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Abstract

Topic models are powerful tools for automatically detecting latent topic distributions

from a set of documents. The “bag-of-words” representation used in conventional topic

models, however, ignores potentially useful dependencies between words. Topical collo-

cation models extend topic models by modelling relationships between mutually infor-

mative consecutive words. Since the standard methods for evaluating “bag-of-words”

topic models do not directly apply to topical collocation models, many fundamental

questions remain open. For example, it is not clear whether topical collocation models

are better than topic models, which kind of topical collocation model is the best, and

how well the best-performing model scales to large datasets.

Therefore, to address these questions, this thesis has three parts. In the first part,

we develop four different evaluation methods for topical collocation models and apply

them to five topical collocation models and a standard topic model, Latent Dirich-

let Allocation (LDA). We evaluate the models using human annotation, a point-wise

mutual information metric, and practical down-stream information retrieval and classi-

fication tasks. The experiments reveal that 1) almost all the topical collocations models

achieve better performance than LDA on all the evaluation methods; and 2) topical

collocation models using Adaptor Grammars (AG-colloc) almost always provide a new

state-of-the-art, though some improvements over baselines are marginal.

Having identified the best topical collocation model, the second part of this disser-

tation focuses on scaling it to very large-scale datasets with a sparse parallel reformu-

lation. We present an efficient reformulation of the AG-colloc model, an unsupervised

xi



xii Abstract

topical collocation model that can learn collocations of arbitrary length. Taking advan-

tage of sparsity in both collocation and topic distributions, we develop a novel linear

time sampling algorithm that can be easily parallelised so that the reformulation is

capable of handling large-scale corpora.

In the third part, the new implementation is compared to LDA and a topic model

for learning topical collocations (PA) on large-scale corpora in terms of speed and

quality, using the evaluation methods developed in the first part of the thesis.

Three contributions of this thesis are:

1. An empirical comparison of five topic models for learning topical collocations

(PA, LDACOL, TNG, AG-colloc, and AG-colloc2) to a standard topic model

(LDA), using four evaluation methods;

2. An efficient reformulation of the AG-colloc model;

3. A novel linear time sampling algorithm, which can be easily parallelised so that

the reformulation is capable of handling large-scale corpora.
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1
Introduction

1.1 Introduction

This thesis provides an empirical comparison of different topic models for learning

topical collocations (e.g. “white house” is a collocation in a political context, but it

is not a collocation when it describes the colour of a house). It also designs a more

efficient inference for the most effective topical collocation model so that it can scale

to large-scale text collections. This chapter introduces topic models in general and

motivates topical collocations, and closes with a discussion of the contributions and

structure of the thesis.

1
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1.2 Topic Models

Over the last decade, advances in Web technology have enabled users to easily pro-

vide and consume content of webpages, blogs, newspapers, e-books, and so on. The

overwhelming number of such unlabelled and unstructured documents requires new

techniques for storing, indexing, and understanding large-scale collections, and poses

massive challenges to researchers in the natural language processing, machine learning,

information retrieval, and data-mining communities. In particular, the goal of these

techniques is to enable effective and efficient analysis of unlabelled documents while

uncovering the underlying semantic structures.

Several dimensionality reduction techniques have been proposed to achieve this goal,

such as latent semantic indexing (LSI) (Deerwester et al., 1990), also known as latent

semantic analysis (LSA) (Landauer and Dutnais, 1997; Landauer et al., 1998). LSI

represents words and documents as points in Euclidean space (Steyvers and Griffiths,

2007) and derives semantic representations of documents from co-occurence statistics

of terms in the same document. An alternative approach is to rely on a probabilistic

model, such as probabilistic LSI (pLSI) (Hofmann, 1999; Hofmann, 2001), also known

as the aspect model. Although pLSI is a useful probabilistic model, it also has two major

problems (Blei et al., 2003): (1) too many parameters, which could lead overfitting

problems, and (2) no clear way to assign probability distribution over topics to a

document not in the training corpus.

To address those problems, Blei et al. (Blei et al., 2003) proposed the latent Dirichlet

allocation (LDA) model by introducing a Dirichlet prior on the topic distributions. As

a standard topic model (Hofmann, 1999; Hofmann, 2001; Blei et al., 2003; Griffiths and

Steyvers, 2002; Griffiths and Steyvers, 2003; Griffiths and Steyvers, 2004), LDA repre-

sents a document as a mixture of topics, where each topic is a probability distribution

over words. The mixtures of topics are hidden random variables that can be learned

from observed data using posterior probabilistic inference. The posterior distribution

of these variables given all observed documents provides not only a hidden topical de-

composition (Blei and Lafferty, 2009) but also an explicit semantic representation of
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those documents. Therefore, this posterior distribution is a powerful representation

for automated document analysis tasks, such as document summarisation (Arora and

Ravindran, 2008a; Arora and Ravindran, 2008b), word sense discrimination (Boyd-

Graber et al., 2007; Cai et al., 2007; Lau et al., 2012), text classification (Blei et al.,

2003), sentiment analysis (Mei et al., 2007a; Titov and McDonald, 2008; Lin and He,

2009; Brody and Elhadad, 2010), and information retrieval (Azzopardi et al., 2004;

Wei and Croft, 2006).

1.3 Motivations for Learning Topical Collocations

As discussed above, LDA has been widely used to study the semantic aspects of text

by identifying a set of latent topics from a collection of documents and assigning each

word in these documents to one of these latent topics. A document is modelled as a

mixture of latent topics, and each topic is a distribution over a finite vocabulary of

words. It is common for topic models to treat documents as mere bags-of-words with

no sequential structure. While this approach simplifies inference, it also ignores the

information encoded by the dependencies between adjacent words (Wallach, 2006).

Figure 1.1 illustrates the difference between LDA and topic models for learning

topical collocations. In Figure 1.1b, “White House,” “Louis Sullivan,” “vice presi-

dent,” “general manager,” “Silicon Valley,” and “Mountain View” were identified by

the topic model for learning topical collocation (AG-colloc) as topical collocations. The

individual words in these topical collocations in LDA (Figure 1.1a) belongs to differ-

ent topics. For example, “White” and “house” belongs different topics but the phrase

“white house” in the bottom belongs to the one single topic. We notice that “Silicon”

was assigned to a chemistry topic in LDA, but it was identified by the AG-colloc as a

part of a collocation and assigned to a location/council topic.

1.3.1 What are Collocations?

Collocations are frequently used in everyday language. Choueka (Choueka, 1988) de-

fined a collocation as follows:
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(a) LDA

(b) Topic models for learning topical collocations (AG-colloc).

Figure 1.1: The differences between topic models that without and with learning topical

collocations (LDA vs. AG-colloc). The colours indicate the different topics assigned

to the words/collocations. LDA assigns topics only to individual words, while AG-

colloc assigns topics to both words and multi-word collocations (e.g. “Mountain View”,

“Silicon Valley”). The two documents are randomly selected from San Jose Mercurial

News corpus.

“[a collocation is] a sequence of two or more consecutive words, that has charac-

teristics of a syntactic and semantic unit, and whose exact and unambiguous meaning

cannot be derived directly from the meaning or connotation of its components.”

Consider the following examples:

1. A loan shark is not a fish,

2. An open mind is not open like a door,
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3. White trash is not something you should put in the rubbish bin,

4. a Hot spot may not be physically hot.

Also, many conventional names are recognized as examples of collocations. For

example, a master key is a key that opens all doors, not a specific ‘master’ door, and

a vacuum cleaner uses a vacuum to clean, rather than cleaning vacuums.

Collocations are critical in almost all Natural Language Processing(NLP) tasks

and applications. In the Information Retrieval (IR) tasks, for example, when a user

searches for rock star via a search engine, he/she is probably not searching for geological

descriptions of rocks, nor astronomy material about stars.

1.3.2 What are Topical Collocations?

Collocations heavily depend on the context. A sequence of words could be a collocation

in some topics but not in others. For example, the collocation “white house” (as shown

in Figure 1.1b) and the topic of the text are correlated: in a real estate advertisement,

“white house” describes the colour of a house, but in a political context, the same

collocation refers to a branch of government. As Figure 1.2 indicates, the collocation

Hot Spot is a collocation in the Geography and Computer topics. One can easily find

more examples of topical collocations :

1. Twelve Angry men is a collocation (movie title) in a movie topic, but it is not a

collocation if it simply describes a particular number of men who are angry,

2. A red card is a collocation if it is a penalty card issued by an official in several

sports, but it is not a collocation if it describes the colour of a card,

3. Black box is a collocation in transportation and computer topics, but it is not a

collocation if it describes the colour of a box,

4. Heavy metal is a collocation in a music or chemistry topic, but it is not a collo-

cation if it is describing a metal object.
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(a) The collocation Hot Spot has distinct meanings in different contexts (e.g. Geography, Sport, Computer

Network). This phase is a collocation in the Geography, the Computer Network and the Sports context, but

it is not a collocation if it describes physically hot of a place.

(b) The collocation Black Box has distinct meanings in different contexts (e.g. Transportation, Music, Com-

puter). This phase is a collocation in the Geography or the Computer Network context, but it is not a

collocation when it describes the colour of a box.

Figure 1.2: Examples: Collocations have distinct meanings in different contexts (top-

ics). All images are obtained from Google using the collocation.

1.3.3 Why do Topical Collocations matter?

Topical collocation models make a very simple use of word order, by exploiting the

adjacency of the words in the collocation. For example, knowing that the collocation

“white house” occurs in a document provides additional information over and above

the fact that the words “white” and “house” occur in the document.
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Topic models that can capture topical collocations should be more useful for docu-

ment analysis tasks, such as document summarisation, word sense discrimination, text

classification, sentiment analysis, and information retrieval, because they model those

collocations more accurately. For example, when a user searches rock star in an infor-

mation retrieval task, a model of topical collocations can correctly boost the relevance

of all documents that discuss music topics.

Additionally, the joint topical collocation models might be more useful than pipeline

approaches. Because all collocations belong to different topics are mixed up in the first

step (identifying top collocations) of pipeline approaches. For example, “white house”

is a collocation in a political context, but it is not a collocation when it describes the

colour of a house. In their first step of pipeline approaches, however, treats “white

house” in a different context in the same way.

1.4 Thesis Contribution

Several extensions to LDA have been proposed which can assign topics not only to

individual words but also to multi-word sequences or topical collocations. However, as

we will discuss in Chapter 3, some of them rely on a pre-processing step (Lau et al.,

2013) to identify potential collocations, or capture only bigram dependencies (Griffiths

et al., 2007; Wang et al., 2007), while others jointly identify topical collocations of

arbitrary length and determine the topic mixtures corresponding to each document in

a large collection of unlabeled text (Johnson, 2010).

Wang et al. (2007) showed their Topic N-gram (TNG) model achieved better in-

formation retrieval performance on some queries that have obvious collocations, Lau

et al. (2013) showed that their Pipeline Approach (PA) outperformed LDA on topic

coherence and classification tasks. There has been no comprehensive evaluation of

those topic models. In Chapter 3, we provide the first comprehensive evaluation of five

state-of-the-art topic models for learning topical collocations, the LDA Collocation

(LDACOL) (Griffiths et al., 2007), the topical N-Gram (TNG) (Wang et al., 2007),
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the pipeline approach (PA) (Lau et al., 2013), the Adaptor Grammar as topical collo-

cation Model (AG-colloc, AG-colloc2) (Johnson, 2010)) with LDA using four standard

evaluation methods on small-scale corpora. This comprehensive evaluation provides

the first two contributions of this thesis: 1) measuring the usefulness of modelling top-

ical collocations over topic models that ignore collocations, and 2) finding the most

effective topic model among the models that learn collocations.

Additionally, adding collocations increases a model’s computational complexity,

and so most of the topical collocation models, including the best-performing one, scale

poorly to large text collections. The third contribution of this thesis is 3) reformulating

the best-performing model to enable efficient, parallel inference that takes advantage

of sparsity (Chapter 4) and evaluate this new sampler on large scale text collocations

(Chapter 5). In summary, the contributions of this thesis are as follows:

1. We systematically evaluate existing state-of-the-art topic models, with and with-

out topical collocations, using four standard evaluation methods, and find that

modelling collocations consistently provides an advantage over ignoring colloca-

tions across all the evaluation methods. This finding confirms earlier work made

by Wang et al. (2007) and Lau et al. (2013).

2. We moreover identify AG-colloc as the most effective topical collocation model

on almost all evaluation metrics.

3. We show how the AG-colloc model can be reformulated allow inference that is

linear in the length of the document.

4. We also propose a parallel, sparse version of this sampler to take advantage of

multiple cores and sparsity. While this new sampler exhibits a small drop in ac-

curacy on small datasets, relative to the original AG-colloc model, we show that

it easily scales to very large datasets (around 250, 000 documents) while outper-

forming other scalable topic models (LDA and the Pipeline Approach (PA)) on

the standard evaluation metrics.
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1.5 Thesis Overview

Figure 1.3 illustrates the dependencies of sections in each chapter. The rest of this

thesis is organised as follows.

Figure 1.3: Dependency diagram of chapters and sections

Chapter 2: In this chapter, we introduce the inference algorithms for Latent Dirich-

let Allocation (LDA), Bayesian word segmentation models, and state-of-the-art topical
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collocation Models. We review the Unigram model for Bayesian word segmentation

because it forms the basis of the point-wise Gibbs sampler that is developed in Chap-

ter 4.

Chapter 3 is a detailed empirical evaluation of several state-of-the-art topical collo-

cation models. We do this to demonstrate that modelling collocations improves topic

models, and to identify exactly which topical collocation approach performs best. In

this chapter, we perform a comprehensive evaluation to determine 1) whether mod-

elling collocations improves performance, and 2) which topical collocation model is the

most effective. To answer these questions, we select four standard evaluation methods

for evaluating topic model (LDA) and apply these methods to compare the six topic

models on small datasets. We identify AG-colloc, which learns topical collocations of

arbitrary length, as the most effective topical collocation model. Chapter 4 focuses on

scaling this model to large text collections.

Unfortunately, the best performing topical collocation algorithm identified in Chap-

ter 3, AG-colloc, is too slow to be used on large scale corpora with a large number of

topics, so in Chapter 4 we develop a novel inference algorithm for that model which

exploits sparsity and parallelises well.

Chapter 5 contains a detailed empirical evaluation of this new algorithm. We show

that the new algorithm scales well to large-scale corpora, and produces better empirical

results on several evaluations than competing methods.

Chapter 6: In this chapter, we conclude the key contributions of this thesis and

discuss possible research directions for future work.



2
Background on Topic Models and Topical

Collocation Models

2.1 Introduction

Chapter 1 discussed the importance of the topic model, topical collocations and topic

models for learning topical collocations. This chapter will review state-of-the-art mod-

els, with a detailed discussion of approximate inference and sampling algorithms ap-

plicable to these models. Section 2.3 in this chapter introduces the collapsed Gibbs

sampling algorithm for LDA. Bayesian word segmentation models and its extension to

identify collocations are discussed in Section 2.4, while Section 2.5 reviews state-of-the-

art topic models for learning topical collocations. Finally, previous work on evaluating

topic models is reviewed in Section 2.7.

11
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2.2 Notation

We use the language of corpora throughout the entire thesis, referring to entities such

as “text collocations”, “documents”, and “datasets”. Notation used in this thesis is

listed in Table 2.1.

SYMBOL DESCRIPTION

K number of topics

D number of documents in a corpus

V number of different word/collocation types in the vocabulary

Nd number of word/collocation tokens in document d

wd,i the ith word in document d

cd,i the ith collocation in document d

zd,i the topic assignment of wd,i or cd,i in the document d

xd,i the collocation indicator to indicate word wd,i is part of a collocation in the document d

θd the Multinomial (Discrete) distribution over topics for the document d

θ the Multinomial (Discrete) distributions over topics for all documents in a corpus

φk the Multinomial (Discrete) unigram distribution over the vocabulary V for topic k

φ the Multinomial (Discrete) unigram distributions over the vocabulary V for all topics

ψwd,i
the Bernoulli distribution over collocation indicator xd,i, given word wd,i

σwd,i
the Multinomial (Discrete) distribution over word wd,i, given previous word wd,i−1.

Table 2.1: Notation used in this thesis

2.3 Latent Dirichlet Allocation (LDA)

As discussed in Chapter 1, Latent Dirichlet Allocation (LDA) represents a document

as mixtures of topics, where each topic is a probability distribution over words. The

mixtures of topics are hidden random variables that can be learned from observed data

using posterior probabilistic inference. The next section describes the LDA algorithm.

A graphical representation of this model is shown in Figure 2.1. For text analysis,
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the observed data in LDA are the words w of each document. The hidden variables,

θd (the topic distribution), z (the word-topic assignment) and φ, represent the latent

topical structure. The parameters of this model are the Dirichlet priors α and β.

Figure 2.1: A graphical model representation of Latent Dirichlet Allocation (LDA). The

nodes indicate random variables, while the edges indicate conditional dependencies

between random variables. The rectangular boxes, also known as “plate notation”,

denote replication.

In the generative process of LDA, a specific topic mixture distribution θd is first

generated for document d from a Dirichlet distribution. Then, for each word wd,i in d,

a topic indicator zd,i is drawn from θd. Finally, the identity of wd,i is determined by

drawing from the topic distribution φzd,i . Formally, the LDA model is defined as:

1. For each topic k where k ∈ 1, · · · , K

(a) Draw word distribution φk ∼ DirV (β)

2. For each document d ∈ 1, · · · , D

(a) Draw a topic distribution θd | α ∼ DirK(α)

(b) For each word wd,i in the document d, where i ∈ 1, · · · , N

i. Draw a topic assignment zd,i | θd ∼Mult(θd), where zd,i ∈ 1, · · · , K

ii. Draw a word wd,i | zd,i,φ ∼Mult(φzd,i)
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Given a collection of documents, let K be a number of topics, V the vocabulary size

of this collection, and α and β be two Dirichlet scale parameters on the topic distribu-

tion and the word distribution, respectively. We let DirV (β) denote a V -dimensional

symmetric Dirichlet distribution with scalar parameter β and DirK(α) denote a K-

dimensional Dirichlet distribution with parameter α.

LDA has been extended in various ways to incorporate a variety of discourse features

in its generative process. Previous work has also shown that the posterior estimate of

θ and φ can be used to improve document classification and information retrieval

(Azzopardi et al., 2004; Wei and Croft, 2006). By modifying the generative process

of φ, different word features can be incorporated into the model. For example, Sato

and Nakagawa (2010) put a Pitman-Yor process prior on φ, and Newman et al. (2011)

used different regularisers for φ. We are primarily interested in how to incorporate

collocations, and will adapt ideas from Bayesian word segmentation (Goldwater et al.,

2009).

2.3.1 Approximate Inference for LDA

As discussed above, LDA defines a joint distribution over both the observed and hidden

variables. Given the D observed documents, the important hidden topic decomposition

of a collection of documents is determined by the posterior distribution of the hidden

variables (θ, z and φ). The posterior is:

p(θ,φ, z | w, α, β) =
p(θ,φ, z,w | α, β)

p(w | α, β)
(2.1)

Since computing this posterior distribution involves the integral in the denomina-

tor, this computation is intractable (Blei et al., 2003), and efficient, exact algorithms

have not been found (Buntine, 2009). Therefore, approximate inference algorithms are

proposed to solve this problem, such as mean field variational inference (Blei et al.,

2003), collapsed variational inference (Teh et al., 2007), the expectation propagation

algorithm (Minka and Lafferty, 2002), and Gibbs sampling (Griffiths and Steyvers,

2004). This thesis will focus on the Gibbs sampling algorithm.
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2.3.2 Collapsed Gibbs Sampling

As a special case of the Metropolis-Hastings algorithm in the Markov chain Monte

Carlo (MCMC) family of algorithms (W.R. Gilks, 1999), Gibbs sampling (Geman and

Geman, 1984) updates the value of each variable at each iteration conditioned on the

value of the other variables. It generates samples from a high-dimensional probability

distribution by conditionally sampling from lower-dimensional distributions.

For instance, if we are going to sample x from the joint distribution p(x) =

p(x1, ..., xn), where p(x) has no closed form solution, but the conditional distributions

are available, we could use Gibbs Sampler to sampling as follows (from (W.R. Gilks,

1999)).

1. Randomly initialize each xi

2. For each iteration t = 1, . . . , T :

2.1. xt+1
1 ∼ p(x1 | x(t)2 , x

(t)
3 , . . . , x

(t)
n )

2.2. xt+1
2 ∼ p(x2 | x(t+1)

1 , x
(t)
3 , . . . , x

(t)
n )

. . .

2.n. xt+1
n ∼ p(xn | x(t+1)

1 , x
(t+1)
2 , . . . , x

(t+1)
n−1 )

The sampling procedures (from 2.1 to 2.n) are repeated T times until the samples

converge to the target distribution. Although diagnosing convergence is an non-trivial

problem with the Gibbs sampling procedure, in practice this sampler is quite powerful

and usually achieves fairly good performance with sufficient iterations.

It is straightforward to use the Gibbs sampling algorithm for LDA because we can

derive the conditional distribution from its joint distribution (equation 2.1). Further-

more, instead of estimating θ and φ in LDA, Griffiths et al. (Griffiths and Steyvers,

2004; Steyvers and Griffiths, 2007) marginalise out both these hidden variables, a

practice referred to as “collapsing” (Neal, 2000). Griffths and Steyvers’ Gibbs sampler

samples from this collapsed space rather than sampling all of the hidden variables in

Figure 2.1 (Teh et al., 2007).
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The collapsed Gibbs sampler is used to estimate the posterior distribution of z. As

previously mentioned, a document can be represented by a set of word indices i, for

each word token wi. The collapsed Gibbs sampler goes through each word index in

the document and estimates the probability of assigning each topic to this word index.

Such assignments are conditioned on the hyperparameters α and β, the word tokens

wi, and the topic assignments zi to other word indices. Algorithm 1 details the steps

of the Gibbs sampler.The collapsed Gibbs sampling equation for LDA can be derived

as:

P (zd,i = k | z−i,w, α, β) ∝
∏
d

B(
∑K

k=1 nd,k + α)

B(α)

∏
k

B(
∑V

v=1 nk,v + β)

B(β)
(2.2)

∝ nd,k + αk∑K
t=1(nd,t + αt)

nk,wd,i
+ βwd,i∑V

v=1(nk,v + βv)

∝
(nd,k + αk)(nk,wd,i

+ βwd,i
)∑V

v=1(nk,v + βv)
,

where nk,v is the count of word v is assigned to a topic k; and nd,k is the count of topic

k occurred in document d. Algorithm 1 details the steps of the Gibbs sampler. Note

that we simplify the
∑V

v=1 nk,v to nk,·.

The Gibbs sampler directly estimates the z for each word token in the document

collection. However, many applications, such as text classification and information re-

trieval, require document-topic distributions θ and the topic-word distributions φ, re-

spectively. The expected value of these variables can be calculated from the document-

topic and topic-word count matrices as follows:

φk,v =
nk,v + βv∑V

w=1(nk,w + βw)
θd,k =

nd,k + αk∑K
k=1(nd,k + αk)

(2.3)
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Algorithm 1 Collapsed Gibbs Sampling Algorithm

1: Input: words w ∈ document d ∈ 1, · · · , D

2: Output: topic assignments z for all words w and counts nd,k, nk,w, and nk

3: randomly initialize z and increment counters nd,k, nk,w, and nk

4: for each iteration do

5: for each document d ∈ 1, · · · , D do

6: for each word wd,i in document d do

7: k ← zwd,i

8: # Decrement counts and sums:

9: P = 0

10: nk,wd,i
-= 1, nd,k-= 1, nk,· -= 1

11: for k = 0, 1, K − 1 do

12: calculate P (zd,i = k | .) using Eq 2.2

13: P+ = P (zd,i = k | .)

14: end for

15: sampling a new knew ∼ U(0,P)

16: zwd,i
← knew

17: # Increment counts and sums:

18: nknew,wd,i
+=1, nd,knew+=1, nknew,·+=1

19: end for

20: end for

21: end for

2.3.3 Variational Inference

Variational inference is another class of approximate inference method for LDA (Blei

et al., 2003); it defines a parametric family of distributions to approximate LDA’s

intractable joint distribution. Compared with collapsed Gibbs sampler, variational

inference can converge in fewer iterations, although it generally takes longer in each

iteration. Another advantage of variational inference is that it can be easily par-

allelised (Nallapati et al., 2007). Although variational inference approaches are not
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easily adapt to online inference, researches proposed few novel algorithms to address

this problem, such as Zhai et al. (Zhai et al., 2014) proposed a hybrid inference to solve

online adapter grammars.

However, variational inference also has a few limitations. Buntine et al. (Buntine

and Jakulin, 2004) observed that variational distributions suffer from a large bias.

Although Teh et al. (Teh et al., 2006b) shown that the bias can be reduced by intro-

ducing more complicated variational distributions that, however, generally increases

computational complexity per iteration. Buntine et al. (Buntine and Mishra, 2014a)

also observed that the variational methods perform poorly on approximating Hierar-

chical Pitman-Yor process where variational inference operate on a far more complex

and deeply nested vector space. In this thesis, we will focus on proposing sparse and

parallel Gibbs sampling algorithms to solve the topic collocation models.

2.4 Bayesian Segmentation Models for Identifying Colloca-

tions

This section will introduce algorithms for identifying collocations. These algorithms

are used in some approaches for learning the topical collocations. First, Bayesian word

segmentation models will be introduced, followed by an introduction to collocation

identification. Finally, collocation identification using the Bayesian word segmentation

model (the Unigram model) will be discussed.

2.4.1 Bayesian Word Segmentation Models

Goldwater et al. (2009) introduced two Bayesian word segmentation models, known

as the Unigram and the Bigram models. These models make use of the Dirichlet pro-

cess (DP) (Ferguson, 1973; Antoniak, 1974; Teh, 2010) and the hierarchical Dirichlet

process (Teh et al., 2006a), respectively. A tutorial about the DP can be found in Jor-

dan (2005) and Teh (2007). Here, we review the Unigram model, and refer the reader

to Goldwater et al. (2009) for detailed discussion. We use phoneme-level segmentation

to explain the unigram model, but it can be easily changed to word-level segmentation
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as well.

The Unigram model assumes the following generative process:

Let w = (w1, · · · , wN) denote a sequence of words in an utterance. Word wi in the

sequence is generated as follows:

1. Decide if wi is a new lexical item.

2. 2.1. If yes, generate phonemes x1 · · ·xM for wi.

2.2. If no, choose an existing lexical form l for wi.

We compute probabilities for each possible choice as follows:

1. P(wi is novel) = α0

n+α0
, and P(wi is not novel) = n

n+α0
.

2. 2.1. If yes, P (wi = x1 · · ·xM | wi is new) = p#(1− p#)M−1
∏M

j=1 P (xj),

2.2. If no, P (wi = l | wi is not new) = nl

n
.

where n is the number of words have been generated (= i − 1), nl is the number of

times lexical item l has occurred in these n words, α0 is a parameter of this model, and

p# is the probability of generating a word boundary. Thus, the predictive probability

for wi given the previous words w1 · · ·wi−1:

P (wi = l|w1 · · ·wi−1) =
nl

i− 1 + α0

+
α0P0(wi = l)

i− 1 + α0

,

Where, P0 is the distribution over the countably infinite set of all possible words over

some finite inventory of segments.

Formally, it is straightforward to define this process using Dirichlet Process (DP) (Fer-

guson, 1973) and assume the following generative process for a sequence of words.

G ∼ DP (α0, P0)

wi | G ∼ G

Where, G is a draw from a DP with a base-distribution that has infinite support,

it is itself an infinite object. Because of this, inference is usually performed under



20 Background on Topic Models and Topical Collocation Models

a collapsed model in which G is integrated out, giving rise to a Chinese Restaurant

Process (CRP) representation (Aldous, 1985).

During inference, the words are not known, and the model observes a sequence of

characters. Goldwater et al. (2009) derived a linear time Gibbs sampler that samples

from the posterior distribution over possible segmentations of a given corpus according

to the model. Their key insight was that sampling can be performed over a vector of

boundary indicator variables – not included in the original description of the model –

that indicates which pairs of adjacent characters are separated by a word boundary.

For example, the character sequence “abcd” has three possible boundary positions b1

to b3. The setting b1 = 1, b2 = 0, b3 = 1 corresponds to the segmentation into words

w1 = a, w2 = bc, w3 = d.

2.4.2 Models for Identifying Collocations

A collocation is a sequence of words that frequently occurred together (Evert, 2004;

Pecina, 2008) that correspond to some conventional way of saying things. Collocation

identification/extraction is a well known task in Natural Language Processing (NLP)

that has been extensively studied. In collocation identification, the goal is to extract

a set of collocations from the unlabelled documents by some criterion, such as the

Student’s t-test (Banerjee and Pedersen, 2003). The various combinations for the

occurrence of words in a bigram are often expressed using a contingency table. Table 2.2

depicts a contingency table for the bigram “white house”. N(white, house) in Table 2.2

is the number of times “white” and “house” occur together. N(white, !house) is the

number of times “white” occurs as the first word in a bigram with some word other

than “house”, while N(!white, house) is the number of times “house” occurs as the

second word in a bigram but preceded by some word other than “white”. N(white, .)

is the number of times in total that “white” occurs as the first word in a bigram, and

N(.,.) is the total number of bigrams in a corpus.

In order to identify that all bigrams in this corpus do not result from random

selection, we calculate the t-value for each bigram. If this t-value is greater than a
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house !house

white N(white, house) N(white, !house) N(white, .)

!white N(!white, house) N(!white, !house) N(!white, .)

N(., house) N(., !house) N(.,.)

Table 2.2: A contingency table for a bigram “white house”.

critical value (given by a t-table), then we can reject the null hypothesis that two

words are independent to one another and that the bigram is randomly selected. For

the bigram “white house”, the t-value is calculated as:

t-value =
N(white, house)− N((white,.)N(.,house)

N(.,.)√
N(white, house)

Many other algorithms used in the Identification of multiword expressions (MWEs) (Bald-

win and Kim, 2010; Kim and Baldwin, 2010), the Keyphrase extraction (Witten et

al., 1999; Kim et al., 2010; Liu et al., 2015), the Index term extraction tasks can

also be used to extract collocations, where an example of this is the c/nc-value algo-

rithm (Frantzi et al., 2000).

Recently, Newman et al. (2012) proposed an unsupervised algorithm for automati-

cally identifying both index terms and key phrases. This method extended Goldwater

et al. (2009)’s unigram model for segmenting words streams, and is referred to as

Dirichlet Process Segmentation (DP-seg).

2.4.3 DP-Seg Model

It is straightforward to extend the Unigram model of word segmentation (Goldwater

et al., 2009) to a Bayesian segmentation model for identifying collocations (Newman

et al., 2012). Rather than determining whether there is a word boundary following

each segments, the latter model computes the probability of a collocation boundary

following each word in each document. For example, (the)0(white)0(house)1, 0 stands

for non-boundary while 1 means boundary. We assign probabilities to each collocation

c are as follows:
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1. P(ci is novel) = α0

n+α0
, P(ci is not novel) = n

n+α0

2. 2.1. P(ci = w1 · · ·wn | ci is novel) = P#(1− P#)N−1
∏N

i=1 P (wi)

2.2. P(ci = l | ci is not novel) = nl

n

where α0 is a prior of the DP model, n is the total count of previously generated

collocations (= i − 1), while nl is the count of the particular collocation l . Taken

together, the probability of ci given the previous collocations c−i = (c1 · · · ci−1):

P (ci = l | c−i) =
nl

i− 1 + αφ
+
αφPo(ci = l)

i− 1 + αφ
(2.4)

Instead of identifying the word boundary (the unigram model for word segmenta-

tion), this DP-Seg model identifies the collocation boundary from a word sequence. We

will extend this model for simultaneously learning collocations and topics in Chapter

4 on Page 75.

2.5 Topic Models for Learning Topical Collocations

This section provides a brief overview of the models for learning topical collocations

proposed by Lau et al. (2013), Griffiths et al. (2007), Wang et al. (2007), and John-

son (2010). We are not going to discuss the PLSA-SIM algorithm proposed by Nokel

et al. (2015), since we focus on LDA related models. There are two main approaches

to combining collocations and LDA, namely pipeline approaches that run LDA over a

re-tokenized version of the input where each collocation is a token, and extensions of

LDA that jointly model collocations and topics.

To better understand these models, we develop an artificial example (see Example1

that has two documents Doc1 and Doc2), which includes two documents. Both doc-

uments describe the “white house”. The topics referenced in the first document are

Politics, Economics, and Real Estate, while the second document relates only to the

Real Estate topic.

Doc1: White House White Board: Vice President Biden talked about the real estate

bubble. The President met with economists at the White House to discuss the
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real estate bubble. The White House will apply new controls and rules on house

prices. Foreigners will not use his house as a holiday house.

Doc2: The white house is your very own escape from reality. When you arrive at the

property, the first view of the white house will grab you, it sits in a commanding

position. For more information about this house, contact the real estate agent.

After removing the stop words, case and punctuations, the sequences of content

words in two documents are as follows (The grey colour indicates the words are stop

words and punctuation, while the words in magenta are sequences of content words):

Doc1: white house white board : vice president biden talks about the real estate bub-

ble. the president met with economists at the white house to discuss the real

estate bubble. the white house will apply new controls and rules on house prices.

foreigners will not use his house as a holiday house.

Doc2: the white house is your very own escape from reality. when you arrive at the

property, the first view of the white house will grab you, it sits in a commanding

position. for more information about this house contact the real estate agent .

In these two documents, “white house” occurs 5 times, whereas the word “white”

and the word “house” occur 6 and 9 times respectively. LDA does not recognize

the collocation “white house” but only counts occurrences of each word (unigram).

Therefore, the counts for words “white” and “house” in Doc1 are 4 and 6 respectively

(i.e. n(“white”, Doc1) = 4 and n(“house”, Doc1) = 6); the counts for these two words

in Doc2 are 2 and 3 respectively (i.e. n(“white”, Doc2) = 2 and n(“house”, Doc2) = 3).

2.5.1 Pipeline Approaches (PA)

Pipeline Approaches (PA) (e.g.,(Lau et al., 2013)) involve two steps. The first step

is to re-tokenise the documents so that each collocation is a separate token. The

second step applies LDA to the re-tokenised document. This process is depicted in

Figure 2.2. For each collocation “w1 w2” that was identified in this step, a new ‘word’:

“w1 w2”, is added to the vocabulary, and the documents are re-tokenized to treat this
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collocation as the new word. For example, if “white house” was a collocation, then each

occurrence of “white house” in the documents would be replaced by the single token

“white house”. LDA can then be applied directly to the modified corpus without any

changes to LDA algorithm, and the collocations are treated as single words. (Nokel and

Loukachevitch, 2016) also proposed a novel PA algorithm, named LDA-ITER. First,

the algorithm infers topics using LDA on the vocabulary that containing only words;

second, it constructs ngrams using top-10 words from each topic and a set of rules.

Figure 2.2: A diagram of a pipeline approach (PA). The first step identifies a set

of collocations that can be re-tokenised and added to the vocabulary as new words

for the respective documents. LDA can then be applied directly to the re-tokenized

documents.

While Lau et al. (2013) demonstrated that this two-step approach improves perfor-

mance on a document classification task compared to LDA, it is limited in three ways.

First, their two step approach only identified collocations of length two, although it

would be easy to modify the procedure to extract larger collocations. A second lim-

itation is the difficulty of choosing a suitable collocation identification method, the

performance of this approach depends on the quality and number of collocations iden-

tified by the first step. The third, and more serious limitation of this approach, is that
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collocations are identified in a pre-processing step that is uninformed by the topical

information present in the documents.

For the two documents in our Example1, in the first step of the PA, this method

extracts collocations such as “white house” and “real estate”. “real estate bubble”

could not be identified because this method only identified collocations of length two.

Note that “white house” in Doc2 describes the colour of the house rather than the

building known as the “White House”, but this is still identified as a collocation. Each

occurrence of these collocations in Doc1 and Doc2 would be replaced as indicated below,

and notice that this modified corpus changes the vocabulary size, and may also lose

some informative words such as “house” in Doc2.

Doc′1: white house white board: vice president biden talked about the real estate bub-

ble. the president met with economists at the white house to discuss the real estate

bubble. the white house will apply new controls and rules on house prices. For-

eigners will not use his house as a holiday house.

Doc′2: The white house is your very own escape from reality. when you arrive at the

property, the first view of the white house will grab you, it sits in a commanding

position. for more information about this house contact the real estate agent .

LDA then can be applied to these two modified documents. The counts for words

“white house”, “white” and “house” in the Doc′1 are 3, 1, 3 respectively. The counts

for three words in the Doc′2 are 2, 0, 1 respectively.

2.5.2 Extensions to LDA

This last shortcoming of the PA has been addressed by extensions to the original LDA

model, which can simultaneously learn topics and collocations. Most extensions add to

LDA some ability to capture dependencies between words. For example, Wallach (2006)

adds a hierarchical Dirichlet language model (MacKay and Peto, 1995), enabling her

model to automatically cluster function words together. The model proposed by Grif-

fiths et al. (2004) combines a Hidden Markov Model with LDA, using the former to
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model syntax and the latter to model semantics, Other examples include the Phrase-

Discovering LDA (Lindsey et al., 2012), the time-based topical n-gram model (Jameel

and Lam, 2013a) and the n-gram HDP model (Jameel and Lam, 2013b).

Here, we focus on the LDA Collocation(LDACOL) (Griffiths et al., 2007) and the

Topical N-gram (TNG) (Wang et al., 2007).

LDA Collocation (LDACOL)

To extend LDA to incorporate collocations, Griffiths el al. (Griffiths et al., 2007) intro-

duced an additional set of random variables x that indicate whether a word is part of

a collocation. Each word wi then has a topic assignment zi and a collocation indicator

xi. The generative process of LDACOL allows words in a document to be generated

in two ways. If xi = 0, a word wi is generated by drawing directly from a topic dis-

tribution (xi = 0), as in LDA. If xi = 1, however, the word wi is part of a collocation

and is generated by its predecessor wi−1 by drawing from the distribution associated

with wi. The value of xi is chosen conditional on the preceding word, wi−1. This value

of xi is drawn from the distribution P (xi | wi−1), which means that the LDACOL can

capture dependencies between words. For example, if wi−1 is white, xi is likely equal

to 1, which means that wi is part of a collocation starts with white and is generated

from the distribution that depends on the preceding word and not on the topic.

The LDACOL model infers both the topic distribution of standard LDA and, for

each word in the vocabulary, a distribution over the words that follow it. This is

implemented by associating with every word a binary variable that indicates whether

that word was drawn from the predecessor distribution or a topic distribution. Topical

collocations begin with words drawn from a topic distribution, and consist of that word

plus the words generated from it or its successors. The graphical model representation

of this model is shown in Figure 2.3 and the generative process is as follows:

1. For each topic k where k ∈ 1, · · · , K

1.1. Draw word distribution φk ∼ DirV (β)

2. For each word type w where w ∈ 1, · · · , V
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Figure 2.3: A graphical model representation of LDA Collocation (LDACOL). The

nodes indicate random variables, while the edges indicate conditional dependencies

between random variables. The variable xi determines whether the word wi is generated

from a distribution that depends only on the previous word, being a collocation, or

from a distribution that depends only on the topic zi.

2.1. Draw word distribution σw ∼ DirV (δ)

2.2. Draw collocation indicator distribution ψw ∼ Beta(γ0, γ1)

3. For each document d ∈ 1, · · · , D

3.1. Draw a topic distribution θd | α ∼ DirK(α)

3.2. For each word wd,i in the document d, where i ∈ 1, · · · , N

i. Draw a collocation indicator xd,i | ψwd,i
∼ Bern(ψwd,i

), where xd,i ∈ 0, 1

ii. Draw a topic assignment zd,i | θd ∼Mult(θd), where zd,i ∈ 1, · · · , K

iii. If xd,i = 0, draw a word wd,i | zd,i,φ ∼ Mult(φzd,i) ; else draw wd,i−1 |

σ ∼Mult(σwd,i−1
).
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The LDACOL model maintains a Bernoulli distribution ψ and a discrete distribu-

tion σ for each word type. Wang et al. (2007) argued that this model is limited because

words in collocations are generated without conditioning on the topic of the preceding

word. If the collocation indicator xi = 1 (this word is part of a collocation), then the

topic assignment zi is sampled from

P (zi = k | z−i,w,x) ∝ nd,k + α

n+ Tα

where the counts are only for the words for which xi = 0. The new topic for wi

heavily depends on nd,k, which is the topic-document distribution. For example, Doc1

in Example1 is mainly about politics, while the Doc2 is about real estate. Therefore,

for any word wi in Doc1 with the collocation indicator xi = 1, it is more likely to be

assigned to a Politics topic.

Topical N-gram

To generate words conditioned on both their predecessor and its topic, Wang et al. (2007)

proposed a Topical N-gram (TNG) model. This model is a more powerful generaliza-

tion of LDACOL. The LDACOL is the special case of the TNG model (by making σ

conditioned on preceding word only). In other words, whereas LDACOL only adds

a distribution for every word-type to LDA, TNG adds a distribution for every pos-

sible word-topic pair. This modification allows TNG to outperform LDACOL on a

standard information retrieval task (Wang et al., 2007). This model’s graphical model

representation is illustrated in Figure 2.4, and the generative process is as follows:

1. For each topic k where k ∈ 1, · · · , K

1.1. Draw word distribution φk ∼ DirV (β)

1.2. For each word type w where w ∈ 1, · · · , V

i. Draw word distribution σk,w ∼ DirV (δ)

ii. Draw collocation indicator distribution ψk,w ∼ Beta(γ0, γ1)

2. For each document d ∈ 1, · · · , D
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2.1. Draw a topic distribution θd | α ∼ DirK(α)

2.2. For each word wd,i in the document d, where i ∈ 1, · · · , N

i. Draw a collocation indicator xd,i | zd,i−1,ψzd,i−1,wd,i−1
∼ Bern(ψzd,i−1,wd,i−1

),

where xd,i ∈ 0, 1

ii. Draw a topic assignment zd,i | θd ∼Mult(θd), where zd,i ∈ 1, · · · , K

iii. If xd,i = 0, draw a word wd,i | zd,i,φ ∼ Mult(φzd,i) ; else draw wd,i |

zd,i−1, wd,i−1,σ ∼Mult(σzd,i−1,wd,i−1
).

However, a drawback of both models (LDACOL, TNG) is that the authors introduce

more parameters to their models compared to LDA, which raises the risk of overfitting

the model to a particular data set. Furthermore, LDACOL does not require words

within a sequence to share the same topic, often resulting in semantically incoherent

Figure 2.4: A graphical model representation of Topical N-gram (TNG). The nodes

indicate random variables, while the edges indicate conditional dependencies between

random variables. Shaded and unshaded nodes denote observed and unobserved ran-

dom variables respectively. The rectangular boxes, also known as “plate notation”,

denote replication.
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collocations.

In Example1 in section 2.5, the total occurrence of the collocation “white house”

in the two documents is 5, and the probability of “white house” being a collocation

may be considered high in Doc2. The word “house” in this collocation in Doc2 could

belong to a real estate topic, but the other word “white” could belong to a politics

topic because Doc1 is mainly about politics and “white” occurred 4 times in it (i.e.

n(“white”, Politics) may be considered high). In Doc2 “white house” has been identi-

fied as a collocation, but “white” is linked to a politics topics and “house” is linked to a

real estate topics. This kind of semantically incoherent collocation could be identified

by both LDACOL and TNG because they do not require words within a sequence to

share the same topic.

2.6 Probabilistic Context Free Grammar (PCFG) and Adap-

tor Grammar (AG) Approaches

In this section, we introduce Adaptor Grammars, a set of probabilistic models that

generalize probabilistic context free grammars (PCFGs). Adaptor Grammars provide

a simple, flexible, and powerful framework for defining many nonparametric Bayesian

models of language that have been widely used in computational linguistics, such as

models of morphology (Goldwater et al., 2006b) and word segmentation (Goldwater

et al., 2006a; Goldwater et al., 2009). LDA and topical collocation models (Johnson,

2010) can be expressed as Adaptor Grammars.

In a PCFG, a non-terminal A is expanded by selecting a rule A→ β with probability

P (β|A), where β is a sequence of terminal and non-terminal node labels. Because the

rules are selected independently, PCFGs introduce strong conditional independence as-

sumptions. In an Adaptor Grammar 1, some non-terminal labels are adapted (indicated

by underlining). These nodes can be expanded either by selecting a rule, as in PCFGs,

or by retrieving an entire subtree from a Dirichlet process, breaking the conditional

independence assumptions and exploiting longer-range statistical relationships.

1Strictly speaking, Adaptor Grammars are defined using the Pitman-Yor process. We restrict ourselves to

considering the Dirichlet Process which is a special case of the PYP if the discount parameter a is set to 0.
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The rest of this section introduces how the Adaptor Grammar can generalise Bayesian

word segmentation (Unigram) models, LDA models, and topical collocation models.

2.6.1 Bayesian Word Segmentation (Unigram) Model as an Adaptor Gram-

mar

As introduced in Section 2.4.1 on Page 18, the word segmentation task segments a cor-

pus of unsegmented phonemic utterance representations or characters into words. For

example, the correct segmented words of a character string “whitehousewhiteboard”

are “white house white board”.

Then the Bayesian word segmentation (Unigram) model can be defined as Adaptor

Grammar. An Adaptor Grammar that can generate any possible segmentation of any

possible sentence as a tree by consideration of sentences, words and characters, such

as performed by the following rewrite rules:

Sentence→Word

Sentence→Word Sentence

Word→ Chars

Chars→ Char

Chars→ Char Chars

Figure 2.5 below shows a possible tree of the character string generated by this

set of grammar rules. Because in this Adaptor Grammar, the Word non-terminal is

adapted (indicated by underlining), the Adaptor Grammar learns the probability of

all Word subtrees (e.g. the probability of five characters w h i t e is a Word) in all

possible trees generated by these grammar rules.

2.6.2 LDA models as Probabilistic Context-Free Grammars

Johnson pointed out that LDA can be re-expressed as an Probabilistic Context-Free

Grammar by showing how certain grammar rules and their associated probabilities
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Figure 2.5: A tree generated by the grammar rules encoding a Bayesian word segmen-

tation model.

Figure 2.6: A tree generated by the grammar rules encoding an LDA model. The “ 1”

indicates that these words belong to the 1st document. The figure also show the topic

assignment for these words.

correspond to the different steps and parameters in LDA’s generative process (Johnson,

2010).

There are many ways of encoding LDA topic models as PCFGs. A straightforward
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approach uses the following rule schemata:

Top→ Docd d ∈ 1, · · · , D

Docd →−d | Docd Doc
′

d d ∈ 1, · · · , D

Doc
′

d → Topick d ∈ 1, · · · , D; k ∈ 1, · · · , K

Topick → w k ∈ 1, · · · , K;w ∈ V

where d ranges over the documents D, k ranges over the number of topics, “|” separates

possible expansions, and “−d” is a unique document identifier terminal symbol for each

document d ∈ 1, . . . , D. Strings from document d are prefixed with “−d”. For example,

string −1 white house white board −2 white house escape reality. This string encodes two

documents 1 and 2, document 1 has four words white house white board, and document

4 has four words white house escape reality.

Figure 2.6 shows a tree generated by these grammar rules. The Topick nodes

indicate the topic assignment to particular words, and the branches expanding Doc
′

1

to Topick illustrate the topic distribution in this document.

The probabilities of expanding the Topick non-terminal using the rule Topick → w

specify the distribution of words in topic k; these probabilities thus correspond exactly

to the φk in LDA. The probabilities of expanding Doc
′

d using the rule Doc
′

d → Topick

indicates how topics are distributed in document d; these probabilities thus correspond

exactly to the θd in LDA.

2.6.3 Topical Collocation Model as Adaptor Grammars

Johnson (2010) also showed how Adaptor Grammars, as a generalisation of PCFGs, can

generalise LDA to learn topical collocations (AG-colloc) of unbounded length, while

jointly identifying the topics that occur in each document. By underlining adapted

non-terminals, Johnson also show that the AG-colloc model can be concisely expressed
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using the context free grammar rules:

Top→ Docd d ∈ 1, · · · , D

Docd →−d | Docd Topick d ∈ 1, · · · , D; k ∈ 1, · · · , K

Topick →Words k ∈ 1, · · · , K

Words→Word

Words→Words Word

Word→ w w ∈ V

where d ranges over the number of documents and k ranges over the number of topics,

“|” separates possible expansions, and “−d” is a unique document identifier terminal

symbol for each document d ∈ 1, . . . , D. Document IDs make it possible to have many

strings in the same document. That is, we can break up a document into many strings

(e.g., segmenting at punctuation and stop words), but the document IDs ensure that

they are all associated with the same document to topic distribution.

As in LDA, each document is defined as a mixture of K topics with the mixture

probabilities corresponding to the probabilities of the different expansions of Docd.

However, the topic distributions are modelled using an adapted non-terminal Topick.

Concretely, this means that there is an infinite number of rules expanding Topick, one

for every possible sequence over the finite vocabulary of words (abbreviated using the

regular expression Words). Topick non-terminals then cache sequences of words, just

like G cached sequences of characters in the Unigram model.

Figure 2.7 indicates two trees generated by AG-colloc’s grammar rules. The Topick

nodes show the topic assignment to particular words or phrases, and the branches

expanding Doc3 to Topick illustrate the topic distribution in this document.

As shown in Figure 2.7, AG-colloc generates topic assignment (Topick) first, and

generates words from this topic. Thus, words within a collocation have to share the

same topic. If we consider Example1 from section 2.5, if the words “white” and “house”

in Doc2 have two different topics, then they can not form a collocation “white house”.
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Figure 2.7: Two possible trees generated by the grammar rules encoding an AG-colloc

model. The “ 1” indicates that these words belong to the 1st document. The figure

also shows the topic assignment for these words and collocations (phrases).

Thus, the problem of the individual words in a collocation having different topic assign-

ments, encountered by LDACOL and TNG AG-colloc, can be addressed by AG-colloc.

The following are possible sample parses generated by AG-colloc, where all but the

adapted non-terminals have been elided.

1: (Topic5 white house) (Topic1 white) (Topic3 board)

(Topic5 vice president)

2: (Topic1 white) (Topic2 house) (Topic4 escape) (Topic6 reality)
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(Topic4 arrive) (Topic2 property)

Although the AG-colloc addressed some problems encountered by other models, this

model requires an inference algorithm that is cubic in the length of longest subsequence

without stop words, limiting its applicability to small datasets.

Theoretically, the AG-colloc can generate a collocation with infinite length (Topic
k
→

Words). We can also consider a revision of AG-colloc, called AG-colloc2, with 3 dif-

ferent expensions for the Words nonterminal, corresponding to unigrams, bigrams, tri-

grams and 4-grams, which can be concisely expressed using the context free grammar

rules:

Top→ Docd d ∈ 1, · · · , D

Docd →−d | Docd Topick d ∈ 1, · · · , D; k ∈ 1, · · · , K

Topick →Words k ∈ 1, · · · , K

Words→Word

Words→Word Word

Words→Word Word Word

Words→Word Word Word Word

Word→ w w ∈ V

where d ranges over the number of documents and k ranges over the number of topics,

“|” separates possible expansions, and “−d” is a unique document identifier terminal

symbol for each document d ∈ 1, . . . , D.

In Chapter 3 on Page 47, we will compare the LDA, LDACOL, TNG, PA, AG-colloc,

and AG-colloc2 algorithms to find out the most effective model. Then in Chapter 4

on Page 75 we will develop an efficient inference algorithm for this model that allows

it to scale to large document collections.

2.7 Previous Work of Evaluating Topic Models

This section reviews evaluation methods for topic models and topical collocations mod-

els. Such evaluation can be challenging because the topics themselves are exchangeable,
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i.e. topic indices can be exchanged between topics. There are 3 different approaches to

the evaluation of topic models. First, measures based on the generalisation capability

of the topic model, second, measures of topic coherence, and third, measures based

on the application of the topic model to some external task. The first of these three

different approaches to evaluation could be considered as universal evaluation methods,

that is, measures of the generalization capability of a topic model. Examples of such

approaches are widely used measures such as perplexity and log likelihood, where the

goal is to estimate the probability of held-out documents. The second approach of eval-

uation seeks to evaluate topic coherence, as measured by human or automatic methods.

A third approach of topic model evaluation seeks to assess how useful the topic model

is for extrinsic tasks such as information retrieval or document classification.

Regardless of whether the models can learn topical collocation or not, any topic

model output includes two matrices. One matrix, θ, encodes the distribution of topics

for each document, and another matrix, φ, encodes the distribution of words/collocations

for each topic. Evaluations can focus on either θ or φ, or both. From this perspective,

we could classify the evaluation methods into three categories: 1) using φ only; 2)

using θ only; and 3) using φ and θ. Note that these matrices will be correlated with

each other, so an evaluation metric that directly measures only one of these matrices

will probably produce scores that correlate with evaluations that focus on the other

matrix. The topic coherence evaluation methods evaluate φ only, since only the top

words/collocations of each topic are used in this method. The document classification

task uses only the θ as features, and so belongs to the second category, while the

information retrieval task belongs to the third category.

2.7.1 Perplexity

A well known topic model evaluation method is perplexity (Wallach et al., 2009) of

test data, defined as:

Perplexity = exp
−
∑N

i log(P (wi))

N
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where P (wi) is the probability of word wi, and N is total number of words in the

corpus. Perplexity is simply defined as the inverse of the geometric mean of likelihood

of each term. However, Chang et al. (2009) found that perplexity does not always

correlate with the semantic meaning of topics and it does not correlated well with task

specific evaluations. Furthermore, how to measure perplexity fairly with collocations

is unclear (Buntine and Mishra, 2014b), therefore we will not apply this evaluation in

our thesis in comparing topical collocation models to LDA.

2.7.2 Human Evaluation of Topic Coherence

Statistical evaluation of topic models using measures such as perplexity or likelihood are

widely used and reasonably well understood. Whether topics are meaningful, however,

is the overall value of topic modelling, and has significant impact on end-user applica-

tions. Thus, a goal of topic modelling is the production of a semantically meaningful

(human-interpretable) decomposition of a document collection, where topics represent

concepts, and documents are represented as a set of those concepts. With such a goal,

judging the effectiveness of a topic model may relate to whether a model captures

human intuitions about the documents. Many researchers have proposed evaluation

methods with this in mind, Griffiths and Steyvers (2006) used word sense discrimina-

tion tasks to evaluate topic models. Mei et al. (2007b) addressed the core question

of topic coherence and semantic interpretability by automatically labelling topics. A

standard approach is to compare the most probable words of each topic produced by

different models. Such a presentation serves as a qualitative study of part of the latent

space, thus this method is not a quantitative evaluation.

Chang et al.(2009) proposed a method for measuring the semantic interpretability

of a topic model. They designed two explicit human evaluation tasks to evaluate quality

with regards to topic distribution over documents and the quality of the topics inferred

by the model. The first method is referred to as topic intrusion, measuring whether

the quality of a mixture of topics for a document learnt by a topic model agrees with

humans’ judgements about the topic mixture for that document. The second method

is referred to as word intrusion, and measures whether the semantic cohesion of the
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Figure 2.8: Screenshots of the two intrusion experiments. In their word intrusion task

(left), annotators are presented with a list that has six words and are asked to select

the intrusion word. In their topic intrusion task (right), annotators are presented with

a title and several sentences of a document, and four groups of words representing four

topics, where 3 topics are 3 most probable topics from the model, and the fourth is an

intruder. The annotators must choose a list of words as an intruder.

topics inferred by a model agrees with groupings by human reviewers. We use the

screenshots (Figure 2.8) from Chang et al.(2009) as an example, the second method is

much easier for humans to perform than the first one, because in the topic intrusion

task, users have to understand the topics of the document, and then compare these

topics with each of the four groups of words. Therefore, the word intrusion task is

more practical using services such as the Amazon Mechanical Turk 2.

In the word intrusion task, top words in a given topic are identified, then one of

these terms is randomly selected and replaced by a new term, called an “intruder”.

Those words are then presented to a reviewer, whose task is to find the “intruder”

word. Figure 2.8 shows how this task is presented to users. If the topic’s top words

are strongly “cohesive”, the reviewer is likely identify the “intruder”, otherwise, the

reviewer will typically choose a word at random, implying a less cohesive topic.

2https://www.mturk.com/mturk/welcome

https://www.mturk.com/mturk/welcome
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2.7.3 Automatic Evaluation of Topic Coherence

Human evaluation uses humans’ judgements to gauge the quality of topic models,

however, the annotations are expensive and slow. For example, if the topic size of any

topic model is 50, then reviewers would be asked to look through these 50 lists and

identify an intruder from each list.

In this section, we focus on the automatic methods of measuring the topic coherence.

Newman et al. (2010a) introduced a range of topic scoring methods to measure the

coherence, or semantic interpretability, of a set of words of a given topic generated by

a topic model, based on resources such as WordNet (Fellbaum, 1998), Wikipedia, and

the Google search engine.

A range of quantitative methods have been developed for calculating the WordNet 3

semantic similarity between synset (a set of cognitive synonyms) pairs rather than word

pairs. To generate a similarity score for a given word pair, the authors look up each

word in WordNet and calculate scores of each sense of this word, then their arithmetic

mean is used as the score. Such methods include: the Path distance (PATH), Leacock-

Chodorow (LCH) (Leacock et al., ), Wu-Palmer (WuP) (Wu and Palmer, 1994), Hirst-

St Onge (HSO) (Hirst and St-Onge, 1998), Resnik Information Content (Res) (Resnik,

1995), Lin(LIN) (Lin, 1998), Jiang-Conrath(JCN) (Jiang and Conrath, 1997), Lesk

(LESK) (Lesk, 1986), and Vector(VECTOR) (Schütze, 1998).

Instead of using WordNet, many methods calculate a semantic similarity score using

the Wikipedia article content, links in the article and document categories (Strube and

Ponzetto, 2006; Gabrilovich and Markovitch, 2007; Witten and Milne, 2008). Newman

also proposed a Point-wise Mutual Information (PMI) method (Newman et al., 2010a)

using Wikipedia articles. Finally, two (Google) search engine-based scoring methods

are proposed by Newman (Newman et al., 2009b), broadening the external data source

to the World Wide Web.

Newman et al. (2010a) evaluated all these topic scoring methods over an artifi-

cial constructed gold-standard dataset and reported that the best method was the

3WordNet is a large lexical database for the English language.
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Figure 2.9: An example for calculating Point-wise Mutual Information (PMI) score

using Wikipedia articles.

Wikipedia based PMI. The equation of Point-wise Mutual Information (PMI) (New-

man et al., 2010a; Newman et al., 2010b) is:

PMI(w) =
10∑
j=2

j−1∑
i=1

log
N(wj, wi)

N(wi)N(wj)
(2.5)

where N is set to 10, w is a set of most probable words of a topic generated by

a topic model, N(wi) stands for the number of times of wi occurred in the sliding

window and N(wi, wj) is the number of times of wi and wj co-occurred in the same

sliding window. For example, Figure 2.9 shows how to calculate the PMI score for

words “natural” and “language” using one Wikipedia article. We then calculate this

PMI score for all pairs of words and w = (w1, · · · , w10) are the top-10 most likely

words in a topic. The average PMI scores over all topics was used to measure the topic

coherence of the model (Newman et al., 2010a).

Mimno et al. (2011) also proposed a similar scoring method named Log Conditional

Probability (LCP) to measure the semantic coherence. The equation for LCP (Mimno



42 Background on Topic Models and Topical Collocation Models

et al., 2011) is:

LCP (w) =
10∑
j=2

j−1∑
i=1

log
N(wj, wi)

N(wi)
(2.6)

Instead of using the Wikipedia articles, the LCP used the original corpus to measure

occurrence and co-occurrence. Lau et al. (Lau et al., 2013) compared both methods on

evaluating their topical collocation model (PA) and report that the Wikipedia based

PMI is better than the LCP method, even when the LCP method used Wikipedia as

external source. We will use the PMI method for evaluating topic models in Chapter

3 on Page 47 and Chapter 5 on Page 101. Notice that both human evaluation and

PMI using Wikipedia articles methods could have limitations when we evaluate a more

specialised corpus content, such as Medical corpus, it becomes difficult even invalid

because of the specialised nature of the material.

2.7.4 Extrinsic Evaluation

Topic models have been successfully applied to a myriad of traditional applications,

such as word sense discrimination (Brody and Elhadad, 2010), document summari-

sation (Haghighi and Vanderwende, 2009), areal linguistic analysis (Daumé, 2009),

document classification (Blei et al., 2003), text segmentation (Sun et al., 2008), and

information retrieval (Wei and Croft, 2006). These applications, in turn, can be used as

extrinsic evaluation tasks to compare the effectiveness of the topics learned by different

topic models. The next section will focus on evaluation using document classification

and information retrieval tasks.

Evaluation on a Document Classification Task

Document classification is the task of assigning documents to different categories, such

as classifying positive and negative movie reviews. The principal challenge of this task

lies in the representation of the document, that is, how can we represent the document

in a way that preserves the important information? Blei et al. (2003) employ the LDA

model for reducing the dimensionality of the feature set and report that it helps improve

classification accuracy. Lau et al. (2013) also report that their pipeline approach (PA)
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boosts classification accuracy.

Figure 2.10: Evaluation of a topic model on a document classification task. In the

first step (Top), the model is applied to all documents to estimate the document-topic

matrix θ. In the second step, a classifier is trained on the training set, and evaluated

the model on the testing set.

As shown in Figure 2.10, a document classification evaluation has two steps. In the

first step, models are applied to all documents to estimate the distribution of topics

(θ), which is a fixed set of real-valued features. Then, the documents are randomly

split into 80% and 20% subsets as training and testing datasets, respectively. In the

second step, a standard classifier such as Support Vector Machine (SVM) (Fan et al.,

2008) was trained on the training set and evaluated on the testing set. The testing

classification accuracy is used to as a measure of the effectiveness of the topic model.

We do not include all the text such as lexical and bigram features in this classifica-

tion evaluation method, because the target of this metric is to evaluate the effectiveness

of different topic models. Excluding the text features could remove the undesirable
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noises on the classifier.

Evaluation on an Information Retrieval Task

Many researchers have applied different topic models to information retrieval (IR)

tasks, for example, Liu and Croft (Liu and Croft, 2004) proposed a Cluster-based

(K-means) retrieval model, Hoffman applied pLSI (Hofmann, 1999) to retrieval tasks,

Wei and Croft (2006) incorporated LDA in the standard information retrieval language

model, and Wang et al. (Wang et al., 2007) also applied topical collocations (TNG) to

further improve the IR performance. Modern document retrieval systems work in two

passes: they first retrieve a set of top candidate documents, which they then reorder

using a language model or other techniques. The idea behind document retrieval

evaluation is that the topic models can be used in the reordering step. We evaluate

each topic model by the amount it improves the overall retrieval process.

Here, we review the way of incorporating LDA or TNG models into the language

models for IR, which can be easily adapted to other models. This methodology will be

used to evaluate different topic (topical collocation) models in Chapter 3.

As a standard language model for IR, the query likelihood model scores each doc-

ument by the likelihood of generating a query, Q, given this document:

PLM(Q|D) =
∏
qi∈Q

PLM(qi|D) (2.7)

where D is a document while Q is the query and qi is a term in Q. PLM(qi|D) is the

query likelihood model with Dirichlet smoothing (Zhai and Lafferty, 2001) specified

by:

PLM(qi|D) =
Nd

Nd + µ
PML(qi|D) + (1− Nd

Nd + µ
)PML(qi|corpus) (2.8)

where PML(qi|D) is the maximum likelihood estimates of a query term qi generated

in document D and PML(qi|corpus) is the maximum likelihood estimates of a query

term qi generated in the entire corpus. µ is Dirichlet prior parameters, usually set to

µ = 1000.

Estimating PLM(qi|D) (document modelling) is crucial to information retrieval.
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Compared with other query likelihood models, LDA provides a more effective way for

modelling documents via capturing the latent topics (Wei and Croft, 2006). Therefore,

Wei and Croft (2006) linearly combined the LDA with the standard query likelihood

model using:

P (qi|D) = λPLM(qi|D) + (1− λ)PLDA(qi|D) (2.9)

where λ is a factor mixing the two probabilities. The PLDA(qi|D) can be calculated as:

P (qi|D,φ,θ) =
K∑
k=1

P (qi|z,φ)P (z|θ, D) (2.10)

where φ and θ are posterior word-topic and topic-document distributions estimated

by LDA, respectively.

Figure 2.11: Evaluation of a topic model on an IR task. In the first step (Top), the

topic model is applied to all documents in the corpus. In the second step, the query

likelihood P (Q|D) is a linear combination of the standard query likelihood PLM(Q|D)

and the LDA likelihood PLDA(Q|D).

As shown in Figure 2.11, IR evaluation also has two steps. In the first step, a topic
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model is applied to all documents in the corpus to estimate the word-topic (φ) and

topic-document distributions (θ), which are used to calculate the PLDA(qi|D) using

equation 2.10. In the second step, we calculate the PLM(qi|D) using a state-of-the-art

IR engine - Indri (Strohman et al., 2004) - where this search engine implemented the

equation 2.8. Then, for each query, we can re-rank the documents by linearly combining

the PLDA(Q|D) and PLM(Q|D). The evaluator then calculates the Average Precision

(AP) of these re-ranked documents for this query. The Mean Average Precision (MAP)

over all queries are reported to gauge the effectiveness of different topic models.

2.8 Summary

In this chapter, we reviewed the collapsed Gibbs sampling algorithm for LDA. Followed

by discussing Bayesian segmentation models for identifying words and collocations. The

four state-of-the-art topic models for learning topical collocations have been introduced.

Last but not least, we reviewed previous work of evaluating topic models.

In the next chapter, we will evaluate LDA and these four topic models for learning

topical collocations using the evaluation methods we just reviewed.



3
Finding the Most Effective Topic Model for

Learning Topical Collocations for Small

Corpora

3.1 Introduction

Many researchers, e.g. Lau et al. (2013), Griffiths et al. (2007), Wang et al. (2007),

Johnson (2010), have been trying to improve topic modelling by capturing semantically

meaningful relationships between adjacent words. Wang et al. (2007) showed that

their Topic N-gram (TNG) model achieved better Information Retrieval performance

on some queries that have obvious collocation(s). For those queries that do not have

collocation(s), their models worked just as well as LDA. Lau et al. (2013) showed that

47
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their Pipeline Approach (PA) outperforms LDA on topic coherence evaluations and a

classification task. However, there have not been sufficient experiments or evidence,

on which to evaluate all these models, to show an advantage of a topic model that

can capture collocations, or which is the most effective model. Until this thesis, no

systematic evaluation has covered all of these models.

In this chapter, we conduct the first comprehensive evaluation of five state-of-the-art

topic models for learning topical collocations, the LDA Collocation (LDACOL) (Grif-

fiths et al., 2007), the topical N-Gram (TNG) (Wang et al., 2007), the pipeline approach

(PA) (Lau et al., 2013), the Adaptor Grammar as topical collocation Model (AG-colloc,

AG-colloc2) (Johnson, 2010)) with LDA using four standard evaluation methods (Hu-

man and automatic evaluation of topic coherence, evaluation on text classification and

information retrieval tasks) on small-scale corpora.

This comprehensive evaluation provides the first two contributions of this thesis:

1) measuring the usefulness of modelling topical collocations over topic models that

ignore collocations, and 2) finding the most effective topic model among the models

that learn collocations.

These four evaluation methods show that modelling collocations consistently pro-

vides an advantage over ignoring collocations across all the evaluation methods. We

moreover identify AG-colloc as the most effective topical collocation model.

This chapter firstly introduces the corpora used, and the experimental setup (in

Section 3.2 on Page 48). Secondly, the four evaluations are conducted in Section 3.3

on Page 51. Finally, this chapter discusses the results of these evaluations (in Section

3.4 on Page 69).

3.2 Experimental Setup

3.2.1 Corpora

In this chapter, we use three datasets: the movie review dataset (Pang and Lee, 2012)

(MReviews), the 20 Newsgroups dataset, and the SJMN-2000 dataset. The movie

review dataset includes 1,000 positive and 1,000 negative reviews. The 20 Newsgroups
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dataset is organised into 20 different categories according to different topics. We fur-

ther partitioned the 20 newsgroups dataset into four subsets, denoted by Comp, Sci,

Sport, and Politics. They have 4, 891, 3, 952, 1, 993, and 2, 625 documents respec-

tively. We applied document classification to each subset. The Reuters-21578 is a

randomly sampled subset of the San Jose Mercury News (SJMN) corpus, which includes

1,813 documents.

1. MReview: Also known as sentiment polarity classification, includes positive and

negative processed reviews of movies. The first sentence of one such positive

review is “films adapted from comic books have had plenty of success, whether

they’re about superheroes (batman, superman, spawn), or geared toward kids

(casper) or the arthouse crowd (ghost world) , but there’s never really been a

comic book like from hell before” .

2. Comp: The Computer subcategory in the 20 Newsgroups, which includes five

different categories (graphics, os.ms-windows.misc, sys.ibm.pc.hardware,

sys.mac.hardware, windows.x). An example of the text from the

os.mac.hardware category is “Apple has patented their implementation of re-

gions, which presumably includes the internal data structure (which has never

been officially documented by Apple).” A sentence “We have received a number

of requests for a reposting of the International Obfuscated C Code Contest rules

and guidelines.”, however, belongs to comp.window.x category.

3. Sci: The Science subcategory in the 20 Newsgroups, which includes four different

categories (crypt, electronics, med, and space). For example, the med

category discusses medical topics, such as “Gaucher’s disease symptoms include:

brittle bones (he lost 9 inches off his height); enlarged liver and spleen; internal

bleeding; and fatigue (all the time).”

4. Sport: The Sport subcategory in the 20 Newsgroups, which only includes two

different categories (baseball, and hockey). A sentence, “Unfortunately, we are

running the league using Earl Weaver Baseball II with the Comm.” is talking
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about baseball, while another sentence, “One reason that the WHA abandoned

the blue puck was the fact that it crumbled very quickly during play.” refers to

hockey.

5. Politics: The Politics subcategory in the 20 Newsgroups includes three differ-

ent categories (misc, guns, and mideast). The mideast category typically

includes some mideast country names in the text, such as “Foreign Ministry

spokesman Ferhat Ataman told journalists Turkey was closing its air space to all

flights to and from Armenia and would prevent humanitarian aid from reaching

the republic overland across Turkish territory.”

6. SJMN-2k: A randomly sampled subset of the San Jose Mercury News (SJMN)

corpus, which includes 1,813 documents. The SJMN corpus, covers materials

from San Jose Mercury News in 1991. This corpus is for information retrieval

evaluation, thus, no category labels are required.

corpus #Docs #Vocabulary #Tokens

Movie Review 2,000 38,486 586,683

Comp 4,891 54,460 765,107

Sci 3,952 39,904 58,7063

Sport 1,993 19,426 259,000

Politics 2,625 33,613 538,937

SJMN-2k 1,813 31,399 287,657

Table 3.1: Statistics of the corpora used in this chapter.

Table 3.1 summarises the number of documents, tokens and vocabulary for each

corpus. Following Griffiths et al.’s (2007) method, we used all punctuation and stop

words to split the documents into sequence of content words, then removed those

punctuation and stop words. Neither stemming nor lemmatisation was used. For

example, this procedure converts a sentence “Latent Dirichlet Allocation is a generative
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model that allows sets of observations to be explained by unobserved groups that explain

why some parts of the data are similar.” into sequences of content words, “Latent

Dirichlet Allocation, generative model, allows sets, observations, explained, unobserved

groups, explain, parts, data, similar”.

3.2.2 Model Settings

For LDA, we used an implementation of LDA from the Mallet software toolkit (Mc-

Callum, 2002). For PA, we used the same statistics package as Banerjee and Ped-

ersen (2003), and discovered the top 1,000 bigrams (top-1K) based on the Student’s

t-test. Lau et al. (2013) also tried the top 10,000 bigrams (top-10K) in their exper-

iments and reported the top-1K method almost always achieved the best results. In

this chapter, we only report results for the top-1K bigrams.

For TNG, we used a replication of the original model (Wang et al., 2007), which is

available in Mallet (McCallum, 2002). The LDACOL model we used was downloaded

from the Matlab Topic modelling toolbox 1 and the implementation of AG we used is

based on Johnson’s Adaptor Grammar implementation PY-CFG 2. We ran all models

for 2,000 iterations with 50 topics in this chapter. We set α = 1/K and β = 0.02

for LDA (Mallet), LDACOL, TNG and Pipeline Approach (PA). For AG-colloc and

AG-colloc2, we use PY-CFG to estimate the Pitman-Yor hyper-parameters a and b.

We observed that almost all the likelihood line had flattened out after 2,000 iterations.

Larger numbers of iterations or topics involves more running time for each model and

efficient implementations are not available for most of topic models, so we were forced

to concentrate our evaluations on models with a modest number of topics trained on

relatively small document collections.

3.3 Evaluation Methods for Topical Collocations Models

In the Section 2.7 on Page 36, we have reviewed several evaluation methods for topic

models. In this chapter, we select four of these evaluation methods to evaluate topic

1http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
2http://web.science.mq.edu.au/~mjohnson/Software.htm

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
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models for learning topical collocations. These four evaluation methods are the human

and automatic evaluation of topic coherence, and two extrinsic tasks: document classi-

fication, and an Information Retrieval task. We will present the results in the following

sections.

3.3.1 Qualitative Description of Model Outputs

First, we present the top-10 terms for selected topics generated by these six models.

We ran six models on the SJMN-2k dataset. We selected four distinctive topics and

list the top-10 terms for each topic in Table 3.2. These four topics were interpreted as

“POLITICS”, “BUSINESS”, “SPORTS”, and “HEALTH CARE”.

Few collocations occurred in the lists because the ranking method p(w|t) = n(w,t)+α
n(.,t)+|w|α

calculates the ratio of the frequency of a word w occurring in the topic t (i.e. n(w, t))

over the frequency of all words occurring in the topic t (i.e. n(., t)). Usually, the

occurrence n(c, t) of a collocation is much lower than the occurrence of the individ-

ual word in this collocation (e.g. n(w1, t), for word w1 in collocation c). That is, if

n(w1, t)� n(c, t), the n(., t) in denominator for calculating the probability p(w|t) is

the same, then the p(w1|t) = n(w1,t)+α
n(.,t)+|w1|α � p(c|t) = n(c,t)+α

n(.,t)+|c|α . We could ignore the

difference between |w1|α and |c|α, since α usually is small and n(., t) usually is much

larger than both |w1|α and |c|α. Thus, a collocation is unlikely to be ranked as a

representative in the top-n terms of the topic.

We found that AG-colloc and AG-colloc2 identified more collocations compared

with the other methods. These topical collocations (for example Los Angeles) aid

human readers to understand the semantic meaning of the lists. In Table 3.2, we noticed

that many topical collocations helped to interpret the semantic meaning of a topic, such

as the white house in “POLITICS” topic, and the real estate in “BUSINESS” topic.

Such collocations help the reader resolve these ambiguous terms (for example white),

by suggesting a link to other word in this collocation (for example, house). Both topical

collocations were only identified by AG-colloc or AG-colloc2.

It was often the case that the words in common collocations (for example soviet

and union in the “POLITICS” topic) tended to occur in the top-10 ranked terms for
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a topic in LDA. Such a co-occurrence can help human readers to interpret or infer the

semantic meanings from these top words, particularly if the lists are small (say ten

terms). However, it can be much harder if there are a large number of terms in the

list.

3.3.2 Human Evaluation of Topic Coherence

As discussed in the Section 2.7 on Page 36, the goal of topic models is to produce a

semantically meaningful (human-interpretable) decomposition of a collection of doc-

uments: topics represent concepts, and documents are represented as a set of those

concepts. In this set of experiments, we evaluate the quality of a given topic in terms

of its coherence to human interpretation. After learning topics from a collection of

SJMN-2k documents, we ask human annotators to decide whether the top terms in

each individual learned topic are coherent, in terms of association with a single seman-

tic concept they interpreted from these top terms.

Chang et al.(2009) designed two explicit human evaluation tasks for measuring the

semantic interpretability of a topic model. As we have discussed in the Section 2.7 on

Page 36, we use the word intrusion detection to score the topic coherence. First, we

run all models on the SJMN-2k. For each topic, we identify a list of strongly correlated

terms, then one of these terms is randomly selected and replaced by a new term called

an “intruder”. To generate the “intruder”, for each topic, we first randomly picked a

different topic, and randomly selected a term from the latter topic’s top 10 list that

did not occur in the top 5000 term list of this topic. The human evaluation task is to

identify the “intruder”. Figure 3.1 shows an example of this experiment.

All generated lists were sent to the Amazon Mechanical Turk 3 for manual annota-

tion. For each list, the maximum number of subjects is 8. Participants who completed

ten lists (a trial) received $0.20. We have randomly inserted two lists with correct

answers, called check samples, in every trial to monitor the annotator’s performance.

Any trial with correctly answered check samples is included in this evaluation. We

3https://www.mturk.com/mturk/

https://www.mturk.com/mturk/
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LDA PA LDACOL TNG AG-colloc AG-colloc2

“POLITICS”

united israel united united bush us

states soviet states states soviet united states

soviet gorbachev soviet soviet gorbachev japan

bush israeli union bush government official

president peace bush president economic officials

union bush economic government soviet union administration

gorbachev arab gorbachev gorbachev political government

economic soviet union government union president trade

official moscow nuclear officials official white house

nuclear republics foreign nuclear white house washington

“BUSINESS”

million percent percent company million percent

company economy rate million company million

market market rates market market company

stock sales economy stock real estate economy

dow million increase trading share recession

trading company interest price fell market

fell recession billion japan rose increase

price fell recession quarter dollar sales

share quarter months dollar stock cents

quarter trading loan share cents fell

“SPORTS”

points points points game points points

game scored scored season scored game

scored game game players game scored

season warriors victory games warriors warriors

sharks victory win league los angeles victory

warriors beat lead baseball l a lead

team half won team half games

center nelson beat henderson lead nelson

nelson lead warriors pitcher nelson beat

lead point guard hit beat half

“HEALTH CARE”

health health medical health study smoking

smoking medical study smoking doctors risk

medical doctors space care medical doctors

care safety risk medical risk health

disease found hospital disease found law

doctors disease center doctors cancer medical

risk hospital found risk scientists say

cancer death national study research patients

study cancer research cancer implants aids

death risk care ban hospital disease

Table 3.2: Top-10 terms of selected four topics. Topic names, such as “POLITICS”,

are interpreted according to its top-10 terms.
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also monitored the annotation time spent on each list, and Figure 3.2 plots the aver-

age annotation time for all generated lists. Most of the annotators spent around 13

seconds per list before making their decisions, while a few of them spent more than 30

seconds for a list. We also noticed that over 80% of annotators completed less than 5

trials (Figure 3.3) and all lists were done in a few hours. All these factors suggest that

1) Mechanical Turk is a great platform to ask the annotators to solve simple problems,

because most of them spend around 10 seconds on each task in our experiments; 2) it

could be a good idea to consolidate a few independent lists into trials using Mechanical

Turk. In our experiments, more than 80% of annotators only completed less than 5

trials. According to our experience, even for simple tasks, the more tasks an annotator

undertakes, the better the quality of the resulting annotation.

We collected 579 annotated trials from 129 annotators. We removed the annotators

who have not correctly annotated at least one list. For each trial, if the “intruder”

term has been identified, we count it as correct. If the actual “intruder” term was not

correctly identified, we count that item as incorrect. The quality of topic coherence

could be quantified by the number of correctly identified intruders divided by the total

Figure 3.1: A screenshot of the word intrusion experiment.
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Figure 3.2: The average annotation time for all lists using Mechanical Turk. Most of

the lists were checked by the annotators in around 13 seconds.

number of annotated lists. Instead of using the Wilcoxon test, this evaluation uses a

logistic regression (Jaeger, 2008) to check the odds and significance levels. A logistic

regression is most natural for our data, since each response has two possible outcomes:

correct, or incorrect. The coefficients of the logistic regression will reflect the log odds

of the response being correct. In this evaluation, if we pick the LDA as the comparison

value, each coefficient expresses the change in log odds from this variable. We use the

notation %ChgLDA to represent these improvements and significance levels, and change

the subscript if we change the comparison variable.

We compared the word intrusion detection scores of all models. Table 3.3 shows
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Figure 3.3: The histogram of the trials annotated by the same annotators. For example,

there is 80 annotators only completed one trials, while only 1 annotator completed 67

trials.

that all the topical collocation models outperform LDA, although only AG-colloc and

AG-colloc2 obtain significantly better results at 95% confidence. AG-colloc achieves

the best result, with improvements ranging from 6% to 24% compared to the other

models. We pick the AG-colloc as the comparison variable and the improvements are

shown in column %ChgAG−colloc of Table 3.3. Under the test with 95% confidence, the

AG-colloc significantly outperforms all others except for AG-colloc2.

3.3.3 Automatic Evaluation of Topic Coherence

As discussed above, human evaluation of topic coherence is expansive and slow. Here,

we use an automatic evaluation method to measure the topic coherence of each gener-

ated topical words/collocations.

As discussed in Section 2.7.3 on Page 40, for the PMI method, a Wikipedia corpus

was used by Newman et al. (2010b) and Lau et al. (2013) as an external source to
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Models Accuracy %ChgLDA %ChgAG−colloc

LDA 0.473 - -24.74%∗∗∗

LDACOL 0.477 0.85% -23.69%∗∗∗

TNG 0.525 10.99% -12.38%∗

PA 0.485 2.54% -21.65%∗∗∗

AG-colloc 0.59 24.74%∗∗∗ -

AG-colloc2 0.552 16.7%∗ -6.9%

Mean 0.52 - -

Table 3.3: Word intrusion detection Results. %ChgLDA shows the improvements and

significance levels compared to LDA while %ChgAG−colloc shows the changes and sig-

nificance levels compared to AG-colloc. Bold face indicates the best score according

to a Wilcoxon signed rank test. (The significance levels: p < 0.001:***, p < 0.01:**,

p < 0.05:*)

calculate the PMI scores. We use the same corpus in our experiment. Following

Newman et al. (2010b) and Lau et al. (2013), a sliding window of 20 words was used

to calculate the occurrence and co-occurrence of terms. We did not run the LCP

method in this thesis, since Lau et al. (2013) reported that the PMI is better than

LCP for evaluating topical collocation models. To extend this method for evaluating

collocations, we have two steps as follows. First, we tokenize the corpus using all

collocations detected by the model. Second, we treat all these collocations as “words”

and then calculation the PMI score.

We calculated the PMI scores for the SJMN-2k corpus to automatically check the

topic coherence of the distinct models, and the experiments were repeated 10 times for

the significance test. Table 3.4 shows the results. In these results, the higher the PMI

score, the better the topic coherence. The AG-colloc outperforms the other models by

0.7% ∼ 1.8% (p < 0.05). Almost all the PMI scores of the topic collocation models are

higher than LDA’s, except for the LDACOL.

Similar to the observation found by Lau et al. (2013), the rankings of all models
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Models MReview SJMN-2k

Average %ChgLDA %ChgAG−colloc Average %ChgLDA %ChgAG−colloc

LDA -16.287 - -1.39%∗∗∗ -16.127 - -1.59%∗∗∗

LDACOL -16.286 0.01% -1.38%∗∗∗ -16.18 -0.33% -1.92%∗∗∗

TNG -16.268 0.11% -1.27%∗∗∗ -16.008 0.74%∗∗∗ -0.86%∗∗

PA -16.25 0.23%∗ -1.16%∗∗∗ -16.006 0.75%∗∗∗ -0.85%∗∗

AG-colloc -16.06 1.39%∗∗∗ - -15.87 1.59%∗∗∗ -

AG-colloc2 -16.122 1.01%∗∗∗ -0.38% -15.878 1.54%∗∗∗ -0.05%

Table 3.4: PMI Comparison on two corpora. Tests of statistical significance comparing

the AG-colloc against other models are performed. Bold face indicates the best score

according to a Wilcoxon signed rank test. (The significance levels: p < 0.001:***,

p < 0.01:**, p < 0.05:*)

using the PMI method and the human annotations are close to each other. Both

methods agree with each other on the top 2 models, but disagree on the rankings for

PA and TNG, and LDA and LDACOL. For the PMI scores on the SJMN-2k corpus,

we noticed only tiny differences between TNG and PA, LDACOL and LDA.

3.3.4 An Alternative Ranking Method

There are two different ways to rank the topic association strength between words and

topics. The standard method uses the probability of terms given topic (p(w|t)):

p(w|t) =
n(w, t) + α∑

w n(w, t) + |w|α
(3.1)

where the n(w, t) is the count of the word w assigned to topic t, and the n(t) is the

total count of the topic t. Note that the α here is a Dirichlet parameter, but not the

one used in the topic models, then we can use this metric to evaluate more general

models. We set the α to 5.

The denominator in the Eq. 3.1 is a constant given a topic t, and the count n(w, t)

for each word determines the ranking position. This method selects frequent terms to
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Figure 3.4: The diagram of two ranking methods. The first method p(w|t) (left) calcu-

lates the probability using the summation of counts of all words assigned to this topic

t. The second method p(t|w) (right) calculates the probability using the summation of

counts of this word assigned to all topics.

represent this topic. For example, the word we was almost uniformly distributed in

many topics, for example, we occurred in the Politics topic around a thousand times;

another word republics occurred in the same topic less than 100 times. Using this

method, the word we is more informative than the word republics to represent the

Politics topic. Usually, topical collocations learned by such models are infrequent and

this method could miss such informative collocations.

As the Fig. 3.4 shows, we also could use another method (right) to rank the terms.

We propose a new method for identifying topical words using the probability of topic

given a term (p(t|w)):

p(t|w) =
n(w, t) + α∑
t n(w, t) + |t|α

(3.2)

We could interpret the second method as the “topic purity of the word” method.

For each word in a given topic, it calculates the probability of the frequency of this

word occurring in this topic nw,t divided by total frequency of this word across all

topics
∑

t n(w, t), which is termed “purity” as it indicates the degree to which a topic

is free from being confused with other topics for a given word. For example, a term

“white house” occurred in two topics, Politics and Real Estate, respectively. Then, the
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Models Human Evaluation PMI

p(w|t) p(t|w) p(w|t) p(t|w)

LDA 0.473 0.491 −16.127 −15.8

LDACOL 0.477 0.539 −16.18 −16.02

TNG 0.525 0.579 −16.008 -15.737

PA 0.485 0.5 −16.006 −15.7553

AG-colloc 0.59 0.63 -15.87 -15.62

AG-colloc2 0.552 0.603 -15.878 -15.621

Mean 0.52 0.56 -16.0115 -15.7506

Table 3.5: Comparison between two different ranking methods used in PMI and human

evaluation methods on the SJMN-2k. Bold face indicates the best score.

topic Politics dominates the topics for the word.

As discussed above, we expect that the p(t|w) ranking method could find more

strongly associated terms for each topic. We compared the human evaluation (intru-

sion detection) scores between the two ranking methods and the results are shown in

Table 3.5. All scores, including the average score of the second ranking method p(t|w),

are significantly better than the results using the ranking method p(w|t). We also com-

pare the PMI scores using the two ranking methods, and these results are also reported

in Table 3.5. Similar to the human evaluation, all PMI scores using the second ranking

method are better than the scores using the first ranking method.

3.3.5 Evaluation on Text Classification Tasks

Section 2.7.4 on Page 42 introduced the framework for evaluating topic models on a

text classification task. Here, we evaluate the six models with the text classification

task using the MReviews, Comp, Sci, Sports, and Politics corpora. The classification

evaluation was carried out as follows. Firstly, we ran each model (using the settings

explained in the beginning of this section) on each set of documents to derive the per-

document topic distributions (θ), which were used as the only features in classification.
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We then randomly selected from each corpus 80% of documents for training and 20% for

testing. Finally, we trained a Support Vector Machine (SVM) with a linear-kernel (Fan

et al., 2008) on the training set, and predicted on the testing set.

We ran the classification evaluation ten times and report the average accuracy and

F-scores in Tables 3.6 to 3.10. Almost all topical collocation models outperform LDA on

accuracy, and the F-scores ranged from 0.01% to 5.93%. Many of these improvements

are significant under the Wilcoxon test with 95% confidence. The results indicate

that learning topical collocations together with their topics can further improve the

document classification performance.

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgAG−colloc Mean %ChgLDA DAG−colloc

LDA 71.3% - -1.9%∗∗ 0.702 - -3.99%∗∗∗

LDACOL 71.75% 0.45%∗∗ -1.45%∗∗ 0.7182 2.31%∗∗ -1.64%∗∗

TNG 71.4% 0.1% -1.8%∗∗ 0.706 0.57% -3.4%∗∗

PA 72.7% 1.4%∗∗∗ -0.5% 0.7253 3.32%∗∗∗ -0.65%

AG-colloc 73.2% 1.9%∗∗ - 0.73 3.99%∗∗∗ -

AG-colloc2 72.75% 1.45%∗ -0.45% 0.718 2.28%∗∗ -1.67%

Table 3.6: Classification accuracy (%) and F-scores on the MReviews corpus. %ChgLDA

shows the changes compared to LDA, while %ChgAG−colloc shows the changes compared

to AG-colloc. Bold face indicates the best score according to a Wilcoxon signed rank

test. (The significance levels: p < 0.001:***, p < 0.01:**, p < 0.05:*)

We also sorted the topical collocation models by the average accuracy or F-score,

and chose the highest value as the best model. Compared with complex models such

as LDACOL and TNG, the PA achieved exciting results. It outperformed LDACOL

and TNG on 4 out of 5 corpora in this evaluation. The experimental results in the

classification evaluation suggest that the pre-computed collocations could be an easy
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Models Accuracy(%) F-Score

Mean %ChgLDA %chgAG−colloc Mean %ChgLDA %ChgAG−colloc

LDA 89.12% - -0.1% 0.8214 - -1.28%∗∗

LDACOL 89.14% 0.02% -0.08% 0.8225 0.13% -1.15%∗∗

TNG 89.19% 0.07% -0.04% 0.824 0.32% -0.96%∗

PA 89.21% 0.09% -0.01% 0.8307 1.12%∗∗ -0.16%

AG-colloc 89.22% 0.1% - 0.832 1.28%∗∗ -

AG-colloc2 89.18% 0.06% -0.04% 0.823 0.2% -1.08∗%

Table 3.7: Classification accuracy (%) and F-scores on the Politics corpus. %ChgLDA

shows the changes compared to LDA, while %ChgAG−colloc shows the changes compared

to AG-colloc. Bold face indicates the best score according to a Wilcoxon signed rank

test. (The significance levels: p < 0.001:***, p < 0.01:**, p < 0.05:*)

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgAG−colloc Mean %ChgLDA %ChgAG−colloc

LDA 86.27% - -1.59%∗∗∗ 0.657 - -5.93%∗∗∗

LDACOL 87.64% 1.37%∗∗ -0.22%∗ 0.693 5.47%∗∗ -0.89%

TNG 87.52% 1.25%∗∗ -0.34%∗∗ 0.69 5%∗∗∗ -0.88%

PA 87.36% 1.09%∗∗ -0.5% 0.6841 4.1%∗∗∗ -0.43%

AG-colloc 87.86% 1.59%∗∗∗ - 0.696 5.93%∗∗∗ -

AG-colloc2 87.72% 1.45%∗∗∗ -0.14% 0.689 4.86%∗∗∗ -1.02%

Table 3.8: Classification accuracy (%) and F-scores on the Comp corpus. %ChgLDA

shows the changes compared to LDA, while %ChgAG−colloc shows the changes compared

to AG-colloc. (Bold face indicates the best score according to a Wilcoxon signed rank

test. (The significance levels: p < 0.001:***, p < 0.01:**, p < 0.05:*)

and elegant way to introduce collocations into topic models if the critical collocations

were pre-computed.

In this set of experiments, the AG-colloc posits the most effective model on these 5
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Models Accuracy(%) F-Score

Mean %ChgLDA %ChgAG−colloc Mean %ChgLDA %ChgAG−colloc

LDA 91.96% - -1.61%∗∗∗ 0.8392 - -3.6%∗∗∗

LDACOL 92.57% 0.61% -0.99%∗∗ 0.842 0.33% -3.26%∗∗

TNG 93.12% 1.15%∗∗ -0.45%∗∗ 0.8615 2.66%∗∗∗ -0.92%∗

PA 93.16% 1.2%∗∗∗ -0.4%∗∗ 0.8632 2.87%∗∗∗ -0.7%

AG-colloc 93.57% 1.6%∗∗∗ - 0.8694 3.6%∗∗∗ -

AG-colloc2 93.42% 1.42%∗∗∗ -0.15% 0.8652 3.1%∗∗∗ -0.48%

Table 3.9: Classification accuracy (%) and F-scores on the Sci corpus. %ChgLDA shows

the changes compared to LDA, while %ChgAG−colloc shows the changes compared to

AG-colloc. Bold face indicates the best score according to a Wilcoxon signed rank test.

(The significance levels: p < 0.001:***, p < 0.01:**, p < 0.05:*)

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgAG−colloc Mean %ChgLDA %ChgAG−colloc

LDA 91.58% - -1.04%∗∗∗ 0.9561 - -0.63%

LDACOL 91.52% -0.06% -1.1%∗∗ 0.9554 -0.08% -0.7%

TNG 91.67% 0.09% -0.96%∗∗ 0.9565 0.04% -0.59%

PA 91.71% 0.13% -0.91%∗∗ 0.9567 0.06% -0.57%

AG-colloc 92.62% 1.04%∗∗∗ - 0.9621 0.63% -

AG-colloc2 92.57% 0.98%∗∗ -0.06% 0.96 0.4% -0.22%

Table 3.10: Classification accuracy (%) and F-scores on the Sports corpus. %ChgLDA

shows the changes compared to LDA, while %ChgAG−colloc shows the changes compared

to AG-colloc. Bold face indicates the best score according to a Wilcoxon signed rank

test. (The significance levels: p < 0.001:***, p < 0.01:**, p < 0.05:*)

corpora. We applied the Wilcoxon tests between the AG-colloc and the other models,

and this indicated that the AG-colloc is significantly better than the other models on

4 out of the 5 classification corpora. We also noticed that the AG-colloc achieved the
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best F-score results on these corpora.

We found some interesting phenomenon in the MReviews classification task. Some

collocations, such as named entities, were identified by the models that can learn topical

collocations, and it was found that this aids the models in identifying such celebrities

accurately, using the named entity links the right actor to the right movie, and certain

actors are more likely to be in movies with positive reviews that other actors.

Individual words in some topical collocations could have distinctive meanings (top-

ics), such as High School is a type of school and Angry Men is the name of a movie

(rather than men who are annoyed). The AG-colloc identified these two phrases as

two topical collocations that were linked to the Education and Famous Movie topics,

respectively. Other models, like PA, LDACOL, and TNG, do not capture the second

collocation and the word Angry expressed the angry emotion of the reviewer.

3.3.6 Evaluation on an Information Retrieval Task

We then evaluated those six models on an Information Retrieval (IR) task. We used

the method presented by Wei and Croft (2006) and Wang et al. (2007), which has

been reviewed in the Section 2.7 on Page 36. This method calculates the probability

P (Q|D) of a query Q given a document %chg:

P (Q|D) = λPLM(Q|D) + (1− λ)PTM(Q|D),

where λ is a factor adjusting the weights of two likelihoods, PLM(Q|D) is a standard

query likelihood and PTM(Q|D) is the query likelihood computed using the outputs of

those six topic models.

As discussed in previous chapter in Section 2.7.4 on Page 44, IR evaluation has two

steps, where in the first step, topic models are applied to all documents to estimate

the word-topic (φ) and topic-document distributions (θ). Usually, the number of

documents in IR tasks is too large for most topical collocation models. For example,

the SJMN corpus contains more than 95, 000 documents and the AP corpus contains

more than 240, 000 documents. Therefore, we propose a 3-step IR evaluation method.
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Figure 3.5: The process of the IR method for evaluating topic models that only can

handle small number of documents. This process has three steps, we randomly sampled

small number of documents from the corpus to estimate the word-topic distribution

(φ) using these topic models. In the second step, we fix the word-topic distribution

(φ) and estimate the topic-document distribution (θ) for all documents in the corpus.

Then, we score the models using standard IR method in the third step.

The high level idea of this approach is to learn the word-topic distributions (φ) on a

subset of a corpus, and then use this to analyse the entire corpus later.

Figure 3.5 represents the IR method process for evaluating the topic models which

can only handle a small number of documents. In this chapter, we used this method

for evaluating all topic models and will use the standard IR model in Chapter 5 on

Page 101 for evaluating the scalable models.

In the first step, we randomly sampled 2% of documents from the SJMN corpus to

produce a subset containing 1, 813 articles. Queries 51-150 were used. The queries were

extracted from the title field of TREC topics that are used in IR evaluation procedures,

such as the 97th query: Fibre Optics Applications. Then, we ran all six models on this

subset for 2,000 iterations with 50 topics. For both LDA and PA, we use the standard

setting to set α = 1/K and β = 0.02, respectively. For the other trials, we used the
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same settings as used in the classification task. For the models that capture the topical

collocations, queries were tokenised using the collocations inferred by the models.

We then inferred the word-topic distribution (φsampled) using these topic models. In

the second step, we fixed the φsampled and estimated the topic-document distribution

(θ) for all documents in the SJMN corpus. Both of these distributions were used to

calculate the PTM(qi|D) using Eq. 2.10 in the next step. In the third step, we calculate

the PLM(qi|D), which is calculated by the state-of-the-art IR engine Indri (Strohman

et al., 2004), a search engine implementing the Eq. 2.8. Then, for each query, we can

re-rank the documents by linearly combining the PTM(Q|D). The evaluator then cal-

culates the Average Precision (APs) of these re-ranked documents for this query. The

Mean Average Precision (MAPs) over all queries are reported to gauge the effectiveness

of different topic models.

Models MAP %ChgLDA %ChgAG−colloc

LDA 0.1885 - -2.75∗∗∗

PA 0.1916 1.62∗∗∗ -1.11∗

LDACOL 0.1903 0.95∗ -1.78∗∗∗

TNG 0.1906 1.1∗∗ -1.63∗∗∗

AG-colloc 0.1937 2.75∗∗∗ -

AG-colloc2 0.1932 1.48∗∗∗ -0.26

Table 3.11: The IR MAP for six topic models on the SJMN-2k corpus. %ChgLDA

shows the improvement and significance levels of each model compared to LDA while

%ChgAG−colloc shows the improvement and significance level of AG-colloc compared to

each model. Bold face indicates the best score according to a Wilcoxon signed rank

test. (The significance levels: p < 0.001:***, p < 0.01:**, p < 0.05:*)

The comparison is more complicated than the classification evaluation since the

parameter λ combines the standard language model score with a topical collocation

model score. There is no efficient way to select this parameter. For a fair comparison,

the weighting factors λ were independently chosen to get the best performance from
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each model (Wang et al., 2007). In this experiment, the λ for TNG, AG-colloc, and

AG-colloc2 models is 0.6, and 0.7 for LDA and LDACOL models.

As in the classification evaluation, we ran the procedure described above ten times

and the MAPs are reported in Table 3.11. All topical collocation models achieved

better MAP compared to LDA on this retrieval task. The improvements ranged from

0.9% to 2.7% under the Wilcoxon test with 99.9% confidence. The results show that

learning topical collocations together with their topics can benefit the information

retrieval task.

We also found that the AG-colloc outperforms other models, and yields the highest

MAP score, increasing the MAP by 1.8%∼2.7% under the Wilcoxon test with 99.9%

confidence. The PA also outperformed LDACOL, TNG, and LDA in this evaluation.

No. Query LDA LDACOL TNG PA AG-colloc AG-colloc2

053 Leveraged Buyouts 0.2132 0.2727 0.3247 0.3872 0.3917 0.387

097 Fibre Optics Applications 0.126 0.1272 0.1621 0.1252 0.2084 0.2072

108 Japanese Protectionist Measures 0.1153 0.112 0.1462 0.1498 0.1508 0.1489

111 Nuclear Proliferation 0.222 0.2972 0.442 0.4512 0.4428 0.4412

064 Hostage Taking 0.38 0.364 0.4058 0.3921 0.4121 0.4126

125 Anti smoking Actions by Government 0.2881 0.2810 0.4217 0.4312 0.4218 0.4220

145 Influence of the “Pro Israel Lobby” 0.2278 0.2221 0.2453 0.2428 0.258 0.2572

148 Conflict in the Horn of Africa 0.1912 0.1872 0.2024 0.1683 0.1922 0.1984

Table 3.12: Comparison of the six models on TREC retrieval performance (mean av-

erage precision) of eight queries. Bold face indicates the best score.

Table 3.12 shows some examples on individual queries. Some of these queries con-

tain obvious phrases, for example, number 097 has Fibre Optics, and thus the APs

of topic models learning topical collocations achieve much better scores compared to

LDA. On the other hand, some queries do not contain common phrases when stop

words and punctuations are removed, such as the example for number 148 (after re-

moving stop words and punctuations, the query only has three words, Conflict Horn

Africa), and the performance in such instances is equivalent to LDA.

To investigate the advantages and disadvantages of these models, we analyse the
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performance of query number 097, as an example. We found the collocation Fibre Op-

tics contained in this query has been identified as a collocation in the TNG, AG-colloc

and AG-colloc2 models and has been assigned to topics, such as network, technology,

and communications. The PA failed to detect this collocation in its pre-computing

collocations step (we found that this collocation occurred in its top-10,000 collocations

but we used the top-1000 collocations). The PA, LDACOL, and LDA assigned the

first word Fibre to topics such as health, food, network, and assigned the second word

Optics to physic, health(eye), and communication topics.

As the TNG, AG-colloc and AG-colloc2 correctly identified the Fibre Optics collo-

cation, these three models increased the likelihood of some documents being linked to

the network and communications topics, promoting these documents to higher ranks.

For those models that cannot capture this collocation, there is inferior performance in

establishing such a link to technology topics.

3.4 Discussion

We evaluated the six topic models using four different evaluation methods on six cor-

pora, as described in the last section. The total number of comparison experiments

was 11 (2 in human evaluation of topic coherence, 3 in automatic evaluation of topic

coherence, 5 evaluation on text classification tasks, and 1 evaluation on information

retrieval tasks). By comparing the performance of these nine experiments, we notice

that all the topic models for learning topical collocations except LDACOL, obtain bet-

ter performance with a certain significance level, although the improvements are not

huge. For LDACOL, it also outperformed LDA in 7 out of 11 experiments and their

scores were close to each other. Our results indicate that collocations improve topic

modelling whether they are recovered jointly with the topics or pre-computed.

Surprisingly, although PA pre-computed the collocations and then employed LDA

to learn the topical collocations, it still outperforms LDA on all experiments, it even

achieved better performance in 7 out of 11 experiments compared to TNG and LDA-

COL.
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The best topic model for learning topical collocations is the AG-colloc. The AG-

colloc outperformed the other models in all experiments with a certain significance

level, although the improvements are marginal. The performances of the AG-colloc2

are quite close to the AG-colloc, and there are no significant differences between the

two methods in some of the experiments. The performances of AG-colloc2 on two of

the classification tasks, however, are worse than PA or TNG. Thus, the performances

of AG-colloc2 are not as consistent as the AG-colloc. We will check the consistency of

the ranking among all evaluation methods.

3.4.1 Consistency of the Rankings

To check the consistency of the rankings among all evaluation methods, we compared

the rankings of each model in three evaluation methods on the SJMN-2k corpus. We

also compared the rankings of each model in classification and PMI evaluation methods

on the MReview corpus. Table 3.13 and Table 3.14 show the results.

Overall, the rankings are similar to each other using the different evaluation meth-

ods. The AG-colloc and AG-colloc2 were ranked the top two best models by these

three methods. PA was ranked as the third best model twice, in the PMI and IR, and

ranked the fourth best model in human evaluation. TNG just changed position with

PA in these three methods. LDACOL and LDA are in the same situation with TNG

and PA. LDACOL was ranked as the fifth best model twice, in the human evaluation

and IR methods, respectively, but obtained the worst performance in the PMI eval-

uation. LDA almost always obtained the worst performance compared to the other

models but it achieved a slightly better result than LDACOL in the PMI evaluation.

We use the Spearman Rank Correlation to compare these rankings among the three

evaluation methods. We did not include the classification rankings because we did not

evaluate these models on the SJMN-2k corpus using the classification method. The

correlation coefficients among the four evaluation methods are shown in Table 3.15.

These numbers indicate that the three evaluation methods are quite correlated to each
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R Human Evaluation PMI IR

1 AG-colloc AG-colloc AG-colloc

2 AG-colloc2 AG-colloc2 AG-colloc2

3 TNG PA PA

4 PA TNG TNG

5 LDACOL LDA LDACOL

6 LDA LDACOL LDA

Table 3.13: The rankings of the topic models on the SJMN-2k corpus using three

evaluation methods.

R PMI Classification

1 AG-colloc AG-colloc

2 AG-colloc2 AG-colloc2

3 PA PA

4 TNG LDACOL

5 LDACOL TNG

6 LDA LDA

Table 3.14: The rankings of the topic models on the MReviews corpus using two

evaluation methods.

Method 1 Method 2 Spearman correlation coefficient

Human Annotation PMI 0.886∗

Human Annotation IR 0.943∗

PMI IR 0.943∗

Classification PMI 0.943∗

Table 3.15: The Spearman Rank Correlation test (coefficients and significance level

p < 0.05:*) among the four evaluation methods.
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other.

3.4.2 Computational Efficiency

We have found that the topical collocations improved the quality of topic modelling

and the AG-colloc is the most effective topic model. Here, we discuss the efficiency

of these models and check whether it is feasible to run these models on a large-scale

corpus, e.g. the whole SJMN corpus that has more than 95, 000 documents.

Models MReview SJMN-2k

#Topic 100 800 100 800

AG-colloc 84.9 1305 37.5 692

LDA 0.13 0.18 0.10 0.12

Table 3.16: The average running time (in seconds) per iteration for the AG-colloc and

sparseLDA in Mallet.

Unfortunately, the AG-colloc model requires an inference algorithm that is cubic

in the length of sequences of content words. We have reduced the computational com-

plexity for this model by tokenizing text into many sequences of content words using

punctuations and stop words, however, the complexity is still high. This limits its

applicability to small datasets. For example, if we directly run the AG-colloc on a sen-

tence Macquarie University is a public research university based in Sydney, Australia,

in the suburb of Macquarie Park., the inference algorithm is cubic in the length of this

sentence. The sentence could be tokenized using punctuations and stop words. The

new text fragments are Macquarie University, public research university based, Sydney,

Australia, suburb, Macquarie Park. Then, for each fragments, the computational com-

plexity is cubic in the length of this fragments, the total computational complexity of

this sentence then is the summation of them.

We ran the AG-colloc on two small corpora, which had around 2, 000 documents.

Performance was measured by the average running time per Gibbs iteration over all

the documents. We varied the number of topics from 100 to 800. Table 3.1 shows the



3.5 Summary 73

average running time in seconds for both models. The purpose of this comparison was

just to check whether the AG-colloc implementation, which uses a generic Adaptor

Grammar framework, could be run on a large scale corpus. The comparison itself is

not fair, because the LDA we used is the Mallet sparseLDA implementation, which has

been heavily optimized in terms of efficiency and the AG-colloc implementation is a

generic Adaptor Grammar framework that designed for arbitrary grammars.

We also noticed that although the LDACOL and TNG models run faster than

the AG-colloc, the efficient inferences for both models are also unavailable, making it

impractical to run on the large corpora.

3.5 Summary

In this chapter, we compared six topic models on six corpora using four different

evaluation methods. We have found that the topical collocations improve the quality

of topic modelling and the AG-colloc is the most effective topic model for learning the

topical collocations.

The efficiency of these models was also evaluated in this chapter. We noticed that

the AG-colloc is much slower than LDA, limiting its applicability to small corpora.

In the next chapter, we will reformulate the AG-colloc model without using Adaptor

Grammars and develop a fast inference algorithm that allows this model to scale to

large document collections.
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4
An Efficient Reformulation of Adaptor

Grammar for Learning Topical Collocations

4.1 Introduction

In Chapter 3, we have found that the AG-Colloc outperforms the other models on

four evaluation methods. Unfortunately, the AG-colloc model requires an inference

algorithm that is cubic in the length of text, limiting its applicability to small datasets.

In this chapter, we focus on reformulating the AG-colloc model without using the

expensive Adaptor Grammar representation to allow an inference for this model. This

new inference is linear in the length of the documents.

Furthermore, we also propose a parallel, sparse version of this inference sampler to

take advantage of multiple cores and sparsity.

75
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The structure of this chapter is as follows. In Section 4.2, we present our reformu-

lation of the AG-colloc model. Section 4.3 derives a point-wise Gibbs sampler for the

model and shows how this sampler can take advantage of sparsity and be parallelised

across multiple cores in Section 4.4.

4.2 A Reformulation of Adaptor Grammar for Learning Top-

ical Collocations

In this section we present our reformulation of the AG-colloc model, which we call the

Topical Collocation Model (TCM). We first review LDA and the Unigram model for

word segmentation (Goldwater et al., 2009), which are the two key ingredients of the

TCM. We then show how these two models can be combined into the TCM and how

it relates to AG-colloc.

4.2.1 LDA and Bayesian Word Segmentation Models

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) represents a document as a mix-

ture of topics, where each topic is a probability distribution over words. In the gen-

erative process of LDA, a specific topic mixture distribution θd is first generated for

document d from a Dirichlet distribution. Then, for each word wi in d a topic indicator

zi is drawn from θd. Finally, the identity of wi is determined by drawing from the topic

distribution φzi . Formally, the LDA model is defined as

θd ∼ Dirichlet(α) zi|θd ∼ Discrete(θd)

φz ∼ Dirichlet(β) wi|φzi ∼ Discrete(φzi)

where α and β are two Dirichlet parameters. The graphical model is shown in Fig-

ure 4.1a. LDA has been extended in various ways to incorporate a variety of discourse

features in its generative process. Previous work has also shown that the posterior

estimate of θ and φ can be used to improve document classification and information

retrieval (Azzopardi et al., 2004; Wei and Croft, 2006). By modifying the generative

process of φ, different word features can be incorporated into the model. For example,

Sato and Nakagawa (2010) put a Pitman-Yor process prior on φ, and Newman et al.
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(a) LDA (b) TCM

Figure 4.1: The graphical representation of LDA and the TCM.

(2011) used different regularisers for φ. We are primarily interested in how to incorpo-

rate collocations, and will adapt ideas from Bayesian word segmentation (Goldwater

et al., 2009).

Goldwater et al. (2009) introduced two Bayesian word segmentation models, knowns

as the Unigram and the Bigram model for word segmentation. These models make use

of the Dirichlet process (DP) and the hierarchical Dirichlet process (Teh et al., 2006a),

respectively. We briefly review the Unigram, and refer the reader to Goldwater et

al. (2009) for detailed discussion.

The Unigram model assumes the following generative process. Letw = (w1, · · · , wN)

denote a sequence of words in an utterance. Word wi in the sequence is generated as

follows:

1. Decide if wi is a novel lexical item, P(wi is novel) = α0

n+α0
, P(wi is not novel) =

n
n+α0

.

2. 2.1. If yes, generate phonemes x1 · · ·xM for wi with probability p#(1−p#)M−1
∏M

j=1 P (xj).

2.2. If not, choose an existing lexical form l for wi with the probability nl

n
.

where α0 is the concentration parameter of the DP, n the total count of previously

generated words, nl the count of the particular lexical item l and p# the probability
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of generating a word boundary. Thus, the probability of wi given the previous words

w−i = (w1 · · ·wi−1):

P (wi = l | w−i) =
nw

i− 1 + α0

+
α0P0(wi = l)

i− 1 + α0

,

where the base distribution P0 is given by the product of a geometric distribution over

M and a uniform distribution over phonemes P (xj), see step-2(a).

Inference can be performed using a point-wise Gibbs sampler that repeatedly sam-

ples possible word boundaries between phonemes (see Goldwater et al. (2009). If we

replace phonemes by words such that the base distribution P0 is defined over sequences

of words rather than phonemes, this generative process generates sequences of colloca-

tions. Crucially, the same sampling algorithm can be used to split sequences of words

into sequences of collocations. This idea has also been used by Newman et al. (2012)

to extract collocations using a Dirichlet Process model. However, they do not consider

the topic assignments of these collocations. We extend the model so that it can jointly

learn collocations and their topics.

Goldwater et al. (2009) introduced an influential model for word segmentation

known as the Unigram model. This model is based on the Dirichet Process (DP)

and assumes the following generative process for a sequence of words.

G ∼ DP (α0, P0)

wi | G ∼ G

Here, P0 is some distribution over the countably infinite set of all possible words over

some finite inventory of segments. As G is a draw from a Dirichlet Process with a

base-distribution that has infinite support, it is itself an infinite object. Because of

this, inference is usually performed under a collapsed model in which G is integrated

out, giving rise to a Chinese Restaurant Process (CRP) representation that is defined

by the following predictive probability formula for wi given w1:i−1:

P (wi = l|w1:i−1) =
nl

i− 1 + α0

+
α0P0(l)

i− 1 + α0

,

where nl is the count of lexical item l.

During inference, the words are not known, and the model observes a sequence of

characters. Goldwater et al. (2009) derived a linear time Gibbs sampler that samples
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from the posterior distribution over possible segmentations of a given corpus according

to the model. Their key insight was that sampling can be performed over a vector of

boundary indicator variables – not included in the original description of the model

– that indicates which adjacent characters are separated by a word boundary. For

example, the character sequence “abcd” has three possible boundary positions b1 to

b3. The setting b1 = 1, b2 = 0, b3 = 1 corresponds to the segmentation into words

w1 = a, w2 = bc, w3 = d. In the next section, we show how this model can be modified

to yield the AG-colloc model. We can then apply a variant of Goldwater et al.’s linear

time Gibbs sampler for the Unigram model to the AG-colloc model.

4.2.2 Topical Collocation Model

Adaptor Grammars are a generalization of probabilistic context free grammars (PCFGs).

In a PCFG, a non-terminal A is expanded by selecting a rule A→ β with probability

P (β|A), where β is a sequence of terminal and non-terminal node labels. Because the

rules are selected independently, PCFGs introduce strong conditional independence

assumptions. In an Adaptor Grammar, some non-terminal labels are adapted. These

nodes can be expanded either by selecting a rule, as in PCFGs, or by retrieving an entire

subtree from a Dirichlet process, breaking the conditional independence assumptions

and exploiting longer-range statistical relationships.1

By underlining adapted non-terminals, Johnson’s (2010) AG-colloc model can be

concisely expressed using the context free grammar rules

Top→ Docm

Docm →−m | Docm Topici

Topici →Word+

where m ranges over the number of documents and i ranges over the number of topics.

As in LDA, each document is defined as a mixture of K topics with the mixture

probabilities corresponding to the probabilities of the different expansions of Docm.

1Strictly speaking, Adaptor Grammars are defined using the Pitman-Yor process. We restrict ourselves to

considering the Dirichlet Process which is a special case of the PYP if the discount parameter is set to 0.
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However, the Topic distributions are modelled using an adapted non-terminal Topici.

Concretely, this means that there is an infinite number of rules expanding Topici, one

for every possible sequence over the finite vocabulary of words (abbreviated using the

regular expression Word+). Topici non-terminals can then cache sequences of words,

just like G cached sequences of characters in the Unigram model.

The base-distribution in this case is defined over all sequences of a finite vocabulary

of words. We define

P0(c = (w1, . . . , wM)) = p#(1− p#)M−1
M∏
j=1

Pw(wj)

where Pw(·) is some distribution over the finite set of words.2 This is identical to the

base-distribution of the Unigram model where characters have been replaced by words.

p# is a parameter that controls the length of collocations. With this, we can re-express

the entire AG-colloc model as a slight modification of the Unigram model:

1. For each topic k, 1 ≤ k ≤ K, φk ∼ DP(α0, P0)

2. for each document d, 1 ≤ d ≤ D

2.1. draw a topic distribution θd|α ∼ DirichletK(α)

2.2. for each token cd,n in document d, 1 ≤ n ≤ Nd

i. draw a topic assignment zd,n | θd ∼ Discrete(θd)

ii. draw a token cd,n | zd,n,φ1, . . . ,φK ∼ φzd,n

We refer to this model as the Topical Collocation model (TCM). While it is just a re-

expression of AG-colloc without using Adaptor Grammar notation, we call it the TCM

in the following to emphasize that we are not using a grammar-based formulation. The

graphical model for this is given in Figure 4.1b. The difference between this model

and LDA (Figure 4.1a) is in how the observed units are generated. LDA assumes

that each generated token is a word that is drawn from a discrete distribution over the

vocabulary. In contrast, the TCM assumes that each token is a collocation, i.e., a multi-

word sequence. Hence, topic distributions no longer are finite discrete distributions

2In our current implementation, we use a uniform distribution, hence Pw(x) = 1
M

for every x where M is

the number of distinct word types.
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but draws from a Dirichlet Process prior whose base-distribution P0 is defined over all

possible sequences of words.

In essence, the TCM can be seen as a Unigram word segmentation model in which

there is not only one but K different draws from a Dirichlet Process, one for each

topic. This suggests that we should be able to apply a linear time Gibbs sampler to

this model. We describe this inference algorithm next.

4.3 Posterior Inference for the TCM

In this section, we introduce Posterior Inference for the TCM is similar to inference

for the Unigram segmentation model. We will identify collocations using the same

sort of boundary indicators, except we look for boundaries between words rather than

between characters. Inferring the topic of a collocation, however, will require additional

machinery.

The observed data consists of a sequence of word tokens which are grouped into D

documents.3 We want to sample from the posterior over how to segment each document

into collocations and how to assign a topic to each collocation. Let each document d

be a sequence of Nd words wd,1, . . . , wd,Nd
. Following Goldwater et al. (2009), we

introduce a set of auxiliary random variables bd,1, . . . , bd,Nd
. The value of bd,j indicates

whether there is a collocation boundary between wd,j and wd,j+1, and, if there is, the

topic of the collocation to the left of the boundary. Concretely, if there is a boundary,

then bd,j = 0. Otherwise, there is a collocation to the left of the boundary consisting

of the words wd,k+1, . . . , wd,j where k = max {i | 1 ≤ i ≤ j − 1 ∧ bd,i 6= 0}, and bd,j = k,

where 1 ≤ k ≤ K is the topic of the collocation. Note that bd,Nd
must not be 0 as

the end of a document is always a collocation boundary. Thus, bd,Nd
can only take on

values between 1 and K whereas all other bd,j can take on values between 0 and K.

For example, consider the document consisting of the words “the white house”.

We use the K + 1-valued variables b1, b2 and the K-valued variable b3 to describe

every possible segmentation of this document in terms of collocations and K different

3Note that unlike for LDA, the order of the words in each document is important for our model.
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topics. If there are K topics and N words, there is a total of (K + 1)N−1×K possible

topical segmentations. We illustrate this correspondence through some examples, by

indicating the values of b1, b2, b3 as a 3-tuple of numbers and the associated analysis

as a bracketing of the document in which subscripts indicate topic assignments of the

bracketed collocation:

• (0, 0, 1) : (the white house)1

• (1, 0, 2) : (the)1 (white house)2

• (2, 1, 1) : (the)2 (white)1 (house)1

The inference algorithm is a Gibbs sampler over these boundary variables which,

unlike in the original word segmentation model, are now K + 1-ary rather than binary

random variables.4

4.3.1 A Point-wise Gibbs Sampler for the TCM

We consider a collapsed version of the TCM in which, in addition to the K non-

parametric topic distributions φ, we integrate out the document-specific topic mixtures

θ. This is straightforward due to the conjugacy between the discrete likelihood for the

topic assignment variables and the Dirichlet Prior on the topic mixtures θ, and is

standard for LDA and related models. We introduce the sampling equations using

a concrete example, considering again the toy-document consisting of the words “the

white house”.

Let the sampler start in state b1 = b2 = 0, b3 = z0, 1 ≤ z0 ≤ K. This corresponds

to the analysis

(the0 white0 housez0︸ ︷︷ ︸
c0

).

This analysis consists of a single collocation c0 which spans the entire document and

is assigned to topic z0. For simplicity, we will not show how to model document

boundaries.

4A similar strategy of making the Gibbs sampler applicable to more complex models by using K-valued

rather than boolean boundary variables was used in Börschinger et al. (2013).
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If we consider resampling b1, we have to consider two different hypotheses, i.e.,

putting or not putting a collocation boundary at b1. The analysis corresponding to not

putting a boundary is the one we just saw. Putting a boundary corresponds to a new

segmentation,

(thez1)︸ ︷︷ ︸
c1

(white0 housez2︸ ︷︷ ︸
c2

).

Note that there are K distinct such hypotheses, one for every possible value of z1.

We can calculate the probability of every possible hypothesis as follows. For b1 = 0

(i.e., there is no collocation boundary after “the”) we have

P (z0, c0|µ) = P (z0|α)P (c0|α0, P0, z0), (4.1)

where µ = {α, α0, P0}, P (c0|α0, P0, z0) is the probability of generating collocation c0

from topic z0 with a CRP, i.e.,

P (c0|α0, P0, z0) =
n−c0z0

+ α0P0(c0)

N−c0z0 + α0

, (4.2)

where n−c0z0
is the number of times that collocation c0 was assigned to topic z0 and

N−c0z0
is the total number of collocations assigned to z0. Both counts exclude the parts

of the analysis that are affected by the boundary that is currently resampled, i.e. they

are lacking the counts associated with c0. As in LDA,

P (z0 = k|α) =
n̂−c0k + α∑K

k=1 n̂
−c0
k +Kα

, (4.3)

where n̂−c0k is the total number of collocations assigned to topic k in a document, again

excluding the count for the parts of the document that are affected by the current

boundary.

For the hypothesis that b1 = z1, 1 ≤ z1 ≤ K we have

P (z1, z2, c1, c2|µ) ∝ (4.4)

P (z1|α)P (c1|α0, P0, z1)

×P (z2|α, z1)P (c2|α0, P0, c1, z1, z2)
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where P (z1|α) and P (c1|α0, P0, z1) can be computed with Eqs (4.3) and (4.2), respec-

tively. The remaining probabilities are computed as

P (z2 = k|α, z1) =
n̂−c1,c2k + α + Iz2=z1∑K
k=1 n̂

−c1,c2
k +Kα + 1

, (4.5)

and

P (c2|α0, P0, c1, z1, z2) =
n−c1,c2z2

+ Iz1=z2Ic1=c2 + α0P0(c2)

α0 +N−c1,c2z2 + Iz1=z2
(4.6)

where Ix=y is an indicator function, which is equal to 1 if x = y and 0 otherwise, n−c1,c2z2

is the number of collocations c2 assigned to topic z2, and N−c1,c2z2
is the total number of

collocations assigned to topic z2. Both counts exclude the current c2, and also exclude

c1 if z1 = z2 and c1 = c2. Our point-wise Gibbs sampler now iterates through each

word and calculates the joint probability of collocations and their topic assignment

according to Eqs (4.1) and (4.4).

Note that whenever we introduce a collocation boundary, we resample the topic

assignment of only the first collocation, holding that of the second collocation fixed. In

our example, if we put a boundary between “the” and “white” the collocation “white

house” would still be assigned to topic z0, i.e., z2 = z0. Similarly, when merging two

collocations into a single collocation (setting a boundary variable that was previously

not equal to 0 to 0) we use the topic assignment of the second collocation. For example,

if the sampler starts with “(the2) (white0 house1)” and we remove the boundary after

“the” we get (the0 white0 house1). This facilitates faster inference as we only need to

consider K rather than K2 possible hypotheses.

4.3.2 Slice sampling hyperparameter of the DP

To the best of our knowledge, there are no conjugate priors for the DP hyperparameter

α0, so it is not possible to integrate it out. Therefore, Johnson et al. (2009) performed

Bayesian inference by putting a uniform Beta(1, 1) prior on it and then sampling its

value. We use their method to resample α0 from:

P (α0 | t) ∝ P (t | α0)Gamma(α0 | 1, 1)
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Here P (t | α0) is the likelihood of the sequences of words for each topic. We also use

a slice sampler since it does not require a proposal distribution (Neal, 2003).

4.4 Prior Work on Efficient Sampler for LDA

4.4.1 Sparse Gibbs Sampling Algorithm for LDA

As Algorithm 1 showed, the Gibbs sampler calculates the probability distribution over

topics for each word token and samples a new topic from this distribution. Sampling a

new topic requires the generation of a random variable U from a uniform distribution,

U(0,P), where P =
∑K

z=1 P (z|w).

In text analysis, a document usually concentrates on a few topics (in Figure 4.2,

most documents have around 10 topics), and a word type normally occurs in a few

topics. We ran LDA on the SJMN corpus that has 95, 536 documents with K =

200. The statistics are shown in Figure 4.2, which illustrates the histogram for both

variables. Most documents include up to 25 topics, i.e., 85% − 90% document-topic

counts (nd,k) are zeros. Almost all the word types occur in less than 20 different topics,

i.e., more than 90% of word-topic counts (nk,v) are zeros.

Based on this observation, Porteous et al. (2008) proposed a FastLDA, which iter-

atively refines the approximation of P . Canini et al. (2009) proposed an incremental

Gibbs sampler and particle filter algorithms. The incremental Gibbs sampler only sam-

ples particular words in the “rejuvenation sequence” in each iteration. The rejuvenation

step determines which words should be put in the “rejuvenation sequence”, and deter-

mines the quality and runtime of this sampler. The particle filter used a resampling

strategy to optimize the sampler. Xiao et al. (Xiao and Stibor, 2010) implemented an

Efficient Collapsed Gibbs Sampling algorithm(ECGS) to reduce the total number of

sampling times in each iteration by using a dynamic sampling strategy. Furthermore,

Yao et al. (Yao et al., 2009) presented a SparseLDA to further reduce the complexity of

Gibbs sampling. They split the full conditional probability mass into three “buckets”

to take advantage of sparseness. We introduce the details of Yao’s method because the

inference process is faster than the others by using the “buckets” method (Yao et al.,
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(a) Topics per Documents

(b) Topics per Word Type

Figure 4.2: The document-topic counts (nd,k) and the word-topic counts (nk,v) in LDA

are sparse. We set the topic size to 200. Most documents have up to 25 topics, i.e.,

85%− 90% document-topic counts (nd,k) are zeros. Almost all the word types occur in

less than 20 different topics, i.e., more than 90% word-topic counts (nk,v) are zeros.

2009). In next section, we will extend this sparse sampler for our topical collocation

models.

The “buckets” method rearranges terms in Eq 2.2 and divides the equation into

three parts:

P (zd,i = k | z−zd,i ,w, αk, β) ∝ (nd,k + αk)
nk,wd,i

+ β∑V
v=1(nk,v + β)

(4.7)

∝ αkβ∑V
v=1(nk,v + β)

+
nd,kβ∑V

v=1(nk,v + β)
+

(nd,k + αk)nk,wd,i∑V
v=1(nk,v + β)

.

Note that the first term is a constant and independent of all documents and the

second term is independent of the current word type wd,i. Then the P is equal to
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s+ r + q, where

s =
K∑
z=1

αkβ∑V
v=1(nk,v + β)

(“smoothing only” bucket) (4.8)

r =
K∑
z=1

nd,kβ∑V
v=1(nk,v + β)

(“document topic” bucket) (4.9)

q =
K∑
z=1

(nd,k + αk)nk,wd,i∑V
v=1(nk,v + β)

(“topic word” bucket). (4.10)

This method then divides the probability mass into three “buckets” named “smooth-

ing only”, “document topic”, and “topic word” bucket, respectively (see Fig 4.3).

Therefore, the random variable U can be sampled from a uniform distribution, U(0, s+

r + q).

Note that the s is tiny if the values of both α and β are small (the typical values of

α and β are 0.01 and 0.02, respectively), although the r is larger than the s, but it is

much smaller than q because of the β. Empirically, the authors (Yao et al., 2009) find

that more than 90% of samples fall within the “topic word” bucket.

Figure 4.3: An illustration of the “buckets” method.The topics are indicated by differ-

ent colours. Usually, the “topic word” bucket q dominates the posterior distribution

mass P and this bucket is sparse; the “document topic” r is smaller and less dense;

the ”smoothing only” s bucket includes every topics but its volume is small.

Furthermore, this “topic word” bucket is sparse. In document analysis, a word
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typically would occurred in only a few topics, and the word-topic counts (nk,wd,i
) typi-

cally is sparse. Note that if the nk,wd,i
is zero, then the value for topic k in the “topic

word” bucket (see Eq 4.8) is zero. Instead of stepping through each topic, Yao et al.’s

sampler first ranks the topics by the occurrence for each word, and then steps through

all non-zero occurrence topics.

Sampling a new topic then is divided into two steps (see Algorithm 2). In the first

step, the sampler checks which bucket it hits. For instance, if the U < q, it hits the

“topic word” bucket; hitting the “document topic” if the q < U < (q + r), otherwise

it hits the “smoothing only” bucket. In the second step, it samples a new topic in this

hit bucket using the standard Gibbs sampling method.

Algorithm 2 Gibbs sampling algorithm for sparseLDA

1: for each iteration do

2: for each document do

3: for each word do

4: calculating s, r, and q

5: sampling U ∼ U(0, s+ r + q)

6: if U < s then

7: sampling a new knew in s

8: else if s < U < (s+ r) then

9: sampling a new knew in r

10: else

11: sampling a new knew in q

12: end if

13: end for

14: end for

15: end for

Figure 4.2 shows that more than 90% of word-topic counts (nk,v) are zeros. In

terms of memory-efficiency, the sparseLDA (Yao et al., 2009) uses a sparse structure

to store these counts. Figure 4.4 illustrates the data structures used in LDA and the
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(a) LDA (b) SparseLDA

Figure 4.4: Data structure for storing the word-topic counts in LDA and the

sparseLDA. The sparseLDA only allocated a cell for the word tehu since it has been

assigned to only one topic. It requires 10 cells, however, if LDA was in use.

sparseLDA for storing the word-topic counts. The new structure could significantly

reduce the memory footprint since it does not need to allocate memory for all topics

for all words. For example, in Figure 4.4b, the sparseLDA only allocated a cell for the

word tehu since it has only been assigned to one topic. It requires 10 cells, however, if

LDA was used.

Furthermore, Yao et al. (2009) also invented a novel data structure to consolidate

two variables together into a primitive type (Integer or Long). Figure 4.5 illustrates

this data structure.

4.4.2 Parallel Frameworks for LDA

Even after exploring some optimization methods and implementation tricks, training

LDA still remains computationally expensive. Furthermore, these optimization ap-

proaches usually involve caching the intermediate results, e.g. the s “bucket” in the

sparse Gibbs sampler. This space-time tradeoff limits the capacity of LDA when ap-

plied to large scale datasets.

An effective parallelization could be a natural choice for solving this problem. One

could easily split all documents into multiple chunks, and send a chunk of documents
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Figure 4.5: The diagram of the data structure used in the sparseLDA for storing the

counts and topic index.

to a thread. The Gibbs sampling algorithm, however, as Algorithm 1 indicates, is

non-trivial because it needs to access all counts before and after resampling a topic.

Newman et al. (2009a) and Smola et al. (2010) classified four counts in Eq. 2.2 in

terms of locality. The observations allow us to design parallel samplers:

• Topic assignments zd,i: These variables are local to document d and need not

be shared.

• Topic-document count table nk,d: These variables are local to document d

and need not be shared.

• Topic-word count table nk,w: These variables are global to document d but

the conflicts of updating these counts are rare. The conflict of updating the

counts nk,w could happen in a multiple threading environment, if and only if the

w belongs to more than one document and has been assigned or resampled as k

at the same time by more than one thread. The conflicts in a single document are

unlikely to have a significant effect on nk,w for all words. Hence, these conflicts

are acceptable.

• Topic counts nk: This variable is global to document d but could be derived

from nk,w.
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The key idea of their parallel algorithms is to ignore these conflicts when updating

the nk,w and nk and defer those updates until after a document has been resampled.

Newman et al. (2007; 2009a) proposed the Approximate Distributed LDA (AD-LDA)

using this idea. As Fig. 4.6 illustrated, the AD-LDA splits all documents into X chunks,

and allocates a processor for each chunk. The processor maintains a copy of nxk,w and

nxk and performs a local Gibbs sampling iteration for the documents in its chunk, then

updates those two variables to the global variables nk and nk,w. The detailed steps of

this algorithm are shown in Algorithm 3. We will extend this algorithm to our TCM

later.

Figure 4.6: The diagram of AD-LDA.

Mimno and McCallum (2007) proposed the Dirichlet Compound Multinomial LDA

(DCM- LDA), where all the documents are distributed to processors, and a local Gibbs

sampler is performed on each processor independently. Similar to AD-LDA, no commu-

nication between processors is required during the sampling, but a final global clustering

of the topics is needed.

Asuncion et al. (2008) proposed an asynchronous distributed LDA. Unlike the AD-

LDA algorithm (Newman et al., 2007; Newman et al., 2009a), this method requires no

global synchronization in each iteration. It allows each processor to communicate with

other random processors once it finishes its own local sampling.

Yan et al. (2009) proposed a parallel Gibbs sampling algorithm for LDA on Graph-

ics Processing Units (GPU). To address limited memory constraints on GPUs, their
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method introduced a novel data partitioning scheme that effectively reduces the mem-

ory cost. LDA-GPU can be regarded as an extension of AD-LDA by using the data

partition in local sampling and inserting synchronization steps within an iteration.

Algorithm 3 AD-LDA

1: for each iteration do

2: for each processor p in parallel do

3: Copy global topic-collocation counts: Nwkp ← Nwk

4: Sample zp locally: LDA-Gibbs-Iteration(xp, zp, Nkjp, Nwkp, α, β)

5: end for

6: Synchronize

7: Update global counts: Nwk ← Nwk +
∑

p(Nwkp −Nwk)

8: end for

Wang et al. (2009) implemented AD-LDA by using MPI, and named it PLDA. They

have also implemented AD-LDA on a MapReduce (Dean and Ghemawat, 2008; Chu

et al., 2006) framework as reported in Wang et al. (2009). To further speed up LDA,

the team proposed a new algorithm named PLDA+ (Liu et al., 2011), which uses four

strategies to reduce the inter-computer communication cost: data placement, pipeline

processing, word bundling, and priority-based scheduling.

Xiao et al. (Xiao and Stibor, 2010) implemented a Gibbs Sampling algorithm to re-

duce the total number of sampling times in each iteration by using a dynamic sampling

strategy. They also implemented a parallel ECGS-OpenMP using MPI on multiple

CPUs.

Smola et al. (2010) proposed an architecture for parallel topic models, which relies

on a novel distributed storage for synchronizing the sampler state between computers.

This architecture requires no separate communication and synchronization phases.
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4.5 Efficient Sampler for the TCM

4.5.1 Sparse Sampler for the TCM

Since the document-topic counts and the word-topic counts in LDA are typically sparse,

Yao et al. (2009) proposed a Gibbs sampler that takes advantage of sparsity to accel-

erate the training process. They reported that the sparse version is approximately 20

times faster than the standard implementation.

The document-topic counts in our TCM could be as sparse as LDA since Figure 4.1

illustrated both models use a similar generative process to model the topics in each

documents.

The word-topic counts are more sparse because the TCM can capture collocations,

which usually have fewer numbers of topics compared to words. We also ran our TCM

on the SJMN corpus that has 95, 536 documents with K = 200. Figure 4.7 shows the

the sparsity of word-topic counts in both models. In LDA, more than 85,000 word

types were assigned in one topic, but this number increased to 130,000 in the TCM.

Although the TCM captured more than 53,000 collocations after 100 iterations, most

collocations were assigned to one or two topics.

Therefore, we believe that the sparse sampler for our TCM can achieve an improve-

ment compared to sparse sampler for LDA. In this section, we show how to modify our

point-wise sampler to take advantage of sparsity.

Sampling boundaries according the two probabilities shown Eqs (4.1) and (4.4)

requires the generation of a random number x from a uniform distribution, U(0,P),

where

P = P (z0, c0) +
K∑

z1=1

P (z1, c1)P (z2, c2|c1, z1) , (4.11)

where the first term corresponds to the case that there is no collocation boundary,

and the summation corresponds to the case that there is a collocation boundary, as

discussed in the previous section. If x is less than P (z0, c0), there will be no boundary,

which means the current collocation is merged into the following collocation to form a

new collocation. Otherwise, we need to sample z1 according to Eq (4.4).
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(a) Topics per Word Type (LDA)

(b) Topics per Word/Collocation Type (TCM)

Figure 4.7: The word/collocation-topic counts for both LDA (up) and the TCM (bot-

tom). The counts in the TCM is more sparse than the counts in LDA.

The sampling algorithm requires calculation of Eq (4.11), even though the proba-

bility mass may be concentrated on few of topics. We have observed in our experiments

that the denominators of Eqs (4.5) and (4.6) are often quite large and the indicator

functions usually turn out to be zero, so we approximate the two equations by removing

the indicator functions. The approximation facilitates the computation of Eq (4.11).

Now, the computation of p(z2, c2|c1, z1) no longer depends on the values of z1 and c1.

Therefore, Eq (4.11) can be approximated as

P ≈ P (z0, c0) + P (z2, c2)
K∑

z1=1

P (z1, c1) . (4.12)

It is clear that both P (z0, c0) and P (z2, c2) only need to be computed once. To re-

duce the computational complexity of the summation term in Eq (4.12), we can use

the iterative refining approximation method (Porteous et al., 2008) or the “buckets”
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method (Yao et al., 2009). We use the latter method that factorises the summation

into three buckets.

Following the idea of Yao et al. (2009), we divide the summation term in P (z1, c1)

into three parts as follows.

P (z1 = k, c1) =
n̂−c1,c2k + α∑K

k=1 n̂
−c1,c2
k +Kα

n−c1,c2k + α0P0(c1)

N−c1,c2k + α0

∝ α0P0(c1)α

N−c1,c2k + α0

+
n̂−c1,c2k α0P0(c1)

N−c1,c2k + α0

+
(n̂−c1,c2k + α)n−c1,c2k

N−c1,c2k + α0

(4.13)

Then, the summation in Eq (4.12) is proportional to the sum of the following three

equations:

s =
K∑
k=1

α0P0(c1)α

N−c1,c2k + α0

(4.14)

r =
K∑
k=1

n̂−c1,c2k α0P0(c1)

N−c1,c2k + α0

(4.15)

q =
K∑
k=1

(n̂−c1,c2k + α)n−c1,c2k

N−c1,c2k + α0

(4.16)

We can now use the sampling techniques used in the sparseLDA model (Yao et al.,

2009) to sample z1. Firstly, sample U ∼ U(0, s + r + q). If U < s we have hit the

“smoothing only” bucket s. In this case, we need to compute the probability for each

possible topic, and compare the x with cumulated sk. If s < x < (s+r) we have hit the

second bucket r, which is the “document topic”. In this case, we compute probabilities

only for topics such that n̂−c1,c2k 6= 0. If x > (s+ r) we have hit bucket q, which is the

“topic collection” bucket, and we need only consider topics such that n−c1,c2k 6= 0.

When we implement this sampler, we notice that the “smoothing only” bucket s can

only be calculated once within the whole iteration; the “document topic” can only be

calculated once within each document. We can cache both of s and r. Then sampling

a new k for each collocation, see Algorithm 4. The caching tricks can further improve

the sampler efficiency, for example, we only compute s once instead of calculating it

D×C times, where D is the number of documents and C is the number of collocations.

Although we use an approximation in computing the full conditionals, experimental

results have shown that our TCM is as accurate as the original AG-colloc model.
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Algorithm 4 Gibbs sampling algorithm for sparse TCM

1: for each iteration do

2: calculating and caching the s

3: for each document do

4: calculating and caching the r

5: for each collocation do

6: s = s− α0P0(c1)α

N
−c1,c2
k +α0

, r = r − n̂
−c1,c2
k α0P0(c1)

N
−c1,c2
k +α0

7: nk,wd,i
- -, calculating q

8: sampling U ∼ U(0, s+ r + q)

9: if U < q then

10: sampling a new knew in q

11: else if U < (q + r) then

12: sampling a new knew in r

13: else

14: sampling a new knew in s

15: end if

16: nknew,cd,i++

17: s = s+ α0P0(c1)α

N
−c1,c2
knew +α0

, r = r − n̂
−c1,c2
knew α0P0(c1)

N
−c1,c2
knew +α0

18: end for

19: end for

20: end for

4.5.2 Parallelising the Sparse Sampler

Newman et al. (2009a) proposed an approximate distributed LDA, known as AD-

LDA. This parallelised version of LDA distributes a large set of documents evenly to P

processors, and also distributes a copy of the word-topic (collocation-topic in our case)

counts to each processor. AD-LDA performs simultaneous Gibbs updates on each of

the P processors. To merge back to a single set of word-topic counts, they used a

reduce operation on all local word-topic counts across all the processors to update the

global counts. Our sparse sampling algorithm can be easily parallelised with the same
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multi-threading strategy used by (Newman et al., 2009a) in their distributed LDA

(AD-LDA). In AD-LDA, documents are distributed evenly across P processors, each

of which also has a copy of the word-topic count matrix. Gibbs updates are performed

simultaneously on each of the P processors. At the end of each Gibbs iteration, the

P copies of the word-topic count matrices are collected and summed into the global

word-topic count matrix.

In the TCM, collocations in each topic are generated from a CRP. Hence, distribut-

ing the word-topic count matrix in AD-LDA now corresponds to distributing a set of

Chinese restaurants in the parallelised TCM. The adapted parallel algorithm is shown

in Algorithm 5.

The challenge is how to merge the Chinese Restaurant copies from the P processors

into a single global restaurant for each topic, similar to the merging problem in (Du

et al., 2013). However, Eqs (4.2) and (4.6) show that the statistics that need to be

collected are the number of collocations generated for each topic. The number of tables

in a restaurant does not matter.5 Therefore, we can adapt the summation technique

used in AD-LDA.

This distributional strategy can be directly adapted in parallelising our point-wise

sampling algorithm so that our TCM can be run on large corpora.

We have noticed that the number of map operations (i.e., copying global collocation-

topic count Nc,k to the local count Nc,k,p on processor p) and reduce (i.e., adding

the changes of Nc,k,p back to Nc,k) increases linearly with the number of processors.

One implementation of AD-LDA in the Mallet6 package, named Mallet-LDA, uses

a single processor to perform the reduce operation. However, if P is large, using a

single processor to perform the reduce operation could result in a large overhead. We

found in our experiments that if the Mallet-LDA is run on 100,000 documents with 16

processors, the reduce operation takes about 1.3 times longer than the map operation.

Furthermore, the number of collocations used in TCM is much larger than the number

5The number of tables is used only when sampling the concentration parameters, α0, see (Blunsom et al.,

2009).
6http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/
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Algorithm 5 Our parallel algorithm for the TCM

1: for each iteration do

2: # Map documents to each processor

3: for each processor p in parallel do

4: Copy global topic-collocation counts: Nckp ← Nck

5: Sample zp locally using the sparse sampler adapted from the sparseLDA

6: end for

7: Synchronize

8: # Reduce the collocation distribution using multiple processors

9: for each processor q in parallel do

10: Ncqk ← Ncqk +
∑

p(Ncqkp −Ncqk)

11: end for

12: Synchronize

13: end for

of unigrams used in LDA. Hence, the reduce step becomes even slower. To address

this, we make use of all the processors in the reduction step (Figure 4.8).

We parallelise the reduce operation by distributing all collocations evenly to the

Q processors that are currently available, and each processor performs the reduce

operation on Nckp for all c’s on it. In order to further facilitate parallelising the reduce

operation, we precomputed all possible n-grams in a corpus, and those n-grams are

selected and put into the vocabulary. Considering the sequence “the white house” as

an example, all the possible n-grams are “the”, “white”, “house”, “the white”, “white

house”, and “the white house”. Therefore, the parallel TCM will learn collocations

from a large set of candidates.

4.6 Summary

In this chapter we showed how to represent Johnson’s AG-colloc model (Johnson, 2010)

without using Adaptor Grammars, and how to adapt Gibbs sampling techniques from
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Figure 4.8: The diagram of Reducing (Synchronizing) the collocation distributions

using multiple processors. Synchronizing two local collocation distributions using sin-

gle thread (up). Synchronizing two local collocation distributions using two threads

(bottom).

Bayesian word segmentation to perform posterior inference in the new representation.

We further accelerated the sampling algorithm by taking advantage of the sparsity in

the collocation count matrix, and the multiple-threading techniques.

In the next chapter, we will compare this model with the original AG-colloc model

and other topic models in terms of effectiveness and efficiency.
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5
Evaluations on Large-scale Corpora

5.1 Introduction

As discussed in the Chapter 3 on Page 47, although the Adaptor Grammar-based

topical collocation model (AG-colloc) outperformed the other models on four different

evaluation methods, the computational complex was so high that it limited the applica-

bility to small corpora. This limitation motivated us to develop an efficient sampler for

this model. Thus in the Chapter 4 on Page 75, we reformulated this AG-colloc model

without using the expensive Adaptor Grammar representation to allow inference that

is linear in the length of the document. A parallel, sparse version of this sampler was

also proposed in that chapter.

In this chapter, we first evaluate the effectiveness of our Topical Collocation Model

101
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(TCM) on different tasks, namely, a document classification task, an information re-

trieval task and a topic intrusion detection task (Section 5.2 on Page 102). The results

show that our TCM performs slightly worse than the original AG-colloc model. Al-

though both of them perform inference in the same underlying probabilistic model, our

TCM sampler involves additional approximations. This drop in performance, however,

is small, and is offset by a much faster running time that allows our TCM to scale to

larger corpora than the original AG-colloc sampler.

We then compare our TCM to the pipeline approach (PA) (Lau et al., 2013), and

LDA in term of effectiveness on large corpora using the same evaluation methods.

Our TCM model outperforms PA and LDA on three out of the four evaluation tasks.

We also find that the parallelised inference algorithm for TCM scales better to large

corpora than the Mallet implementation of the distributed LDA, despite the greater

complexity and expressive power of the TCM model.

Following (Griffiths et al., 2007), we used punctuation and Mallet’s stop words to

split the documents into subsequences of word tokens, then removed those punctuation

and stop words from the input. All experiments were run on a cluster with 80 Xeon

E7-4850 processors (2.0GHz) and 96 GB memory.

5.2 The Effectiveness of TCM on the Small Corpora

In this section, we first compare our non-sparse and sparse TCMs to the AG-colloc

in terms of their effectiveness on the small corpora using classification and informa-

tion retrieval evaluation methods. Followed the evaluation procedure introduced in

Chapter 3 on Page 47, we repeat these procedures on our TCM to check whether this

reformulation works as accurate as the original AG-colloc on small corpora.

As introduced in Chapter 3 on Page 47, in the classification task, we used three

datasets: the movie review dataset (Pang and Lee, 2012) (MReviews), the 20 News-

groups dataset, and the Reuters-21578 dataset. The movie review dataset includes

1,000 positive and 1,000 negative reviews. The 20 Newsgroups dataset is organised

into 20 different categories according to different topics. We further partitioned the 20
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newsgroups dataset into four subsets, denoted by Comp, Sci, Sport, and Politics.

They have 4, 891, 3, 952, 1, 993, and 2, 625 documents respectively. We applied doc-

ument classification to each subset. The Reuters-21578 dataset has 21,578 Reuters

news articles which are split into 10 categories.

For the information retrieval task, we used the method presented by Wei and Croft

(2006) and (Wang et al., 2007) to calculate the probability of a query given a document.

We used a small subset of the San Jose Mercury News (SJMN) data, which contains

2,000 documents (SJMN-2k). We ran all the models for 10,000 iteration with 100

topics. The other parameter settings were the same as those used in classifcation

evaluation. Queries were tokenised using unigrams for Mallet-LDA and collocations

for all collocation models.

Models Accuracy(%) F-Score

Mean %ChgAG−colloc Mean %ChgAG−colloc

AG-colloc 73.15% - 0.73 -

Non-sparse TCM 73.14% -0.01% 0.727 -0.4%

Sparse TCM 73.125% -0.025% 0.7265 -0.48%

Table 5.1: Classification accuracy (%) and F-score on the MReviews corpus. The

bold face indicates the best scores. %ChgAG−colloc shows the differences compared to

AG-colloc. (The significance levels: 0.05:*)

Table 5.1 to Table 5.6 show that our TCMs, both with or without sparse sampler,

are as accurate as the original AG-colloc model in both classification and information

retrieval tasks on small corpora. For example, in the classification task on the movie

review dataset, the AG-colloc model achieves 73.15% accuracy, our TCM achieves

73.14% accuracy without considering the sparsity and 73.125% with the sparsity. The

differences between our TCMs and the AG-colloc are not significant in all experiments.
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Models Accuracy(%) F-Score

Mean %ChgAG−colloc Mean %ChgAG−colloc

AG-colloc 89.22% - 0.832 -

Non-sparse TCM 89.23% 0.01% 0.833 0.12%

Sparse TCM 89.18% -0.04% 0.828 -0.44%

Table 5.2: Classification accuracy (%) and F-score on the Politics corpus. The bold

face indicates the best scores. %ChgAG−colloc shows the differences compared to AG-

colloc. (The significance levels: 0.05:*)

Models Accuracy(%) F-Score

Mean %ChgAG−colloc Mean %ChgAG−colloc

AG-colloc 87.86% - 0.696 -

Non-sparse TCM 87.9% 0.04% 0.696 0%

Sparse TCM 87.89% -0.03% 0.697 0.1%

Table 5.3: Classification accuracy (%) and F-score on the Comp corpus. The bold face

indicates the best scores. %ChgAG−colloc shows the differences compared to AG-colloc.

(The significance levels: 0.05:*)

Models Accuracy(%) F-Score

Mean %ChgAG−colloc Mean %ChgAG−colloc

AG-colloc 93.57% - 0.869 -

Non-sparse TCM 93.47% -0.1% 0.868 -0.14%

Sparse TCM 93.38% -0.19% 0.867 -0.23%

Table 5.4: Classification accuracy (%) and F-score on the Sci corpus. The bold face

indicates the best scores. %ChgAG−colloc shows the differences compared to AG-colloc.

(The significance levels: 0.05:*)

Therefore, we will replace the AG-colloc by our sparse TCM in following large-scale

evaluations.
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Models Accuracy(%) F-Score

Mean %ChgAG−colloc Mean %ChgAG−colloc

AG-colloc 92.62% - 0.9621 -

Non-sparse TCM 92.6% -0.02% 0.962 -0.01%

Sparse TCM 92.59% -0.03% 0.9615 -0.06%

Table 5.5: Classification accuracy (%) and F-score on the Sports corpus. The bold face

indicates the best scores. %ChgAG−colloc shows the differences compared to AG-colloc.

(The significance levels: 0.05:*)

Models SJMN-2k %ChgAG−colloc

AG-colloc 0.1937 -

Non-sparse TCM 0.1930 -0.36%

Sparse TCM 0.1931 -0.31%

Table 5.6: The IR MAP for six topic models on the SJMN-2k corpus. The bold face

indicates the best scores. %ChgAG−colloc shows the improvement and significance level

of AG-colloc compared to each model.(The significance levels: 0.05:*)

5.3 Experimental Setup for Large-scale Evaluation

5.3.1 Corpora

We use three much larger scale text collections compared to the corpora used in the

Chapter 3 on Page 47, roughly speaking, the number of documents of all three corpora

is 5 to 100 times larger than those small corpora.

1. Reuters-21578. Reuters news was originally collected and labelled by Carnegie

Group, Inc. and Reuters, Ltd. It has 10 different categories: earn, acq, money-fx,

grain, crude, trade, interest, ship, wheat, and corn.

2. SJMN. The San Jose Mercury News (SJMN) from TREC text retrieval corpus.

3. AP News. The AP newswire stories from TREC text retrieval corpus.
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Dataset #Docs #Vocabulary #Text Segamentations

Reuters-21578 12,902 32,030 927,948

SJMN 95,578 165,508 14,783,753

AP 242,918 290,642 55,448,640

Table 5.7: Statistics of the text collections used in this chapter (L=average length of

tokens).

Table 5.7 summarises the statistics of each corpus. We preprocessed the corpora

in the same way introduced in Chapter 3 on Page 47 but with lesser number of stop

words. We used all punctuation and stop words to split the documents into tokens,

then removing all those punctuation and stop words, but not using any stemming or

lemmatisation.

5.3.2 Model Settings

For LDA, we used an implementation of LDA in the Mallet (McCallum, 2002). For

PA, we used the same statistics package (Banerjee and Pedersen, 2003) to identify the

top 1000 bigrams based on the Student’s t-test. We ran all models for 10,000 iterations

with 50 topics on the movie review dataset and 100 on the other two. We set α = 1/K

and β = 0.02 for Mallet-LDA and PA. For the TCM, we also used α = 1/K. α0 was

initially set to 100 and re-sampled using approximated table counts (Blunsom et al.,

2009).

In this chapter, we will not evaluate the LDACOL and TNG on large-scale corpora,

because the computational complexity of both models is high and we have not found

any efficient implementation of these models.

As introduced in Chapter 4 on Page 75, our sparse TCM is similar to sparseLDA

implemented in the Mallet. For fair comparison purpose, our TCM is also implemented

in JAVA and uses the common data structures, and some implementation tricks used

in the Mallet. For example, we also use the same data structure for concatenating the

topic index and topic count for each word/collocation and cache many variables.
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5.4 Evaluation on Large-scale Corpora

Since efficient inference is unavailable for LDACOL, TNG and AG-colloc, making it

impractical to evaluate them on the large corpora, in this section, we repeat the eval-

uation methods used in the Chapter 3 on Page 47 to evaluate three models (LDA, PA

and our TCM) on large-scale corpora in terms of effectiveness. We will evaluate the

efficiency of these models in the following section.

5.4.1 Human Evaluation of Topic Coherence

First, we apply the word intrusion detection evaluation to these three models. We run

all models on the SJMN corpus. For each topic, we identify a list of strongly correlated

terms, then one of these terms is randomly selected and replaced by a new term called

an “intruder”. We use the same method as in Chapter 3 on Page 47 to generate the

“intruder”. The human evaluation task is to identify the “intruder”.

All generated lists (600 lists) were sent to the Amazon Mechanical Turk 1 for man-

ual annotation. Similar to previous word intrusion detection experiment, participants

who completed ten lists (a trial) received $0.20. We have randomly inserted two lists

with known correct answers, called test samples, in every trial to monitor each anno-

tator’s performance. Any trial with correctly answered test samples is included in this

evaluation. We also monitored the annotation time spent on each list, and Figure 5.1

plots the average annotation time for all generated lists.

We collected 492 annotated trials from 82 annotators. We removed the annotators

who have not correctly annotated at least one list. Most of the annotators spent around

12 seconds per list before making their decisions, while a few of them spent more than

30 seconds on a list. The average annotation time is similar to the word intrusion

detection evaluation performed in Chapter 3 on Page 47.

Compared with previous word intrusion detection evaluation in Section 3.3.2 on

Page 53, more annotators completed more than 1 trial (Figure 5.2). In the previous

1https://www.mturk.com/mturk/

https://www.mturk.com/mturk/
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Figure 5.1: The average annotation time for all lists using Mechanical Turk. Most of

the lists were checked by the annotators in around 12 seconds.

experiment, there were 80 annotators who just completed 1 trial.

For each trial, if the “intruder” term has been identified, we count it as correct. If

the actual “intruder” term was not correctly identified, we count that item as incor-

rect. The performance was measured by model precision (Chang et al., 2009), which

measures the fraction of subjects agreeing with the model. We also use a logistic

regression (Jaeger, 2008) to compute the odds and significance levels, and use the no-

tation %ChgLDA to represent these improvements and significance levels. We change

the subscript if we change the comparison variable.

We compared the word intrusion detection scores of all models. Table 5.8 shows

that both PA and TCM outperform LDA using two ranking methods. TCM achieves

the best result, with improvements ranging from 0.4% to 2.95% compared to the other
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Figure 5.2: The histogram of the trials annotated by the same annotators. For example,

there is 26 annotators only completed one trial, while only 1 annotator completed 59

trials.

Ranking Methods p(w|t) p(t|w)

Models score %ChgLDA %ChgTCM score %ChgLDA %ChgTCM

LDA 0.719 - -1.82%∗ 0.732 - -8.88%∗∗∗

PA 0.728 1.27%∗ -0.54% 0.767 4.79%∗∗ -3.76%∗∗

TCM 0.7321 1.82%∗ - 0.797 8.88%∗∗∗ -

Table 5.8: Word intrusion detection precision scores. The bold face indicates the

best scores. %ChgLDA shows the improvements and significance levels compared to

LDA while %ChgTCM shows the changes and significance levels compared TCM. (The

significance levels: 0.001:***, 0.01:**, 0.05:*)

models using the p(w|t) ranking method. It achieves 7.14% to 11.93% improvements

using the section ranking method p(t|w).
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In addition, we also notice that the overall word intrusion detection scores in Ta-

ble 5.8 are higher than the experiments conducted in Section 3.3.2 on Page 53 (Ta-

ble 3.3). The reason for this could be as follows.

First, the new human evaluation used all the documents of the SJMN corpus, which

is 95,578 documents. The previous human evaluation used only 1,813 documents ran-

domly sampled from this SJMN corpus. Second, The topic size of the new human

evaluation is 100, 50 more than the previous human evaluation. The topic size is a

sensitive parameter in topic models. Third, as Figure 5.2 indicated that more anno-

tators completed more than 1 trial in the new human evaluation (70%) compared to

previous human evaluation (38%).

5.4.2 Automatic Evaluation of Topic Coherence

In Chapter 3 on Page 47, the standard PMI method (Lau et al., 2013) was used to auto-

matic evaluate the topic coherence of each list of the most coherent words/collocations

given a topic, which were generated by these topic models. In this set of experiments,

we apply this method to automatic evaluation the average topic coherence of each

model on large-scale corpora.

We calculate the PMI scores for the three large-scale corpora to automatically check

the topic coherence of distinct models and the experiments were repeated 10 times for

significance test. Table 5.9 to Table 5.11 shows the PMI scores for three models using

both ranking methods, p(w|t) and p(t|w) respectively. We have discussed the different

ranking methods in the Section 3.3.4 on Page 59.

The results show that the TCM outperformed LDA and PA on 2 out of 3 corpora

using p(w|t) ranking method, the PMI score of PA on AP corpus is slightly higher than

TCM but the difference is very small. The TCM outperformed LDA and PA on all

corpora using p(t|w) ranking method.

The same as we observed in the Section 3.3.4 on Page 59, we also noticed that the

average PMI scores for all three models using p(t|w) ranking method are much better
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Models p(w|t) p(t|w)

Mean %ChgLDA %ChgAG−colloc Mean %ChgLDA %ChgAG−colloc

LDA -16.256 - -0.82%∗ -15.836 - -0.82%∗

PA -16.261 -0.03% -0.85%∗ -15.835 0.01% -0.81%∗

TCM -16.122 0.82%∗ - -15.706 0.82%∗ -

Average -16.213 - - -15.792 - -

Table 5.9: PMI Scores for three models on the Reuters-21578 corpus. The bold

face indicates the best scores. %ChgLDA shows the improvements and significance

levels compared to LDA while %ChgAG−colloc shows the improvements and significance

levels compared AG-colloc to other models. (The significance levels: 0.001:***, 0.01:**,

0.05:*)

Models p(w|t) p(t|w)

Mean %ChgLDA %ChgAG−colloc Mean %ChgLDA %ChgAG−colloc

LDA -16.152 - -1.39%∗∗ -14.936 - -2.65%∗∗∗

PA -15.992 0.99%∗ -0.4%∗ -14.712 1.5%∗ -1.17%∗∗

TCM -15.928 1.39%∗∗ - -14.54 2.65%∗∗∗ -

Average -16.024 - - -14.73 - -

Table 5.10: PMI Scores for three models on the SJMN corpus. The bold face indicates

the best scores. %ChgLDA shows the improvements and significance levels compared

to LDA while %ChgAG−colloc shows the improvements and significance levels compared

AG-colloc to other models. (The significance levels: 0.001:***, 0.01:**, 0.05:*)

than the PMI scores using p(w|t) ranking method on these three large-scale corpora.

Similar to the experiments on the small corpus, we also observed that the order

of all three models ranked by PMI method is exactly same to human judgements

about the quality of topic coherence for each model on the SJMN corpus. We did not

compare both methods on all three corpora because human judgements are expensive.

We believe that this PMI method is a good method for evaluating topical collocations



112 Evaluations on Large-scale Corpora

Models p(w|t) p(t|w)

Mean %ChgLDA %ChgAG−colloc Mean %ChgLDA %ChgAG−colloc

LDA -15.918 - -1.02%∗∗ -14.774 - -2.36%∗∗∗

PA -15.746 1.08%∗∗ 0.06% -14.468 2.07%∗∗∗ -0.29%

TCM -15.756 1.02%∗∗ - -14.426 2.36%∗∗∗ -

Average -15.81 - - -14.556 - -

Table 5.11: PMI Scores for three models on the AP corpus. The bold face indicates

the best scores. %ChgLDA shows the improvements and significance levels compared

to LDA while %ChgAG−colloc shows the improvements and significance levels compared

AG-colloc to other models. (The significance levels: 0.001:***, 0.01:**, 0.05:*)

as well, and most importantly it is much cheaper than human evaluation method.

5.4.3 Evaluation on Text Classification Tasks

The Section 2.7.4 on Page 42 introduced the framework of evaluating topic models on

a text classification task and compared the models on five small corpora. Here, we

repeat this evaluation method on those small text classification tasks. In addition, we

evaluate these three models on the Reuters-21578, which is a much larger corpus

compared to those five corpora.

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgTCM Mean %ChgLDA %ChgTCM

LDA 71.3% - -1.9%∗∗ 0.702 - -3.49%∗∗∗

PA 72.7% 1.4%∗∗ -0.425% 0.7253 3.32%∗∗ -0.165%

TCM 73.125% 1.825%∗∗ - 0.7265 3.49%∗∗∗ -

Table 5.12: Classification accuracy (%) and F-score on the MReviews corpus. The

bold face indicates the best scores. %ChgLDA shows the differences compared to LDA,

while %ChgAG−colloc shows the differences compared to TCM. (The significance levels:

0.001:***, 0.01:**, 0.05:*)
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We use the same evaluation procedure as used in the Section 3.3.5 on Page 61,

which was carried out as follows. Firstly, we ran each model on each set of documents

to derive the point estimate of the per-document topic distributions (θ), which were

used as features in classification. We then randomly selected from each corpus 80% of

the documents for training and 20% for testing. Finally, we trained a Support Vector

Machine (SVM) with linear-kernel (Fan et al., 2008) on the training set and predicted

on the testing set.

We ran the classification evaluation 10 times and reported the average accuracy

and F-score in Tables 5.12 to 5.17. Our TCM outperformed other models on 5 out of 6

corpora. The PA achieved slightly better accuracy on the Politics corpus. It could be

the fact that the PA has identified the most informative collocations in its first step.

Similar to other topic models for learning collocations, our TCM is also able to

identify some useful topical collocations, such as High School and Angry Men,

which help to identify some celebrities or movie titles accurately and increase the

probability of some reviews being positive.

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgTCM Mean %ChgLDA %ChgTCM

LDA 89.12% - -0.06% 0.8214 - -0.84%∗

PA 89.21% 0.09% 0.03% 0.8307 1.12%∗∗ 0.29%

TCM 89.18% 0.06% - 0.828 0.84%∗ -

Table 5.13: Classification accuracy (%) and F-score on the Politics corpus. The bold

face indicates the best scores. %ChgLDA shows the differences compared to LDA, while

%ChgTCM shows the differences compared to TCM. (The significance levels: 0.001:***,

0.01:**, 0.05:*)



114 Evaluations on Large-scale Corpora

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgTCM Mean %ChgLDA %ChgTCM

LDA 86.27% - -1.62%∗∗ 0.657 - -6.08%∗∗∗

PA 87.36% 1.09%∗ -0.53%∗ 0.6841 4.1%∗∗∗ -1.85%∗

TCM 87.89% 1.62%∗∗ - 0.697 6.08%∗∗∗ -

Table 5.14: Classification accuracy (%) and F-score on the Comp corpus. The bold

face indicates the best scores. %ChgLDA shows the differences compared to LDA, while

%ChgTCM shows the differences compared to TCM. (The significance levels: 0.001:***,

0.01:**, 0.05:*)

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgTCM Mean %ChgLDA %ChgTCM

LDA 91.96% - -1.42%∗∗∗ 0.8392 - -3.31%∗∗∗

PA 93.16% 1.2%∗ -0.22%∗ 0.8632 2.87%∗∗∗ -0.44%

TCM 93.38% 1.42%∗∗∗ - 0.867 3.31%∗∗∗ -

Table 5.15: Classification accuracy (%) and F-score on the Sci corpus. The bold face

indicates the best scores. %ChgLDA shows the differences compared to LDA, while

%ChgTCM shows the differences compared to TCM. (The significance levels: 0.001:***,

0.01:**, 0.05:*)

5.4.4 Evaluation on Information Retrieval Tasks

In the Section 3.3.6 on Page 65, we used the three-step IR evaluation method to

evaluate the topic models because some of those models are not scalable. Here, we use

the standard IR evaluation method, which was presented by Wei and Croft (2006) and

Wang et al. (2007) and has been reviewed in the Section 2.7 on Page 36. This method

calculates the probability P (Q|D) of a query Q given a document D:

P (Q|D) = λPLM(Q|D) + (1− λ)PTM(Q|D),
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Models Accuracy(%) F-Score

Mean %ChgLDA %ChgTCM Mean %ChgLDA %ChgTCM

LDA 91.58% - -1.01%∗∗ 0.9561 - -0.56%

PA 91.71% 0.13% -0.88%∗ 0.9567 0.06% -0.5%

TCM 92.59% 1.01%∗∗ - 0.9615 0.56% -

Table 5.16: Classification accuracy (%) and F-score on the Sports corpus. The bold

face indicates the best scores. %ChgLDA shows the differences compared to LDA, while

%ChgTCM shows the differences compared to TCM. (The significance levels: 0.001:***,

0.01:**, 0.05:*)

Models Accuracy(%) F-Score

Mean %ChgLDA %ChgTCM Mean %ChgLDA %ChgTCM

LDA 97.3% - -0.3%∗ 0.572 - -4.37%∗∗

PA 97.52% 0.22% -0.08% 0.593 3.67%∗∗ -0.67%

TCM 97.6% 0.3%∗ - 0.597 4.37%∗∗ -

Table 5.17: Classification accuracy (%) and F-score on the Reuters-21578 corpus.

The bold face indicates the best scores. %ChgLDA shows the differences compared

to LDA, while %ChgTCM shows the differences compared to TCM. (The significance

levels: 0.001:***, 0.01:**, 0.05:*)

where λ is a factor adjusting the weights of two likelihoods, PLM(Q|D) is a standard

query likelihood and PTM(Q|D) is the query likelihood computed using the outputs of

those three topic models.

If the topic model is either LDA or PA (because the PA uses LDA in its second

step), the PTM(Q|D) can be calculated as follows.

P (Q|D,φ,θ) =
∏
qi∈Q

K∑
z=1

P (qi|z,φ)P (z|θ, D) (5.1)

where φ and θ are posterior word-topic and topic-document distributions estimated

by LDA, respectively.
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The PTM(Q|D) for our TCM, however, we use the different method to calculate this

score. First, we tokenize the query Q into a sequence of words or collocations (ci) using

the words/collocations learnt by our TCM. Then the PTM(Q|D) can be calculated as

following.

P (Q|D,φ,θ) =
∏
ci∈Q

K∑
z=1

P (ci|z,φ)P (z|θ, D) (5.2)

where φ and θ are posterior word-topic and topic-document distributions estimated

by our TCM model.

P (ci|z,φ) =
n(c, z) + α0P0(c)∑

c n(c, z) + α0

(5.3)

where the P0(c) is the base distribution to generate collocation c and α0 is the hyper-

parameter of Dirichlet process.

We evaluated LDA, PA and our TCM on the San Jose Mercury News (SJMN) and

AP corpora from TREC. Queries 51-150 were used, e.g. the 97th query: Fiber Optics

Applications. The Indri 2 search engine was used to index and query both corpora.

In this set of experiments we ran all the models for 10,000 iteration with 100 topics.

For all models, we used the same settings as used in the classification task. For both

PA and the TCM, queries were tokenised using the collocations inferred by the models.

As the same as in the classification evaluation, we ran this procedure described

above 10 times and reported the Mean Average Precision (MAP). Table 5.18 and

Table 5.19 show the MAPs of these three models. The TCM and PA outperform LDA

on both the SJMN and AP corpora, achieving ranged from 0.7% to 3.4% improvements.

The results show that learning topical collocations together with their topics can also

benefit the large-scale information retrieval task. The TCM outperforms both LDA

and the PA approach, and yields the highest MAP scores.

We also examine the examples queries for these three models on the SJMN corpus.

Table 5.20 shows individual queries that listed in the Section 3.3.6 on Page 65. For

the queries contain some obvious phrase(s)/collocation(s), we noticed that our TCM

and PA achieved much better scores than LDA. On the other hand, some queries do

2http://www.lemurproject.org/indri.php

http://www.lemurproject.org/indri.php


5.4 Evaluation on Large-scale Corpora 117

Models MAP %ChgLDA %ChgAG−colloc

LDA 0.2069 - -2.46%∗∗∗

PA 0.2085 0.72%∗ -1.72%∗∗

TCM 0.212 2.46%∗∗∗ -

Table 5.18: Mean average Precision scores on the SJMN corpus. The bold face indi-

cates the best scores. %Chg over LDA shows the improvement and significance levels

of each model compared to LDA while %ChgAG−colloc shows the improvement and sig-

nificance level of our TCM compared to each model.(The significance levels: 0.001:***,

0.01:**, 0.05:*)

Models MAP %ChgLDA %ChgAG−colloc

LDA 0.2396 - -3.46%∗∗∗

PA 0.2451 2.3%∗∗ -1.13%∗

TCM 0.2479 3.46%∗∗∗ -

Table 5.19: Mean average Precision scores on the AP corpus. The bold face indicates

the best scores. %ChgLDA shows the improvement and significance levels of each model

compared to LDA while %ChgTCM shows the improvement and significance level of

our TCM compared to each model.(The significance levels: 0.001:***, 0.01:**, 0.05:*)

not contain any phrase(s)/collocation(s) after removing stop words and punctuations,

such as No.148, these models perform just as good as LDA.

Both LDA and PA obtained higher scores in this table than the scores in Table 5.20

on the same queries. Because in this evaluation, we ran all models on the whole SJMN

corpus.

We use the exact same example (query No.097) to analyse the performance of the

different models. The query NO. 097 has a collocation, Fiber Optics. We noticed

that it has been identified by our TCM and has been assigned to the network, commu-

nication topics. Because the PA used the same procedure to identify the collocation, it

also failed to detect this collocation on the whole SJMN documents. In its second step,
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No. Query LDA PA TCM

053 Leveraged Buyouts 0.2372 0.4022 0.4189

097 Fiber Optics Applications 0.132 0.1318 0.214

108 Japanese Protectionist Measures 0.1523 0.1553 0.1533

111 Nuclear Proliferation 0.2572 0.4712 0.4528

064 Hostage Taking 0.411 0.4021 0.4107

125 Anti smoking Actions by Government 0.3119 0.3812 0.4518

145 Influence of the “Pro Israel Lobby” 0.2728 0.3174 0.3207

148 Conflict in the Horn of Africa 0.2327 0.183 0.2018

Table 5.20: Comparison of these three models on TREC retrieval performance (average

precision) of eight queries on the SJMN corpus.

the PA assigned the first word Fiber to few topics (such as health, food, network) and

assigned the second word Optics to physic, health(eye), and communication topics.

Since our TCM has been correctly identified this collocation and assigned a relevant

topic to this collocation, which increased the likelihood of some documents emphasizing

the network and communications topics, promoting these documents to a higher rank.

For those models cannot capture this and leads to inferior performance.

5.4.5 Discussion

We evaluated the three topic models (our TCM, PA, and LDA) using four different

evaluation methods. The total number of comparison experiments was 16 (2 in human

evaluation of topic coherence, 6 in automatic evaluation of topic coherence, 6 evalua-

tion on text classification tasks, and 2 evaluation on information retrieval tasks). By

comparing the performance of these twelve experiments, we notice that both TCM and

PA that learning topical collocations outperformed the LDA in 15 out of 16 experi-

ments. Similar to the results we found in Chapter 3 on Page 47, the evaluation results

on large-scale corpora also indicate that collocations improve topic modelling whether

they are recovered jointly with the topics or pre-computed.

Our TCM outperformed the LDA and PA in 14 out of 16 experiments with a certain

significance level. The drops of performance of these two experiments compared to LDA

were tiny and there were no significant difference between PA and our TCM.
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# Topics Non-sparse Sparse Speedup

100 24.9 0.284 87.67

200 39.9 0.289 138.06

400 85.5 0.322 265.53

800 233 0.354 658.2

Table 5.21: The average running time (in seconds) per iteration for our sparse and

non-sparse samplers.

5.5 Time-Efficiency Experiments

In this section we study the computational efficiency of our sampler for the TCM.

We first study the performance of the sampler either with or without using the sparse

sampling technique described in Section 4.5.1 on Page 93. We then compare the paral-

lelised version of our sampler for the TCM with that for LDA in terms of scalability.3

For LDA, we use the Mallet implementation. We will not compare to the PA because

it uses LDA in its second step. All experiments were run on a cluster with 80 Xeon

E7-4850 processors (2.0GHz) and 96 GB memory.

5.5.1 Sparse vs. Non-Sparse samplers

We run our sparse and non-sparse samplers on the Movie Review corpus, which contains

2,000 documents. Performance was measured by the average running time per Gibbs

iteration over all the 2,000 documents. We varied the number of topics from 100 to 800.

Table 5.21 shows the average running time in seconds for both samplers. Consistent

with Yao et al. (2009)’s finding, the sparse sampler is much faster than the non-sparse

one. The difference between the two samplers becomes larger as the number of topics

is increased to 800: the speedup rises from 87.67 for K = 100 to 658.2 for K = 800.

Presumably, the significant speedup is due to the fact that collocations are much sparser

than individual word tokens.

3Our algorithms were implemented in Java
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# Threads Sampling (SR) Reduction and Copy (RC) Ratio = RC/SR %

4 364.22 79.75 21.9%

8 215.1 115.6 51.35%

12 217.22 162.76 74.93%

16 154.9 203.55 131.41%

Table 5.22: The running time using single thread to synchronize the topic-collocation

counts. The Ratio is the fraction of Reduction & Copy running time over the Sampler

running time.

5.5.2 Single vs. Multiple threads Reduction

Similar to the sparse and non-sparse experiment, we run our parallel implementation

with or without multi-threading reduction on the SJMN corpus. Performance was

measured by the running time for the first 100 iterations with 100 topics on the SJMN

corpus.

For the original parallel Mallet LDA, using single thread to copy the local topic-

collocation counts from each thread and update the global topic-collocation counts. We

observed a huge overhead using this method to synchronize these counts. Table 5.22

shows the running time for Sampling and Reduction and Copy steps in our parallel

sampler implementation. Although the Sampler running time decreased when we in-

crease the number of threads, the Reduction and Copy running time soars. Table 5.22

also shows the ratio of the Reduction and Copy running time to Sampler running time

as a function of the number of threads. The ratio is 21.9% when only 4 threads were

used but the ratio soars to 131.93% if 16 threads were used.

In the Section 4.5.2 on Page 96, we proposed a method that using multi-threading

to synchronize the topic-collocation counts. In this evaluation, we ran the same exper-

iments to evaluate the efficiency of multi-threading reduction. Table 5.23 shows the

running time for Sampling and Reduction and Copy steps using multi-threading re-

duction. The Reduction and Copy running time is significantly shorter than using the
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# Threads Sampling (SR) Reduction and Copy (RC) Ratio = RC/SR %

4 364.22 26.43 7.26%

8 215.1 47.7 21.19%

12 217.22 58 26.7%

16 154.9 89.88 58.02%

Table 5.23: The running time using multi-threading technique to synchronize the topic-

collocation counts. The Ratio is the fraction of Reduction and Copy running time over

the Sampler running time.

single thread to synchronize the topic-collocation counts. The ratios of the Reduction

and Copy running time over Sampler running time are significantly shorter than the

single thread reduction. The ratio is 7.26% for using 4 threads and only 58.02% for

using 16 threads. These ratios are around 3 times smaller than using the single thread

reduction.

5.5.3 Scalability of Our Parallel TCM

In this evaluation we study the scalability of our parallelised sampler for the TCM and

compare it with LDA in terms of speedup. In addition to the SJMN dataset, we also

used the AP News dataset from TREC. The AP News dataset has 242, 918 documents.

It is much larger than the SJMN dataset. We ran LDA (Mallet implementation) and

our parallelised sampler on both datasets for 2, 000 iterations. We fixed the number of

topics to 100. We repeat this procedure for 5 times and the average running time for

each model are reported in Figure 5.3 and 5.4.

Figures 5.5 and 5.6 plot the speedups for both models. The plots show that

our parallelisation strategy is more effective than that used by LDA, resulting in a

larger speedup. This is particularly evident when using many processors. We have

also observed that the speedups of both models drop on the SJMN dataset when the

number of processors is larger than 12 for TCM and when larger than 8 for LDA.
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Figure 5.3: The running time (in minutes) of both models on the SJMN (90, 257

documents).

Figure 5.4: The running time (in minutes) of both models on the AP News (242, 918

documents).

This is because the overhead from the map and reduce operations increases with the

number of processors. The change points for both lines in Figures 5.5 and 5.6 indicate

the optimal number of processors for running the two models on the SJMN dataset.



5.6 Summary 123

Figure 5.5: SJMN (90, 257 documents). The speedup experiments relative to a single

processor for LDA and our parallelised sampler for TCM. The maximum speedups for

LDA and parallelised TCM are 3.24 and 5.07, respectively.

We have also observed that LDA is faster than our parallelised sampler when using a

single processor. This is unsurprising because the TCM is a more complex model than

LDA. However, the parallelised TCM becomes faster than LDA when we increase the

number of processors to 12 for the SJMN dataset and 64 for the AP dataset. This shows

that our parallelised reduce operation leads to noticeable improvements. In summary,

Figure 5.6 shows that our parallelised sampler scales quite well.

5.6 Summary

In this chapter, first we compared the performance of the new TCM sampler and

the orignal AG-colloc sampler using classification and information retrieval evalua-

tion methods. The results showed that the TCM sampler performed worse than the

AG-colloc, despite performing inference in the same underlying probabilistic model,

because the TCM sampler involved additional approximations. The drop in perfor-

mance, however, was small, and was offset by a much faster running time that allows
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Figure 5.6: AP News (242, 918 documents). The speedup experiments relative to a sin-

gle processor for LDA and our parallelised sampler for TCM. The maximum speedups

for both models are 3.78 and 8.43 respectively.

TCM to scale to larger datasets than the original AG-colloc sampler.

We next compared LDA, PA, and the new TCM models on large size document

collections using the same evaluation methods. Our TCM model outperformed PA and

LDA on all four evaluation methods. We also found that the parallelised inference for

TCM scales better to large corpora than the Mallet implementation of the distributed

LDA, despite the greater complexity and expressive power of the TCM model.

All together, these results suggest that the small drop in accuracy relative to the

AG-colloc model is more than offset by the ability of TCM to scale to very large

datasets.



6
Conclusions and Future Work

6.1 Conclusions

The overwhelming flow of unlabelled and unstructured documents requires new tech-

niques for storing and understanding large size text collocations. The goal of these new

techniques is to enable effective and efficient analysing of such documents by uncovering

the underlying semantic structures.

To achieve this goal, LDA has been used in a large number of document analysis

applications, such as document summarisation (Arora and Ravindran, 2008a; Arora

and Ravindran, 2008b), word sense discrimination (Boyd-Graber et al., 2007; Cai et

al., 2007; Lau et al., 2012), text classification (Blei et al., 2003), sentiment analysis (Mei

et al., 2007a; Titov and McDonald, 2008; Lin and He, 2009; Brody and Elhadad, 2010),

and information retrieval (Azzopardi et al., 2004; Wei and Croft, 2006). Although LDA

125
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has been widely used to study the semantic aspects of text, it treats documents as mere

bags-of-words with no sequential structure. While this approach simplifies the model,

it also ignores information encoded by dependencies between adjacent words (Wallach,

2006).

Many researchers have proposed topic models for learning topical collocations (Grif-

fiths et al., 2007; Wang et al., 2007; Lau et al., 2013; Johnson, 2010) and claimed that

their models outperformed LDA or other topic models. Until this thesis, no systematic

evaluation has covered all of these models.

In this thesis, we provided the first comprehensive evaluation of five state-of-the-art

topic models for learning topical collocations, the LDA Collocation (LDACOL) (Grif-

fiths et al., 2007), the topical N-Gram(TNG) (Wang et al., 2007), the pipeline ap-

proach(PA) (Lau et al., 2013), the Adaptor Grammar as topical collocation Model

(AG-colloc, AG-colloc2) (Johnson, 2010)) with LDA using four standard evaluation

methods on small-scale corpora. Using four standard evaluation methods, we found

that modeling collocations consistently provides an advantage over ignoring colloca-

tions across all evaluation methods. Moreover, we identified AG-colloc as the most

effective topical collocation model.

Additionally, we also noticed that adding collocations increases a model’s complex-

ity, and so most of the topical collocation models, including the best-performing one,

scale poorly to large text collections. We then demonstrated how the AG-colloc model

can be reformulated without using the expensive Adaptor Grammar representation to

allow inference that is linear in the length of the document. We also proposed a parallel,

sparse version of this sampler to take advantage of multiple cores and sparsity. While

this new sampler exhibited a small drop in accuracy on small datasets, relative to the

original AG-colloc model, we demonstrated that it easily scales to very large datasets

(around 250, 000 documents) while outperforming other scalable topic models (LDA

and PA) using four standard evaluation methods: classification, information retrieval,

Point-wise Mutual information, and human evaluation.

In Chapter 3, we compared five topical collocation models to LDA using four stan-

dard evaluation methods for topic models on small corpora. The results show that
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nearly all the topical collocation models outperformed LDA on those evaluations, and

the AG-colloc almost always obtained the best scores although the improvements were

marginal. These results suggests that modeling topical collocations is useful, and that

AG-colloc models them especially well.

In Chapter 4, we showed how to reformulate Johnson’s (2010) AG-colloc without

using Adaptor Grammars, and then how to adapt linear-time Gibbs sampling tech-

niques from the Bayesian word segmentation literature to perform inference in this

new sampling representation, named TCM. We also devised an algorithm for paral-

lelized inference in the TCM representation and further improved its performance by

exploiting the sparsity in the collocation distributions.

In Chapter 5, first we compared the accuracy of the new TCM sampler and the

orignal AG-colloc sampler. The results showed that the TCM sampler performed worse

than the AG-colloc, despite performing inference in the same underlying probabilistic

model, because the TCM sampler involved additional approximations. The drop in

performance, however, was small, and was offset by a much faster running time that

allows TCM to scale to larger datasets than the original AG-colloc sampler. We next

compared LDA, PA, and the new TCM models on large size document collections

using the same evaluation methods. Our TCM model outperformed PA and LDA on

all four evaluation methods. We also found that the parallelised inference for TCM

scales better to large corpora than the Mallet implementation of the distributed LDA,

despite the greater complexity and expressive power of the TCM model. All together,

these results suggest that the small drop in accuracy relative to the AG-colloc model

is more than offset by the ability of TCM to scale to very large datasets.

6.2 The Relationship between Word Embedding Approaches

and Topical Collocation Models

While finalizing this thesis, a major change in the field occurred. More specifically, deep

learning is now the dominant paradigm in many NLP tasks (e.g., Word Vector repre-

sentation (Mikolov et al., 2013; Pennington et al., 2014), Sentiment Analysis (Socher
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et al., 2013; Le and Mikolov, 2014)). In this section, we introduce two Word Vector

representations. We then discuss the difference between these representations and the

topical collocation models.

6.2.1 Word Embedding Approach

One-hot encoding is currently the simplest available method to convert word into a

vector space. For example, a corpus only has 5 words [white house is getting ready],

while the one-hot vector of word getting is e(getting) = [00010] . Although this

method is simple, robust and can be trained on a large size corpus, it still has many

disadvantages. First, this method does not capture the semantic meaning of word

similarity. Second, the dimensionality of the vector space is the size of the vocabulary,

typically with a size greater than 100, 000. In this case, a window with 10 words would

correspond to an input vector with 1, 000, 000, which would be vulnerable to overfitting

and computationally expensive.

Vector space models (VSMs) represent words in a continuous vector space, where

semantically similar words are projected to nearby points. VSMs have a long history in

NLP, but these approaches depend on various Distributional Hypotheses of semantic

meaning. The methods can be divided into two categories: count-based methods (e.g.

Latent Semantic Analysis(LSA), Probabilistic Latent Semantic Analysis(pLSA), Latent

Dirichlet Allocation (LDA)), and predictive methods (e.g. Word2vec (Mikolov et al.,

2013), Glove (Pennington et al., 2014)).

Predictive models directly predict a word from its neighbours regarding learned

small, dense embedding vectors. Word2vec is a particularly computationally efficient

predictive model for learning word embeddings from raw text. More specifically, it is

the first method that has been successfully trained on hundreds of millions of words;

it then projects to a space with the dimensionality of word vectors between 50 ∼ 100.

It comes in two flavours: the Continuous Bag-of-Words model (CBOW) and the Skip-

gram model. Algorithmically, these models are similar, except that CBOW predicts

target words (e.g. ‘mat’) from source context words (‘the cat sits on the’). Skip-

gram does the inverse and predicts source context-words from the target words. This
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inversion might seem like an arbitrary choice, but statistically, it has the effect that

the CBOW is smoothed over a significant amount of the distributional information

(by treating an entire context as one observation). For the most part, this is useful

for smaller datasets. However, Skip-gram treats each context-target pair as a new

observation. This approach is better for larger datasets.

Figure 6.1: A simple CBOW model with only one word in the context (bigram model).

The input x1..xV is a one-hot encoded vector of a word, while the output y1..yV is a

one-hot encoded vector of its following word.

We start with the simplest version of CBOW: only one word, x, is considered in the

context. This means the method predicts the target word y given the previous word x;

it then looks like a bigram model. Figure 6.1 illustrates the architecture of this model,

where the vocabulary size is V , and N indicates the size of the hidden layer. The units

in the adjacent layers (i.e. input layer to hidden layer, hidden layer to output layer)

are fully connected. This model uses a one-hot encoded vector as an input layer and

output layer, which means only one unit in this input vector x1, . . . , xv is set to 1; the

rest of the units are 0s.

We illustrate the model with a simple training corpus of three sentences:

• “the dog saw a cat”

• “the dog chased the cat”

• “the cat climbed a tree”
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The vocabulary of this corpus contains eight words (‘the’, ‘dog’, ‘saw’, ‘a’, ‘cat’,

‘chased’, ‘climbed’, ‘tree’). Thus the vocabulary size is V = 8, in this case. We set the

size of the hidden layer to N = 3, which means W and W ′ will be 8 × 3 and 3 × 8

matrices, respectively.

For example, if we want to learn the relationship between the word “cat” and the

word “climbed”, (i.e., the word “cat” is referred to as the context word and the word

“climbed” is the target word). In this case, the input vector x will be [00001000]T ,

and the output layer y will be [00000010]T . Then, the hidden layer can be computed

as h = W Tx and the output layer can be computed as uj = W ′Th , which is a 1 × 8

vector. Since we want to learn the relationship between the two words, P (wj | wcontext)

for j = 1, . . . , V , we need to compute the probability. In this method, we can use

softmax, a log-linear classification model, to caculate the posterior distribution of the

words.

ŷj = p(wj | wcontext) =
exp(uj)∑V
j′=1 exp(uj′)

(6.1)

Given the target vector [00000010]T , the error vector for the output layer is easily

computed by substracting ŷj from the target vector. The weights in the W and W ′

can then be optimized using a back-propagation algorithm (Mikolov et al., 2013).

The simple CBOW model learns relationships between pairs of words. For the

multi-word context CBOW model, the context contains multiple surrounding words

for a given target word. For example, words such as “cat” and “tree” could be context

words for “climbed”. Figure 6.2a shows the architecture of this model, which takes the

average of the vectors of each input context words as the output.

h =
1

C
W T (x1 + x2 + · · ·+ xc) (6.2)

where C is the number of words in the context.

The second method (Skip-gram) 6.2b is similar to CBOW. Instead of predicting the

target word given the context, it tries to classify a word based on another word in the

same sentence. As shown in 6.2b, it uses each target word as an input to a classifier
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(a) CBOW (Continuous bag-of-words) model (b) Skip-gram model

Figure 6.2: The CBOW model predicts the targe word based on the source context

words; the Skip-gram predicts the source context words from the target words.

with a continuous hidden layer, and predicts the surrounding words per the context.

The CBOW and Skip-gram methods could do better on the word analogy tasks(finding

similar pairs of words), as compared to the LSA-like methods. The reasoning is that

they poorly utilise the information from the entire corpus, because these methods only

train on the local context windows, instead of on the global co-occurrence counts. To

address these problems, Pennington et al. (2014) proposed a weighted least squares

model named GloVe to train on the global word-word co-occurrence counts.

The GloVe model learns a continuous word vector using word co-occurrences within

a corpus. The intuition of this model is based on the simple assumption that ratios of

word co-occurrence probabilities have the capability for encoding semantic or syntactic

meaning. The model first constructs a co-occurrence matrix X given a corpus, where

Xij is the co-occurrence of word i and word j, which represents how often the word i

occurs in the context of the word j.

Once the co-occurrence matrix X has been constructed, the model iteratively learns

the word vector w values for each word subject to a constraint

wTi wj + bi + bj = log(Xij) (6.3)
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where bi, bj are bias terms. Intuitively speaking, for each word pairs i and j, the GloVe

model adjusts word vector values to retain the co-occurrence information. To optimize

the word vectors, the model uses a new weighted least square regression model. The

model casts Equation 6.3 as a least square problem and introduces a weighting function

f(Xij) into the cost function

J =
V∑
i,j

f(Xij)(w
T
i wj + bi + bj − log(Xij))

2 (6.4)

Where V is the size of the vocabulary. The weighting function is

f(Xij) =


(
Xij

xmax

)α
ifXij < xmax

1 otherwise.

(6.5)

The authors found that the model performance is insensitive to the cutoff xmax so they

set it to 100 and α has been set to 3/4 in their experiments.

Pennington et al. (2014) also argue that the GloVe model is not dramatically differ-

ent from methods like CBOW or Skip-gram since they both capture the co-occurrence

probabilities of the corpus. However, their model is more efficient and can capture

global statistics. They demonstrated that their model outperformed other methods

on the word analogy task, also on many word similarity tasks and a named entity

recognition (NER) benchmark.

6.2.2 Advantages and Disadvantages Compared with Topical Collocation

Models

Both topic modelling and word segmentation can be formulated as (nonparametric)

Bayesian inference problems. Therefore, it was theoretically straightforward to de-

velop a single integrated joint model that performs both topic modelling and word

segmentation (e.g., Adaptor Grammars and our TCM model). The word embedding

approaches, or deep learning in general, do not have as straightforward of an interpre-

tation as Bayesian inference (topic models). This means that it might not be easy to

theoretically formulate a single joint model that learns latent feature vectors and per-

forms word segmentation. In fact, the general approach in deep learning is to learn an
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“end-to-end” system, where the deep learning model directly solves the end user’s task.

Considering this perspective, it is not clear that it would make sense to identify multi-

word sequences at all. Instead, one might use a Convolutional Neural Network (Le-

Cun et al., 1998; Krizhevsky et al., 2012) or a Recurrent Neural Network (Goller

and Küchler, 1996) (e.g., long short-term memory (LSTM) network (Hochreiter and

Schmidhuber, 1997) or Gated Recurrent Unit (GRU) (Chung et al., 2014)) to directly

learn a representation of the document for many NLP tasks (e.g., information retrieval).

The “latent feature vectors” learnt by the Word2Vec (CBOW and Skip-gram) and

GloVe methods are similar to the distribution of the words/collocations for each topic φ

in TCM. The CBOW and Skip-gram methods only train on the local context windows

and poorly utilise the statistics of the corpus. Although the GloVe method trains on

global word-word co-occurrence counts, it also ignores the distribution of topics for

each document θ that provides rich semantic information.

Advances in word embedding approaches are, generally speaking, ones that are

computationally efficient for large datasets (billion tokens corpus) when compared with

topic models. They are also easier to be accelerated using multiple cores or GPU. In

addition, the simple algebraic operations performed on the latent feature vectors have

semantic meanings, for example, vector(“King”) - vector(“Man”) + vector(“Woman”),

resulting in a vector that is closest to the vector(“Queen”).

6.3 Future Work

In this section, we discuss the possible directions in our future work. The first direction

is to improve the parallel and sparse TCM sampler. This sampler can be extended in

several ways. First, the current sampler involves a lot of copying and synchronisation of

count tables between threads that introduces memory and processing time overhead.

To eliminate this overhead, we could use the the parallel architecture proposed by

Smola et al. (2010) that maintains a global topic-collocations table with asynchronous

updates.

We could also consider taking inspiration from recent work on scaling variational
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Bayesian inference to very large datasets to improve the parallelisation step (Hoffman

et al., 2010; Hoffman et al., 2013; Broderick et al., 2013). Variational inference proceeds

by introducing independence assumptions in a variational distribution, and adjusting

the parameters of the variational distribution to make it match the true posterior

distribution. Because these independence assumptions typically eliminate precisely

those dependencies across data items that complicate parallel inference, variational

approaches are easy to parallelise and attempt to correct for the assumptions that

make parallel inference possible.

The last but not the least important direction is to introduce word embedding

approaches for learning topical collocations. The easiest way is to take advantage of

the word similarity matrix learnt from word embedding approaches. For example, we

can use the word similarity matrix to identify collocations in the Pipeline Approaches

(PA) introduced in the Section 2.5.1 on Page 23.
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Hal Daumé, III. 2009. Non-parametric Bayesian areal linguistics. In Proceedings of
Human Language Technologies: The 2009 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, NAACL ’09, pages
593–601, Stroudsburg, PA, USA. Association for Computational Linguistics.

Jeffrey Dean and Sanjay Ghemawat. 2008. Mapreduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, January.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and
Richard A. Harshman. 1990. Indexing by Latent Semantic Analysis. Journal of
the American Society of Information Science, 41(6):391–407.

Lan Du, Wray Buntine, and Mark Johnson. 2013. Topic segmentation with a struc-
tured topic model. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 190–200.

S. Evert. 2004. The statistics of word cooccurrences: word pairs and collocations.
Ph.D. thesis, Institut fur maschinelle Sprachverarbeitung, Universitat Stuttgart.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
2008. LIBLINEAR: A library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874.

Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford
Books.

Thomas S. Ferguson. 1973. A Bayesian analysis of some nonparametric problems. The
Annals of Statistics, 1(2):209–230.

Katerina Frantzi, Sophia Ananiadou, and Hideki Mima. 2000. Automatic recognition
of multi-word terms:. the c-value/nc-value method. International Journal on Digital
Libraries, 3(2):115–130.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Computing semantic relatedness
using wikipedia-based explicit semantic analysis. In Proceedings of the 20th Inter-
national Joint Conference on Artifical Intelligence, IJCAI’07, pages 1606–1611, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Stuart Geman and Donald Geman. 1984. Stochastic relaxation, gibbs distributions,
and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell.,
6(6):721–741, November.

S. Goldwater, T. L. Griffiths, and M. Johnson. 2006a. Contextual dependencies in
unsupervised word segmentation. In Proceedings of Coling/ACL 2006.

S. Goldwater, T. L. Griffiths, and M. Johnson. 2006b. Interpolating between types
and tokens by estimating power-law generators. In Advances in Neural Information
Processing Systems 18.



138 References

Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. 2009. A Bayesian frame-
work for word segmentation: Exploring the effects of context. Cognition, 112(1):21–
53.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, volume 86,
pages 2278–2324.

Michael Lesk. 1986. Automatic sense disambiguation using machine readable dictio-
naries: How to tell a pine cone from an ice cream cone. In Proceedings of the 5th
Annual International Conference on Systems Documentation, SIGDOC ’86, pages
24–26, New York, NY, USA. ACM.

Chenghua Lin and Yulan He. 2009. Joint sentiment/topic model for sentiment anal-
ysis. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, CIKM ’09, pages 375–384.

Dekang Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings
of the 17th international conference on Computational linguistics, pages 768–774,
Morristown, NJ, USA. Association for Computational Linguistics.

Robert Lindsey, William Headden, and Michael Stipicevic. 2012. A phrase-discovering
topic model using hierarchical Pitman-Yor processes. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 214–222. Association for Computa-
tional Linguistics.

Xiaoyong Liu and W. Bruce Croft. 2004. Cluster-based retrieval using language mod-
els. In Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’04, pages 186–193,
New York, NY, USA. ACM.



References 141

Zhiyuan Liu, Yuzhou Zhang, Edward Y. Chang, and Maosong Sun. 2011. Plda+:
Parallel latent dirichlet allocation with data placement and pipeline processing.
ACM Transactions on Intelligent Systems and Technology, special issue on Large
Scale Machine Learning.

Jialu Liu, Jingbo Shang, Chi Wang, Xiang Ren, and Jiawei Han. 2015. Mining quality
phrases from massive text corpora. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 1729–1744.
ACM.

David JC MacKay and Linda C Bauman Peto. 1995. A hierarchical Dirichlet language
model. Natural language engineering, 1(3):289–308.

Andrew Kachites McCallum. 2002. Mallet: A machine learning for language toolkit.
http://www.cs.umass.edu/ mccallum/mallet.

Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su, and ChengXiang Zhai. 2007a.
Topic sentiment mixture: Modeling facets and opinions in weblogs. In Proceedings
of the 16th International Conference on World Wide Web, WWW ’07, pages 171–
180, New York, NY, USA. ACM.

Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai. 2007b. Automatic labeling of
multinomial topic models. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’07, pages 490–499,
New York, NY, USA. ACM.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. CoRR.

David Mimno and Andrew McCallum. 2007. Organizing the oca: Learning faceted
subjects from a library of digital books. In Proceedings of the 7th ACM/IEEE-CS
Joint Conference on Digital Libraries, pages 376–385.

David Mimno, Hanna M. Wallach, Edmund Talley, Miriam Leenders, and Andrew
McCallum. 2011. Optimizing semantic coherence in topic models. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, pages
262–272.

Thomas Minka and John Lafferty. 2002. Expectation-propagation for the genera-
tive aspect model. In Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence, UAI’02, pages 352–359, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

R. Nallapati, W. Cohen, and J. Lafferty. 2007. Parallelized variational em for latent
dirichlet allocation: An experimental evaluation of speed and scalability. In Seventh
IEEE International Conference on Data Mining Workshops (ICDMW 2007), pages
349–354.

Radford M. Neal. 2000. Markov chain sampling methods for Dirichlet process mixture
models. Journal of Computational and Graphical Statistics, 9(2):249–265.



142 References

Radford M Neal. 2003. Slice sampling. Annals of statistics, pages 705–741.

David Newman, Arthur U. Asuncion, Padhraic Smyth, and Max Welling. 2007. Dis-
tributed inference for latent dirichlet allocation. In Advances in Neural Informa-
tion Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 3-6, 2007.

David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. 2009a. Dis-
tributed algorithms for topic models. Journal of Machine Learning Research,
10:1801–1828.

David Newman, Sarvnaz Karimi, and Lawrence Cavedon. 2009b. External evaluation
of topic models. In Australasian Document Computing Symposium, pages 11–18,
Sydney.

David Newman, Jey Han Lau, Karl Grieser, and Timothy Baldwin. 2010a. Auto-
matic evaluation of topic coherence. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics, HLT ’10, pages 100–108, Stroudsburg, PA, USA. Association
for Computational Linguistics.

David Newman, Youn Noh, Edmund Talley, Sarvnaz Karimi, and Timothy Baldwin.
2010b. Evaluating topic models for digital libraries. In Proceedings of the 10th
Annual Joint Conference on Digital Libraries, pages 215–224.

David Newman, Edwin V Bonilla, and Wray L Buntine. 2011. Improving topic coher-
ence with regularized topic models. In Advances in Neural Information Processing
Systems 24, pages 496–504.

David Newman, Nagendra Koilada, Jey Han Lau, and Timothy Baldwin. 2012.
Bayesian text segmentation for index term identification and keyphrase extraction.
In COLING, pages 2077–2092. Citeseer.

Michael Nokel and Natalia V. Loukachevitch. 2015. A method of accounting bigrams
in topic models. In Proceedings of the 11th Workshop on Multiword Expressions,
MWE@NAACL-HLT 2015, June 4, 2015, Denver, Colorado, USA, pages 1–9.

Michael Nokel and Natalia Loukachevitch. 2016. Accounting ngrams and multi-word
terms can improve topic models. pages 44–49, 01.

Bo Pang and Lillian Lee. 2012. Cornell Movie Review Data.

Pavel Pecina. 2008. Lexical Association Measures: Collocation Extraction. Ph.D.
thesis, Faculty of Mathematics and Physics, Charles University in Prague, Prague,
Czech Republic.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543.



References 143

Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth, and
Max Welling. 2008. Fast collapsed Gibbs sampling for latent Dirichlet allocation.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 569–577.

Philip Resnik. 1995. Using Information Content to Evaluate Semantic Similarity in a
Taxonomy. In Proceedings of the XI International Joint Conferences on Artificial
Intelligence (IJCAI), pages 448–453.

Issei Sato and Hiroshi Nakagawa. 2010. Topic models with power-law using Pitman-
Yor process. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 673–682.

Hinrich Schütze. 1998. Automatic word sense discrimination. Comput. Linguist.,
24(1):97–123.

Alexander Smola and Shravan Narayanamurthy. 2010. An architecture for parallel
topic models. Proc. VLDB Endow., 3(1-2):703–710.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,
Washington, USA, October.

Mark Steyvers and Tom Griffiths, 2007. Probabilistic Topic Models. Lawrence Erlbaum
Associates.

T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. 2004. Indri: A language
model-based search engine for complex queries. Proceedings of the International
Conference on Intelligence Analysis.

Michael Strube and Simone Paolo Ponzetto. 2006. Wikirelate! computing semantic
relatedness using wikipedia. In Proceedings of the 21st National Conference on
Artificial Intelligence - Volume 2, AAAI’06, pages 1419–1424. AAAI Press.

Qi Sun, Runxin Li, Dingsheng Luo, and Xihong Wu. 2008. Text segmentation with lda-
based fisher kernel. In Proceedings of the 46th Annual Meeting of the Association for
Computational Linguistics on Human Language Technologies: Short Papers, HLT-
Short ’08, pages 269–272, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. 2006a. Hierarchical Dirichlet
processes. Journal of the American Statistical Association, 101:1566–1581.

Yee Whye Teh, David Newman, and Max Welling. 2006b. A collapsed variational
bayesian inference algorithm for latent dirichlet allocation. In Proceedings of the
19th International Conference on Neural Information Processing Systems, NIPS’06,
page 1353–1360, Cambridge, MA, USA. MIT Press.



144 References

Yee Whye Teh, David Newman, and Max Welling. 2007. A collapsed variational
Bayesian inference algorithm for latent Dirichlet allocation. In Advances in Neural
Information Processing Systems, volume 19, pages 1353–1360.

Y. W. Teh. 2007. Dirichlet processes: Tutorial and practical course. In In Tutorial
presentation at the 2007 Machine Learning Summer School.

Y. W. Teh. 2010. Dirichlet processes. In Encyclopedia of Machine Learning. Springer.

Ivan Titov and Ryan McDonald. 2008. Modeling online reviews with multi-grain topic
models. In Proceedings of the 17th International Conference on World Wide Web,
WWW ’08, pages 111–120.

Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. 2009. Eval-
uation methods for topic models. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1105–1112.

Hanna M. Wallach. 2006. Topic modeling: beyond bag-of-words. In Proceedings of the
23rd international conference on Machine learning, pages 977–984.

Xuerui Wang, Andrew McCallum, and Xing Wei. 2007. Topical n-grams: Phrase and
topic discovery, with an application to information retrieval. In Proceedings of the
2007 Seventh IEEE International Conference on Data Mining, pages 697–702.

Yi Wang, Hongjie Bai, Matt Stanton, Wen-Yen Chen, and Edward Y. Chang. 2009.
Plda: Parallel latent dirichlet allocation for large-scale applications. In Proceedings
of the 5th International Conference on Algorithmic Aspects in Information and
Management, pages 301–314.

Xing Wei and W. Bruce Croft. 2006. LDA-based document models for ad-hoc retrieval.
In Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 178–185. ACM.

Ian H Witten and David Milne. 2008. An effective, low-cost measure of semantic
relatedness obtained from wikipedia links. In Proceeding of AAAI Workshop on
Wikipedia and Artificial Intelligence: an Evolving Synergy, AAAI Press, Chicago,
USA, pages 25–30.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and Craig G. Nevill-
Manning. 1999. Kea: Practical automatic keyphrase extraction. In Proceedings
of the Fourth ACM Conference on Digital Libraries, DL ’99, pages 254–255, New
York, NY, USA. ACM.

D. J. Spiegelhalter W.R. Gilks, S. Richardson. 1999. Markov Chain Monte Carlo In
Practice. Chapman and Hall/CRC.

Zhibiao Wu and Martha Palmer. 1994. Verbs semantics and lexical selection. In
Proceedings of the 32th Annual Meeting on Association for Computational Linguis-
tics (ACL ’94), June 27-30, 1994, New Mexico State University, Las Cruces, New



References 145

Mexico, USA, Proceedings of the 32th Annual Meeting on Association for Compu-
tational Linguistics (ACL ’94), pages 133–138, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Han Xiao and Thomas Stibor. 2010. Efficient collapsed gibbs sampling for latent dirich-
let allocation. In Proceedings of the 2nd Asian Conference on Machine Learning,
ACML 2010, Tokyo, Japan, November 8-10, 2010, pages 63–78.

Feng Yan, Ningyi Xu, and Yuan Qi. 2009. Parallel inference for latent dirichlet allo-
cation on graphics processing units. In Advances in Neural Information Processing
Systems 22, pages 2134–2142. Curran Associates, Inc.

Limin Yao, David Mimno, and Andrew McCallum. 2009. Efficient methods for topic
model inference on streaming document collections. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 937–946. ACM.

Chengxiang Zhai and John Lafferty. 2001. A study of smoothing methods for language
models applied to Ad Hoc information retrieval. In Proceedings of the 24th annual
international ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’01, pages 334–342. ACM.

Ke Zhai, Jordan Boyd-Graber, and Shay B. Cohen. 2014. Online adaptor grammars
with hybrid inference. volume 2, pages 465–476.


	Dedication
	Acknowledgements
	List of Publications
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Topic Models
	1.3 Motivations for Learning Topical Collocations
	1.3.1 What are Collocations?
	1.3.2 What are Topical Collocations?
	1.3.3 Why do Topical Collocations matter?

	1.4 Thesis Contribution
	1.5 Thesis Overview

	2 Background on Topic Models and Topical Collocation Models
	2.1 Introduction
	2.2 Notation
	2.3 Latent Dirichlet Allocation (LDA)
	2.3.1 Approximate Inference for LDA
	2.3.2 Collapsed Gibbs Sampling
	2.3.3 Variational Inference

	2.4 Bayesian Segmentation Models for Identifying Collocations
	2.4.1 Bayesian Word Segmentation Models
	2.4.2 Models for Identifying Collocations
	2.4.3 DP-Seg Model

	2.5 Topic Models for Learning Topical Collocations
	2.5.1 Pipeline Approaches (PA)
	2.5.2 Extensions to LDA

	2.6 Probabilistic Context Free Grammar (PCFG) and Adaptor Grammar (AG) Approaches
	2.6.1 Bayesian Word Segmentation (Unigram) Model as an Adaptor Grammar
	2.6.2 LDA models as Probabilistic Context-Free Grammars
	2.6.3 Topical Collocation Model as Adaptor Grammars

	2.7 Previous Work of Evaluating Topic Models
	2.7.1 Perplexity
	2.7.2 Human Evaluation of Topic Coherence
	2.7.3 Automatic Evaluation of Topic Coherence
	2.7.4 Extrinsic Evaluation

	2.8 Summary

	3 Finding the Most Effective Topic Model for Learning Topical Collocations for Small Corpora
	3.1 Introduction
	3.2 Experimental Setup
	3.2.1 Corpora
	3.2.2 Model Settings

	3.3 Evaluation Methods for Topical Collocations Models
	3.3.1 Qualitative Description of Model Outputs
	3.3.2 Human Evaluation of Topic Coherence
	3.3.3 Automatic Evaluation of Topic Coherence
	3.3.4 An Alternative Ranking Method
	3.3.5 Evaluation on Text Classification Tasks
	3.3.6 Evaluation on an Information Retrieval Task

	3.4 Discussion
	3.4.1 Consistency of the Rankings
	3.4.2 Computational Efficiency

	3.5 Summary

	4 An Efficient Reformulation of Adaptor Grammar for Learning Topical Collocations
	4.1 Introduction
	4.2 A Reformulation of Adaptor Grammar for Learning Topical Collocations
	4.2.1 LDA and Bayesian Word Segmentation Models
	4.2.2 Topical Collocation Model

	4.3 Posterior Inference for the TCM
	4.3.1 A Point-wise Gibbs Sampler for the TCM
	4.3.2 Slice sampling hyperparameter of the DP

	4.4 Prior Work on Efficient Sampler for LDA
	4.4.1 Sparse Gibbs Sampling Algorithm for LDA
	4.4.2 Parallel Frameworks for LDA

	4.5 Efficient Sampler for the TCM
	4.5.1 Sparse Sampler for the TCM
	4.5.2 Parallelising the Sparse Sampler

	4.6 Summary

	5 Evaluations on Large-scale Corpora
	5.1 Introduction
	5.2 The Effectiveness of TCM on the Small Corpora
	5.3 Experimental Setup for Large-scale Evaluation
	5.3.1 Corpora
	5.3.2 Model Settings

	5.4 Evaluation on Large-scale Corpora
	5.4.1 Human Evaluation of Topic Coherence
	5.4.2 Automatic Evaluation of Topic Coherence
	5.4.3 Evaluation on Text Classification Tasks
	5.4.4 Evaluation on Information Retrieval Tasks
	5.4.5 Discussion

	5.5 Time-Efficiency Experiments
	5.5.1 Sparse vs. Non-Sparse samplers
	5.5.2 Single vs. Multiple threads Reduction
	5.5.3 Scalability of Our Parallel TCM

	5.6 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 The Relationship between Word Embedding Approaches and Topical Collocation Models
	6.2.1 Word Embedding Approach
	6.2.2 Advantages and Disadvantages Compared with Topical Collocation Models

	6.3 Future Work


