JnK.superClass.fields)

{s , “Object”, as n is not the Object class}
−→ JconcatK(JnK.args)
(JnK.superClass.fields)

{l is the args of n}
−→2 Jconcat(l)K(JnK.superClass.fields)

{Q is the steps needed for superClass}
−→Q Jconcat(l)K(JnsK.fields)

−→5+(8+Q)(z−1) Jconcat(l)K(J_K)
−→ J_K

steps taken = 8 + Q + (5 + (8 + Q)(z − 1))
= 5 + (8 + Q)z

Theorem 63. For any node n of type ClassDecl, we have the following.

JnK.superClass evaluates in Q steps for any n (63.1)
z is the length of the superclass chain (63.2)

=⇒ σk ` JnK.env −→10+(8+Q)z _ ` J_K (63.3)

Proof. We proceed by evaluating the expression.

σk ` JnK.env
−→ JprependK(JnK.thisFPDecl)(JnK.fields)

−→2 Jprepend(nthis)K(JnK.fields)
{from Theorem 62}

−→5+(8+Q)z Jprepend(nthis)K(JlK)
−→ Jnthis :: lK



7.5 Quantitative Analysis 177

steps taken = 5 + 5 + (8 + Q)z
= 10 + (8 + Q)z

Theorem 64. For any node n of type EIdn, whose parent is a MethodDecl node, we have the
following.

JnK.superClass evaluates in Q steps for any n (64.1)
z is the length of the superclass chain (64.2)

=⇒ σk ` JnK.env −→16+(8+Q)z _ ` Jlm ++ _K (64.3)

Proof. We proceed by evaluating the expression.

σk ` JnK.env
−→ JnmK.env
−→ JconcatK(JnmK.args)(JnmK.parent.env)

{where lm is the list of nodes returned by JnmK.args}
−→2 Jconcat(lm)K(JnmK.parent.env)
−→ Jconcat(lm)K(JncK.env)

{using Theorem 63}
−→10+(8+Q)z Jconcat(lm)K(J_K)

−→ Jlm ++ _K

steps taken = 6 + (10 + (8 + Q)z)
= 16 + (8 + Q)z

Lemma 65. For any list of FPDecl nodes l, where none of the nodes in l are nnull or have a
getName value of s.

The length of l is z (65.1)

=⇒ σ j ` JnnullK._matchName(J(s, l)K) −→7z+1 _ ` JnnullK (65.2)

Proof. We proceed by induction on l. This gives us a case where l is the empty list, and a
case where l is at least one element, and the theorem holds for the rest of the list.
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Case 65.1 (l is the empty list).

σ j ` JnnullK._matchName(J(s, [])K)
−→ _ ` JnnullK

steps taken = 1
= 7z + 1

Case 65.2 (l is not the empty list). We have the following by induction.

The length of l2 is (z − 1) (65.3)

σ j ` JnnullK._matchName(J(s, l2)K) −→7(z−1)+1 _ ` JnnullK (65.4)

We proceed by evaluating the expression.

σ j ` JnnullK._matchName(J(s,n1 :: l2)K)
−→ IF JstrEqK(Jn1K.getName)(JsK)

THEN Jn1K
ELSE JnnullK._matchName(J(s, l2)K)

−→5 IF JstrEq(s2)(s)K
THEN Jn1K
ELSE JnnullK._matchName(J(s, l2)K)

{as s2 is not the same value as s}
−→ JnnullK._matchName(J(s, l2)K)

{the inductive hypothesis}
−→7(z−1)+1 JnnullK

steps taken = 7 + 7(z − 1) + 1
= 7z + 1

Lemma 66. For any list of FPDecl nodes l, where none of the nodes in l are nnull or have a
getName value of s.

The length of l is z (66.1)

=⇒ σk ` JnnullK._matchName(J(s, l)K) −→7z+1 _ ` JnnullK (66.2)
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Proof. This lemma is the same as Lemma 65, except that we are now evaluating using the
Kiama specification σk , rather than the JastAdd specification σ j . As _matchName and
its related attributes are all specified identically in the Kiama and JastAdd specifications, the
proof for this lemma is identical to the proof for Lemma 65.

Theorem 67. For any node n of type ClassDecl, we have the following, where R is the
JastAdd equivalent of Kiama’s Q.

JnK.superClass evaluates in R steps for any n (67.1)
z is the length of n’s superclass chain (67.2)
f z is the length of n’s args (67.3)
f (z−1) is the length of n’s superClass’s args, and so on (67.4)

=⇒ σ j ` JnK.remoteLookup(JsK) −→k _ ` J_K (67.5)

∧ 14 ≤ k ≤ 11 + (6 + R)z + 7
z∑

k=1

f k (67.6)

Proof. We consider the best-case and worst-case scenarios to find the upper and lower
bounds for this evaluation to complete. We will not formally prove why we choose par-
ticular best-case and worst-case scenarios, but there is clear intuition that they are correct.

The best-case scenario is when JnK.args is some list whose first element’s getName
matches s. The worst-case scenario is when the name being searched is not defined – this
means that no nodes with a name of s are found in any of the args lists on the superclass
chain.

We proceed by evaluating the best-case scenario.

σ j `JnK.remoteLookup(JsK)
−→ JnnullK._matchName((.JsK, JnK.args))

IFNULL JnK.superClass.remoteLookup(JsK)
{the args of n is a list that begins with ns}

−→2 JnnullK._matchName(J(s,ns :: l)K)
IFNULL JnK.superClass.remoteLookup(JsK)

−→ (IF JstrEqK(JnsK.getName)(JsK) THEN JnsK ELSE JnK._matchName(J(s, l)K))
IFNULL JnK.superClass.remoteLookup(JsK)

{as ns’s getName is s}
−→5 (IF JstrEq(s)(s)K THEN JnsK ELSE JnK._matchName(J(s, l)K))

IFNULL JnK.superClass.remoteLookup(JsK)
−→ JnsK IFNULL JnK.superClass.remoteLookup(JsK)

{as ns must not be nnull, as it is in the list returned by JnK.args}
−→5 JnsK
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steps taken = 14

We have proven that the best-case evaluation takes 14 steps.
We proceed in our proof for the worst-case scenario by superclass induction. This gives

us a case where n is the Object class, and where n is not.

Case 67.1 (n is the Object class).

σ j `JnK.remoteLookup(JsK)
−→ JnnullK._matchName((.JsK, JnK.args))

IFNULL JnK.superClass.remoteLookup(JsK)
{the Object class returns the empty list for args}

−→ JnnullK._matchName((.JsK, J[]K))
IFNULL JnK.superClass.remoteLookup(JsK)

−→2 JnnullK IFNULL JnK.superClass.remoteLookup(JsK)

−→2 JnK.superClass.remoteLookup(JsK)
{as n is the Object class, its superClass will be nnull}

−→4 JnnullK.remoteLookup(JsK)
−→ JnnullK

steps taken = 11

= 11 + (6 + R)z + 7
z∑

k=1

f k

Case 67.2 (n is not the Object class).

(z − 1) is the length of the superclass chain of n’s superClass ns. (67.7)

σ j ` JnsK.remoteLookup(JsK) −→(6+R)(z−1)+7
∑z−1

k=1 fk _ ` JnnullK (67.8)

We proceed by evaluating the expression.

σ j `JnK.remoteLookup(JsK)
−→ JnnullK._matchName((.JsK, JnK.args))

IFNULL JnK.superClass.remoteLookup(JsK)
{l is the value of n’s args}

−→2 JnnullK._matchName(J(s, l)K)
IFNULL JnK.superClass.remoteLookup(JsK)
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{from Lemma 65, as the length of l is f z}
−→7 fz+1 JnnullK IFNULL JnK.superClass.remoteLookup(JsK)

−→2 JnK.superClass.remoteLookup(JsK)

−→R JnsK.remoteLookup(JsK)

−→11+(6+R)(z−1)+7
∑z−1

k=1 fk JnnullK

steps taken = 5 + (7 f z + 1) + R + 11 + (6 + R)(z − 1) + 7
z−1∑
k=1

f k

= 11 + 6 + R + (6 + R)(z − 1) + 7 f z + 7
z−1∑
k=1

f k

= 11 + (6 + R)z + 7( f z +

z−1∑
k=1

f k )

= 11 + (6 + R)z + 7
z∑

k=1

f k

We have proved that the step count is 14 in the best-case scenario, and 11 + (6 + R)z +

7
∑z

k=1 f k in the worst-case scenario.

Theorem 68. Here we want to prove that the type attribute, when evaluated in σk on a
node of type EIdn, will evaluate in a particular number of steps. We are not interested in the
evaluation of fpType, which takes the declaration of a variable and finds a reference to the
declaration of its type, so we assume this will happen in the constant number of steps G. As
in Theorem 63, we assume that the superClass attribute will evaluate in the fixed number
of steps Q.

JnK.fpType evaluates in G steps for any n (68.1)
JnK.superClass evaluates in Q steps for any n (68.2)
z is the length of n’s superclass chain (68.3)
x is the number of names in scope for n (68.4)
m is length of n’s parent’s argument list (68.5)

=⇒ σk ` JnK.type −→k _ ` J_K (68.6)
∧ 30 + (8 + Q)z + G ≤ k ≤ 24 + (8 + Q)z + 7m + 7x + G (68.7)

Proof. We proceed by evaluating the expression.

σk `JnK.type
−→ JnK.varUse.varUseType
−→ Jn2K.varUseType
−→ Jn2K.findFP((JnK.env, Jn2K.name)).fpType
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{from Theorem 64, with z as the length of the superclass chain, and lm the list of args from
the parent MethodDecl}

−→16+(8+Q)z Jn2K.findFP((Jlm ++ lK, Jn2K.name)).fpType

−→3 Jn2K.findFP(J(lm ++ l, s2)K).fpType
−→ JnnullK._matchName(J(s2, lm ++ l)K).fpType

So far, 23 + (8 + Q)z steps have been taken. We now consider the best-case and worst-
case scenarios for the evaluation of the _matchName attribute. First, we consider the
worst-case scenario, where no nodes matching s2 are found in lm ++ l.

σk `JnnullK._matchName(J(s2, lm ++ l)K).fpType
{using Lemma 66, with x as the length of l and m as the length of lm}
−→7(m+x)+1 JnnullK.fpType

{with the assumed step count for fpType}
−→G J_K

steps taken = (23 + (8 + Q)z) + (7(m + x) + 1) + G
= 24 + (8 + Q)z + 7m + 7x + G

We now consider the best-case scenario, where the first item in lm ++ l matches s2.

σk `JnnullK._matchName(J(s2,ns :: l2)K).fpType

−→6 (IF JstrEq(s2)(s2)K
THEN JnsK
ELSE JnK._matchName(J(s, l2)K)).fpType

−→ JnsK.fpType
{with the assumed step count for fpType}

−→G J_K

steps taken = (23 + (8 + Q)z) + 7 + G
= 30 + (8 + Q)z + G

Therefore the expression JnK.type evaluates in a number of steps ranging from 30 + (8 +

Q)z + G to 24 + (8 + Q)z + 7m + 7x + G.

Theorem 69. Here we want to prove that the type attribute, when evaluated in σ j on a
node of type EIdn, which is contained in a MethodDecl subtree, will evaluate in a particular
number of steps. We are not interested in the evaluation of type on nodes of type FPDecl,
which takes the declaration of a variable and finds a reference to the declaration of its type,
so we assume this will happen in the constant number of steps F. As in Theorem 67, we
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assume that the superClass attribute will evaluate in the fixed number of steps R. We also
assume that the node in question does not have a name of “this”.

JnK.type evaluates in H steps for any n of type FPDecl (69.1)
JnK.superClass evaluates in R steps for any n (69.2)
z is the length of n’s superclass chain (69.3)
x is the number of names in scope for n (69.4)

=⇒ σ j ` JnK.type −→k _ ` J_K (69.5)

∧ 23 ≤ k ≤ 29 + (6 + R)z + 7m + 7
z∑

k=1

f k + H (69.6)

Proof. We proceed by evaluating the expression.

σ j `JnK.type
−→ JnK.varUse.decl.type
−→ Jn2K.decl.type
−→ Jn2K.lookup(Jn2K.name).type
−→ Jn2K.lookup(Js2K).type
−→ (IF JstrEq(s2)(“this”)K

THEN Jn2K.parent.enclosingClassDecl.thisFPDecl
ELSE (Jn2K._matchName((Js2K, Jn2K.parent.args))
IFNULL Jn2K.parent.lookup(Js2K))).type

{we assume that s2 , “this”}
−→ (Jn2K._matchName((Js2K, Jn2K.parent.args))

IFNULL Jn2K.parent.lookup(Js2K)).type
{lm is the list of parameters for the parent method}

−→4 (Jn2K._matchName(J(s2, lm)K)
IFNULL Jn2K.parent.lookup(Js2K)).type

So far, 10 steps have been taken. We now consider the best-case and worst-case scenarios for
the rest of evaluation. First, we consider the worst-case scenario, where no nodes matching
s2 are found in lm.

σ j `(Jn2K._matchName(J(s2, lm)K)
IFNULL Jn2K.parent.lookup(Js2K)).type
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{using Lemma 65, where m is the length of lm}
−→7m+1 (JnnullK

IFNULL Jn2K.parent.lookup(Js2K)).type

−→2 (Jn2K.parent.lookup(Js2K)).type
{nm is the parent of n2, which is a MethodDecl node}
−→ (JnmK.lookup(Js2K)).type
−→ (JnmK.parent.remoteLookup(Js2K)).type

{nc is the parent of nm, which is a ClassDecl node}
−→ (JncK.remoteLookup(Js2K)).type

{using Theorem 67, where 14 ≤ d ≤ 11 + (6 + R)z + 7
∑z

k=1 f k}

−→d (J_K).type
{we aren’t interested in this evaluation of type}
−→H J_K

steps taken = 10 + 7m + 1 + 7 + d + H
= 18 + 7m + d + H

{we assume the worst-case value of d}

= 18 + 7m + 11 + (6 + R)z + 7
z∑

k=1

f k + H

= 29 + (6 + R)z + 7m + 7
z∑

k=1

f k + H

We now consider the best-case scenario, where the first item of lm matches s2.

σ j `(Jn2K._matchName(J(s2,ns :: lr )K)
IFNULL Jn2K.parent.lookup(Js2K)).type

−→6 ((IF JstrEq(s2)(s2)K
THEN JnsK
ELSE JnK._matchName(J(s, l2)K))
IFNULL Jn2K.parent.lookup(Js2K)).type

−→ JnsK IFNULL Jn2K.parent.lookup(Js2K)).type

−→6 JnsK

steps taken = 10 + 13
= 23

Therefore the expression JnK.type evaluates in a number of steps ranging from 23 to 29 +

(6 + R)z + 7m + 7
∑z

k=1 f k + H .
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7.5.1 Comparing Performance
While Saiga was not built with performance in mind, our calculus does allow for formal
analyses of attribute grammar evaluation that includes step counts. In Theorems 68 and 69
we produced some upper and lower bounds for step counts of name analysis for an identifier
expression (EIdn) in the Kiama and JastAdd implementations of Featherweight Java.

In both instances, we generalised away some similar operations, such as superclass
lookup and name analysis for classes. While these operations are not always computed
in a fixed number of steps, they are similar enough in each specification that we can simplify
our analysis by assuming they are a constant, which can be factored away. If we evaluate
the type attribute under each specification, but on the same tree (as we have for all proofs
in this chapter), we know that a number of measurements will be the same between our two
step counts.

The Kiama specification’s best-case evaluation takes 30 + (8 + Q)z + G steps (where Q
and G are constants, and z is the length of the superclass chain), and the JastAdd specifi-
cation’s best-case evaluation takes 23 steps. It is clear that, even when z is very small, the
Kiama specification will always take longer. This is because the Kiama specification uses the
environment approach to name analysis, which constructs a full environment at each point
in the tree, which takes some overhead, but can be very useful for caching.

The Kiama specification’s worst-case evaluation takes 24 + (8 +Q)z + 7m + 7x + G steps,
and the JastAdd specification’s worst-case evaluation takes 29+ (6+R)z+7m+7

∑z
k=1 f k +H

steps. We can assume that Q and R are similar values, as well as G and H . x is the number
of names in scope, m is the number of arguments to the containing method, and f k is the
number of names declared at each point in the scopes around n. Therefore we can say that∑z

k=1 f k = x.
We now have a worst-case comparison of 24 + (8 + Q)z + 7m + 7x + G and 29 + (6 +

Q)z + 7m + 7x + G, if we combine similar constants G/H and Q/R.

Best Worst
Kiama 30 + (8 + Q)z + G 24 + (8 + Q)z + 7m + 7x + G

JastAdd 23 29 + (6 + Q)z + 7m + 7x + G

We can see from this analysis that the JastAdd specification outperforms the Kiama spec-
ification considerably in the best-case scenario, and the two specifications take a remarkably
similar number of steps in the worst-case scenario. The difference in worst-case scenario
step counts is only |5 − 2z |, where z is the number of superclasses that the class containing
n has. It is interesting to observe this similarity, as the two specifications take very different
approaches to solve the problem.

Much more analysis could be performed to compare these two specifications, particu-
larly on the effects of caching on repeated name lookups3, which is left as an exercise for
the reader. The analyses we have presented in this chapter demonstrate Saiga’s utility as a
framework for the formal analysis of attribute grammar evaluation.

3Note that the JastAdd ‘lookup’ style algorithm is, according to the creators, quadratic in a multiple evalua-
tion setting. However, real-world JastAdd implementations use a variant of the ‘lookup’ approach which caches
local scopes as maps, providing much faster evaluation under caching. It would still be interesting to perform
a comparison of the simple ‘lookup’ and ‘environment’ approaches, and we suspect that the ‘environment’
approach would significantly outperform the ‘naive lookup’ approach when many lookups are performed. Of
course JastAdd developers are aware of this, which is why they employ the mapping variant.
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Those beer nerds are fucking merciless.
Anthony Bourdain

8
Mechanisation

From the beginning of Saiga’s development, the on-paper calculus has developed alongside
a mechanised counterpart. In the early stages we mechanised our calculus in Coq [53],
as mentioned in our first published work on Saiga [51]. In 2018 we moved from Coq to
Lean [8], as we had run into some difficulties with the efficiency of proof automation in Coq.

Saiga’s mechanisation is not one of our major contributions; we mechanise to sanity-
check our on-paper semantics and proofs. However, our approach and our results using Lean
may be interesting to the reader, so they are presented here.

We will not present the full code of our mechanisation in this thesis, as we have produced
many thousands of lines of definitions and proof scripts. The full code of our mechanisation
can be found at https://bitbucket.org/scottbuckley/saigalean. The code refer-
enced in Sections 8.1 to 8.5 is defined in the file saiga.lean.

8.1 Configuration

The first thing we define in our mechanised semantics is a configuration: this is a set of
variables that make up an evaluation context. We call this configuration saigaconfig,
which is defined in the Lean snippet shown below.

1 structure saigaconfig :=
2 (A: Type)
3 (τ ρ: A -> Type)
4 [Adec: decidable_eq A]
5 [τinh: ∀ (a:A), inhabited τ a)]
6 [ρdec: ∀ (a:A), decidable_eq (ρ a)]
7
8 variable cfg: saigaconfig

We also declare the variable cfg, which is a global variable of type saigaconfig. What
this means is that we assume some cfg of type saigaconfig exists. This way we can
write proofs that assume a saigaconfig exists, and Lean will automatically generalise these

https://bitbucket.org/scottbuckley/saigalean
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proofs over saigaconfig. The contents of a saigaconfig are simple: line 2 specifies that
there is some type representing the set of attributes A. Line 3 specifies that there are two
functions τ and ρ which return a type for every member of A. Line 4 specifies that there is
decidable equality between members of A. Lines 5 and 6 specify that the return types of τ
and ρ are inhabited and have decidable equality, respectively.

8.2 Expression Language
We define the expression language of Saiga as an inductive type.

1 structure ap := mk :: (attr:cfg.A) (param:cfg.ρ attr)
2
3 inductive exp
4 | eVal {T:Type} (v:T): exp
5 | eCond (eC eT eF:exp): exp
6 | eApp (eF eP: exp): exp
7 | eAttr (eN: exp) (a:cfg.A) (eP:exp): exp
8 | eCache (n:node) (a:cfg.A) (p:cfg.ρ a) (e:exp): exp
9 | eMk (fl:node -> list (exp × ap cfg)): exp

Lines 3-9 give the definition of the exp type, which matches the expression grammar
given in Section 5.1.1. This type describes the abstract syntax of a Saiga expression, not the
concrete syntax, so parsing strings such as “IF” and “THEN” are not included here. Each of
the constructors of exp on lines 4-9 clearly implement one of the productions of the Saiga
expression grammar. The type ap is a dependent tuple of an attribute and an associated
parameter value, used in the definition of eMk. In our mechanisation we do not force the
attribute written to a higher order node to be parameterless, as expressing Au would be more
complicated in Lean than simply allowing parameterised attributes to be written. Therefore
our definition of a MK expression differs slightly in our mechanisation to the version presented
in Chapter 5.

We define notations for each of the constructors of exp to allow expressions to be written
as follows.

• {{v}} in Lean represents JvK.

• IFF e1 THEN e2 ELSE e3 in Lean represents IF e1 THEN e2 ELSE e3. We use IFF
instead of IF to avoid conflict with Lean keywords.

• e1 OF e2 in Lean represents e1(e2). The parameter syntax is more difficult to repre-
sent in Lean than an infix.

• e1 DOT a WITH e2 in Lean represents e1.a(e2). Again we prefer an infix notation
in Lean. We also define e1 DOT a in Lean to represent e1.a, allowing the unit value
to be inserted transparently.

• n / a / p ;= e in Lean represents n.a(p):= e. Overloading the DOT, WITH syntax
would be too difficult to achieve in Lean.

• MK f l in Lean represents MK f l . We usually use Lean’s inbuilt lambda syntax to define
the function f l .
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8.3 Type Rules
We define type inference rules in Lean as an inductive proposition. We show a snippet of
this definition below.

1 inductive expType {cfg} : exp cfg -> Type -> Prop
2 | eVal {T:Type} {v:T}:
3 expType {{v}} T
4 | eAttr {eN eP:exp cfg} {a:cfg.A}
5 (nt: expType eN (node))
6 (pt: expType eP (cfg.ρ a)):
7 expType (eN DOT a WITH eP) (cfg.τ a)

The inductive proposition given above represents a relation between values in exp and
values in Type (types in Lean are how we implementT ). We can see from the constructor on
lines 2-3 that the type of a value expression is taken directly from its contained value, as in
TypeVal in Section 5.1.2. Similarly, lines 4-7 define types for attribution expressions using
τ, enforcing subexpression types to N and ρ(a). Type inference rules are given for all other
expression types, matching the rules presented in Section 5.1.2.

In earlier versions of our mechanisation, we built expression types into the constructors
of exp, giving exp a type parameter. For example, the type exp bool would represent
an expression of type bool. This was easy to express, and allowed Lean’s type system
to perform all type checking on our expression language. Further, we were able to create
a context function type that always returns an expression of a type that matches the input
attribute. However, Lean’s tactics would often fail when trying to perform induction on
these dependent inductive types. This issue was significant enough to cause us to abandon
the approach entirely and resort to specifying expression types using a relation as described
above.

8.4 The Context Function
We define a context function as a simple (dependent) function in Lean, which takes as pa-
rameters a node, an attribute, and a parameter value, returning an expression.

def context := ∀ (n:node) (a:cfg.A) (p:cfg.ρ a), exp cfg

We then implement the ⊕ operator in the function emptyC shown below.

1 def extendC (n:node) (a:cfg.A) (p:cfg.ρ a) (v:cfg.τ a)
2 (c:context cfg) : context cfg :=
3 λ n’ a’ p’,
4 bite (napmatch cfg n n’ a a’ p p’)
5 ({{v}})
6 (c n’ a’ p’)

The inputs to extendC are a node, an attribute, and a parameter and value that are typed
according to τ and ρ, as well as a context function. The output is a function that matches
against the first three inputs, returning either the value v given, or deferring to the original
context function c.
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We similarly implement extendE, which modifies a context function’s output with an
expression (rather than specifically a value expression). We then define writeAL, which
repeatedly applies extendE, implementing the ⊗ operator.

8.4.1 Node Existence in Lean
Instead of implementing node existence in our Lean mechanisation using the methods dis-
cussed in Chapter 5, we instead define a type ctxN, which contains both a context function
and a list of nodes, such that node existence now depends on a ctxN, rather than just a context
function. This makes reasoning about node existence simpler during proofs, but means that
proofs around higher order attribution differ slightly between our mechanised and on-paper
proofs.

Higher order semantics were the hardest part of Saiga to mechanise, and not all of our
mechanised proofs around higher order semantics are complete. Specifically, our mecha-
nised proof for cache irrelevance has some holes around our higher order semantics.

8.5 The Step Relation
As with type inference rules, we define the step relation in Lean as an inductive proposition,
as shown below. The step proposition takes a context function (specifically a ctxN, which
represents a context function and a list of nodes), an initial expression, a second context
function and expression. The proposition step c1 e2 c2 e2 is equivalent to c1 ` e1 −→
c2 ` e2 in the notation we have introduced in this thesis. In Lean, we implement the notation
c1 � e1 −→ c2 � e2, allowing us to express the same proposition in a similar fashion.

1 inductive step {cfg}:ctxN cfg -> exp cfg -> ctxN cfg -> exp cfg -> Prop
2 | condTrue {ctx:ctxN _} {eT eF:exp cfg}:
3 step ctx (IFF {{tt}} THEN eT ELSE eF) ctx eT
4
5 | appApp {T1 T2:Type} {ctx:ctxN cfg} {f:(T1 -> T2)} {p:T1}:
6 step ctx ({{f}} OF {{p}}) ctx {{f p}}
7
8 | attrFetchCached {ctx:ctxN _} {a:cfg.A} {n:node} {p:cfg.ρ a}
9 (nv: notvalue (ctx.c n a p)):

10 step ctx ({{n}} DOT a WITH {{p}}) ctx (n/a/p ;= (ctx.c n a p))
11
12 | cacheWrite {ctx:ctxN _} {a:cfg.A} {v:cfg.τ a} {n:node} {p:cfg.ρ a}:
13 step ctx (n / a / p ;= {{v}}) (@extendCN cfg n a p v ctx) {{v}}

The step relation in Lean has 13 constructors, matching the 13 rules shown in Sec-
tion 5.1.3. Above, we have shown only four of these constructors. condTrue implements
the simple CondTrue step. appApp implements the FunApp step, where the syntax f p indi-
cates function application using Lean’s function language (the underlying system in our Lean
implementation is, of course, Lean). attrFetchCached implements the AttrFetchCached
rule, requiring the notvalue predicate defined elsewhere. Finally, cacheWrite implements
the CacheWrite rule, using extendCN to update a context function.

Similarly, we define the multistep and big step relations as the inductive propositions
multistep and bigstep.
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8.6 Metatheoretic Properties

All of the code referenced in the preceding sections of this chapter is contained in saiga.lean
in our repository. In saiga_lemmas.lean we define many lemmas that are used to aid
proofs in this and later sections, none of which are interesting enough to share here. Built
upon these lemmas are the metatheoretic theorems contained in saiga_metatheoretic.lean.

To give the reader some understanding the process we undertake to write proofs about
Saiga, we will walk through the first (and simplest) methatheoretic theorem value.nostep,
which states that a value expression can not be on the left of a step relation. We first present
the entirety of this theorem below, including its proof.

1 theorem value.nostep {cfg:saigaconfig}:
2 ∀ {c1 c2:ctxN cfg} {e:exp cfg} {T:Type} {v:T},
3 (c1 � {{v}} −→ c2 � e) -> false
4 := begin
5 intros c1 c2 e T v hs,
6 cases hs,
7 end

The crux of the definition of this theorem is given on line 3, which uses our Lean notation
for the single step relation and value expressions to say that a relation with a value expression
on its left implies false. false is the proposition in Lean that can never occur, so saying
that something implies false is saying that something can not occur. Before this, line 2 says
that this theorem holds for any values of c1 and c2 (which are context functions), e (which
is an expression), and v (which is of some type T).

The proof for value.nostep is given between the keywords begin and end, on lines
5 and 6. Line 5 introduces the variables defined on line 2 and the step relation on line 3 as
named hypotheses. Lean’s proof state after line 5 is given below.

1 1 goal
2 cfg : saigaconfig,
3 c1 c2 : ctxN cfg,
4 e : exp cfg,
5 T : Type,
6 v : T,
7 hs : c1 � {{v}} −→ c2 � e
8 ` false

In the above proof state, line 1 indicates that there is only one goal to solve. Lines 2 to 6
describe the six givens, with their names, and line 7 gives the name hs to the hypothesis
describing the step relation. Line 8 is the single goal of false.

This proof is completed using the cases tactic on the hypothesis hs, as shown on line 6
of the first code listing of this section. The cases tactic replaces the existing goal with one
goal for each of the rules that could have created the proposition in question. As there are
exactly zero ways that hs could have been created, this tactic immediately satisfies the theo-
rem by removing all goals. After applying this tactic, Lean reports goals accomplished,
indicating that the theorem is proven.

We define and prove a number of related theorems. For each of the following theorems,
we will show only the definition of the theorem, not the body of the proof.
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8.6.1 Step Determinism

Determinism of the step relation, as discussed in Section 6.3, is specified as follows, and its
full proof is shown in saiga_metatheoretic.lean.

1 theorem step.determinism {cfg:saigaconfig}:
2 ∀ {c1 c2 c3:ctxN cfg} {e1 e2 e3:exp cfg},
3 (c1 � e1 −→ c2 � e2) ->
4 (c1 � e1 −→ c3 � e3) ->
5 e3 = e2 ∧ c3 = c2

8.6.2 Type Determinism

Determinism of the type relation, as discussed in Section 6.4, is specified as follows, and its
full proof is shown in saiga_metatheoretic.lean.

1 theorem type.determinism {cfg:saigaconfig}:
2 ∀ {e:exp cfg} {T1 T2:Type}
3 (t1: expType e T1)
4 (t2: expType e T2),
5 T2 = T1

8.6.3 Type Preservation

Preservation of the type relation over the step relation, as discussed in Section 6.5, is specified
as follows, and its full proof is shown in saiga_metatheoretic.lean.

1 theorem step.type_preservation {cfg:saigaconfig}:
2 ∀ {c1 c2:ctxN cfg} {e1 e2:exp cfg} {T:Type}
3 (hts: type_safe c1)
4 (ht: expType e1 T)
5 (hs: c1 � e1 −→ c2 � e2),
6 expType e2 T

8.6.4 Progress

Progress of the step relation, as discussed in Section 6.6, is specified as follows, and its full
proof is shown in saiga_metatheoretic.lean.

1 theorem step.progress {cfg:saigaconfig}:
2 ∀ {c1:ctxN cfg} {e1:exp cfg} {T:Type}
3 (hts: type_safe c1)
4 (ht: expType e1 T),
5 (∃ c2 e2, c1 � e1 −→ c2 � e2) ∨ value e1 ∨ cont_mk e1



8.7 Cache Irrelevance 193

8.6.5 Big Step and Multistep
We represent the big step relation (bigstep in Lean) using the notation c1 � e »» c2 � v, and
the multistep relation (multistep in Lean) using the notation c1 � e =⇒ c2 � v. Equiva-
lence of the big step and multistep relations, as discussed in Section 6.7, is specified as shown
in the following two snippets, and their full proofs are shown in saiga_metatheoretic.lean.

1 theorem multistep.bigstep {cfg:saigaconfig}:
2 ∀ {c1 c2:ctxN cfg} {e:exp cfg} {T:Type} {v:T}
3 (hs: c1 � e =⇒ c2 � v),
4 (c1 � e »» c2 � v)

1 theorem bigstep.multistep {cfg:saigaconfig}:
2 ∀ {c1 c2:ctxN cfg} {e:exp cfg} {T:Type} {v:T}
3 (hs: c1 � e »» c2 � v),
4 (c1 � e =⇒ c2 � v)

The approach to proving these theorems in Lean is the same as our proofs of Theorems 17
and 24 in Chapter 6: we prove a lemma about a single step followed by a big step (Lemma 16)
to prove multistep.bigstep, and we prove a number of similar lemmas (Lemmas 18
to 23) to prove bigstep.multistep.

8.7 Cache Irrelevance
As in Section 6.8, our mechanisation approaches cache irrelevance by defining an equiva-
lence relation between context functions and proving that big step evaluation will always
produce an output context function that is equivalent to the input context function. Our
proofs are found in the Lean files saiga_irrelprep.lean and saiga_irrel.lean. We
state and prove the same series of lemmas we present in Section 6.8, which build upon one
another to eventually provide a proof for “big step equivalence”.

We mechanise Axiom 1, as well as a number of axioms to implement “node existence”
behaviour. For the higher order section of our proof, we also rely on some properties that we
take as axioms. Our mechanisation for cache irrelevance is not complete, as we discuss in
Section 9.2.
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The other day upon the stair;
I met a man who wasn’t there.
He wasn’t there again today.
I wish that man would go away.

Paraphrased excerpt from Antigonish by
William Hughes Mearns

9
Conclusion

In this thesis we have presented a foundational semantics of dynamically scheduled attribute
grammar evaluation, in the calculus we call Saiga. We began in Chapter 2 with a history of
attribute grammars, and discussed the state of the art in dynamic evaluation, including dis-
cussion of a number of common extensions to attribute grammar platforms. We presented the
core version of Saiga in Chapter 3, extended this with parameterised attributes and caching
in Chapter 4, and further extended our semantics to include higher order evaluation in Chap-
ter 5.

In Chapter 6 we presented and proved a number of metatheoretic properties about Saiga,
in its core, extended, and higher order forms. The most complex property to prove was cache
irrelevance, which states that including caching operations (and higher order operations) does
not affect the semantics of evaluation for any valid attribute grammar program.

We demonstrated the utility of Saiga in Chapter 7, where we used our calculus to for-
mally compare the type analysis of two compilers for the same language, which were writ-
ten using two different attribute grammar platforms and using two different approaches to
name analysis. We were able to show that a key attribute would always evaluate to the same
value for each approach, and we also compared the number of evaluation steps taken by each
approach, finding their worst-case step count to be almost identical.

9.1 Evaluation of Contributions
In Section 1.1 we outlined the eight specific contributions of this thesis. Here we will repeat
those contributions (in italics), and briefly discuss how and where each contribution was
demonstrated.

1. A calculus which captures the fundamental semantics of dynamically-scheduled at-
tribute grammar evaluation, without being obscured by a general purpose language
or by a particular attribute grammar platform’s implementations.

We presented Saiga in Chapters 3 to 5. Saiga models attribute grammar evaluation,
focusing on the semantics of things like fetching attributes, writing to cache, and ac-
cessing basic function calls, without focusing on the details of those function calls
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(by deferring to the underlying system) or the details of the equation selection pro-
cess (by deferring to the context function). The example in Chapter 7 demonstrated
Saiga’s ability to specify attributes in notations faithful to different real-world attribute
grammar platforms, while being unconcerned with the particulars of either platform’s
equation selection process.

2. This calculus is defined in the form of an expression language, type rules, and a
small-step operational semantics.

Saiga’s expression language is presented in its core, extended, and higher order forms
in Sections 3.1.3, 4.2.1 and 5.1.1, its type rules in Sections 3.1.4, 4.2.2 and 5.1.2, and
its operational semantics in Sections 3.1.5, 4.2.3 and 5.1.3. Each of these sets of spec-
ifications is simple in its design, and each variation is discussed in detail, explaining
the design decisions that went into their specification, as well as presenting motivating
examples to demonstrate their use.

3. A key feature of the semantics presented is the context function, which is a very flexible
framework for defining attribute grammar equations that is notation agnostic.

The context function is defined for the core calculus in Chapter 3, modified slightly in
Chapter 4 to allow for parameterisation, and left unchanged in Chapter 5. We define
two simple methods of specifying a modified context function with the ⊕ and ⊗ oper-
ators, without specifying or relying on the inner workings of the function. We present
a set of “selector” notations in Section 3.2.2, which are a useful example of how a
context function might be defined, but we do not rely on these notations at any point
in our calculus – the context function remains open to be defined arbitrarily, as long as
it remains a mathematical function.

4. We begin with a core calculus which we extend by implementing some common and
representative attribute grammar extensions, including parameterised attributes, at-
tribute caching, and higher order attributes.

Parameterised attributes and attribute caching are presented in Chapter 4. Parameteri-
sation is achieved by modifying the context function to take a third parameter, and giv-
ing the expression language the ability to specify such a parameter. Attribute caching
is achieved by changing our semantics to “write” the computed value of an attribute
to the context function during evaluation. This required the addition of the cache ex-
pression, a production of the expression language intended only for intermediary use
during evaluation. If we had specified big step semantics only, such an expression
would not have been necessary, but we were motivated to specify small-step semantics
to allow for better quantitative analysis.

Higher order attributes are presented in Chapter 5. We implement higher order seman-
tics by providing an expression form that specifies a set of attribute equation expres-
sions to be “written” to the context function. This generalised approach allows higher
order attributes to be specified in a way that does or does not “tie in” to the existing
tree, a generalisation that is important as different attribute grammar platforms differ
widely in this regard. The open and “tree-structure-agnostic” nature of the context
function allowed higher order attribution to be added to our semantics with relative
ease; as the tree structure is not being tracked in any way, modifying the structure can
happen without any hassle.
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5. Our calculus represents a framework for reasoning about and comparing the be-
haviour of attribute grammar programs, aided by a set of metatheoretic properties,
for which we provide comprehensive proofs.

Chapter 6 outlines and proves a number of metatheoretic properties about Saiga, start-
ing with simple properties such as determinism and progress, as well as proven equiv-
alence between the small-step, multistep, and big step semantics. The most complex
property to prove was cache irrelevance – the property that writing computed attribute
values to the cache will not change the semantic outputs of a context function.

6. The calculus itself, as well as proofs for the majority of these metatheoretic properties,
are mechanised in Lean.

We present our complete Lean code via external repositories, presenting only small
examples in Chapter 8. The core and extended versions of Saiga were mechanised
with ease, including their metatheoretic proofs. Proof of cache irrelevance for the
extended calculus was mechanised, although not without considerable effort.

The higher order calculus was also mechanised, with proofs of most of its metatheo-
retic properties similarly mechanised. The nature of a changing context function, espe-
cially when it comes to nodes “existing” or “not existing” in a black-box mathematical
function, presented considerable difficulties during mechanisation. As a result, our
mechanisation does not include a complete proof of cache irrelevance for the higher
order semantics. We believe this proof is possible to mechanise, given enough effort
(see Section 9.2).

7. We demonstrate the utility of these techniques through analysis of a real-world scale
problem: comparing two different approaches to name and type analysis for Feath-
erweight Java, translated directly from implementations in two different real-world
attribute grammar platforms.

A major contribution of this thesis, Chapter 7 considers the Featherweight Java lan-
guage, specifies two different approaches to name and type analysis written for two
different attribute grammar platforms, and proves them to be equivalent. Thanks to the
maintainers of Kiama and JastAdd, who were kind enough to provide implementations
of Featherweight Java in their own platforms, we were able to translate the two differ-
ent approaches into Saiga specifications, and prove that one particular attribute would
always evaluate to the same result, for any Featherweight Java program.

8. This comparison is primarily a proof that two particular attributes always evaluate to
the same value, but we also demonstrate Saiga’s facility for quantitative analysis by
comparing the number of evaluation steps taken for a particular computation.

We continue our analysis in Chapter 7 by proving that name binding on Featherweight
Java identifier expressions complete in a number of evaluation steps that conform to a
specific formula. We show that JastAdd’s approach is more efficient in the best-case
scenario (when a name’s binding is in its smallest containing scope), and that the two
approaches are very close to identical in efficiency for the worst-case scenario (when
the name is not found in scope).

This is a major contribution, as the Kiama and JastAdd implementations use two differ-
ent but accepted name analysis strategies – the “environment” and “lookup” strategies.
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Before Saiga, there was no framework for formally analysing such strategies, and the
result that their worst-case time complexities are close to identical is an interesting one.
Much more analysis could be performed to compare the effects of attribute caching on
repeated name lookup evaluations – the example presented in Chapter 7 is merely a
demonstration of the kinds of analysis that can be performed using the Saiga calculus.

9.2 Future Work

Based on the work presented in this thesis, there are a number of directions for potential
future work.

• Circular attributes could be implemented using iterative fixed-point evaluation.
This would probably involve the context function returning not only an expression
to represent the attribute equation, but also some indication of a starting value for
fixed-point computation, perhaps as an Option so that not all attributes allow fixed-
point circular evaluation. The fact that normal evaluation wraps all non-value attribute
computations in cache expressions provides an existing “log” of the nested stack of
attributes being evaluated, which would be a useful starting point for fixed-point eval-
uation. However in the current approach to our semantics, each expression is evalu-
ated without regard for what expression contains it. To implement fixed-point circular
evaluation, we would need to include some extra contextual information to our step
relation, to allow evaluation to know when a cycle has been reached.

• Nodes and attributes could be extended with type information, so that not all
attributes are applicable to all nodes. In the version of Saiga presented in this thesis,
we abstract all information away from a node, including its structure and its type. This
abstraction has proved useful in providing the flexibility to specify attribute grammar
programs without being bound to a particular type system, but we have found that we
have been implementing a simple type system inside Saiga in every example we have
presented, which may be seen as an indicator that the type system should be part of the
calculus. It would be possible to tag each instance of N and each instance of A with
a simple enumerated type, and redefine a context function in the following way, such
that σ is still a mathematical (total) function, but not all attributes need to be defined
on all nodes.

σ ∈ N [q]→ (a : A[q]) → ρ(a) → E

Further, this would allow the context function to return different expressions for nodes
of different types, without reflecting on intrinsic attributes such as nodeType. We
opted not to take this approach in the work presented in this thesis, instead choosing
to present a simpler calculus. Nevertheless, node types are an important part of almost
all real-world attribute grammar program specifications, so our calculus might benefit
from modelling them as an explicit part of the calculus, instead of modelling them
using the calculus.

• Our mechanisation of higher order attributes could be improved. Our experiences
with mechanising Saiga, both in the original Coq version and now in Lean, has been
that grammars and relations are easy to model as inductive datatypes. The context
function, on the other hand, is designed specifically to be a black-box function, which
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does not play so well with our mechanisation tools. In our approaches to mechani-
sation we have implemented a concrete base context function, and created specific
functions to implement the ⊕ and ⊗ operations. This introduces a kind of process
ordering to our context functions that does not naturally occur in our “on paper” se-
mantics, and makes proofs about changing context functions more difficult to frame.
More work could be done in expressing the context function and the way it changes in
our mechanisation, in such a way that allows for more convenient reasoning.
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A
Appendix

A.1 Name Analysis Example

A.1.1 Kiama’s Abstract Grammar for Featherweight Java
A sample of the abstract grammar used by the Kiama implementation.

1 object FWJavaParserSyntax {
2 sealed abstract class ASTNode extends Product
3
4 case class Program (optClassDecls : Vector[ClassDecl],
5 expr : Expr) extends ASTNode
6
7 case class ClassDecl (identifier : String,
8 idnUse : IdnUse,
9 optFieldOrParamDecls : Vector[FieldOrParamDecl],

10 ctorDecl : CtorDecl,
11 optMethodDecls : Vector[MethodDecl])
12 extends ASTNode
13
14 case class CtorDecl (idnUse : IdnUse,
15 optFieldOrParamDecls : Vector[FieldOrParamDecl],
16 optIdnUses : Vector[IdnUse],
17 optFieldInits : Vector[FieldInit]) extends ASTNode
18
19 case class MethodDecl (idnUse : IdnUse,
20 identifier : String,
21 optFieldOrParamDecls : Vector[FieldOrParamDecl],
22 expr : Expr) extends ASTNode
23
24 case class FieldInit (idnUse1 : IdnUse, idnUse2 : IdnUse)
25 extends ASTNode
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26
27 case class FieldOrParamDecl (idnUse : IdnUse, idnDef : IdnDef)
28 extends ASTNode
29
30 sealed abstract class Expr extends ASTNode with
31 org.bitbucket.inkytonik.kiama.output.PrettyExpression
32 case class Inv (expr : Expr, idnUse : IdnUse, optExprs:Vector[Expr])
33 extends Expr
34 with org.bitbucket.inkytonik.kiama.output.PrettyNaryExpression {
35 val priority = 2
36 val fixity = org.bitbucket.inkytonik.kiama.output.Infix
37 (org.bitbucket.inkytonik.kiama.output.LeftAssoc)
38 }
39 case class Fld (expr : Expr, idnUse : IdnUse) extends Expr
40 with org.bitbucket.inkytonik.kiama.output.PrettyNaryExpression {
41 val priority = 2
42 val fixity = org.bitbucket.inkytonik.kiama.output.Infix
43 (org.bitbucket.inkytonik.kiama.output.LeftAssoc)
44 }
45 case class Cst (idnUse : IdnUse, expr : Expr) extends Expr
46 with org.bitbucket.inkytonik.kiama.output.PrettyNaryExpression {
47 val priority = 1
48 val fixity = org.bitbucket.inkytonik.kiama.output.Infix
49 (org.bitbucket.inkytonik.kiama.output.RightAssoc)
50 }
51 case class New (idnUse : IdnUse, optExprs : Vector[Expr])
52 extends Expr
53 with org.bitbucket.inkytonik.kiama.output.PrettyNaryExpression {
54 val priority = 0
55 val fixity = org.bitbucket.inkytonik.kiama.output.Infix
56 (org.bitbucket.inkytonik.kiama.output.NonAssoc)
57 }
58 case class Idn (idnUse : IdnUse) extends Expr
59 with org.bitbucket.inkytonik.kiama.output.PrettyNaryExpression {
60 val priority = 0
61 val fixity = org.bitbucket.inkytonik.kiama.output.Infix
62 (org.bitbucket.inkytonik.kiama.output.NonAssoc)
63 }
64
65 case class IdnUse (identifier : String) extends ASTNode
66 case class IdnDef (identifier : String) extends ASTNode
67 }
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A.1.2 JastAdd’s Abstract Grammar for Featherweight Java
A sample of the abstract grammar used by the JastAdd implementation.

1 Program ::= ClassDecl∗ [Expr];
2
3 abstract TypeDecl;
4 ClassDecl : TypeDecl ::= <Name> Extends:TypeUse
5 FPDecl∗ CtorDecl MethodDecl∗;
6 FPDecl ::= TypeUse IdnDef;
7 CtorDecl ::= TypeUse FPDecl∗ Super:VarUse∗ FieldInit∗;
8 FieldInit ::= <FieldName> <ParName>;
9 MethodDecl ::= TypeUse <Name> FPDecl∗ Expr;

10
11 abstract Expr;
12 EIdn : Expr ::= VarUse;
13 EFld : EIdn ::= Expr;
14 ECall : Expr ::= Expr VarUse Argument:Expr∗;
15 ENew : Expr ::= TypeUse Argument:Expr∗;
16 ECast : Expr ::= TypeUse Expr;
17
18 VarUse ::= <Name>;
19 TypeUse ::= <Name>;
20 IdnDef ::= <Name>;
21
22 UnknownTypeDecl : TypeDecl;

A.2 Featherweight Java Code in Kiama and JastAdd

A.2.1 Kiama

1 // Names via environments
2
3 val env : ASTNode => Defs =
4 attr {
5 case l @ ClassDecl(c, _, _, _, _) =>
6 FPDecl(TypeUse(c), IdnDef("this")) +: fieldsRef(l).get
7
8 case k : CtorDecl =>
9 k.optFPDecls

10
11 case parent.pair(m : MethodDecl, p) =>
12 m.optFPDecls ++ env(p)
13
14 case parent(p) =>
15 env(p)
16
17 case _ =>
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18 Vector()
19 }
20
21 // Types
22
23 def findType(defs : Defs, x : String) : Option[String] =
24 defs.collectFirst {
25 case FPDecl(TypeUse(c), IdnDef(y)) if x == y =>
26 c
27 }
28
29 def findFP(defs : Defs, x : String) : Option[FPDecl] =
30 defs.collectFirst {
31 case fp @ FPDecl(_, IdnDef(y)) if x == y =>
32 fp
33 }
34
35
36 val varUseTypeRef : VarUse => Option[ClassDecl] =
37 attr {
38 case u @ VarUse(x) =>
39 findFP(env(u), x) match {
40 case Some(FPDecl(TypeUse(y), _)) =>
41 decl(y)(u)
42 case None =>
43 None
44 }
45 }
46
47 val tipeRef : Expr => Option[ClassDecl] =
48 attr {
49 // VAR
50 case EIdn(u) =>
51 varUseTypeRef(u)
52
53 // FLD
54 case n @ EFld(e, VarUse(f)) =>
55 tipeRef(e) match {
56 case Some(c) =>
57 fieldsRef(c) match {
58 case Some(defs) =>
59 findFP(defs, f) match {
60 case Some(FPDecl(TypeUse(y), _))=>
61 decl(y)(n)
62 case None =>
63 None
64 }
65 case _ =>
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66 None
67 }
68 case None =>
69 None
70 }
71
72 // CALL
73 case n @ ECall(e, VarUse(m), es) =>
74 tipeRef(e) match {
75 case Some(c) =>
76 method(m)(c) match {
77 case Some(MethodDecl(
78 TypeUse(r), _, defs, _)) =>
79 if (esubtypes((es, defs))(n))
80 decl(r)(n)
81 else
82 None
83 case None =>
84 None
85 }
86 case None =>
87 None
88 }
89
90 // NEW
91 case n @ ENew(TypeUse(c), es) =>
92 decl(c)(n) match {
93 case Some(c) =>
94 fieldsRef(c) match {
95 case Some(flds) =>
96 if (esubtypes((es, flds))(n))
97 Some(c)
98 else
99 None

100 case _ =>
101 None
102 }
103 case None =>
104 None
105 }
106
107 // UCAST, DCAST
108 case n@ECast(TypeUse(c), e) =>
109 tipeRef(e) match {
110 case Some(d) =>
111 decl(c)(n)
112 case None =>
113 None
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114 }
115
116 }
117
118
119 val tipeName : Expr => Option[String] =
120 attr {
121 case e =>
122 tipeRef(e) match {
123 case Some(ClassDecl(id, _, _, _, _)) =>
124 Some(id)
125 case None =>
126 None
127 }
128 }
129
130 // ClassDeclookups
131
132 val decl : String => ASTNode => Option[ClassDecl] =
133 paramAttr {
134 case "Object" => {
135 case _ =>
136 Some(ClassDecl("Object",
137 TypeUse("Object"),
138 Vector(),
139 CtorDecl(
140 TypeUse("Object"),
141 Vector(),
142 VarUses(Vector()),
143 FieldInits(Vector())
144 ),
145 Vector()
146 ))
147 }
148 case c => {
149 case parent(p) =>
150 decl(c)(p)
151 case Program(classDecls, _) => {
152 classDecls.find
153 (classDecl => className(classDecl) == c)
154 }
155 }
156 }
157
158 val method : String => ClassDecl => Option[MethodDecl] =
159 paramAttr {
160 case m => {
161 case ClassDecl("Object", _, _, _, _) =>
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162 None
163 case l1 @ ClassDecl(_, _, _, _, ms) =>
164 ms.find(_.identifier == m) match {
165 case Some(meth) =>
166 Some(meth)
167 case None =>
168 superClass(l1) match {
169 case Some(l2) =>
170 method(m)(l2)
171 case None =>
172 None
173 }
174 }
175 }
176 }
177
178
179 val superClass : ClassDecl => Option[ClassDecl] =
180 attr {
181 case n @ ClassDecl(_, TypeUse(sc), _, _, _) =>
182 decl(sc)(n)
183 }
184
185 val fieldsRef : ClassDecl => Option[Defs] =
186 attr {
187 case ClassDecl("Object", _, _, _, _) =>
188 Some(Vector())
189 case n @ ClassDecl(_, i @ TypeUse(sc), defs1, _, _) => {
190 decl(sc)(n) match {
191 case Some(sup) =>
192 fieldsRef(sup) match {
193 case Some(defs2) =>
194 Some(defs1 ++ defs2)
195 case None =>
196 Some(defs1)
197 }
198 case None =>
199 None
200 }
201 }
202 }
203
204 // Sub-typing
205
206 val esubtypes : CachedParamAttribute
207 [(Vector[Expr], Defs), ASTNode, Boolean] =
208 paramAttr {
209 case (es, defs) => {
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210 case n =>
211 val ts = es.map(tipeRef)
212 (ts.length == defs.length) &&
213 (!ts.contains(None)) &&
214 subtypes((ts.map(_.get), defs))(n)
215 }
216 }
217
218 val subtypes: CachedParamAttribute
219 [(Vector[ClassDecl], Defs), ASTNode, Boolean] =
220 paramAttr {
221 case (ts, defs) => {
222 case n =>
223 ts.zip(defs).forall {
224 case (c, FPDecl(TypeUse(sn), _)) =>
225 subtypeOf(sn)(c)
226 }
227 }
228 }
229
230 val subtypeOf : CachedParamAttribute[String, ClassDecl, Boolean] =
231 paramAttr {
232 case "Object" => {
233 case _ => true
234 }
235 case pn => {
236 case ClassDecl("Object", _, _, _, _) => false
237 case ClassDecl(pn2, _, _, _, _) if pn2 == pn =>
238 true
239 case n => {
240 superClass(n) match {
241 case Some(pc) =>
242 subtypeOf(pn)(pc)
243 case None =>
244 false
245 }
246 }
247 }
248 }
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A.2.2 JastAdd

1 aspect TypeLookup {
2 syn TypeDecl TypeUse.decl() = lookupType(getName());
3 inh TypeDecl TypeUse.lookupType(String name);
4 eq Program.getChild().lookupType(String name) {
5 if ("Object".equals(name)) {
6 return objectClassDecl();
7 }
8 for (ClassDecl cd: getClassDecls()) {
9 if (cd.getName().equals(name)) {

10 return cd;
11 }
12 }
13 return unknownTypeDeclNTA();
14 }
15
16 syn nta ClassDecl Program.objectClassDecl() {
17 return new ClassDecl(
18 "Object",
19 new TypeUse(""),
20 new List(),
21 new CtorDecl(
22 new TypeUse("Object"),
23 new List(),
24 new List(),
25 new List()
26 ),
27 new List()
28 );
29 }
30
31 syn nta UnknownTypeDecl Program.unknownTypeDeclNTA()
32 = new UnknownTypeDecl();
33 inh UnknownTypeDecl ASTNode.unknownTypeDecl();
34 eq Program.getChild().unknownTypeDecl()
35 = unknownTypeDeclNTA();
36 syn boolean TypeDecl.isUnknown() = false;
37 eq UnknownTypeDecl.isUnknown() = true;
38 }
39
40 aspect VariableLookup {
41 syn FPDecl VarUse.decl() = lookup(getName());
42 inh FPDecl VarUse.lookup(String name);
43 inh FPDecl MethodDecl.lookup(String name);
44 eq MethodDecl.getExpr().lookup(String name) {
45 if (name.equals("this")) {
46 return enclosingClassDecl().thisDecl();
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47 }
48 for (FPDecl p: getFPDecls()) {
49 if (p.getIdnDef().getName().equals(name)) {
50 return p;
51 }
52 }
53 // FJ paper forces fields to be accessed via "this".
54 // Thus, the following is not needed, which allows
55 // fields to be accessed without "this". However,
56 // this is the same semantics as in "Scopes as Types"
57 // paper. Just return null if this behaviour is not
58 // wanted.
59 return lookup(name);
60 }
61 eq ClassDecl.getMethodDecl().lookup(String name)
62 = remoteLookup(name);
63 eq EFld.getVarUse().lookup(String name)
64 = getExpr().type().remoteLookup(name);
65 eq Program.getChild().lookup(String name)
66 = null;
67
68 syn FPDecl TypeDecl.remoteLookup(String name) = null;
69 eq ClassDecl.remoteLookup(String name) {
70 for (FPDecl fd: getFPDecls()) {
71 if (fd.getIdnDef().getName().equals(name)) {
72 return fd;
73 }
74 }
75 return superClass().remoteLookup(name);
76 }
77
78 syn nta FPDecl ClassDecl.thisDecl()
79 = new FPDecl(new TypeUse(getName()),
80 new IdnDef("this"));
81
82 inh ClassDecl MethodDecl.enclosingClassDecl();
83 eq ClassDecl.getMethodDecl().enclosingClassDecl() = this;
84 }
85
86 aspect MethodLookup {
87 syn MethodDecl ECall.decl()
88 = getExpr().type().lookupMethod(getVarUse().getName());
89
90 syn MethodDecl TypeDecl.lookupMethod(String name) = null;
91 eq ClassDecl.lookupMethod(String name) {
92 for (MethodDecl md: getMethodDecls()) {
93 if (md.getName().equals(name)) {
94 return md;
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95 }
96 }
97 return superClass().lookupMethod(name);
98 }
99 }

100
101 aspect TypeAnalysis {
102 syn String TypeDecl.typeName();
103 eq ClassDecl.typeName() = getName();
104 eq UnknownTypeDecl.typeName() = "";
105
106 syn TypeDecl Expr.type();
107 eq ENew.type() {
108 if (getTypeUse().decl().isUnknown()) {
109 return unknownTypeDecl();
110 }
111 ClassDecl cd = (ClassDecl) getTypeUse().decl();
112 if (cd.fields().size() != getNumArgument()) {
113 return unknownTypeDecl();
114 }
115 for (int i = 0; i < cd.fields().size(); i++) {
116 TypeDecl argTd = getArgument(i).type();
117 String fieldName = cd.fields().get(i)
118 .getTypeUse().getName();
119 if (!argTd.subtypeOf(fieldName)) {
120 return unknownTypeDecl();
121 }
122 }
123 return cd;
124 }
125 eq ECall.type() {
126 MethodDecl md = decl();
127 if (md == null) {
128 return unknownTypeDecl();
129 }
130 if (getNumArgument() != md.getNumFPDecl()) {
131 return unknownTypeDecl();
132 }
133 for (int i = 0; i < getNumArgument(); i++) {
134 TypeDecl argTd = getArgument(i).type();
135 String parName = md.getFPDecl(i).getTypeUse()
136 .getName();
137 if (!argTd.subtypeOf(parName)) {
138 return unknownTypeDecl();
139 }
140 }
141 return md.returnType();
142 }
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143 // The following equation is valid for EFld too
144 eq EIdn.type()
145 = getVarUse().decl() != null
146 ? getVarUse().decl().type()
147 : unknownTypeDecl();
148 eq ECast.type()
149 = !getExpr().type().isUnknown()
150 ? getTypeUse().decl()
151 : unknownTypeDecl();
152
153 syn TypeDecl MethodDecl.returnType() = getTypeUse().decl();
154 syn TypeDecl FPDecl.type() = getTypeUse().decl();
155
156 // Circularity check
157 syn boolean TypeDecl.hasCycleOnSuperclassChain()
158 circular [true] = false;
159 eq ClassDecl.hasCycleOnSuperclassChain()
160 = getExtends().decl().hasCycleOnSuperclassChain();
161
162 // Only following super if there is no cycle,
163 // making it easier to write other equations
164 syn TypeDecl ClassDecl.superClass() =
165 !hasCycleOnSuperclassChain() ? getExtends().decl()
166 : unknownTypeDecl();
167
168 // Subtyping
169 // syn boolean TypeDecl.isSubtypeOf(TypeDecl other);
170 syn boolean TypeDecl.subtypeOf(String other);
171 // eq UnknownTypeDecl.isSubtypeOf(TypeDecl other) = false;
172 eq UnknownTypeDecl.subtypeOf(String other) = false;
173 // eq ClassDecl.isSubtypeOf(TypeDecl other)
174 // = this == other || superClass().isSubtypeOf(other);
175 eq ClassDecl.subtypeOf(String other) {
176 if (other.equals("Object")) return true;
177 // object is not a subclass of anything except object
178 if (getName().equals("Object")) return false;
179 if (getName().equals(other)) return true;
180 return superClass().subtypeOf(other);
181 }
182
183 // Type equality
184 syn boolean TypeDecl.equalsTo(TypeDecl other);
185 // We cannot type these
186 eq UnknownTypeDecl.equalsTo(TypeDecl other) = false;
187 eq ClassDecl.equalsTo(TypeDecl other) = this == other;
188 }
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