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Abstract

The aim of this thesis is to further develop the theory of accessible categories in the
enriched context. We study and compare the two notions of accessible and conically ac-
cessible V-categories, both arising as free cocompletions of small V-categories: the former
under flat-weighted colimits and the latter under filtered colimits. These two notions are
not the same in general, however we show that they coincide for many significant bases
of enrichment such as Cat and SSet, and differ just by Cauchy completeness for many
algebraic examples including Ab, R-Mod and GAb. We then provide new characteri-
zation theorems for these by considering some notions of virtual orthogonality and virtual
reflectivity which generalize the usual reflectivity and orthogonality conditions for locally
presentable categories. The word virtual refers to the fact that the reflectivity and orthog-
onality conditions are given in the free completion of the V-category involved under small
limits, instead of the V-category itself. We then prove that the 2-category of accessible
V-categories, accessible V-functors, and V-natural transformations has all flexible limits.
In the final chapters we study, characterize, and provide duality theorems in the setting
of accessible V-categories with limits of a specified class Ψ; in this context, instead of the
free completion under small limits, we consider “free completions” under a specific type
of colimits C for which, in particular, C-colimits commute in V with Ψ-limits. This allows
us to capture the theories of weakly locally presentable, locally multipresentable, locally
polypresentable, and accessible categories as instances of the same general framework.
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Introduction

Accessible categories were first introduced in 1981 by Lair [67] as a generalization of
the locally presentable categories of Gabriel and Ulmer. While the latter provide an
intrinsic characterization of the categories of models of limit sketches, accessible categories
characterize the categories which arise as models of general limit/colimit sketches in the
sense of Ehresmann [38]; for this reason they were initially named catégories modelables.
For a few years the theory remained confined to the French school, and was brought forward
especially by Lair and Guitart [48]. In 1983 Rosický came up with the same definition
independently in his doctoral work [90], describing accessible categories as categories of
models of (some notion of) infinitary first order logic. However, the theory started to get
more widely known only in the late 80s with the monograph [77] by Makkai and Paré,
where they rediscovered the theory (for the third time) independently from the work of
Lair and Rosický; it was in this book that these were called accessible categories for the
first time. After that the importance of the theory was widely recognized and another
monograph was written in 1994 by Adámek and Rosický [1]. We direct the reader to [77]
and [1] for a detailed account of the history.
Since their introduction, accessible categories have been presented in many different

ways. Intrinsically, they can be described as categories freely generated under α-filtered
colimits by a small category, for some regular cardinal α. Moreover they arise as categories
of models of limit/colimit sketches; as mentioned above, this is the reason why they were
first considered by Lair. Rosický and Makkai-Paré also showed that accessible categories
can be presented, from a logical point of view, as categories of models of infinitary first
order theories. Finally, they can also be described as full subcategories of presheaf cat-
egories closed under α-filtered colimits, for some α, and whose inclusion functor satisfies
the solution-set condition.
Unlike in the locally presentable case, where the theory works very smoothly and one

can follow a very formal approach, with the theory of accessibility things become rather
more complicated. In fact, the use of regular cardinals, which worked so well for local
presentability, became somewhat an obstacle in the characterization theorems for acces-
sible categories. It is not true that if a category A is α-accessible and β > α, then A
is also β-accessible (however, the same statement holds in the locally presentable case).
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Similarly it is not true that sketches with any colimit and just finite-limit specifications
classify finitely accessible categories (instead, finite-limit sketches classify locally finitely
presentable categories). Moreover, the orthogonality and reflectivity conditions used in
the locally presentable case need to be replaced by the less satisfying ones of injectivity
and weak reflectivity.
Because of this, many of the proofs of the characterization theorems for accessible cate-

gories are technically involved and very Set-based. One of our goals, within the thesis, is
to provide a more formal approach to accessibility; thus obtaining a clearer understanding
of the theory as well as useful ways of recognizing accessible categories. Moreover, with a
formal approach, we are also able to prove all of our results in the more general context of
enriched category theory. In fact, while some of the results we present here are new even
in the ordinary context, the main goal of this project is to further develop the theory of
accessibility in the enriched setting.
Enrichment is nowadays a standard tool in category theory; its range of applications is

so vast that it reaches very different areas of mathematics, such as algebra [53, 78, 97],
homotopy theory [31, 75, 89], computer science [12, 51, 85], and functional analysis [74, 84].
Even though additive and abelian categories were introduced earlier and can be understood
as some (easy) examples of enrichment, it was only in the 60s, after the development of
differentially graded categories, that people started to think about a general framework
for dealing with categories whose homs have a much richer structure than that of a set.
The first to, independently, envisage the potentials of such a theory were Mac Lane

[69] and Bénabou [26], as well as Linton in [73]. However, Eilenberg and Kelly were the
ones that actually developed a theory of enrichment in their paper [39]. After their work,
the theory started to get studied and many results from ordinary category theory were
transferred into this richer setting, sometimes with effort and some other times very easily
and elegantly. Later, the theory evolved in new directions by introducing enrichment over
bicategories [11, 103]; however that will not be the framework of this thesis, where we
consider only enrichment over symmetric monoidal closed categories. An account of all
the results we need is given in Kelly’s book [56], which will be for us a standard reference
on matters about enrichment.

Goals

Locally presentable categories found their way into enriched category theory fairly early
thanks to Kelly’s paper [57], which appeared almost contemporarily to his monograph
on enriched categories. With this work, Kelly extended most of the results about locally
presentable categories to an enriched framework, with the only request of the base of
enrichment being local presentability. On the contrary, the theory of enriched accessible
categories, first introduced in the late 1990s [17], is much less developed. We plan to
address this gap in the literature by focusing on the following goals:

(a) There is not a unique way of defining what an accessible V-category is; in fact
two different notions have already been considered in the literature. Those that we
simply call accessible arise as free cocompletions of small V-categories under α-flat
colimits for some α; the others, that we call conically accessible, arise instead as free
cocompletions of small V-categories under (conical) α-filtered colimits for some α.
We shall compare these two notions and prove that, for some instances of enrichment,
they actually coincide.

(b) The theory of accessible categories is much harder to address than that of locally
presentable ones; even in the ordinary setting where many of the proofs are very
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Set-based and thus not suitable for an enriched generalization. We shall introduce
new notions that will provide a more formal approach to the theory and allow a
characterization of the enriched accessible categories in terms of some orthogonality
and reflectivity conditions.

(c) Weaker notions of local presentability have been introduced before by considering
those accessible categories that only have limits of some class. The existence of these
limits, for all the examples considered in the literature, turned out to be equivalent
to asking the accessible categories to satisfy some “weakened” cocompleteness con-
ditions. We shall introduce the notion of companion C for a class of weights Ψ, and
characterize the accessible V-categories with Ψ-limits in terms of some cocomplete-
ness involving the companion C. This will allow us to recover the standard theorems
for locally presentable, locally multipresentable, and locally polypresentable cate-
gories as instances of the same general framework.

(d) For each of the weaker notions of local presentability discussed above there is a
corresponding duality theorem. This, given a class of weights Ψ, establishes a duality
between the 2-categories of α-accessible categories with Ψ-limits and the 2-category
of those α-complete categories which arise as free cocompletions of a small category
under colimits of a specific type. Examples are the Gabriel-Ulmer duality for locally
presentable categories, and Diers duality for the locally multipresentable ones. We
shall obtain these dualities, as well as new ones, using the theory of companions that
has been introduced in the previous point.

While these goals can be considered as the main objectives of the thesis, along the way
we will also prove some minor results that, although not being central in the theory of
accessibility, are strictly related to the notions we introduce. We discuss all these objectives
in more detail below.

Two notions of accessibility

Let us focus on point (a) and try to understand why there are two notions (while for
ordinary categories we had only one) and what properties each of the two satisfy.
Recall that an ordinary functor M : Cop → Set is called flat if its left Kan extension

LanYM : [C,Set] → Set along the Yoneda embedding preserves finite limits. Equivalently
M is flat if and only if its category of elements is filtered; or even: M is flat if and only if
it is a filtered colimit of representable functors. This outlines a deep connection between
flatness and filtered colimits.
This connection plays a key role in the theory of accessible categories: a category is

finitely accessible by definition if it is the free cocompletion of a small category C under
filtered colimits; by the observation above this is the same as saying that A is equivalent to
the category Flat(Cop,Set) of flat presheaves on a small category C. This is a fundamental
step in the characterization of accessible categories as models of sketches and of first order
theories.
The situation becomes rather more complicated when we move to enriched category

theory. Let us fix a base of enrichment V = (V0,⊗, I) which is symmetric monoidal closed
and locally finitely presentable as a closed category. In this setting a weighted notion of
finite limit has been introduced by Kelly [57]; then conical filtered colimits commute in V
with these finite weighted limits. However conical colimits are not generally enough when
enrichment is involved; this means that there might be a wider class of weighted colimits
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which commute with finite weighted limits in V. That is exactly where the notion of flat
V-functor comes into play:

Definition ([57]). We say that a V-functor M : Cop → V is flat if LanYM : [C,V] → V
preserves all finite weighted limits.

Equivalently, M is flat if and only if M -weighted colimits commute with finite limits in
V. If V = Ab and C is a one object Ab-category, then R := C(∗, ∗) ∈ Ab is a ring and
a V-functor M : Cop → Ab is just an R-module M , so that [C,Ab] ∼= R-Mod. Moreover
LanYM ∼= M ⊗ −; since right exact additive functors between abelian categories are left
exact if and only if they preserve monomorphisms, we recover the algebraic notion of
flatness introduced by Serre in [94].
We can now talk about flat-weighted colimits for V-categories; these include, but do not

reduce to, the conical filtered ones. For instance every absolute weighted colimit is flat
but need not be filtered. An explicit example can be given for V = Ab: finite direct sums
are absolute, and hence flat, but they are not filtered. Therefore, depending on which
class one decides to work with, two different notions of accessibility can be introduced.
Historically, the first to be considered was based on flat weights.

Definition ([17]). A V-category A is called finitely accessible if it is the free cocompletion
of a small V-category under flat-weighted colimits.

On the bright side, this captures many of the characterization theorems from the ordi-
nary setting. For instance a V-category A is finitely accessible if and only if it is equivalent
to Flat(Cop,V), the full subcategory of [Cop,V] spanned by the flat V-functors, for some
small C; while, as we will see, a V-category is α-accessible for some α if and only if it is the
V-category of models of a V-sketch. The problem with this notion is that flat V-functors
can be hard to describe, and so it can be difficult to tell whether or not an enriched
category is accessible in this sense.
More recently, however, various authors have used a different notion of enriched acces-

sibility. An early example, involving the additive case V = Ab, was the work of Prest
on the model theory of modules, as in [86]. There followed various homotopical examples
[20, 23, 63], involving V = Cat and V = SSet as bases of enrichment. Each of these cases
was based on filtered colimits rather than flat ones, and implicitly or explicitly relied on
the following notion.

Definition. A V-category A is conically finitely accessible if it is the free cocompletion of
a small V-category under conical filtered colimits.

This is more straightforward to work with but lacks the connection with sketches which
was after all the original motivation for the notion of accessibility.
In Section 2.1.3 we will see that every accessible V-category is also conically accessible,

but the index of accessibility might need to be raised. However, the converse is not true
in general since a conically accessible V-category may not have flat colimits, as stated in
the case V = Ab above. Thus a natural question to ask is whether these notions coincide
for some instances of enrichment. If they were in fact the same, or if at least we could
understand well the relationship between them, then we would in some sense have the best
of both worlds: both the relationship with sketches and other good theoretical properties,
as well as the use of the simpler α-filtered colimits rather than α-flat ones.
We address these problems in Chapter 3 by giving an explicit description of α-flat

colimits for certain classes of base of enrichment.
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More specifically, we will prove that the two notions of accessibility coincide whenever the
V-functor V(I,−) : V0 → Set, obtained by homming out of the unit of V, is (weakly) strong
monoidal and (weakly) cocontinuous. This includes many examples such as the symmetric
monoidal closed categories Set of sets, Cat of small categories, SSet of simplicial sets,
2 of the free-living arrow, Gpd of groupoids, and V-Cat of small V-categories for any
locally presentable V.
On the other hand, for various instances of enrichment with an algebraic flavour, we

show that accessibility and conical accessibility differ only by Cauchy completeness. Ex-
amples include the the symmetric monoidal categories CMon of commutative monoids,
Ab of abelian groups, GAb of graded abelian groups, and R-Mod of R-modules for any
commutative ring R. In all these cases the Cauchy colimits that need to be added to make
the two notions coincide are finite direct sums and copowers by dualizable objects.

A characterization of accessible categories

Now that we have introduced the main objects of study we can focus on point (b). Here
we consider mostly the accessible V-categories; nonetheless we compare these with (and
give results on) the conically accessible ones as well.
The characterization theorem we prove seems to be new even in the ordinary setting,

although some of the machinery we use was already considered, for V = Set, by Guitart
and Lair [48]. The idea is to generalize the notion of orthogonality and reflectivity (central
in the characterization of locally presentable categories) to those of virtual orthogonality
and virtual reflectivity as described below. Here the word “virtual” refers to the fact that
the objects and morphisms we are considering lie not in a given category A, but rather
in its free completion P†A under limits. The V-category P†A can be identified with the
opposite of the full subcategory of [A,V] consisting of the small V-functors; namely those
that are small limits of representables.
There are virtual notions of: left adjoint, reflective subcategory, cocomplete, and or-

thogonality class. To introduce the notion of virtual left adjoint, recall that a V-functor
F : A → K has a left adjoint if K(X,F−) is representable for any X ∈ K; we say instead
that F has a virtual left adjoint if K(X,F−) is a small V-functor for any X ∈ K, that is
if K(X,F−) ∈ P†A for all X ∈ K. If F is fully faithful we then say that A is virtually
reflective in K. Clearly every reflective subcategory is virtually reflective, but the converse
is not true. When V = Set and A and K are both accessible, then virtual reflectivity is
equivalent to the inclusion functor satisfying the solution-set condition (Corollary 2.2.46).
Regarding virtual colimits, we know that, given a weight M : Cop → V and a V-functor

H : C → A, the colimit M ∗ H exists in A if the V-functor [Cop,V](M,A(H,−)) is rep-
resentable. Relaxing that condition, we say that the virtual colimit of H weighted by M
exists inA if [Cop,V](M,A(H,−)) is a small V-functor. Since every representable V-functor
is small, any cocomplete V-category has virtual colimits; less trivial is the fact that also
every accessible V-category has them. When V = Set a category A has virtual colimits if
and only if it is pre-cocomplete in the sense of Freyd [42] (see Proposition 2.2.42).
An object A of a V-category K is said to be orthogonal with respect to a morphism

f : X → Y in K if the map K(f,A) is an isomorphism in V. Then the notion of virtual
orthogonality arises exactly in the same way with the only difference being that the mor-
phism f now can be chosen to be of the form f : ZX → Y with X ∈ K and Y ∈ P†K,
where Z : K ↪→ P†K is the inclusion. Thus we will say that A ∈ K is orthogonal with
respect to a morphism f : ZX → Y in P†K if the map P†K(f, ZA) is an isomorphism in
V. We call virtual orthogonality class a full subcategory of K which arises as a collection of
objects which are virtually orthogonal with respect to a small set of morphisms as above.
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Then our main theorem of Chapter 2 goes as follows:

Theorem 2.2.32. The following are equivalent for an accessible V-category K and a fully
faithful inclusion A ↪→ K:

1. A is accessible and accessibly embedded;

2. A is accessibly embedded and virtually reflective;

3. A is a virtual orthogonality class.

Even though our proofs still rely on some inevitable Set-based conditions, such as
the raising of the accessibility index, we believe they provide a more formal and cleaner
approach to the theory with respect to some of the concepts studied in the past for
ordinary accessible categories. We study the relationship between these and our notions
in Section 2.2.6.
In the context of conically accessible V-categories a similar characterization can be given.

This shows that, in contrast to accessibility, conical accessibility of a subcategory can be
recognized at the level of the underlying ordinary category.

Theorem 2.2.36. The following are equivalent for a conically accessible V-category K
and a fully faithful inclusion A ↪→ K:

1. A is conically accessible and conically accessibly embedded in K;

2. A0 is accessible and accessibly embedded in K0;

3. A0 is accessibly embedded and virtually reflective in K0;

4. A0 is a virtual orthogonality class in K0.

Accessible categories with limits

Next, as part of point (c), we study those accessible V-categories that have limits of a
specified class of weights Ψ. Recall that an accessible category is complete if and only if
it is cocomplete, and in that case is locally presentable. It is often the case, however, that
the accessible categories of interest only have some limits. A natural question is then how
to characterize those accessible categories that have a particular class of limits in terms of
some, generalized, cocompleteness conditions.
In the examples considered in the literature different authors proved characterizations

theorems of the same style: in each case it was proved that a category is accessible with
Ψ-limits, for a given class Ψ, if and only if it is accessible and satisfies some kind of
cocompleteness conditions, if and only if it is equivalent to the category of models of a
specific kind of sketch.
We will prove this theorem for accessible V-categories with limits of a weakly sound class

Ψ (see [4, 62] and Definition 1.3.4).

Theorem 5.3.16. Let Ψ be a weakly sound class and Φ be the class of weights whose
colimits commute with Ψ-limits in V. The following are equivalent for a V-category A:

1. A is accessible with Ψ-limits;

2. A is accessible and Φ†A has colimits of objects from A;

3. A is the V-category of models of a limit/Φ-colimit sketch.
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The category Φ†A here is the free completion of A under Φ-limits. When Ψ = ∅ then
Φ = P is the class of all weights, we recover the characterization of accessible categories
as the sketchable ones [67, 18]. For the locally presentable case, one considers the weakly
sound class Ψ = P of all small weights and the class Φ = Q of all those that commute
with them; that is, the class of Cauchy colimits. Since for an accessible category A, its
Cauchy completion is equivalent to A itself, being cocomplete for A is equivalent to the
request that the Cauchy completion Q†A has all colimits of diagrams landing in A. Thus
we recover the standard characterization of locally presentable V-categories.
When V = Set and Ψ is the class for connected limits, the class Φ corresponds to

that of discrete categories (namely, the shapes for products and coproducts). Recall that
a category A is multicocomplete if its free completion under products Fam†A has all
colimits of objects from A. Then we obtain the characterization theorem for locally
multipresentable categories, due to Diers [35].
Even though the theorem above is already quite general and captures some classes of

limits that were not considered before (Example 5.3.6), it does not cover two important
examples: the weakly locally presentable categories (Ψ is the class for products) and the
locally polypresentable categories (Ψ is the class of wide pullbacks). The problem being
that in those two cases the classes of limits in question are not weakly sound.
In the case of locally polypresentable categories the known characterization theorem

reads as follows:

Theorem. The following are equivalent for a category A:

1. A is accessible with wide pullbacks;

2. A is accessible and polycocomplete;

3. A is the category of models of a galoisian sketch.

The history behind the proof of this theorem is complicated: its origins are in Lamarche’s
doctoral thesis [68], with further work by Taylor [98] and Hu and Tholen [50]. The notion
of galoisian sketch and the equivalence of (3) to the other conditions is due to Ageron [6].
Unlike the previous cases, polycolimits in A are not computed in a free completion of

A, at least not in the usual sense. In fact, Hu and Tholen [50] prove that a category A has
polycolimits if and only if the “free completion” of A under limits of free groupoid actions
has colimits of objects from A. This is not a free completion in the usual sense since the
diagrams defining free groupoid actions are not just functors out of an indexing category,
but need to satisfy some additional properties. Similarly, in [6] Ageron considers colimits
of free groupoid actions to define what the cocone specifications look like on a galoisian
sketch.
To capture this and the sound case under the same theory we shall prove the following

theorem, and introduce the various notions on which it relies.

Theorem. Let Ψ be a class of weights, and C be a companion for Ψ. The following are
equivalent for a V-category A:

1. A is accessible with Ψ-limits;

2. A is accessible and C†
1A has colimits of representables.

3. A is the V-category of C-models of a sketch.

In particular in Chapter 5 we explain:
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• what it means for C to be a companion (Definition 5.2.11);

• what C†
1A is (Definition 5.2.8);

• what is a C-model of a sketch (Definition 5.2.19).

If Ψ is weakly sound this specializes to Theorem 5.3.16. If V = Set and Ψ is the class
for wide pullbacks we recover the characterization for locally polypresentable categories.
In the context of weakly locally presentable categories, we do obtain a theorem but it
does not exactly match the characterization theorems of [1, Chapter 4] involving weak
reflections and weak cocompleteness; those will be recovered separately in Section 5.4.

Dualities

The last of our goals, point (d), concerns the study of dualities for finitely accessible
V-categories with Ψ-limits and their infinitary generalizations.
When considering the finitely accessible and complete categories, we obtain the well

known Gabriel-Ulmer duality for locally finitely presentable categories [44]. This estab-
lishes a biequivalence between the 2-category of locally finitely presentable categories,
right adjoint and finitary functors, and natural transformation and the opposite of the 2-
category of finite limit theories; that is, the 2-category of small finitely complete categories,
finitely continuous functors, and natural transformations.
In the case where the finitely accessible categories are not assumed to have limits, a

duality theorem was established in [77, Proposition 4.2.1]. It is shown that the 2-category
of finitely accessible categories, finitary functors, and natural transformations is dual to
the 2-category of presheaf categories, cocontinuous and finite-limit preserving functors,
and natural transformations. Similarly Diers proved a duality theorem in the context of
locally finitely multipresentable categories [35].
Using the notion of companion C for Ψ, in Chapter 6 we will give sufficient conditions on

C to induce the duality theorem below characterizing the α-accessible V-categories with
Ψ-limits.

Theorem 6.2.10. The 2-functors

α-AccΨ(−,V) : α-AccΨ C-Exop
α :C-Regα(−,V)

form a biequivalence of 2-categories.

Here, α-AccΨ is the 2-category of α-accessible V-categories with Ψ-limits, Ψ-continuous
and α-flat colimit preserving V-functors, and V-natural transformations. On the other
hand, C-Exα can be described as the 2-category with objects the α-complete V-categories
that are free C-cocompletions of small V-categories, α-continuous and C-cocontinuous V-
functors, and V-natural transformations. All these notions will be introduced and ex-
plained in Section 6.2.
When Ψ = P is the class of all small weights, we recover the Gabriel-Ulmer duality

between locally α-presentable V-categories and the small α-cocomplete ones. If V = Set
and Ψ is the class for connected limits we recover Diers duality for locally finitely multi-
presentable categories [35]. More generally we obtain a duality theorem for α-accessible
V-categories with limits of a weakly sound class Ψ; on the opposite side we find the 2-
category whose objects are the α-complete V-categories which arise as free cocompletions
of a small V-category under Ψ-flat colimits.
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When V = Set and Ψ is the class for wide pullbacks we obtain the duality of Hu and
Tholen [50] between locally α-polypresentable categories, and (what they call) α-complete
quasi-based categories. In the case of weakly locally finitely presentable categories (Ψ
being the class for products) the duality we obtain first appeared in Hu’s PhD thesis [49];
we generalize that to the context of categories enriched over finitary varieties.

Additional results

Beside the main goals of the thesis described above, in Chapter 4 we study the accessible
V-functors F : K → L between locally presentable categories and show that such a functor
F preserves all small limits if and only if it preserves γ-small limits, for some regular
cardinal γ depending only on K (Theorem 4.1.6). This result can also be interpreted
as a new adjoint functor theorem for α-accessible functors out of a locally α-presentable
category. The “ur-adjoint functor theorem” says that if a category K has all (possibly
large) limits and U : K → L preserves them, then U has a left adjoint. When K only
has small limits (as usually happens), then one invokes Freyd’s general adjoint functor
theorem [43], which requires U to be continuous and to satisfy in addition the solution set
condition; this is the case in particular when K and L are locally presentable, and U is
a continuous and accessible functor. Then our Theorem 4.1.8 says that the condition on
continuity can be weakened to γ-continuity (for some γ) when we restrict to the locally
α-presentable case.
In Appendix A we prove some further results that, despite not being central to develop-

ment of the theory of enriched accessibility, provide some useful insights on the notions we
used and direct applications of results from previous chapters. In Section A.1 we compare
the notions of saturated and pre-saturated classes of indexing categories and weights; we
prove that every saturated class is pre-saturated and give conditions for the other impli-
cation to hold. In Section A.2 we consider an enriched notion of pettiness and extend
the contents of Section 2.2.6, comparing virtual and cone reflectivity, to the enriched set-
ting. By applying the results of Chapter 5 to the companion for the class of products,
in Section A.3 we give another characterization of the definable categories of Prest [86].
Finally, in Section A.4 we extend the duality involving the 2-category of finitely accessible
V-categories (obtained in Chapter 6) to an adjunction between the 2-category of accessible
V-categories with filtered colimits and that of V-topoi.



CHAPTER

1
Background notions

In this chapter we recall some standard results that will be needed throughout the the-
sis. These concern ordinary accessible categories (Section 1.1), enriched category theory
(Section 1.2), and the notion of sound and weakly sound class of weights (Section 1.3).

1.1 Results on ordinary accessible categories

In this section we recall the only result on ordinary accessible categories that will be used
throughout this paper; that is about raising the index of accessibility:

Definition 1.1.1. Given two regular cardinals α and β, we say that α is sharply less than
β, and write α � β, if α < β and for every α-filtered category C and any β-small D ⊆ C
there exists a β-small and α-filtered E with D ⊆ E ⊆ C.

This is one of many equivalent set-theoretic definitions of the sharply less than relation.
Equivalently, one could consider in the definition above the case when C is just an α-
directed poset (this notion was considered in [1, Theorem 2.11(iv)]). Another set-theoretic
characterization is as follows: α�β if and only if α < β and for every set X of cardinality
less than β, the partially ordered set Pα(X), of all subsets of X with cardinality less than
α, has a final subset of cardinality less than β. This is how the sharply less relation was
originally defined in [77, 2.3.1].

Remark 1.1.2. For any small set of regular cardinals {αi}i∈I there are arbitrarily large
regular cardinals β for which β � αi holds for all i ∈ I [1, Example 2.13(6)].

Before stating the next theorem let us fix some notation. For a regular cardinal α and a
category C we denote by α-Ind(C) the free cocompletion of C under α-filtered colimits; this
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can be described as the full subcategory of [Cop,Set] spanned by the α-flat functors. For
given regular cardinals α < β we denote by Cβ/α the free cocompletion of C under β-small
α-filtered colimits; this is a one-step completion by [30, Corollary 4.13]. Let J : C ↪→ Cβ/α

be the inclusion; then since Cop
β/α is the free completion of Cop under β-small α-cofiltered

limits, it follows that

(− ◦ J) : β/α-Cont(Cop
β/α,Set) → [Cop,Set]

is an equivalence of categories with inverse RanJop , where β/α-Cont[Cop
β/α,Set] denotes the

full subcategory of [Cop
β/α,Set] spanned by those functors that preserve β-small α-filtered

limits. Consider now a representable Cβ/α(−, C), since C is a J-absolute β-small α-filtered
colimit of elements from C, it follows that Cβ/α(J−, C) ∼= colim

i
C(−, Ci) is a β-small α-

filtered colimit of representables, and in particular α-flat. Moreover, since pre-composition
by J preserves β-filtered colimits (being cocontinuous) and these are also α-filtered, it
follows that we have an induced functor

(− ◦ J) : β-Flat(Cop
β/α,Set) ↪→ α-Flat(Cop,Set)

which is fully faithful since every β-flat functor is β/α-continuous (it preserves all existing
β-small limits).
We are now ready to state and prove the following theorem, which can be seen as an

expansion of [1, Theorem 2.11].

Theorem 1.1.3. Let α < β be two regular cardinals and J : C ↪→ Cβ/α be as above; the
following are equivalent:

1. α� β;

2. if C is an α-filtered category then Cβ/α is β-filtered;

3. if M : Cop → Set is an α-flat functor then RanJopM : Cop
β/α → Set is β-flat;

4. each α-flat M : Cop → Set is the restriction of some β-flat N : Cop
β/α → Set;

5. α-Ind(C) ≃ β-Ind(Cβ/α) for any small C;

6. every α-accessible category is β-accessible.

Proof. (1) ⇒ (2). Let C be an α-filtered category and {Xi}i∈I be a β-small family of
objects in Cβ/α. For each i ∈ I fix a β-small diagram Hi : Di → C whose colimit in Cβ/α is
Xi. By (1) we can consider a β-small and α-filtered E ⊆ C which contains the images of
all the Hi’s. Let X be the colimit of the inclusion of E in Cβ/α; then by construction we
have an induced arrow Xi → X for any i ∈ I, as desired.
Consider now a β-small family of parallel arrows {fi : X → Y }i∈I in Cβ/α. Since X and

Y are β-small colimits of objects of C, each arrow fi can be expressed as a β-small colimit
of objects in C2; thus we can find β-small categories Di and diagrams Hi : Di → C2 whose
colimits in (Cβ/α)

2 are the fi’s. Again, by (1) we can find a β-small and α-filtered E in
C which contains the images of all the Hi’s. It follows then that the colimit of E in Cβ/α

comes with a cocone for the family {fi}i∈I .
(2) ⇒ (3). Consider an α-flatM : Cop → Set and its right Kan extension N : Cop

β/α → Set

along Jop. Using the fact that Cβ/α is the free cocompletion of C under β-small α-filtered
colimits, one can show that El(N) is the free cocompletion of El(M) under the same kind



1.2 Background on enriched categories 12

of colimits, so that El(N) = El(M)β/α. Now, since M is α-flat, then El(M) is α-filtered,
and thus El(N) is β-filtered by (2).
(3) ⇒ (4). This is trivial assuming (3) since M is always the restriction of its right Kan

extension along Jop.
(4) ⇒ (5). Thanks to (4) and the comments above the Theorem, (− ◦ J) induces an

equivalence between the α-flat functors out of Cop and the β-flat functors out of Cop
β/α. Thus

(5) follows at once.
(5) ⇒ (6) is trivial, while (6) ⇒ (1) can be shown as in the proof of [1, Theorem 2.11].

A direct consequence of the equivalence between (1) and (6) is that the sharply less than
relation is transitive.

Remark 1.1.4. Point (5) of the Theorem can be restated as follows. Given the pseudomon-
ads P = β-Ind(−), that freely adds β-filtered colimits, and T = (−)β/α, that freely adds
β-small α-filtered colimits, the composite PT is still a monad and coincides with α-Ind(−).
This results in a distributive law from T to P .

Moreover:

Corollary 1.1.5. [77, Proposition 2.3.11] For an α-accessible category A and regular
cardinals α � β, there is an equivalence Aβ ≃ (Aα)β/α and hence every β-presentable
object of A is a β-small α-filtered colimit of α-presentable objects.

Proof. The fact that Aβ ≃ (Aα)β/α is a direct consequence of condition (5) from the
Theorem above and of the fact that α-Ind(C)α ≃ C for any α and any Cauchy complete
C. The last assertion is a consequence of Remark A.1.10.

A direct consequence of these results is the following:

Corollary 1.1.6. [1, Theorem 2.19] Given an accessible functor F : A → B between
ordinary accessible categories, there exists α such that F preserves the β-presentable objects
for each β � α.

Proof. Let α0 be such that A, B, and F are α0-accessible and let α � α0 be such that
F (Aα0) ⊆ Bα. Consider now β � α; by transitivity of the sharply less than relation and
Corollary 1.1.5 each object of Aβ is a β-small α0-filtered colimit of objects from Aα0 ;
since F preserves α0-filtered colimits it follows that each object of F (Aβ) is a β-small
(α0-filtered) colimit of objects from Bα, and thus is still β-presentable in B.

1.2 Background on enriched categories

We now fix a base of enrichment V = (V0,⊗, I) which is a complete, cocomplete, and
symmetric monoidal closed category.
For matters concerning enrichment we follow the notations of [56], with the only change

that “indexed” colimits are here called “weighted”, as is now standard. In particular, given
a V-category A we denote by A0 its underlying ordinary category; similarly if F : A → B
is a V-functor we denote by F0 : A0 → B0 the corresponding ordinary functor underlying
F . For any ordinary small category K we denote by KV the free V-category over K. Our
V-categories are allowed to have a large set of objects, unless specified otherwise.
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We call weight a V-functor M : Cop → V with small domain. Given such a weight M
and a V-functor H : C → A, we denote by M ∗H (if it exists) the colimit of H weighted
by M ; this is determined by the object M ∗ H ∈ A and a V-natural transformation
M → A(H−,M ∗H) which induces an isomorphism

A(M ∗H,A) ∼= [Cop,V](M,A(H−, A))

in V, for any A ∈ A. Dually, given a weight N : C → V and a V-functor K : C → A,
the weighted limit of K by N is denoted by {N,K}. Conical limits and colimits are
special cases of weighted ones; they coincide with those weighted by ∆I : Bop

V → V for
some ordinary category B. The conical colimit of a V-functor TV : BV → A, if it exists,
will also be the ordinary colimit of the transpose T : B → A0 in A0 (but the converse is
not generally true).
Since every weight is assumed to have a small domain, all the limits and colimits that

we consider here will be small. Therefore, when talking about limits and colimits of some
(maybe large) class of weights, these will always be weighted by a V-functor with small
domain.
We assume now that V is locally α-presentable as a closed category, meaning that it is

locally α-presentable and the α-presentable objects contain the unit and are closed under
tensor product [57]. Then Kelly introduced a notion of α-small weight which will be
relevant throughout the thesis.

Definition 1.2.1 ([57]). We say that a weight M : Cop → V is α-small if C has less than
α objects, C(C,D) ∈ Vα for any C,D ∈ C, and M(C) ∈ Vα for any C ∈ C. An α-small
(weighted) limit is one taken along an α-small weight. We say that a V-category C is α-
complete if it has all α-small limits; we say that a V-functor is α-continuous if it preserves
all α-small limits.

Both conical α-small limits and powers by α-presentable objects are examples of α-small
limits and together are enough to generate all α-small weighted limits [57, Section 4]. Note
that where here are called “powers” in [56] were referred to as “cotensors”.

Definition 1.2.2. We say that a weight M : Cop → V is α-flat if its left Kan extension
LanYM : [C,V] → V along the Yoneda embedding is α-continuous. With α-flat colimits
we mean those weighted by an α-flat weight.

Note that every conical α-filtered colimit is α-flat and that the α-flat V-functors are
closed in [Cop,V] under α-flat colimits.

Proposition 1.2.3 ([57]). Let M : Cop → V be a weight; the following are equivalent:

1. M is α-flat;

2. M ∗ − : [C,V] → V preserves all α-small limits;

3. M is an α-flat colimit of representables.

If C is α-cocomplete they are further equivalent to:

4 M is α-continuous;

5 M is a conical α-filtered colimit of representables.
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In that case the following isomorphism holds

M ∼= colim(El(MI)V
πV−→ C Y−→ [Cop,V])

where MI = V0(I,M0−) and El(MI) is α-filtered.

1.3 Soundness

Consider again a complete and cocomplete symmetric monoidal closed category V =
(V0,⊗, I) as the base for enrichment.

Definition 1.3.1 ([33]). Let Φ be a class of weights; a weightM : Cop → V is called Φ-flat
if its left Kan extension LanYM : [C,V] → V along the Yoneda embedding is Φ-continuous.
We denote by Φ-Flat(Cop,V) the full subcategory of [Cop,V] spanned by the Φ-flat weights.

Equivalently, Φ-flat are those weights whose weighted colimits commute with Φ-limits
in V. When Φ is the class of α-small weights this is the usual notion of α-flat functor.

Lemma 1.3.2. Let Φ be a class of weights, J : B → C be a V-functor between small
V-categories, and M : Bop → V a weight; then:

1. if M is Φ-flat then LanJopM is;

2. if J is fully faithful and LanJopM is Φ-flat then M is Φ-flat as well.

Proof. By definition a weight M is Φ-flat if it is small and its left Kan extension along the
Yoneda embedding, which is the functor M ∗ − : [B,V] → V, is Φ-continuous. Note that
the following triangle commutes:

[B,V]

[C,V] V

[J,V] M ∗ −

LanJopM ∗ −

indeed LanJopM ∗ F ∼= M ∗ FJ by [56, 4.19]. As a consequence if M is Φ-flat then so
is LanJopM since [Jop,V] is continuous. Conversely assume that J is fully faithful and
LanJopM is Φ-flat, then

M ∗ − ∼= (M ∗ −) ◦ id[B,V]
∼= (M ∗ −) ◦ [J,V] ◦ RanJop

∼= (LanJopM ∗ −) ◦ RanJ

where id[B,V] ∼= [J,V] ◦RanJ since J is fully faithful. It follows that M ∗− is Φ-continuous
because LanJopM ∗ − is and RanJ is continuous.

Remark 1.3.3. In more familiar terms, this generalizes an easy-to-check fact about filtered
categories:

• if J : B → A is final and B is filtered, then A is filtered as well;

• if J : B → A is fully faithful and final, and A is filtered, then B is filtered as well.
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When V = Set, this can be seen as a consequence of the Lemma above since a category
B is filtered if and only if the weight ∆1B : Bop → Set is flat, and a functor J : B → A is
final if and only if ∆1A ∼= LanJop(∆1B).
In the second point, we cannot drop the assumption that J is fully faithful as the

following example shows. Take the inclusion of the free-living pair into the free-living split
pair; then the codomain is filtered (it is actually absolute) and the inclusion is final, but
coequalizers are not filtered colimits.

Recall from [59] that a class of weights Φ is called locally small if for every small V-
category C the free cocompletion ΦC is still a small V-category.

Definition 1.3.4. We say that a locally small class of weights Φ is weakly sound if every
Φ-continuous V-functor M : Cop → V (from a small Φ-cocomplete C) is Φ-flat.
We say that a locally small class of weights Φ is sound if, for any M : Cop → V with small
domain, whenever M ∗ − preserves Φ-limits of representables, then M is Φ-flat.

In the ordinary context sound classes of weights were first considered by Adámek,
Borceux, Lack, and Rosický in [4]. The relationship between their definition and ours
is explained in [4, Remark 2.6]; there the authors also mention the notion of weakly sound
class, but do not make use of that in their paper. In the enriched setting weakly sound
classes were introduced in [62], where they were simply called “sound classes”.
Of course if Φ is sound then it is weakly sound, but the converse does not always hold:

see again [4, Remark 2.6]. However, as we are going to see below, the converse does
hold when the class of weights Φ is pre-saturated, meaning that for any small C the free
cocompletion ΦC of C under Φ-colimits is a one-step closure in [Cop,V]. In other words Φ is
pre-saturated if, for any V-category C, every object of ΦC is a Φ-colimit of objects from C.
The relationship between pre-saturated and saturated classes is discussed in Section A.1.

Proposition 1.3.5. Let Φ be a pre-saturated class of weights. Then Φ is weakly sound if
and only if it is sound.

Proof. One direction is clear. Suppose then that Φ is pre-saturated and weakly sound,
and let M : Cop → V be such that M ∗ − : [C,V] → V preserves Φ-limits of representables;
we need to prove that M is Φ-flat.
Let Φ†(Cop) be the free completion of Cop under Φ-limits and J : Cop ↪→ Φ†(Cop) be the

inclusion, note that equivalently Φ†(Cop) = Φ(C)op is the opposite of the free cocompletion
of C under Φ-colimits. ConsiderM ′ := LanJM ; by Lemma 1.3.2 it follows thatM is Φ-flat
if and only if M ′ is Φ-flat. Moreover, since Φ is weakly sound, M ′ is Φ-flat if and only if
it is Φ-continuous.
Thus it will suffice to prove that M ′ is Φ-continuous. Note first that M ′ preserves

Φ-limits of diagrams landing in Cop: take N : D → V in Φ and H : D → Cop then

M ′{N, JH} ∼= (LanJM){N, JH}
∼=M − ∗ Φ†(Cop)(J−, {N, JH})
∼=M − ∗{N□, Cop(−, H□)}
∼= {N□,M − ∗Cop(−, H□)} (1.1)
∼= {N,M ◦H}
∼= {N,M ′ ◦ JH}

where (1.1) follows from the fact that M ∗ − preserves Φ-limits of representables.
Now, since Φ is pre-saturated, every object of Φ†(Cop) is a J-absolute Φ-limit of a diagram
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landing in Cop (that is, every object of Φ(C) is a J-absolute Φ-colimit of a diagram landing
in C in the sense of [56]); therefore M ′ preserves all the J-absolute limits of a chosen
codensity presentation of J . By [32, Proposition 2.2] we then have M ′ ∼= RanJM (so that
left and right Kan extensions coincide). But Φ†(Cop) is the free completion of Cop under
Φ-limits, therefore the functor RanJM is Φ-continuous by the universal property of such
completion. This means that M ′ ∼= RanJM is Φ-continuous, and hence Φ-flat.

Examples 1.3.6. The following are examples of locally small weakly sound classes. In
some examples the class Φ is described as a class of indexing categories, these should be
understood as the corresponding classes of conical weights.

1. Φ = ∅. Then any weight is Φ-flat, and thus Φ is trivially sound.

2. V locally α-presentable as a closed category, Φ the class of α-small weights. Then Φ-
flat weights are the usual α-flat V-functors. Note that Φ is pre-saturated since every
α-small colimit in a free cocompletion ΦC can be written as a conical α-small colimit
of α-small copowers of objects of C (see [57]), and that can be seen as an α-small
weighted colimit of objects from C. The class Φ is weakly sound by Proposition 1.2.3,
and hence sound being pre-saturated.

3. V symmetric monoidal closed finitary quasivariety [64], Φ the class of weights for
finite products and finitely presentable projective powers. This is weakly sound by
[62, Theorem 5.8] applied to the saturation of Φ.

4. V cartesian closed, Φ the class for finite products. Then a weight M is Φ-flat if and
only if Lan∆M ∼=M×M , where ∆: C → C×C is the diagonal andM×M : C×C → V
is defined by (M×M)(A,B) = MA ×MB. This is weakly sound thanks to [54,
Lemma 2.3], and hence, being pre-saturated, is also sound.

5. V = Set, Φ = {∅}. Then Φ-flat colimits are generated by connected colimits.
Soundness is discussed in [4].

6. V = Set, Φ the class of finite connected categories. Then Φ-flat colimits are gener-
ated by coproducts and filtered colimits. Soundness is discussed in [4].

7. V = Set, Φ the class of finite non empty categories. Then a functor is Φ-flat if and
only if its category of elements is empty or filtered. It follows easily from this that
the class is sound.

8. V = Set, Φ the class of finite discrete non empty categories. Then a functor is Φ-flat
if and only if its category of elements is empty or sifted. Soundness follows as above
by replacing filtered with sifted.

9. V = Cat, Φ the class for finite connected 2-limits, meaning the class generated by
finite connected conical limits and powers by finite connected categories. Then Φ-
flat colimits contain filtered colimits and coproducts. The proof of [62, Theorem 5.8]
easily adapts to this setting showing that the class Φ is weakly sound.

10. V = [Cop,Set] with any symmetric monoidal closed structure for which the repre-
sentables contain the unit and are closed under tensor product; thus the symmetric
monoidal structure arises via Day convolution from a symmetric monoidal structure
on C. Φ is the class for powers by representables. Then conical colimits are Φ-flat
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and every Φ-continuous V-functor can be written as a conical colimit of representa-
bles (arguing as in the case of α-continuous V-functors). It follows that Φ is weakly
sound.

Remark 1.3.7. Note that if Φ and Ψ are weakly sound then also Φ ∪Ψ is.



CHAPTER

2
Virtual concepts in the theory of

accessible categories

The theory of accessible categories involves aspects of category theory, universal algebra,
logic, and model theory. It has also been heavily used in abstract homotopy theory, for
example in the context of Smith’s theorem [9] or Dugger’s work on presentations for model
categories [36, 37], and also via its generalization to ∞-categories [75]. In the enriched
context, the importance and usefulness of the theory has been recognised recently by many
authors in different areas: for instance in the 2-categorical context [20], in the additive
[86] and simplicial [23] ones, and in the world of ∞-cosmoi [22].
The theory of enriched locally presentable categories was developed in 1982 by Kelly

[56], but the theory of enriched accessible categories, first introduced in the late 1990s [17],
is much less developed. The purpose of this chapter is precisely to address this problem
via the introduction of the new concepts of virtual left adjoint, virtual colimit, and virtual
orthogonality that have been mentioned in the introduction to this thesis.
In Section 2.1, following the ideas of [4], we introduce the notion of Φ-accessible V-

categories for a small and weakly sound class of weights Φ and prove some basic results
which generalize those of the accessible categories of [18]. Then we recall some basic facts
about conically accessible V-categories. Finally we compare the two notions, for a general
base V, by giving sufficient conditions for a conically accessible V-category to be accessible,
and by showing that if A is α-accessible then it is also conically β-accessible for any β
sharply greater than α.
In Section 2.2 we prove the main results of this chapter. We begin by giving a new proof

of the fact that a V-category is accessible if and only if it is sketchable (which was first
shown in [18]) and then we prove the characterization theorems. In the last subsection we
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Lack, S., Tendas, G. (2023) Virtual concepts in the theory of accessible 
categories, Journal of Pure and Applied Algebra, 227(2), 107196, 
https://doi.org/10.1016/j.jpaa.2022.107196. 
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compare the virtual concepts with those of cone-reflectivity and cone-injectivity, obtaining
some of the results in [1] as a consequence of our theorem.
To conclude the chapter, in Section 2.3 we prove that the 2-category of accessible V-

categories, accessible V-functors, and V-natural transformations is closed in V-CAT under
all small flexible limits, and it therefore has all pseudo and bilimits as well. The same
holds if we replace accessibility by conical accessibility.

The content of this chapter has been published in the
Journal of Pure and Applied Algebra [66].

2.1 Accessible V-categories
In this chapter, as well as in the following ones, we always consider a base of enrichment
V = (V0,⊗, I) which is symmetric monoidal closed and locally presentable. When consid-
ering a regular cardinal α, we always take it to be greater than or equal to a fixed α0 for
which V is locally α0-presentable as a closed category (this exists by [58, Proposition 2.4]).

2.1.1 Φ-accessible V-categories

In this section we introduce the main notion of accessibility that we consider in the present
paper, this can be seen as a generalization of that of [18] to the “sound” context of [4].
Most of this section will depend on the assumption below.

Assumption 2.1.1. From now on we fix a locally small and weakly sound class Φ.

Where, recall from [59] that a class of weights Φ is called essentially small if for every
small V-category C the free cocompletion ΦC is still small.

Definition 2.1.2. Let A be a V-category with Φ-flat colimits. A V-functor F : A → B is
called Φ-accessible if it preserves Φ-flat colimits; an object A of A is called Φ-presentable
if A(A,−) : A → V is Φ-accessible. We denote by AΦ the full subcategory of A spanned
by the Φ-presentable objects.

Definition 2.1.3. We say that A is Φ-accessible if it has Φ-flat colimits and there exists
a small C ⊆ AΦ such that every object of A can be written as a Φ-flat colimit of objects
from C.

When Φ = Φα is the class of the α-small weights, for a given α, we simply say that
A is α-accessible instead of Φα-accessible, and if this is so for some α, we say that A is
accessible. This agrees with the definition in [18].
The first results we can prove about Φ-accessibility are a standard generalization of the

ordinary ones.

Proposition 2.1.4. Let A be a Φ-accessible V-category and H : AΦ ↪→ A be the inclusion;
then:

1. AΦ is Cauchy complete and closed in A under all existing Φ-colimits;

2. AΦ is (essentially) small;

3. every A ∈ A can be expressed as the Φ-flat colimit:

A ∼= A(H−, A) ∗H.
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Proof. (1). If A ∈ A is a Φ-colimit of α-presentable objects in A, then A(A,−) is a Φ-limit
of V-functors preserving Φ-flat colimits. Since these colimits commute in V with Φ-limits,
A(A,−) still preserves Φ-flat colimits and hence A ∈ AΦ. The same argument applies to
Cauchy colimits.
(2). Let H : C ↪→ A be a small full subcategory of Φ-presentable objects witnessing the

fact that A is Φ-accessible. We shall show that AΦ is the Cauchy completion Q(C) of C,
and so is essentially small by [52]. Since C is contained in AΦ and AΦ is Cauchy complete,
Q(C) is contained in AΦ. The opposite inclusion is given by [59, Proposition 7.5].
(3). Given A ∈ A, by hypothesis we can write A ∼=M ∗HF for some Φ-flatM : Cop → V

and F : C → AΦ. Then A(H−, A) ∼=M□∗AΦ(−, F□) is a Φ-flat colimit of representables,
and hence Φ-flat; moreover

A(H−, A) ∗H ∼=M□ ∗ (AΦ(−, F□) ∗H−)
∼=M ∗ F
∼= A

as desired.

Proposition 2.1.5. The following are equivalent for a V-category A:

1. A is Φ-accessible;

2. A is the free cocompletion of a small V-category C under Φ-flat colimits;

3. A ≃ Φ-Flat(Cop,V) for some small C.

In both (2) and (3) the V-category C can be chosen to be AΦ; moreover, if C is Cauchy
complete, then Φ-Flat(Cop,V)Φ ≃ C.

Proof. The equivalence (1) ⇔ (2) and the fact that C can be chosen to be AΦ are a direct
consequence of [59, Proposition 4.3].
(2) ⇒ (3). Let H : C → A be the inclusion. By [59, Proposition 4.3] C is made of Φ-

presentable objects in A and is small; therefore the induced V-functor J := A(H, 1) : A →
[Cop,V] is fully faithful and preserves Φ-flat colimits. Given any A ∈ A we can write it as
a Φ-flat colimit A ∼= M ∗ HK of objects from C; thus JA ∼= M ∗ JHK ∼= M ∗ Y K is a
Φ-flat colimit of representables, and hence a Φ-flat V-functor. Vice versa, given a Φ-flat
M : Cop → V we know that J(M ∗H) ∼=M ∗Y ∼=M . As a consequence A ≃ Φ-Flat(Cop,V)
as claimed and C can be chosen to be AΦ (since that was true for the second point).
(3) ⇒ (1). Let A = Φ-Flat(Cop,V), J : A → [Cop,V] be the inclusion, and H : C ↪→ A be

the full subcategory of A spanned by the representables, so that JH = Y is the Yoneda
embedding. Then

A(HC,−) ∼= [Cop,V](Y C, J−) ∼= evC ◦ J

for any C ∈ C; thus A(HC,−) preserves Φ-flat colimits since J does and evC is cocontin-
uous. It follows that the representable functors in A are Φ-presentable objects. Moreover
we can write everyM ∈ A as a Φ-flat colimit of representables asM ∼=M ∗Y . This shows
that A is Φ-accessible.
Regarding the last statement, as a consequence of the proof of Proposition 2.1.4, we

know that Φ-Flat(Cop,V)Φ ≃ Q(C). Thus, if C is Cauchy complete then C = Q(C), and
thus Φ-Flat(Cop,V)Φ ≃ C.
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Remark 2.1.6. It follows, from the universal property of free cocompletions, that a V-
functor F : A → B out of a Φ-accessible V-category A is Φ-accessible if and only if it is
the left Kan extension of its restriction to AΦ.

We will show in Section 2.1.3 that, in the context of α-accessible categories, the index
of accessibility can again be raised with the sharply less than relation, as in the ordinary
context. Moreover we will see that the underlying ordinary category of an accessible
V-category is again accessible.

2.1.2 Conically accessible V-categories

In this section we consider a different notion of enriched accessibility which involves only
(conical) α-filtered colimits. This goes as follows:

Definition 2.1.7. Let α be a regular cardinal and A be a V-category with α-filtered
colimits. A V-functor F : A → B is called conically α-accessible if it preserves α-filtered
colimits; an object A of A is called conically α-presentable if A(A,−) : A → V is conically
α-accessible. We denote by Ac

α the full subcategory of A spanned by the conically α-
presentable objects.

Definition 2.1.8. We say that A is conically α-accessible if it has α-filtered colimits and
there exists C ⊆ Ac

α small such that every object of A can be written as an α-filtered
colimit of objects from C.

The next results are then immediate consequences of the definitions:

Proposition 2.1.9. Let A be a conically α-accessible V-category and H : Ac
α ↪→ A be the

inclusion; then:

1. Ac
α is closed in A under existing α-small colimits;

2. Ac
α is (essentially) small;

3. every A ∈ A can be expressed as the α-filtered colimit:

A ∼= colim
(
(Ac

α)0/A
π−→ Aα −→ A

)
;

4. A0 is α-accessible and (Ac
α)0 = (A0)α.

Proof. (1). Let A = colimAi be an α-small colimit of conically α-presentable objects; then
A(A,−) ∼= limA(Ai,−) is an α-small limit of functors which preserve α-filtered colimits.
Since α-small limits commute with α-filtered colimits, A(A,−) preserves α-filtered colimits
as well and A ∈ Ac

α.
(2). Let C ⊆ Ac

α be small and generate A under α-filtered colimits, and let A ∈ Ac
α. As a

consequence A ∼= colimCi is an α-filtered colimit of elements from C. Since by hypothesis
A(A,−) preserves α-filtered colimits, it follows that the identity map IdA factors through
some Ci. Therefore A is a split subobject of some object of C and hence (Ac

α)0 is the
Cauchy completion of C0. Since C is small, Ac

α is as well.
(3). Let C be as in (2) above and A be any object of A. Then A ∼= colimHF where

F : D → Ac
α is a diagram with α-filtered domain. Then the colimit cocone of A induces

a final functor K : D → (Aα)0/A such that π ◦ K = H. It follows then that (Aα)0/A
is α-filtered (this is a general fact about final functors with α-filtered domain, see [65,
Remark 2.8] for instance) and the colimit of its projection on A is A.
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(4). Given any object A ∈ A, since the unit of V is α-presentable, if A(A,−) preserves
α-filtered colimits then so does A0(A,−) = V0(I,A(A,−)0); therefore (Ac

α)0 ⊆ (A0)α. As
a consequence (Ac

α)0 is a small full subcategory of A0 made of α-presentable objects, and
generates A under α-filtered colimits. This implies that A0 is α-accessible as an ordinary
category. Finally, given A ∈ (A0)α, arguing as in (2) we can write A as a split subobject
of some B ∈ (Aα)0; since (Aα)0 is closed under split subobjects in A0 it follows that
(Ac

α)0 = (A0)α.

Proposition 2.1.10. The following are equivalent for a V-category A:

1. A is conically α-accessible;

2. A is the free cocompletion of a small category under α-filtered colimits.

Proof. This is a direct consequence of [59, Proposition 4.3].

Remark 2.1.11. In the same spirit of Remark 2.1.6, it follows that a V-functor F : A → B
out of a conically α-accessible V-category A is conically α-accessible if and only if it is the
left Kan extension of its restriction to Ac

α.

As we can raise the index of accessibility of an ordinary accessible category, we can do
the same with conical accessibility:

Corollary 2.1.12. Given any α-accessible V-category A and a regular cardinal β � α,
then A is conically β-accessible.

Proof. By Proposition 2.1.9 A0 is α-accessible and (Ac
α)0 = (A0)α; moreover by Theo-

rem 1.1.3 A0 is β-accessible and (A0)β is given by the closure of (A0)α in A under β-small
α-filtered colimits. It follows that (A0)β ⊆ (Ac

β)0 (since the latter is closed under ex-
isting β-small colimits). As a consequence every element of A is a β-filtered colimit of
objects from Ac

β (since that is true in A0). This is enough to imply that A is conically
β-accessible.

Corollary 2.1.13. For any accessible V-functor F : A → B between conically accessible
V-categories, there exists an α such that F preserves the conically β-presentable objects
for each β � α.

Proof. Direct consequence of Proposition 2.1.9(4) and Corollary 1.1.6.

2.1.3 Accessible vs. conically accessible

The aim of this section is to compare the two notions of accessibility just introduced. In
general, for a V-category A with α-flat colimits, we only have the inclusion Aα ⊆ Ac

α (since
every α-filtered colimit is α-flat). This inclusion is not an equality in general and moreover
conically accessibility does not imply accessibility (since some α-flat colimits may not be
α-filtered, see [65]). However for many significant base of enrichment the two notions do
coincide, or differ only by Cauchy completeness [65, Section 3-4]. In the remainder of
this section we give conditions on when a conically accessible V-category is accessible, and
prove that every α-accessible V-category is conically α+-accessible.
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Definition 2.1.14. We say that a V-category A is accessible if it is α-accessible for some
α; we say that it is conically accessible if it is conically α-accessible for some α. We say
that a V-functor F : A → K (not necessarily between accessible V-categories) is accessible
if A has and F preserves α-flat colimits for some α; we say that it is conically accessible
if A has and F preserves α-filtered colimits for some α. If F is fully faithful we say that
A is respectively accessibly embedded and conically accessibly embedded.

For this section we will not be considering Φ-accessible V-categories for a general weakly
sound class Φ, these will come into play again in Section 2.2.1.
In the first part of this section we give conditions for conical accessibility to imply

accessibility. As mentioned above, it is not true in general because some flat-weighted
colimits might be missing in the V-category in question; things change if the V-category
is complete or cocomplete:

Proposition 2.1.15. Let A be a complete or α-cocomplete V-category; then A has α-flat
colimits if and only if it has α-filtered colimits. A V-functor from such an A preserves
α-flat colimits if and only if it preserves α-filtered colimits.

Proof. Assume first that A is α-cocomplete and consider an α-flat weight M : Cop → V
together with a diagram H : C → A. Let J : C ↪→ D be the inclusion of C into its free
cocompletion under α-small colimits. Since A has them we can consider H ′ := LanJH,
while on the weighted side we take M ′ := LanJopM . By Lemma 1.3.2 the weight M ′ is
still α-flat and its domain is α-complete. Therefore by Proposition 1.2.3 we can write
M ′ ∼= colimY F as an α-filtered colimit of representables; here Y : D → [Dop,V] is the
Yoneda embedding and F : EV → D is a functor with α-filtered domain. As a consequence
we obtain (each side existing if the other does):

M ∗H ∼=M ∗H ′J ∼=M ′ ∗H ′

∼= (colimY F ) ∗H ′

∼= colim(Y F ∗H ′)
∼= colim(H ′F ).

Thus the existence and preservation of the α-flat colimit M ∗ H is equivalent to that of
the α-filtered colimit colimH ′F .
The case when A is complete goes exactly as above with the only difference that we

consider H ′ := RanJH (instead of LanJH): this exists because A is assumed to be
complete. The other arguments apply identically since the isomorphism M ∗H ∼=M ′ ∗H ′

still holds.

A direct consequence is the following:

Corollary 2.1.16. The following are equivalent for a complete or α-cocomplete V-category
A:

1. A is α-accessible;

2. A is conically α-accessible;

In this case Aα = Ac
α and A is locally α-presentable in the sense of [57].

Let us now see how the accessibility of the underlying category relates to that of the
V-category.
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Proposition 2.1.17. Let A be a V-category for which A0 is accessible; then:

1. A is conically accessible if and only if it has conical α-filtered colimits for some α
and every object is conically presentable;

2. A is accessible if and only if it has α-flat colimits for some α and every object is
presentable.

Proof. (1). If A is conically α-accessible then it has conical α-filtered colimits by defini-
tion; moreover every object is conically presentable being a small colimit of α-presentable
objects.
Conversely, let β ≥ α be such that A0 is β-accessible and let γ � β be such that A has
conical γ-filtered colimits and

(A0)β ⊆ (Ac
γ)0;

this exists since (A0)β is small and each object of A is conically presentable. It follows
that

(Ac
γ)0 = (A0)γ .

Indeed, the inclusion (Ac
γ)0 ⊆ (A0)γ is always true (since the unit I of V is γ-presentable);

on the other hand every X ∈ (A0)γ is a γ-small β-filtered colimit of objects from (A0)β;
since A has γ-filtered colimits, the colimit expressing X is actually enriched; hence X is
a γ-small colimit of conically β-presentable objects in A, and this makes X a conically
γ-presentable object of A.
Given the equality above, and the fact that A0 is γ-accessible, it follows that Ac

γ generates
A under γ-filtered colimits; therefore A is conically accessible.
(2). The proof is essentially the same as above, one just has to replace conical pre-

sentability with actual presentability.

Corollary 2.1.18. Let K be conically accessible, J : A ↪→ K be conically accessibly em-
bedded, and A0 be accessible; then A is conically accessible. If moreover K is accessible
and A is accessibly embedded, then it is accessible.

Proof. This is a direct consequence of the previous Proposition since each object of A will
be conically presentable in (1) and presentable in (2).

We now turn to proving that every accessible V-category is also conically accessible; the
next Lemma will be an important step.

Lemma 2.1.19. Let K be a locally α-presentable V-category, and A and B be two con-
ically α-accessible full subcategories of K for which the inclusions preserve the conically
α-presentable objects. Let C := A ∩ B and β � α:

1. if A and B are closed under α-filtered colimits in K, then C is conically β-accessible
and closed under β-filtered colimits in K.

2. if A and B are closed under α-flat colimits in K, then C is β-accessible and closed
under β-flat colimits in K; moreover Cβ = Cc

β.

Proof. (1). Consider β � α; then A and B are conically β-accessible, the inclusions in
K still preserve β-filtered colimits and conically β-presentable objects (since these are β-
small α-filtered colimits of the conically α-presentable ones). Note first that C is closed in
A,B, and K under β-filtered colimits since both A and B are so in K.
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Let C′ ⊆ C be the intersection C′ = Ac
β∩Bc

β; then C′ ⊆ Cc
β and to prove (1) it is enough to

show that C′ generates C under β-filtered colimits. For any X ∈ C consider the slice C′
0/X

and the inclusion J : C′
0/X → (Ac

β)0/X; we wish to prove that J is final. This will suffice
since then C′

0/X will be β-filtered (because (Ac
β)0/X is and the inclusion is fully faithful)

and the colimit of πX : C′
0/X → C will be X (because the colimit of (Ac

β)0/X → A is X
and C is closed in A under β-filtered colimits).
So we are reduced to proving that J : C′

0/X → (Ac
β)0/X is final; which is as saying that

every map A→ X with A ∈ Ac
β factors through some C ∈ C′ (the fact that any two such

factorizations are connected will follow from this plus the filteredness of (Ac
β)0/X and

fully faithfulness of the inclusion). Fix then a map f : A → X with A ∈ Ac
β, we regard

this as a morphism in K and construct a β-small chain (di,j : Ki → Kj)i<j<α of conically
β-presentable objects in K together with a cocone (ci : Ki → X)i<α. Set K0 = A and
c0 = f , then we alternate elements of Ac

β and Bc
β as follows (taking colimits in K at the

limit steps). Assume to have Ki and ci for i = λ+2n with λ limit; then ci : Ki → X factors
through some B ∈ Bc

β since Ki is conically β-presentable (remember that Ac
β,Bc

β ⊆ Kc
β)

and X, being in B, is a β-filtered colimit of objects from Bc
β. Let then Ki+1 = B with

di,i+1 and ci+1 given by the factorization. If i = λ+2n+1 we argue as above but inverting
the roles of A and B. Finally if i = λ is limit, we take Ki to be the colimit of the chain
(Kj)j<i in K and consider the induced factorizations. Let C := colimi<αKi in K; then by
construction we have a factorization of f through C. Moreover the sub-chains of (Ki)i<α

spanned by the objects in Ac
β and Bc

β are final; thus C is both in A and in B and hence in
C. Finally, since the chain involved was β-small, C is actually an object of Ac

β ∩ Bc
β = C′

as required. Note that, since in C′ idempotents split, this also implies that Cc
β = Ac

β ∩ Bc
β.

(2). Since A and B are closed in K under β-flat colimits, also C is. Moreover, thanks
to point (1), to prove that C is β-accessible it is enough to show that Cc

β ⊆ Cβ. Let
X ∈ Cc

β and denote by J the inclusion of C in K; since X, seen as an object of A,
is conically β-presentable and the inclusion of A in K preserves conically β-presentable
objects, it follows that JX ∈ Kc

β. But K is locally β-presentable and thus Kc
β = Kβ; as

a consequence C(X,−) ∼= K(JX, J−) preserves β-flat colimits and hence X ∈ Cβ. This
proves that Cc

β ⊆ Cβ; since the other inclusion always holds, it follows that Cc
β = Cβ.

As promised, the next result says that we can raise the index of accessibility of an
accessible V-category and at the same time make the V-category conically accessible.
This can be seen as a sharpening of [18, Theorem 7.10]; in fact, in [18] the choice of β
depends on the V-category A taken into consideration, while in our result it depends only
on α and the sharply less relation.

Theorem 2.1.20. If A is an α-accessible V-category, then for any β � α the following
hold:

1. A is β-accessible;

2. A is conically β-accessible;

3. A0 is an ordinary β-accessible category;

4. (Aβ)0 = (Ac
β)0 = (A0)β.

Proof. Let C = Aop
α ; since A is α-accessible we can write it as A ≃ α-Flat(C,V), with

inclusion J : A ↪→ [C,V]. Now consider H : C ↪→ D to be the free completion of C under
α-small limits; we show first that A can be identified with the intersection
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A [C,V]

[C,V] [D,V]

⌟

J

J LanH

RanH

where we are embedding [C,V] in [D,V] in two different ways. To prove that, it is enough
to show that a V-functor F : C → V is α-flat if and only if LanHF ∼= RanHF . If F is
α-flat then LanHF is α-flat as well by Lemma 1.3.2 and therefore is α-continuous; since
D is the free completion of C under α-small limits and (LanHF )J ∼= F this means exactly
that LanHF ∼= RanHF . Vice versa, if LanHF ∼= RanHF then LanHF is α-continuous and
hence α-flat; thus F is α-flat itself again by Lemma 1.3.2.
To conclude the proof of (1), (2), and (3) it is now enough to show that, for this inter-

section, the hypotheses of Lemma 2.1.19 are satisfied. The V-categories [C,V] and [D,V]
are locally α-presentable (for any α) and hence conically α-accessible; moreover their α-
presentable and conically α-presentable objects coincide. Now LanH : [C,V] ↪→ [D,V] is
cocontinuous and sends representable functors to representables; therefore it preserves
all α-flat colimits and the α-presentable objects (since these coincide with the α-small
colimits of representables). It remains to consider RanH : [C,V] ↪→ [D,V]; this identifies
[C,V] with the full subcategory of [D,V] spanned by the α-continuous functors. Since
these are closed under α-flat colimits it follows at once that RanH preserves α-flat colim-
its and we are only left to prove that it preserves the α-presentable objects. Under the
identification just described, the α-presentable objects of [C,V] correspond to the repre-
sentables in α-Cont(D,V) by the enriched Gabriel-Ulmer duality; therefore RanH sends
the α-presentable objects to the representables in [D,V], and these are α-presentable. In
conclusion, we can apply Lemma 2.1.19 to obtain (1), (2), and (3). Point (4) is now a
consequence of Proposition 2.1.9.

Remark 2.1.21. The Theorem above implies in particular that if A is α-accessible then
it is also conically α+-accessible and (conically) β-accessible for arbitrarily large regular
cardinals β. Here α+ is the cardinal successor of α, this is sharply greater than α by
[1, Example 2.13(2)]. We do not know yet whether every α-accessible V-category is also
conically α-accessible or not.

Corollary 2.1.22. Given an accessible V-functor F : A → B between accessible V-categories,
there exists α such that F preserves the β-presentable objects for each β � α.

Proof. Direct consequence of Corollary 2.1.20 above and Corollary 1.1.6.

Proposition 2.1.23. A V-functor F : A → B between accessible V-categories is accessible
if and only if it is conically accessible.

Proof. Every accessible functor is conically accessible. Conversely let F : A → B be coni-
cally α-accessible for some α and consider β � α, by Theorem 2.1.20 it follows that A is
conically β-accessible. Since F is also conically β-accessible, it is the left Kan extension
of its restriction to Ac

β = Aβ, which is made of β-presentable objects; thus F preserves
β-flat colimits as well.
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2.2 The main results

The aim of this section is to introduce and work with the virtual notions discussed in
the introduction. We prove the main results in Section 2.2.3, 2.2.4, and 2.2.5, and then
compare these with those already known in the literature in Section 2.2.6. In the first
subsection we establish once more the connection between accessible V-categories and
sketches.

2.2.1 Accessibility and sketches

The relationship between accessible V-categories and sketches already appeared in [18];
however their proof relies on some (non trivial) results on ordinary accessible categories;
here we give a proof that is only based on Section 2.1 and on some standard results about
locally presentable V-categories.
First we need to recall the notion of sketch, which in a general enriched context was

already considered in [18]:

Definition 2.2.1. A sketch is the data of a triple S = (B,L,C) where:

• B is a small V-category;

• L is a set of cylinders in B: V-natural transformations c : N → B(B,H−), where
N : D → V is a weight, H : D → B is a V-functor, and B is an object of B;

• C is a set of cocylinders in B: V-natural transformations d : M → B(K−, C), where
M : Eop → V is a weight, K : E → B is a V-functor, and C is an object of B.

A sketch for which C is empty is called a limit sketch.

Definition 2.2.2. A model of a sketch S = (B,L,C) is a V-functor F : B → V which
transforms each cylinder of L into a limit cylinder in V, and each cocylinder of C into a
colimit cocylinder in V. We denote by Mod(S) the full subcategory of [B,V] spanned by
the models of S.

The V-categories of models of limit sketches characterize locally presentable V-categories
(see [57, Section 10] or [18, Corollary 7.4]).

Proposition 2.2.3. Let Φ be a locally small and weakly sound class of weights. Any
Φ-accessible V-category A is equivalent to the V-category of models of a sketch involving
colimits and Φ-limits.

Proof. Let A be Φ-accessible; then by Proposition 2.1.5 we can write A ≃ Φ-Flat(C,V)
for some small C; thus it is enough to prove that Φ-Flat(C,V) is the V-category of models
of a suitable sketch. Let D be the closure of C in [Cop,V] under Φ-limits; then by left Kan
extending along the inclusion of C in D, the V-category Φ-Flat(C,V) becomes equivalent to
the full subcategory of [D,V] spanned by those Φ-continuous V-functors F : D → V which
preserve some specified weighted colimits (those that exhibit each object of D, seen in
[Cop,V], as a weighted colimit of representables). This is clearly the V-category of models
of a sketch on D involving Φ-limits and colimits.

The converse does not hold even when Φ is the class of α-small limits, see for instance
[1, Remark 2.59].
In the proof of the theorem below we’ll make use of the enriched notion of orthogonality

class, which can be found for example in [56, Section 6.2].
The equivalence between (1) and (3) below already appeared in [18, Theorems 7.6/7.8].
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Theorem 2.2.4. The following are equivalent for a V-category A:

1. A is accessible (that is, α-accessible for some α);

2. A is Φ-accessible for some locally small and weakly sound class Φ;

3. A is sketchable.

Proof. The implication (1) ⇒ (2) is trivial and (2) ⇒ (3) is given by Proposition 2.2.3
above.
(3) ⇒ (1). Let A = Mod(S) be the V-category of models of a sketch S = (B,L,C);

then A = Mod(B,L) ∩ Mod(B,C) can be seen as the intersection of the limit part and
the colimit part. Let us focus on Mod(B,C) as a full subcategory of [B,V]. Let C be the
V-category obtained from B freely adding the colimits of each diagram (M,H) appearing
in C, denote by J : B ↪→ C the inclusion. Then LanJ : [B,V] → [C,V] is fully faithful and,
for any F : B → V, its left Kan extension LanJF preserves the specified colimits. Consider
now the cylinders c : M → B(H−, B) appearing in C, by construction these correspond to
maps c̄ : M ∗ JH → JB in C. Denote by M the family of morphisms in [C,V] given by
C(c̄,−) for each c ∈ C; then the square below is a pullback.

Mod(B,C) [B,V]

M⊥ [C,V]

⌟
LanJ

Indeed, F : B → V is a model of (B,C) if and only if for each c ∈ C as above the induced
map c̃ : M ∗ FH → FB is an isomorphism; but FB ∼= (LanJF )JB, while M ∗ FH ∼=
M ∗ (LanJF )JH ∼= LanJF (M ∗ JH), and c̃ corresponds under these isomorphisms to
LanJF (c̄). It follows that F is a model of the colimit sketch if and only if LanJF (c̄) is
an isomorphism for each c, which is equivalent to LanJF being orthogonal to C(c̄,−) for
each c.
In conclusion we can express the V-category A as the intersection in [C,V] of the ac-

cessibly embedded subcategories M⊥ and Mod(B,L). Now it is enough to observe that
Mod(B,L) and M⊥ are locally presentable; the first being the V-category of models of
a limit sketch, and the latter being an accessibly embedded and reflective subcategory of
[C,V] by [56, Theorem 6.5]. As a consequence A is accessible by Corollary 2.1.13 and
Lemma 2.1.19.

2.2.2 Accessibility and the free completion

Here we collect a few results about the free completion under small limits of an accessi-
ble V-category; this will serve as an introduction to the virtual concepts we consider in
Section 2.2.3.
Given a V-categoryA we denote by P†A its free completion under (small) limits; this can

be seen as the full subcategory of [A,V]op spanned by the small limits of representables.
More common is the free cocompletion under colimits, denoted by PA; this has been
studied in [33] and is related to the free completion under limits through the duality
P†A = P(Aop)op. Note moreover that, when C is a small V-category, P†C = [C,V]op.
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Definition 2.2.5. Given a V-category A, we say that a small full subcategory H : G ↪→ A
is closed under virtual Φ-colimits in A if P†H : P†G ↪→ P†A is Φ-cocontinuous.

Notice that, since G is small, P†G = [G,V]op is cocomplete and therefore P†H will be
a genuine Φ-cocontinuous V-functor. The fact P†A has enough colimits is not needed to
prove the result below; however that will be a consequence of Proposition 2.2.18 where we
prove that P†A is cocomplete whenever A is accessible.
Recall that H : G ↪→ A is a strong generator if the V-functor A(H, 1) : A → [Gop,V]

is conservative. The following is an equivalent way of characterizing Φ-accessible V-
categories.

Proposition 2.2.6. Let Φ be a locally small weakly sound class and A be a V-category
with Φ-flat colimits. The following are equivalent for G ⊆ AΦ:

1. G exhibits A as a Φ-accessible V-category;

2. G is a small strong generator of A that is closed under virtual Φ-colimits.

Proof. Let Y : Gop → [G,V] = P†(G)op be the Yoneda embedding and A ∈ A; then

LanY A(H−, A) ∼= evA ◦ (P†H)op

for any A in A, indeed this follows from the fact that the V-functor on the right-hand-side
is cocontinuous and restricts to A(H−, A).
Assume now that A is Φ-accessible and let G = AΦ; the V-functor A(H−, A) is Φ-flat

by Proposition 2.1.4; therefore LanY A(H−, A) preserves all Φ-limits. By the isomorphism
above it follows that evopA ◦ P†H is Φ-cocontinuous; thus, since Φ-colimits in P†A (when
they exist) are computed pointwise, P†H is Φ-cocontinuous too. It follows that G is a
small strong generator (being dense) and is closed in A under virtual Φ-colimits.
Conversely, assume that there exists H : G ↪→ A as in (2). Consider the V-functor

W : A → [Gop,V] defined by W = A(H, 1); since G is a strong generator made of Φ-
presentable objects it follows that W is conservative and preserves Φ-flat colimits. More-
over, since P†H is Φ-cocontinuous and evA is continuous for any A ∈ A, it follows that
LanY A(H−, A) is Φ-continuous, and hence WA = A(H−, A) is Φ-flat. As a consequence,
given any A ∈ A, we have that

WA ∼=WA ∗ Y ∼=WA ∗WH ∼=W (WA ∗H);

therefore A ∼= WA ∗ H (by conservativeness of W ) is a Φ-flat colimit of elements of G,
showing that A is Φ-accessible

Thanks to this, one obtains easily the standard characterization theorem of locally
presentable V-categories:

Corollary 2.2.7. Let Φ be a locally small weakly sound class. The following are equivalent
for a cocomplete V-category A:

1. A is Φ-accessible;

2. A has a small strong generator made of Φ-presentable objects.

Proof. The implication (1) ⇒ (2) is trivial. For (2) ⇒ (1) consider a small strong generator
G ⊆ AΦ and take its closure G′ in A under Φ-colimits. Then G′ is still strongly generating
and is also closed in A under virtual Φ-colimits by the dual of [33, Remark 6.6]. It follows
by the proposition above that A is Φ-accessible.
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For a locally α-presentable V-category K we know that the inclusion Kα → K of the
α-presentable objects in K is α-cocontnuous; that is, α-small colimits exist in Kα and are
preserved by the inclusion. This cannot be said in a general α-accessible category since
the colimits in question may not exist; however, by taking G = AΦ in Proposition 2.2.6
above, we obtain:

Proposition 2.2.8. Let Φ be a locally small weakly sound class of weights. For any Φ-
accessible V-category A the full subcategory AΦ is closed in A under virtual Φ-colimits.
The same holds for a conical α-accessible A with Ac

α in place of AΦ.

Proof. For the first part simply take G = AΦ in the proposition above. For the latter
apply the same proof by noticing that A(H−, A) will still be α-flat even when H is the
inclusion of Ac

α in A.

If we see P†A as a full subcategory of [A,V]op then we have a nice way of describing its
elements in the case where A is accessible:

Proposition 2.2.9. For any accessible V-category A the free completion P†A consists
exactly of the accessible functors from A to V. For any conically accessible V-category A
the free completion P†A consists exactly of the conically accessible functors from A to V.

Proof. Let F : A → V be an object of P†A; then F = LanHFH for some small H : C ↪→ A.
Since C is small, we can now consider α for which C ⊆ Aα; it follows that F is also the left
Kan extension of its restriction to Aα, and hence it preserves α-flat colimits. Conversely,
every F : A → V which preserves α-flat colimits (for an α for which A is α-accessible)
is the left Kan extension of its restriction to Aα; hence it is a small presheaf. The same
argument applies to the conical case.

Corollary 2.2.10. For any accessible V-category A there is an adjunction:

P†(A0) (P†A)0
⊥

L

R

where R is the unique continuous functor induced by the universal property of P†(A0)
applied to the underlying functor of the inclusion Z : A → P†A, and L is given pointwise
by LF = V0(I, F0−). In fact it suffices that A be conically accessible.

Proof. Let Z̄ : A0 ↪→ P†(A0) be the inclusion of the free completion of A0, so that RZ̄ ∼=
Z0. Then R has a left adjoint L if and only if for any G in (P†A)0 there exists some
LG ∈ P†(A0) such that P†(A0)(LG,−) ∼= (P†A)0(G,R−). By restricting the isomorphism
to A0 through Z̄, this says that LG ∼= (P†A)0(G,Z0−); in particular it follows that a left
adjoint exists if and only if (P†A)0(G,Z0−) is a small functor for any G in (P†A)0.
To conclude it is then enough to notice that (P†A)0(G,Z0−) ∼= V0(I,G0−) is small by
Proposition 2.2.9 since both A and A0 are accessible.
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2.2.3 Virtual left adjoints and virtual colimits

In this section we introduce the virtual concepts that will help us in finding new character-
izations of accessible V-categories. The word virtual here refers to something that “lives”
in the free completion P†A of a V-category A. The relation between these concepts and
those used in [1] for ordinary accessible categories will be discussed in Section 2.2.6.
Recall that a V-functor F : A → K has a left adjoint if and only if K(X,F−) is repre-

sentable for each X ∈ K; generalizing this we make the following definition:

Definition 2.2.11. We say that a V-functor F : A → K has a virtual left adjoint if for
each X ∈ K the V-functor K(X,F−) is small. If F is moreover fully faithful we say that
A is virtually reflective in K.

From now on, given a V-category A we denote by ZA : A ↪→ P†A the inclusion into its
free completion; we’ll drop the subscript (−)A whenever it is safe to do so.

Remark 2.2.12. Virtual left adjoints have been considered in the literature for different
purposes. For instance, in [102, 3.4] a functor is a right D-pro adjoint (where D is the class
of all small categories) if and only if it has a virtual left adjoint (in our sense). While,
in the context of KZ-doctrines, virtual left adjoints were considered as the dual of [25,
Definition 1.1] for the KZ-doctrine given by freely adding all small colimits.

Remark 2.2.13. When V = Set, Guitart and Lair consider in [48, Section 5] the notion
of “small locally free diagram” (petit diagramme localement libre). Given a fully faithful
functor J : A → K, they say that an object X ∈ K has a small locally free diagram over
A if there exists a diagram H : C → A for which:

K(X,JA) ∼= colimA(H−, A)

naturally in A ∈ A. Now, since colimA(H−, A) ∼= P†A(limZH,ZA) ∼= (limZH)(A), this
condition is simply saying that K(X, J−) is small. It follows that every element of K has a
small locally free diagram over A if and only if J has a virtual left adjoint. In Theorem 1
of the same paper they show that, given a sketch S on C, every functor F : C → Set has
a small locally free diagram over Mod(S) (see also [46, Theorem 2.3]); in our terminology
this says that Mod(S) is virtually reflective in [C,Set]. However they do not prove that
every virtually reflective and accessibly embedded subcategory of [C,Set] is accessible (or
equivalently, sketchable); we do that in Proposition 2.2.23 for the more general enriched
context.

Other ways to recognize when a V-functor has a virtual left adjoint are given below.

Proposition 2.2.14. Let F : A → K be a V-functor. The following are equivalent:

1. F has a virtual left adjoint;

2. F has a relative left adjoint with respect to the inclusion ZA : A ↪→ P†A;

3. the induced continuous V-functor P†F : P†A → P†K has a left adjoint.

Moreover the left adjoint L : P†K → P†A in (3) is given by precomposition with F .

Proof. (3) ⇒ (2). Let L : P†K → P†A be the left adjoint to P†F and let X ∈ P†K; then

LX(A) ∼= P†A(LX,ZAA) ∼= P†K(X,P†FZAA) ∼= P†K(X,ZKFA) ∼= X(FA).
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This proves that L, when it exists, is given by precomposition with F . Now the relative
left adjoint to F is given by the composite LZK : K → P†A.
(2) ⇒ (3). Let L′ : K → P†A be a relative left adjoint to F with respect to ZA. Then

L : = RanZKL
′ : P†K → P†A exists (since P†A is complete) and is a left adjoint to P†F .

(2) ⇔ (1). The argument given above proves that the relative left adjoint L′ : K → P†A,
when it exists, is given by L′X = K(X,F−). Thus the equivalence between (1) and (2)
follows at once by definitions of P†A and virtual left adjoints.

Next we consider the notion of virtual colimit in a V-category. Recall that, given a
weight M : Cop → V and a V-functor H : C → A, we say that the colimit of H weighted by
M exists in A if the V-functor [Cop,V](M,A(H,−)) : A → V is representable. Similarly:

Definition 2.2.15. Given a V-category A, a weight M : Cop → V with small domain,
and H : C → A, we say that the virtual colimit of H weighted by M exists in A if
[Cop,V](M,A(H,−)) is a small V-functor. We say that A is virtually cocomplete if it
has all virtual colimits.

Proposition 2.2.16. Given H and M as above, the virtual colimit of H weighted by M
exists in A if and only if the colimit M ∗ ZH exists in P†A. In this case

[Cop,V](M,A(H,−)) ∼=M ∗ ZH.

Proof. Consider the V-functor X := [Cop,V](M,A(H,−)) : A → V, if the virtual colimit
of H weighted by M exists in A then X is small (by definition) and

P†A(X,ZA) ∼= XA
∼= [Cop,V](M,A(H,A))

∼= [Cop,V](M,P†A(ZH,ZA))

for any A ∈ A. Since the representables are codense in P†A it follows that X ∼=M ∗ ZH
exists in P†A. Conversely, if M ∗ ZH exists in P†A then the same chain of isomorphism
above shows that it is isomorphic to [Cop,V](M,A(H,−)), which is then small. Therefore
the virtual colimit of H weighted by M exists in A.

It follows that A is virtually cocomplete if and only if P†A has all colimits of repre-
sentables; this is equivalent to P†A actually being cocomplete by [33, Theorem 3.8].

Proposition 2.2.17. Let A be a V-category and Y : A → PA be the inclusion. Then A is
virtually cocomplete if and only if for any small F : Aop → V — that is, for any F ∈ PA
— the V-functor PA(F, Y−) : A → V is also small.

Proof. Given a small V-category C and V-functors M : C → V and H : C → A, then

[Cop,V](M,A(H,−)) ∼= PA(F, Y−)

where F := LanHopM . To conclude it is then enough to recall that the virtual colimit of
H weighted by M exists in A if and only if [Cop,V](M,A(H,−)) is small, and then note
that a V-functor F : Aop → V is small if and only if it is the left Kan extension of its
restriction to some small full subcategory of Aop.

Next we can prove the following (see also [33, Remark 3.5]):
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Proposition 2.2.18. A V-category which is accessible or conically accessible is virtually
cocomplete.

Proof. Since every accessible V-category is conically accessible, it is enough to prove the
proposition for a conically accessible V-category. If A is conically accessible then P†A,
seen as a full subcategory of [A,V]op, consists of the conically accessible presheaves (Propo-
sition 2.2.9). Since these are closed under small colimits in [A,V]op, it follows that P†A
is cocomplete.

Virtually cocomplete V-categories behave well with respect to virtual left adjoints:

Proposition 2.2.19. Let A be virtually cocomplete and H : G ↪→ A be a full subcategory;
then the induced V-functor A(H, 1) : A → [Gop,V] has a virtual left adjoint.

Proof. Let K = [Gop,V] and F = A(H, 1); we need to prove that for each X ∈ K the
functor K(X,F−) is small. If X = G(−, G) for some G ∈ G then

K(X,F−) ∼= [Gop,V](G(□, G),A(H□,−))
∼= A(G,−);

hence K(X,F−) ∼= A(G,−) is small. If X is any presheaf on G then we can write it
as a weighted colimit of representables; thus K(X,F−) will be a limit of small functors
by the argument above. In other words K(X,F−) is a colimit of elements in P†A and
hence, since P†A is cocomplete by hypothesis, is small. It follows that F has a virtual left
adjoint.

The following characterizes accessible V-functors between accessible V-categories.

Proposition 2.2.20. Let F : A → K be a V-functor between accessible V-categories; the
following are equivalent:

1. F has a virtual left adjoint;

2. F is accessible.

Moreover if A,K, and F are α-accessible, the virtual left adjoint restricts to the α-
presentable objects: if L ⊣ P†F then L restricts to Lα : P†(Kα) → P†(Aα).
A corresponding statement holds in the case of conically accessible categories: A,K,

and F are assumed to be conically (α-)accessible instead of (α-)accessible and the full
subcategories Aα and Kα are replaced by Ac

α and Kc
α.

Proof. A virtual left adjoint to F exists if and only if K(X,F−) is small for each X ∈ K,
and this, by Proposition 2.2.9, is the same as saying that K(X,F−) is an accessible V-
functor for each X in K.
Suppose that F is accessible, take then X ∈ K, and consider α such that X is α-

presentable and F preserves α-flat colimits. Then K(X,F−) preserves α-flat colimits as
well and hence is small. Vice versa, assume that each K(X,F−) is accessible. Let α be
such that K is α-accessible and consider β ≥ α such that for each X ∈ Kα the V-functor
K(X,F−) preserves all β-flat colimits. Since Kα is a strong generator made of (α- and
hence) β-presentable objects, it follows that F preserves β-flat colimits as well.
Regarding the assertion that if A,K, and F are α-accessible the virtual left adjoint

restricts to the α-presentable, it is enough to note that for any X ∈ Kα

K(X, J−) ∼= LanHK(X, JH−),
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since K(X, J−) preserves α-flat colimits, where H : Aα ↪→ A is the inclusion. This means
exactly that the left adjoint L : P†(K) → P†(A) restricts to Lα : P†(Kα) → P†(Aα) as
desired.
The same proof applies in the conically accessible case.

Remark 2.2.21. Note that in the first part of the previous proposition it is enough to ask
that each object of K is presentable, instead of K being accessible.

An immediate consequence is:

Corollary 2.2.22. Let A be an accessible and accessibly embedded subcategory of an ac-
cessible V-category K; then A is virtually reflective in K. In fact it suffices that A be
conically accessible and conically accessibly embedded.

Proof. Follows directly from Proposition 2.2.20 applied to the inclusion of A in K.

The next step is to prove the opposite direction:

Proposition 2.2.23. Let K be a locally presentable V-category and J : A ↪→ K be a
virtually reflective and accessibly embedded subcategory; then A is accessible.

Proof. Strategy. We shall choose small full subcategories H : C ↪→ K and H ′ : D → A
such that:

(i) H is dense, so that K(H, 1) : K ↪→ [Cop,V] is fully faithful;

(ii) D ⊆ C, with inclusion J ′ : D ↪→ C, so that we have a fully faithful V-functor
LanJ ′op : [Dop,V] ↪→ [Cop,V];

(iii) the intersection of these full subcategories is A, as in the diagram below.

A [Dop,V]

K [Cop,V]

A(H′, 1)

J LanJ′op

K(H, 1)

Now [Dop,V], [Cop,V], and K are all accessible V-categories (in fact locally presentable)
while LanJ ′op andK(H ′, 1) are accessible embeddings; thusA is accessible by Lemma 2.1.19.
Main Step. Let α be some regular cardinal such that K is an α-accessible V-category

and the inclusion J is an α-accessible V-functor. Let C be any full subcategory of K
containing Kα and closed under α-small colimits, denote by H : C ↪→ K the inclusion.
This satisfies (i). Commutativity of the square in (iii) says that the canonical maps

K(HC, JH ′−) ∗ A(H ′−, A) −→ K(HC, JA)

are invertible for all C ∈ C, A ∈ A: the colimit on the left gives the left Kan extension
LanJ ′opA(H ′−, A) evaluated at C. Now K(HC, J−) is the value at HC of the virtual
reflection L : K → P†A, and invertibility of the above maps says that K(HC, J−) is the
left Kan extension of its restriction K(HC, JH ′−) to D, or in other words that

(iii’) L maps C ⊆ K into P†D.
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In fact we’ll see that this implies the intersection property of the square in (iii). Suppose
then that K ∈ K, and K(H−,K) is in the image of LanJ ′op , so that in fact

K(H−,K) ∼= LanJ ′opK(HJ ′−,K).

Since H : C ↪→ K is α-cocontinuous, K(H−,K) is α-continuous and hence α-flat, and now
by Lemma 1.3.2 also K(HJ ′−,K) is α-flat. Thus we can form the colimit K(HJ ′−,K) ∗
H ′ ∈ A, and it will be preserved by J , giving

J(K(HJ ′−,K) ∗H ′)) ∼= K(HJ ′−,K) ∗ JH ′

∼= K(HJ ′−,K) ∗HJ ′

∼= LanJ ′opK(HJ ′−,K) ∗H
∼= K(H−,K) ∗H
∼= K,

so K ∈ A as required.
Choosing C and D. It remains to show that we can choose a small Kα ⊆ C ⊆ K

closed under α-small colimits and D ⊆ A ∩ C such that L maps C into P†D. We do this
by recursion on 0 < i < α. Define C1 := Kα, and D1 ⊆ A to be small and such that
L(C1) ⊆ P†(D1) (this exists since C1 is small). Now, given 0 < i < α, and the small V-
categories Ci and Di, we define Ci+1 to be the closure of JDi in K under α-small colimits,
and Di+1 ⊆ A to be such that Di ⊆ Di+1 and L(Ci+1) ⊆ P†(Di+1). Take unions at the
limit steps and then define D := ∪i<αDi and C := ∪i<αCi. Then L maps C into P†D by
construction and, by regularity of α, each α-small diagram in C factors through some Ci+1

which is closed in K under α-small colimits by construction; hence C is closed under them
as well.

The same holds if the ambient V-category K is just accessible:

Corollary 2.2.24. Let K be an accessible V-category and J : A ↪→ K be virtually reflective
and accessibly embedded; then A is accessible.

Proof. Since K is accessible then we can find a small C and an accessible embedding
K ↪→ [C,V] which has a virtual left adjoint by Corollary 2.2.22. Since virtual adjoints
compose we can now apply Proposition 2.2.23 to conclude that A is accessible.

It is not true in general that every α-accessibly embedded and virtually reflective sub-
category of a locally α-presentable V-category, is α-accessible. However this holds with a
further assumption:

Corollary 2.2.25. Let K be locally presentable and J : A ↪→ K be virtual reflective,
α-accessibly embedded, and such that the virtual reflection L : P†K → P†A restricts to
L(α) : P†(Kα) → P†(A(α)), where A(α) := A ∩Kα. Then A is α-accessible.

Proof. In the proof of Proposition 2.2.23 we can choose C = Kα and D = A(α) ⊆ Aα.
It follows by the intersection property in (iii) that A(α) is dense; moreover the weights
A(H ′−, A) are all α-flat, since LanJ ′opA(H ′−, A) ∼= K(H−, JA) is α-continuous. There-
fore it follows that A is α-accessible.
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2.2.4 Virtual orthogonality

Next we introduce the third and last virtual concept of this thesis; this is a generalization
of the more common notion of orthogonality.

Definition 2.2.26. Let K be a V-category, Z : K ↪→ P†K be the inclusion, and f : ZX →
P a morphism in P†K with representable domain. We say that an object A of K is
orthogonal with respect to f if

P†K(f, ZA) : P†K(P,ZA) −→ P†K(ZX,ZA)

is an isomorphism in V; in other words if ZA ∈ P†K is orthogonal with respect to f .

Let us unwind this definition. Given an object P in P†K, we can write it as a limit
of representables P ∼= {M,ZH}. Thus to give f : ZX → P is the same as giving a
cylinder f̄ : M → K(X,H−); moreover P†K(ZX,ZA) ∼= K(X,A) and P†K(P,ZA) ∼=M ∗
K(H−, A). As a consequence, an object A of K is orthogonal with respect to f : ZX → P
if and only if the map

M ∗ K(H−, A) → K(X,A)

induced by f̄ : M → K(X,H−) is an isomorphism.
When P = ZY is representable we recover the usual notion of orthogonality.

Definition 2.2.27. Let K be a V-category and M be a small collection of morphisms in
P†K of the form f : ZX → P . We denote by M⊥ the full subcategory of K spanned by the
objects which are orthogonal with respect to each f ∈ M. We call virtual orthogonality
class any full subcategory of K which arises in this way.

Remark 2.2.28. In the ordinary context, an equivalent form of this notion was already
considered by Guitart and Lair in [48, Section 4]. Given a cone c : ∆X → H in a category
K, they say that an object A ∈ K “satisfies” the cone c if K(c, A) induces an isomorphism

K(X,A) ∼= colimK(H−, A).

It is easy to see that, considering P := limY H ∈ P†K and the induced map c̄ : ZX → P ,
an object A of K satisfies H if and only if it is orthogonal with respect to c̄. In [48,
Section 4] they prove then that each sketchable category Mod(S) is (in our terminology)
a virtual orthogonality class in its ambient category [C,Set], but not the vice versa.

The next results can be seen as the analogue of the relation between locally presentable
categories and orthogonality classes.

Proposition 2.2.29. Let K be accessible and J : A ↪→ K be accessible and accessibly
embedded; then A is a virtual orthogonality class in K.

Proof. Consider a regular cardinal α for whichA,K, and J are α-accessible and J preserves
the α-presentable objects (Corollary 2.1.22); this implies in particular that Aα = A∩Kα.
Denote the inclusions as below.



2.2 The main results 37

A K

Aα Kα

P†(A) P†(K)

A K
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H H′

Jα

L

P†J

W Z

J

We wish to show that A can be identified with the virtual orthogonality class defined by
the set

M := {ηX : ZX → (P†J)LZX| X ∈ Kα}

where each ηX : ZX → (P†J)LZX is the component at X of the unit of the adjunction.
On one hand, given any A ∈ A, the object JA is orthogonal with respect to each ηX in
M; in fact the orthogonality condition holds with respect to ηX for any X ∈ K:

P†K(ZX,ZJA) ∼= P†K(ZX, (P†J)WA)

∼= P†A(LZX,WA)

∼= P†K((P†J)LZX, (P†J)WA)

∼= P†K((P†J)LZX,ZJA).

Conversely suppose that Y ∈ K is orthogonal with respect to ηX for each X ∈ Kα. Note
first that

(P†J)LZX ∼= LanJK(X, J−)
∼= LanJLanHK(X, JH−)
∼= LanJHK(X, JH−)
∼= {K(X, JH−), ZJH},

where the second isomorphism follows from the fact thatK(X, J−) preserves α-flat colimits
and A is α-accessible. As a consequence we obtain that for each X ∈ Kα:

K(X,Y ) ∼= P†K((P†J)LZX,ZY ) (2.1)

∼= P†K({K(X, JH−), ZJH}, ZY )
∼= K(X, JH−) ∗ K(JH−, Y )
∼= K(X,H ′Jα−) ∗ K(H ′Jα−, Y )
∼= Kop

α (Jα−, X) ∗ K(H ′Jα−, Y )
∼= LanJop

α
K(H ′Jα−, Y )(X)

where (2.1) holds because Y is orthogonal with respect to ηX . It follows that

K(H ′−, Y ) ∼= LanJop
α
K(H ′Jα−, Y ),

but the weight K(H ′−, Y ) is α-flat; therefore K(JH−, Y ) ∼= K(H ′Jα−, Y ) is α-flat as well
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by Lemma 1.3.2. As a consequence, for each X ∈ Kα

K(X,Y ) ∼= K(JH−, Y ) ∗ K(X, JH−)
∼= K(X,K(JH−, Y ) ∗ JH)
∼= K(X,J(K(JH−, Y ) ∗H));

thus Y ∼= J(K(JH−, Y ) ∗H) lies in A.

Conversely, the accessibility of virtual orthogonality classes can be obtained as a conse-
quence of the following.

Proposition 2.2.30. Each virtual orthogonality class A of a presheaf V-category K =
[C,V] is equivalent to the category of models of a sketch. More precisely: there exists
a fully faithful J : C ↪→ B and a sketch S = (B,L,C) on B such that RanJ induces an
equivalence A ≃ Mod(S).

Proof. Let J : A ↪→ K be a virtual orthogonality class in K defined by a set of morphisms
M. Without loss of generality we can assume that M consists of a single arrow f : ZX →
P = {M,ZH} with X ∈ K, Z : K ↪→ P†K being the inclusion, M : D → V a weight, and
H : D → K a diagram in K. Consider now the closure Bop of Cop ↪→ K = [C,V] under
α-small colimits, where α is such that B contains X and the image of H; let H ′ : Dop → B
be the induced map. In particular B is the free completion of C under α-small limits; so
that right Kan extending along the inclusion induces an equivalence

W : [C,V] −→ α-Cont[B,V].

Note moreover that f corresponds to a cylinder f̄ : M → K(X,H−) ∼= B(H ′−, X).
Now, a V-functor A ∈ K is orthogonal with respect to f if and only if

P†K(f,A) : P†K(P,ZA) → P†K(ZX,ZA)

is an isomorphism; but on one hand we have

P†K(ZX,ZA) ∼= K(X,A)
∼= [B,V](WX,WA)
∼= [B,V](B(X,−),WA)
∼= (WA)(X)

on the other

P†K(P,ZA) ∼=M ∗ K(H−, A)
∼=M ∗ [B,V](WH−,WA)
∼=M ∗ [B,V](B(H ′,−),WA)
∼=M ∗ (WA)H ′.

It follows then that A is orthogonal with respect to f if and only if WA sends the cylinder
f̄ to a colimiting cylinder. In conclusion A is equivalent to the full subcategory of [B,V]
given by the α-continuous functors which send f̄ to a colimiting cylinder, and this is the
V-category of models of a sketch on B.

One can also show the converse: every V-category of models of a sketch is a virtual
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orthogonality class in its ambient category. This can of course be seen as a consequence of
the fact that sketchable implies accessible (Theorem 2.2.4) which in turn implies virtual
orthogonality class (Proposition 2.2.29), but we can also provide a direct proof:

Proposition 2.2.31. Let S = (B,L,C) be a sketch; then Mod(S) is a virtual orthogonality
class in [B,V].

Proof. Let K := [B,V], Y : Bop → K be the Yoneda embedding, and Z : K ↪→ P†K be the
inclusion into the free completion. It is enough to show that each cylinder c ∈ L there
exists a morphism fc : ZX → P in P†K for which a functor F : B → V sends c to a limiting
cylinder if and only if F is orthogonal with respect to fc; plus the colimit version of this
for any d ∈ C.
In the limit case, the virtual orthogonality notion coincides with standard orthogonality.

Let c : N → B(B,H−) be a cylinder in L; then we can consider X := N ∗ Y Hop ∈ K and
the map fc : X → Y B induced by c. Now, for each F : B → V, since by construction
K(X,F ) ∼= {N,FH−}, it follows that F sends c to a limiting cylinder if and only if it is
orthogonal with respect to fc, and this is the same as virtual orthogonality with respect
to Zfc.
For the colimit case, consider d : M → B(K−, C) in C and define P := {M,ZY Kop} in

P†K; then d induces a map fd : ZY C → P . Now note that, for each F : B → V,

P†K(ZY C,ZF ) ∼= [B,V](Y C, F ) ∼= FC

and on the other hand

P†K(P,ZF ) ∼=M ∗ P†K(ZYKop−, ZF ) ∼=M ∗ [B,V](Y Kop−, F ) ∼=M ∗ FK.

Thus it follows again that F sends d to a colimiting cylinder if and only if it is orthogonal
with respect to fd.

2.2.5 The characterization theorems

We can now sum up all the results above in the characterization Theorem below.

Theorem 2.2.32. For an accessible V-category K and a fully faithful inclusion A ↪→ K,
the following are equivalent:

1. A is accessible and accessibly embedded;

2. A is accessibly embedded and virtually reflective;

3. A is a virtual orthogonality class.

Proof. (1) ⇔ (2) are given by the Corollaries 2.2.22 and 2.2.24. (1) ⇒ (3) is a consequence
of Proposition 2.2.29. For the implication (3) ⇒ (1), it follows from Propositions 2.2.30
and 2.2.4 that A is accessible; moreover it is easily seen to be closed under α-flat colimits in
K, where α is such that all the morphisms in the family defining the virtual orthogonality
class lie in P†(Kα).

In general we obtain:

Theorem 2.2.33. The following are equivalent for a V-category A:

1. A is accessible;
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2. A ≃ α-Flat(C,V) for some α and some small C;

3. A is accessibly embedded and virtually reflective in [C,V] for some small C;

4. A is a virtual orthogonality class in [C,V] for some small C;

5. A is equivalent to the V-category of models of a sketch.

Proof. The equivalences (1) ⇔ (3) ⇔ (4) are a direct consequence of Theorem 2.2.32.
The implication (1) ⇔ (2) is given by Proposition 2.1.5, while (1) ⇔ (5) is given by
Theorem 2.2.4.

A few consequences of these characterization theorems are:

Corollary 2.2.34. If A is a V-category with α-flat colimits, for some α, then A is acces-
sible if and only if it is virtually cocomplete and has a dense generator made of presentable
objects.

Proof. By the previous theorem it is enough to prove that A is accessibly embedded and
virtually reflective in some category of presheaves. Let C ⊆ A be a dense presentable gen-
erator; then the inclusion A ↪→ [Cop,V] is accessible (since every object of C is presentable)
and virtually reflective by Proposition 2.2.19.

Corollary 2.2.35. If A is a V-category with α-flat colimits, for some α, then A is ac-
cessible if and only if it has a dense generator and P†A consists exactly of the accessible
presheaves out of A.

Proof. If A is accessible then it has a dense generator by definition and P†A consists
exactly of the accessible presheaves by Proposition 2.2.9. Conversely, assume that A has
a dense generator and P†A consists exactly of the accessible presheaves out of A. Then
each object of A is presentable, since representable functors are small; moreover P†A is
cocomplete, since accessible functors are limit closed in [A,V]. Thus the result follows
from the previous corollary.

So far we have only given a characterization of the accessible V-categories, but not of
the conically accessible ones; this is what we can say in that context:

Theorem 2.2.36. For a conically accessible V-category K and a fully faithful inclusion
A ↪→ K, the following are equivalent:

1. A is conically accessible and conically accessibly embedded;

2. A0 is accessible and accessibly embedded in K0;

3. A0 is accessibly embedded and virtually reflective in K0;

4. A0 is a virtual orthogonality class in K0.

Proof. Follows from Theorem 2.2.32 for V = Set and Corollary 2.1.18.

And as a consequence:

Theorem 2.2.37. The following are equivalent for a V-category A:

1. A is conically accessible;



2.2 The main results 41

2. A is conically accessibly embedded in [C,V], for some small category C, and A0 is
virtually reflective in [C,V]0;

3. A is a full subcategory of [C,V], for some small category C, and A0 accessible and
accessibly embedded in [C,V]0;

4. A is a full subcategory of [C,V], for some small category C, and A0 is a virtual
orthogonality class in [C,V]0.

We do not yet know whether a V-category which is conically accessibly embedded and
virtually reflective in some [C,V], is also conically accessible. The issue is that the fact
that a V-category A is virtually reflective in K is not known to imply that A0 is virtually
reflective in K0.

2.2.6 Cone-reflectivity and cone-injectivity

In this section we go back to the ordinary setting (V = Set) and compare the virtual
concepts introduced in Section 2.2.3 and 2.2.4 with those of cone-reflectivity and cone-
injectivity class from [1]. For that we first need to recall the notions of petty and lucid
functors introduced by Freyd:

Definition 2.2.38 ([41]). Let A be a category; a functor P : A → Set is called petty if
there exists a family (Ai)i∈I in A and an epimorphism∑

i∈I
A(Ai,−) ↠ P.

Denote by Pt(A) the full subcategory of [Aop,Set] spanned by the petty functors.

Clearly every small functor is petty since every small colimit of representables is in
particular a coequalizer of coproducts of them. Thus we have a fully faithful inclusion
PA ↪→ Pt(A) as full subcategories of [Aop,Set]; moreover the category Pt(A) is locally
small and, if we allow some colimits to be large, it can be seen as some kind of free
cocompletion of A:

Remark 2.2.39. Let us say that a category L is well cocomplete if it is cocomplete and
has all (possibly large) cointersections of regular epimorphisms. A functor F : L → K
is well cocontinuous if it is cocontinuous and preserves all the cointersections of regular
epimorphisms. Then, for any categoryA, it is easy to see that Pt(A) is well cocomplete and
also the free well cocompletion of A: for any well cocomplete category B, precomposition
with the inclusion V : A ↪→ Pt(A) induces an equivalence between [A,B] and the category
of well cocontinuous functors Pt(A) → B.

Definition 2.2.40 ([41]). We say that a functor L : A → Set is lucid if it is petty and
for any other petty P and f, g : P → L, the equalizer of (f, g) is still petty. Denote by
Lcd(A) the full subcategory of Pt(A) given by the lucid functors.

Note that, thanks to [41, Proposition 1.1], in the definition above we can assume P
to be representable. As a consequence L is lucid if and only if it is petty and for any
representable A ∈ A and f, g : A(A,−) → L, the equalizer of (f, g) is still petty.

Remark 2.2.41. In Section A.2 we define an enriched notion of pettiness and prove the
corresponding versions of Propositions 2.2.42 and 2.2.46 below.
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Every lucid functor is petty (by definition), however in general lucid and small functors
are not comparable. This changes if the following conditions are satisfied:

Proposition 2.2.42. The following are equivalent for a category A:

1. Pt(A) has limits of representables (i.e. A is pre-complete);

2. Lcd(A) is complete and contains the representables;

3. PA has limits of representables;

4. PA is complete;

and in that case PA = Lcd(A).

Proof. (1) ⇔ (2) is [41, Theorem 1.(12)]. The fact that this implies PA = Lcd(A) is
[91, Lemma 1] (see note below their proof), and (2) ⇒ (3) can be seen as a consequence.
(3) ⇔ (4) is [33, Theorem 3.8] and finally (3) ⇒ (1) is trivial since PA ⊆ Pt(A).

Taking the dual notions in the statement above, the proposition says in particular that
a category is pre-cocomplete (1) if and only if it is virtually cocomplete (3).
In the next part of the section we keep working with the dual notions, Pt†(A) and P†A.

As we considered virtual left adjoints (relatively to small functors), one could introduce
an adjointness condition with respect to petty functors by imposing that, for F : A → K,
the functors K(X,F−) : A → Set are petty for any X ∈ K. In other words, this is saying
that F : A → K has a relative left adjoint with respect to the inclusion A ↪→ Pt†A.
The condition above turns out to be the same as F satisfying the solution-set condition:

indeed K(X,F−) is petty if and only if there exists an epimorphism
∑

i∈I A(Ai,−) ↠
K(X,F−), for some Ai ∈ A, if and only if there exists a cone (hi : X → FAi)i∈I such that
any map h : X → FA factors as h = F (f) ◦ hi for some i ∈ I and f in A; this is exactly
the solution-set condition for F .

Definition 2.2.43 ([1]). We say that a fully faithful inclusion J : A ↪→ K is cone-reflective
if J satisfies the solution-set condition.

For fully faithful functors, having a virtual left adjoint or satisfying the solution-set
condition is almost the same, at least in the virtually cocomplete context:

Proposition 2.2.44. Given a virtually cocomplete category K and a fully faithful functor
J : A ↪→ K, the following are equivalent:

1. A is cone-reflective in K;

2. A is virtually reflective in K.

Proof. (2) ⇒ (1) is trivial since every small functor is petty.
(1) ⇒ (2). Let J have a relative left adjoint L : K → Pt†(A), we want to prove that this

actually lands in P†A. Note first that L extends to a left adjoint −◦J : Pt†(K) → Pt†(A)
to the inclusion Pt†(J) : Pt†(A) ↪→ Pt†(K); indeed if P : K → Set is petty then PJ is
covered by a family of functors of the form K(X, J−), but each of these is covered by a
family of representables (from A) by hypothesis, and hence PJ is petty as well.
Now, since K is virtually cocomplete, Pt†(K) has colimits of representables (Proposi-
tion 2.2.42); therefore Pt†(A) has colimits of representables as well, being reflective in
Pt†(K) with the inclusion induced by J . It follows again by Proposition 2.2.42 that
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P†A = Lcd†(A); therefore to prove the virtual reflectivity of A in K it is enough to show
that for each X ∈ K the functor LX = K(X, J−) : A → Set is lucid.
Given X ∈ K the functor K(X,J−) is petty by cone-reflectivity of A; thus we only
need to show that the equalizer of any pair f, g : A(A,−) → K(X, J−) is still petty (see
just below the definition of lucidity). Such a pair corresponds to maps h, k : X → JA
in K which in turn give a pair f ′, g′ : K(JA,−) → K(X,−) between representables in
Pt(Kop) = Pt†(K)op. Since Pt†(K) has colimits of representables we can consider the
equalizer P of f ′, g′ in Pt(Kop); it follows at once that PJ is the equalizer of f, g and this
is petty because P was petty and − ◦ J preserves petty functors.

Remark 2.2.45. One might think that the equivalent conditions above arise from a left
adjoint to the inclusion J : P†A ↪→ Pt†(A), but that (almost) never happens. In fact J
has a left adjoint if and only if the two categories P†A and Pt†(A) coincide (since they
both contain the representables, such a left adjoint is forced to be the identity), and this
does not hold even when A is locally presentable (A = Ab is a counterexample, see [41]).

Corollary 2.2.46. Given a fully faithful functors J : A ↪→ K between accessible categories,
the following are equivalent:

1. A is accessibly embedded in K;

2. A is cone-reflective in K;

3. A is virtually reflective in K.

Proof. Put together Propositions 2.2.44 and 2.2.20.

The equivalence between (1) and (2) was first proved in [93, Theorem 3.10]. Note
however that the same equivalence cannot be proved in standard set theory when J is
replaced by any (non necessarily fully faithful) functor between accessible categories; see
[1, Theorem 6.30] and the Remark just below it. On the other hand, we have already
shown that (1) ⇔ (2) always holds (Proposition 2.2.20).
As a corollary we recover the characterization of accessibility given in [1]:

Corollary 2.2.47. [1, Theorem 2.53] Let K be an accessible category and A be an accessi-
bly embedded full subcategory of K. Then A is accessible if and only if it is cone-reflective
in K.

Proof. This is now a direct consequence of Theorem 2.2.32 and Proposition 2.2.44 above.

Another way of characterizing accessible categories is via cone injectivity classes. We
can recover this characterization using virtual orthogonality classes.

Definition 2.2.48 ([1]). Let K be a category and let (fi : X → Xi)i∈I be a cone in K.
We say that A ∈ K is injective with respect to the cone (fi)i∈I if for any h : X → A there
exists i ∈ I for which h factorises through fi.

Equivalently, A ∈ K is injective with respect to the cone (fi)i∈I if and only if the map∐
i∈I

K(Xi, A) −→ K(X,A)

induced by the cone (fi)i∈I , is a surjection of sets.
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Definition 2.2.49 ([1]). Let K be a category and M be a small collection of cones in K.
We denote by M-inj the full subcategory of K spanned by the objects which are injective
with respect to each cone in M. We call cone-injectivity class any full subcategory of K
which arises in this way.

Then cone-injectivity classes and virtual orthogonality classes turn out to be strictly
related by the following:

Proposition 2.2.50. The following hold for a given category K:

1. every cone-injectivity class in K is a virtual orthogonality class;

2. if K has pushouts, every virtual orthogonality class in K is a cone-injectivity class.

Proof. (1). It is enough to prove that injectivity with respect to a cone can be seen
as orthogonality with respect to a suitable morphism in P†K; we are going to use the
fact that a map is an epimorphism if and only if the co-diagonal out of its cokernel
pair is an isomorphism. Let (fi : X → Xi)i be a cone in K; consider the corresponding
f : ZX → P :=

∏
i ZXi in P†K and take the kernel pair of f with the corresponding

diagonal map δ:

ZX P ′ ZX P.
δ f

This is sent to a cokernel pair through P†K(−, ZA) for each A ∈ K (since P†K(−, ZA) ∼=
evA is cocontinuous), with co-diagonal P†K(δ, ZA). As a consequence the map

∐
iK(Xi, A) ∼= P†K(P,ZA) P†K(ZX,ZA) ∼= K(X,A)

P†K(f, ZA)

is an epimorphism if and only if P†K(δ, ZA) is an isomorphism, which in turn means that
A is injective with respect to (fi)i if and only if it is orthogonal with respect to the map
δ : ZX → P ′.
(2). Similarly, it is enough to prove that orthogonality with respect to a map f : ZX → P

in P†K is the same as injectivity with respect to a set of cones. Since P ∈ P†K, we can
find H : I → K such that P ∼= colimZH. Then f corresponds to a cone (fi : X → Hi)i∈I
over H in K. Now let A ∈ K; then A is orthogonal with respect to f if and only if the
map

ρ : colimK(H−, A) −→ K(X,A)

induced by (fi)i∈I , is bijective. Notice now that ρ is surjective if and only if A is injective
with respect to the cone (fi)i∈I ; thus we only need to express the fact that ρ is a monomor-
phism in terms of injectivity. For this observe that ρ is injective if and only if, for any
h : X → A which factors as h = hi ◦ fi = hj ◦ fj , for some hi : Hi → A and hj : Hj → A,
there exists a zig-zag in H/A connecting hi and hj . Now, for any pair i, j ∈ I let Xi,j be
the pushout of (fi, fj) in K and Ξij be the set of all zig-zags in I between i and j. For any
ξ ∈ Ξij let Xξ denote the colimit of the diagram H(ξ) in K (this is obtained as a finite
number of consecutive pushouts), and let gξ : Xi,j → Xξ be the induced comparison; this
gives a cone (gξ : Xi,j → Xξ)ξ∈Ξij

for any pair i, j ∈ I. To conclude it is enough to note
that to give an arrow h : Xi,j → A is the same as giving an arrow X → A which factors
through fi and fj ; moreover h factors through an arrow of the cone (gξ)ξ∈Ξij

if and only
if the two factorizations of h are connected by a zig-zag in H/A. It follows at once that
A is orthogonal with respect to f if and only if it is injective with respect to the cones
(fi)i∈I and (gξ)ξ∈Ξij

for any i, j ∈ I.
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As a consequence we recover:

Theorem 2.2.51. [1, Theorem 4.17] Let K be locally presentable and A be a full subcate-
gory of K. Then A is accessible and accessibly embedded if and only if it is a cone-injectivity
class in K.

Proof. Direct consequence of Theorem 2.2.32 and Proposition 2.2.50 above.

2.3 Limits of accessible V-categories
It is proved in [77, Theorem 5.1.6] that the 2-category Acc, of accessible categories,
accessible functors, and natural transformations, admits all small bilimits and that the
forgetful functor U0 : Acc → CAT preserves them. But more can be said: Acc has all
flexible limits and U preserves them (as pointed out in [13, Remark 7.8]); then one can
deduce from this that Acc has all pseudolimits and bilimits (see [61]).
In this section we are going to show that the corresponding result holds for accessible and

conically accessible V-categories as well. The corresponding result for locally presentable
V-categories was proved in Bird’s thesis [14, Theorem 6.10].

2.3.1 The accessible case

Let V-Acc be the 2-category of accessible V-categories, accessible V-functors, and V-
natural transformations. When V = Set we simply write Acc instead of Set-Acc.

Proposition 2.3.1. Let A be an accessible V-category and C be a small V-category. Then
[C,A] is accessible.

Proof. By Theorem 2.2.4 we can write A ≃ Mod(S) for a sketch S = (B,L,C) and hence
we can see A as a full subcategory of [B,V]. It follows at once that [C,A] has a fully
faithful embedding

J : [C,A] ↪→ [C, [B,V]] ≃ [C ⊗ B,V]

obtained by post-composition with the inclusion of A in [B,V]. Moreover [C,A] can be
described as the full subcategory of [C ⊗ B,V] whose objects F are such that F (c,−) ∈ A
for each c ∈ C.
Now, for each c ∈ C and λ : M → B(b,H−) in L consider the induced cylinder

λc : M → (C ⊗ B)((c, b), (c,H−))

which acts constantly on c in the first component; let LC be the collection of all such
cylinders. Similarly, for each c ∈ C and µ ∈ C define the co-cylinder µc accordingly, so
that we can a new family CC .
It is easy to see that given F : C⊗B → V, the functor F (c,−) sends λ (respectively µ) to a
(co)limiting cylinder if and only if F sends λc (respectively µc) to a (co)limiting cylinder.
As a consequence [C,A] ≃ Mod(S ′) for the sketch S ′ = (C ⊗ B,LC ,CC), and thus it is
accessible by Theorem 2.2.4.

Remark 2.3.2. In the proof above as well as in the forthcoming ones we make use of the
theory of sketches; it would be interesting instead to have a proof which does not rely on
these but we do not have one. Moreover we do not know whether the proposition above is
still true when accessibility is replaced by conical accessibility, nonetheless we are still able
to show that conically accessible V-categories are stable in V-CAT under flexible colimits.
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Corollary 2.3.3. Let A be an accessible V-category and C be an ordinary small category.
Then the power AC := C ⋔ A exists in V-Acc and is preserved by the forgetful functor
U : V-Acc → V-CAT.

Proof. Let AC be the power of A by C in V-CAT. Since a V-functor B → AC is accessible
if and only if its transpose ordinary functor C → V-CAT(B,A) lands in V-Acc(B,A),
it is enough to show that AC is an accessible V-category. This follows at once from the
previous proposition since AC ∼= [CV ,A], where CV is the free V-category on C.

The following will be needed to prove the main result of this section.

Lemma 2.3.4. Let F : A1 → A2 be an accessible V-functor between accessible V-categories;
then there exist sketches S1 = (B1,L1,C1) and S2 = (B2,L2,C2) and a V-functor K : B2 →
B1 for which:

1. A1 ≃ Mod(S1) and A2 ≃ Mod(S2):

2. The induced square

[B1,V] [B2,V]

A1 A2

− ◦K

F

commutes up to isomorphism.

Moreover B2 can be chosen to be (A2)
op
α for arbitrarily large cardinals α as in 2.1.20.

Proof. Given F : A1 → A2 as above, let α be such that A1,A2, and F are α-accessible
and F ((A1)α) ⊆ (A2)α (see 1.1.6 and 2.1.20). Then F is the left Kan extension of its
restriction to (A1)α and we can consider the commutative (up to isomorphism) diagram
below

[C,V] [B2,V]

A1 A2

Cop Bop
2

LanG

F

Gop

where C = (A1)
op
α , B2 = (A2)

op
α , and G is the restriction of F op to C.

Now consider the V-functor L : B2 → [Cop,V] sending B to LB = B2(G−, B) (note that
Lop is the virtual left adjoint to Gop). Let B1 be the full subcategory of [Cop,V] spanned
by the representables and the essential image of L; then we have a fully faithful inclusion
H : C ↪→ B1 and a V-functor K : B2 → B1 induced by L.
The next step is to check that the triangle below commutes up to isomorphism.

[B1,V]

[C,V] [B2,V]

LanH − ◦K

LanG
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Since all the V-functors involved are cocontinuous it is enough to prove that the isomor-
phism holds for all representables in [C,V]. Consider C ∈ C: on one hand LanG(C(C,−)) ∼=
B2(GC,−); on the other LanH(C(C,−)) ∼= B1(HC,−) which by precomposition with K
gives

B1(HC,K−) ∼= [Cop,V](Y C,L−) ∼= L(−)(C) ∼= B2(GC,−)

as desired.
Gluing this triangle with the diagram above we find the desired square in (2). To

conclude it is then enough to note that A2 is identified with the full subcategory of [B2,V]
spanned by the α-flat functors out of B2, and hence is the category of models of a sketch.
The same holds for the inclusion of A1 in [C,V]; moreover [C,V] itself is the category of
models for a sketch on B1 (because the inclusion H : C ↪→ B1 is dense and therefore the
essential image of LanH is given by a full subcategory of functors preserving specified
colimits). It follows then that A1 is the category of models for a sketch in B1.

In the theorem below we say that a V-functor is an isofibration if its underlying ordinary
functor is one.

Theorem 2.3.5. The 2-category V-Acc has all flexible (and hence all pseudo- and bi-)
limits, as well as all pullbacks along isofibrations, and the forgetful functors U : V-Acc →
V-CAT and (−)0 : V-Acc → Acc preserve them.

Proof. We prove this using the fact that a 2-category has all flexible limits if and only
if it has products, inserters, equifiers, and splitting of idempotent equivalences (see [13,
Theorem 4.9]); moreover the latter comes for free in V-Acc thanks to [13, Remark 7.6].
(a) Pullbacks along isofibrations. Let F1 : A1 → K and F2 : A2 → K be accessible V-

functors between accessible V-categories, and assume that F1 is an isofibration. Consider
the pullback A12 of this pair in V-CAT, with projections P1 : A12 → A1 and P2 : A12 →
A2, and note that, since F1 is an isofibration, this can be seen as a bipullback in V-CAT.
By Lemma 2.3.4 we can find small V-categories B1,B2 and C together with V-functors
Ki : C → B1 for which: Ai = Mod(Si), K = Mod(T ) for some sketches Si = (Bi,Li,Ci)
and T = (B,L,C), and such that − ◦Ki restricts to Fi (note that C can be chosen to be
the same for both A1 and A2 thanks to the final assertion in the Lemma). Let B12 be
the pushout of K1 and K2 in V-CAT, with maps Ji : Bi → B12. Then B12 is sent to a
pullback through [−,V] providing the commutative cube below

A12 A2

A1 K

⌟
[B12,V] [B2,V]

[B1,V] [C,V]

⌟

− ◦K2

− ◦K1

P2

P1

where the V-functors not labelled are F1, F2, the precomposition functors −◦J1,−◦J2, and
the inclusions. It follows that A12 can be identified with the full subcategory of [B12,V]
whose projections to [Bi,V] land in Ai.
Consider now the sketch S12 = (B12,L12,C12) defined by

L12 := {Jiη | i = 1, 2, η ∈ Li}, C12 := {Jiµ | i = 1, 2, η ∈ Ci}.
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It follows at once that F : B12 → V is a model of S12 if and only if F ◦ Ji is a model of Si,
for i = 1, 2; therefore A ≃ Mod(S12) is accessible.
To conclude, consider α such that A1, A2, and K have, and F1, F2 preserve, all α-flat
colimits; then it is a standard argument to check that A12 has α-flat colimits as well
and P1 and P2 preserve them (this follows at once from the fact we are dealing with a
bipullback, plus that the homs in A12 come as pullbacks of homs in A1,A2, and K, and
that α-flat colimits commute with them in V). It is now routine to check that A12 is
actually a pullback in V-Acc.
(b) Products. Let (Ai)i∈I be a small family of accessible V-categories and denote by

A =
∏

iAi the product in V-CAT. For each i ∈ I consider a sketch Si = (Bi,Li,Ci) for
which Ai ≃ Mod(Si). Then we can see A as a full subcategory of∏

i∈I
[Bi,V] ∼= [B,V]

with B :=
∐

i∈I Bi in V-CAT. Now, for each i ∈ I, we can consider the coproduct inclusion
Ji : Bi → B and define the set of cylinders

L := {Jiη | i ∈ I, η ∈ Li}

and of cocylinders
C := {Jiµ | i ∈ I, η ∈ Ci},

which identify a sketch S = (B,L,C). It follows then by construction that F : B → V lies
in A if and only if its components Fi are models of Si for each i ∈ I, if and only if F
is a model of S; thus A ≃ Mod(S) is accessible. Moreover considering α such that each
Ai is α-accessible, an easy calculation shows then that A has all α-flat colimits and these
are preserved by the projections; it now easily follows that B is the product of (Ai)i∈I in
V-Acc.
(c) Inserters. Let F,G : A → K be a parallel pair in V-Acc; then their equifier B can

be seen as the pullback

B A

K2 K ×K

⌟
(F,G)

π

where π is the projection induced by the inclusion 2 → 2. All the V-categories involved
are accessible (by the corollary above), as well as the V-functors, and π is an isofibration.
So the result follows from point (a).
(d) Equifiers. Let µ, η : F ⇒ G : A → K be a parallel pair of 2-cells in V-Acc. Arguing

as above we can write their equifier B as the pullback

B A

K2 KP

⌟
(µ̄, η̄)

ρ

where P is the free living parallel pair and ρ is the diagonal induced by the projection
P → 2. Again this exists in V-Acc by point (a) since ρ is an isofibration and all the
involved V-categories and V-functors are accessible.
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The fact that U : V-Acc → V-CAT preserves the these limits is a direct consequence of
the proof (since we took the limits in V-CAT and then proved that they are still limits
in V-Acc). Regarding the underlying functor (−)0 : V-Acc → Acc, this preserves all the
limits in question since the forgetful functors V-CAT → CAT and Acc → CAT do.

Remark 2.3.6. In the result above we show that, in addition to flexible limits, V-Acc has
pullbacks along isofibrations; this should not be too surprising in light of [20, Proposi-
tion A.1].

Similarly one obtains the same result for accessible V-categories with limits of some
class Ψ. Let V-AccΨ be the 2-category of the accessible V-categories with Ψ-limits, Ψ-
continuous and accessible V-functors, and V-natural transformations.

Corollary 2.3.7. The 2-category V-AccΨ has all flexible (and hence all pseudo- and bi-)
limits and the forgetful functor V-AccΨ → V-Acc preserves them.

Proof. This is a direct consequence of the results above since the following

V-AccΨ V-CATΨ

V-Acc V-CAT

⌟

is a pullback, where V-CATΨ is the 2-category of Ψ-complete V-categories, Ψ-continuous
V-functors, and V-natural transformations; this has all flexible limits and the forgetful
functor V-CATΨ → V-CAT preserves them (see [14]).

In particular, taking Ψ to be the class of all small limits, V-AccΨ can be identified with
the 2-category V-Lp of locally presentable V-categories, accessible V-functors with a left
adjoint, and V-natural transformations. Thus we recover part of [14, Theorem 6.10]:

Corollary 2.3.8. The 2-category V-Lp has all flexible (and hence all pseudo- and bi-)
limits and the forgetful functor V-Lp → V-CAT preserves them.

2.3.2 The conically accessible case

Analogous results hold for conical accessibility. Denote by V-cAcc the 2-category of
conically accessible V-categories, conically accessible V-functors, and V-natural transfor-
mations. Note that V-Acc sits in V-cAcc as a full subcategory by Corollary 2.1.20 and
Proposition 2.1.23.
In the proof of the following theorem we rely on the facts that Acc has all flexible limits

(which can be seen of course as a consequence of the previous theorem for V = Set) and
that (−)0 : V-Acc → Acc preserves them.

Theorem 2.3.9. The 2-category V-cAcc has all flexible (and hence all pseudo- and bi-
) limits and the forgetful functors Uc : V-cAcc → V-CAT, (−)0 : V-cAcc → Acc, and
J : V-Acc ↪→ V-cAcc preserve them.

Proof. (Powers) Let A be a conically accessible V-category and C be an ordinary small
category. Consider the power AC = [CV ,A] in V-CAT. Let α be such that A has conical
α-filtered colimits; then AC has them as well since they can be computed pointwise in A.
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Moreover, given X ∈ AC , we can consider β such that each X(c) is conically β-presentable
in A and the end

AC(X,−) ∼=
∫
c∈C

A(X(c), evc−)

is β-small, so that AC(X,−) preserves all β-filtered colimits. It follows then that each
object ofAC is conically presentable. Now (AC)0 ∼= [C,A0] is accessible sinceA0 is; thus the
conical accessibility of AC follows from Proposition 2.1.17. The fact that AC is the desired
power in V-cAcc follows from the fact that a V-functor B → AC is conically accessible if
and only if its transpose ordinary functor C → V-CAT(B,A) lands in V-cAcc(B,A).
(Pullbacks along isofibrations) Let F : A → K and G : B → K be conically accessible

V-functors between conically accessible V-categories, and assume that F is an isofibration.
Consider the pullback C of this in V-CAT, with projections P : C → A and Q : C → B,
and note that, since F is an isofibration, this can be seen as a pseudo-pullback. Let α be
such that A, B, and K have, and F ,G preserve, all conical α-filtered colimits; then it is
a standard argument to check that C has conical α-filtered colimits as well and P and Q
preserve them. Similarly each object of C is conically presentable (here we use that each
object of A,B, and K is). Moreover C0 is accessible being a pseudo-pullback of ordinary
accessible categories. In conclusion C is conically accessible by Proposition 2.1.17, and it
is now routine to check that it is actually a pseudo-pullback in V-Acc.
The proof for products is very similar. Let (Ai)i∈I be a small family of accessible V-

categories and denote by A =
∏

iAi their product in V-CAT. Consider α such that each
Ai has all conical α-filtered colimits, an easy calculation shows then that A has all conical
α-filtered colimits as well and these are preserved by the projections. Moreover, given any
A = (Ai)i ∈ A, consider β such that I is β-small and each Ai is conically β-presentable
in Ai; then A is conically β-presentable in A. Finally A is conically accessible thanks to
Proposition 2.1.17 since A0

∼=
∏

i(Ai)0 is an ordinary accessible category. It now easily
follows that A is the product of (Ai)i∈I in V-cAcc.
Inserters and equifiers can be obtained from powers and pullbacks along isofibrations

(see the proof of the previous theorem). Finally, splittings of idempotent equivalences
come again for free thanks to [13, Remark 7.6].

We can consider also the conical version of Corollary 2.3.7. Let V-cAccΨ be the 2-
category of the conically accessible V-categories with Ψ-limits, Ψ-continuous and conically
accessible V-functors, and V-natural transformations. The same argument then gives:

Corollary 2.3.10. The 2-category V-cAccΨ has all flexible (and hence all pseudo- and
bi-) limits and the forgetful functor V-cAccΨ → V-cAcc preserves them.

2.3.3 Sketches over a base

Definition 2.3.11. Let S = (B,L,C) be a sketch and A be a V-category. A model of a
S in A is a V-functor F : B → A which transforms each cylinder of L into a limit cylinder
in A, and each cocylinder of C into a colimit cocylinder in A. We denote by Mod(S,A)
the full subcategory of [B,A] spanned by the models of S in A.

The accessibility of Mod(S,A) when A is an accessible category depends on set theory
in general (even in the ordinary case, see [1, Example A.19]), but when A has enough
colimits something can be said, generalizing [1, Theorem 2.60].
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Proposition 2.3.12. Let S = (B,L,C) be a sketch and A be an accessible V-category with
M -colimits for any weightM appearing in C. Then Mod(S,A) is an accessible V-category.

Proof. Let SL = (B,L) and SC = (B,C) be the limit and colimit parts of S. Then
Mod(S,A) = Mod(SL,A) ∩ Mod(SC,A) and it is enough to prove that these two V-
categories are accessible.
Regarding the limit case, let C = Aop

α , with inclusion J : C → A, and consider the sketch
S ′ = (C ⊗ B,LC) defined as in the proof of Proposition 2.3.1 starting from SL. Then
Mod(SL,A) can be seen as the intersection

Mod(SL,A) Mod(S ′)

[B,A] [C ⊗ B,A]

⌟

K

where K is the composite of the inclusion [B,A(J, 1)] : [B,A] → [B, [C,A]] with the iso-
morphism [B, [C,A]] ∼= [C ⊗ B,A]. Since [B,A] and Mod(S ′) are accessible and accessibly
embedded in [C ⊗ B,A] it follows that Mod(SL,A) is accessible as well.
About the colimit case, for each cocylinder (η : M ⇒ B(H−, B)) ∈ C consider the

V-functor Gη : [B,A] → A2 such that Gη(F ) : M ∗ FH → FB is the unique morphism
induced by the cocylinder Fη, and acts on hom-objects accordingly (to define Gη we are
using that A has M -colimits). Now consider the full subcategory A∼= of A2 spanned by
the isomorphisms of A, this is accessible since it is equivalent to A. Then we can see
Mod(SC,A) as the pullback below

Mod(SC,A)
∏
η∈C

A∼=

[B,A]
∏
η∈C

A2

⌟

(Gη)η∈C

where the right vertical arrow is an isofibration. The three V-categories involved in the
limit are accessible by Theorem 2.3.5 and the V-functors are easily seen to be accessible;
thus Mod(SC,A) is an accessible V-category as well again by Theorem 2.3.5.

Immediate consequences are:

Corollary 2.3.13. For any accessible V-category A and any limit sketch S the V-category
Mod(S,A) is accessible.

Corollary 2.3.14. For any locally presentable V-category K and any sketch S the V-
category Mod(S,K) is accessible.

As in the accessible case we can consider models of sketches over a conically accessible
V-category:

Proposition 2.3.15. Let S = (B,L,C) be a sketch and A be a conically accessible V-
category with M -colimits for any weight M appearing in C. Then Mod(S,A) is a conically
accessible V-category.

Proof. Same as that of Proposition 2.3.12.
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Corollary 2.3.16. For any conically accessible V-category A and any limit sketch S the
V-category Mod(S,A) is conically accessible.



CHAPTER

3
Flat vs. filtered colimits

The idea of flatness comes from homological algebra, but has since been incorporated into
category theory in many contexts [15, 28, 29, 81], perhaps most importantly in the theory
of accessible categories [1, 67, 77].
In Chapter 2 we have introduced the notions of accessible and conically accessible V-

category; the former is based on colimits weighed by flat V-functors, while the latter on
the more standard filtered colimits. The aim of this chapter will be to give an explicit
description of flat-weighted colimits by using filtered colimits, for some specified bases
of enrichment. We then use this to characterize accessible V-categories in terms of the
conically accessible ones in many cases.
This is a 40-year-old problem: in [56, Section 6.4], Kelly poses the question of whether,

for any locally finitely presentable base, every flat presheaf is a filtered colimit of repre-
sentables, and states his inability to prove this. As observed in [18] and above, this is
actually false for the case V = Ab; but solving it in full generality is probably out of reach
at this stage. The situation is analogous to the related hard problem of describing the
absolute colimits over a given base: see [70, 79, 80, 95] for various instances of this.
Given any complete and cocomplete V and any small V-category C, we can form the

underlying ordinary category [Cop,V]0 of the presheaf V-category: this consists of the
V-enriched presheaves and V-enriched natural transformations. We can also form the
presheaf category [Cop

0 ,Set] on the underlying ordinary category. There is an adjunction

[Cop,V]0 [Cop
0 ,Set]⊥

U

F

between these, induced by the underlying functor Y0 : C0 → [Cop,V]0 of the enriched Yoneda
embedding: here U sends M : Cop → V to [Cop,V]0(Y0−,M) ∼= V0(I,M0−) and F sends
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N to the colimit N ∗ Y0 of Y0 weighted by N (this can also be seen as the colimit of

El(N)
π−→ C0

Y0−→ [Cop,V]0).
It is true in general that F sends a flat (in the ordinary sense) presheaf on C0 to a flat (in

the enriched sense) presheaf on C, essentially because filtered colimits of flat presheaves
are flat. It is not necessarily true that U preserves flatness, but it is so in many examples,
as we shall see. Our basic strategy will be to show in particular cases, sometimes under
further assumptions on C, that

(I) U does preserve flatness;

(II) if M is a flat presheaf on C, then the component ϵM : FUM → M of the counit is
invertible.

Given (II), any flat presheaf M on C is an FUM -weighted colimit of representables.
Given (I), this colimit can be calculated as a filtered colimit. Combining these, it follows
that the flat presheaves on C are the closure of the representables under filtered colimits.
In Section 3.1, we give conditions on V under which this is the case for all small C,

and deduce that for such V, the existence and preservation of flat weighted colimits is
equivalent to that of filtered colimits (Theorem 3.1.13). As a consequence the notions of
α-accessibility and conical α-accessibility agree (Theorem 3.1.14). Examples of V satisfying
these conditions include the cartesian closed categories Set, Cat, SSet, Pos (of partially
ordered sets), and many others.
In Section 3.2, we give conditions on V under which (I) and (II) hold provided that C has

certain V-enriched absolute colimits (Proposition 3.2.14). It then follows easily (Theorem
3.2.19) that a V-category is α-accessible if and only if it is conically α-accessible and has
these absolute colimits. (An α-accessible category always has absolute colimits.) For the
V which we study in Section 3.2, the absolute colimits in question are finite direct sums
(biproducts) and copowers by dualizable objects. Examples of V satisfying these conditions
include the monoidal categories CMon of commutative monoids, Ab of abelian groups,
R-Mod of R-modules for a commutative ring R, and GAb of graded abelian groups.
In Section 3.3, we investigate the case where V is the cartesian closed category SetG

of G-sets, for a non-trivial finite group G, and show that in this case α-accessibility is
strictly stronger than conical α-accessibility and the existence of absolute colimits (Corol-
lary 3.3.4).
In Section 3.4, we investigate one further class of examples related to those in Section 3.2,

and including for example V = DGAb. In this case (II) still holds when C has some finite
direct sums and copowers by dualizable objects, while (I) does not seem to be true even
with this further assumption. What is true is that, when C has those absolute colimits and
M is flat, the ordinary functor UM will be part of what we call a protofiltered diagram.
Then we prove that flat colimits are generated by the absolute ones plus these protofiltered
colimits (Theorem 3.4.16).

The content of this chapter has been published in
Advances in Mathematics [65].

3.1 When flat equals filtered

In this section we give sufficient conditions on the base V for α-flat colimits to reduce to the
usual α-filtered ones. These conditions hold in many of the most important examples of
locally presentable bases of enrichment, as Example 3.1.3 below illustrates. For most but
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not all of the bases which appear in Example 3.1.3, the canonical functor V0(I,−) : V0 →
Set is cocontinuous and strong monoidal, which in turn easily implies our conditions. One
example for which this is not the case, but for which our sufficient conditions still hold, is
the category of pointed sets, equipped as usual with the smash product.
Throughout this section we assume that V is locally α-presentable as a closed category

and that the unit I satisfies the following conditions:

(a) V0(I,−) : V0 → Set is weakly cocontinuous: for any diagram H : C → V0 the com-
parison map colimV0(I,H−) ↠ V0(I, colimH) is a surjection.

(b) V0(I,−) : V0 → Set is weakly strong monoidal: the comparison maps for the tensor
product are surjections; in other words for each X,Y ∈ V0 the function V0(I,X) ×
V0(I, Y ) → V0(I,X ⊗ Y ), sending (x, y) to x⊗ y, is a surjection.

Remark 3.1.1. Note that condition (a) is equivalent to the fact that V0(I,−) preserves
cocones which are jointly a regular epimorphism; or even to the request that I is regular
projective and V0(I,−) weakly preserve coproducts. Therefore (a) is certainly satisfied
whenever V0(I,−) preserves coproducts and regular epimorphisms, and in particular when
it is cocontinuous (most of our examples). Condition (b) comes for free when V0(I,−) is
strong monoidal (most of our examples), and in particular when V0 is endowed with the
cartesian closed structure.

Remark 3.1.2. In condition (b) it might be natural to ask for the map 1I : 1 → V0(I, I)
to be an epimorphism as well (and hence bijective), but it is not required for the results
below. Nonetheless, this condition is satisfied for almost all our examples.

Examples 3.1.3. Here is a list of examples of such bases of enrichment. In the following
group each base V is endowed with the cartesian structure and V0(I,−) is cocontinuous:

1. (Set,×, 1) for ordinary categories.

2. (Cat,×, 1) for 2-categories.

3. (SSet,×, 1) for simplicial categories.

4. (2,×, 1) for posets.

5. The categories Gpd of groupoids, Ord of total orders, Pos of posets, and rGra of
reflexive graphs with their cartesian closed structures.

6. Any presheaf category ([Cop,Set],×, 1) for which C has a terminal object: the unit
1 is representable in [Cop,Set] and hence homming out of it preserves all colimits.

7. (2-CatQ,×, 1) the cartesian closed category of algebraically cofibrant 2-categories,
see [27]. This base is locally presentable and the forgetful V : 2-CatQ → 2-Cat is
a faithful left adjoint and is full on morphisms out of the terminal object, so that
2-CatQ(1,−) ∼= 2-Cat(1, V−) is cocontinuous.

The following are examples of bases for which V0(I,−) is cocontinuous and strong monoidal
but the monoidal structure is not (necessarily) cartesian:

8. (V-Cat,⊗, I) with the tensor product inherited from V, whenever V0 is locally pre-
sentable: V-Cat is locally presentable by [58], and V-Cat(I,−) ∼= Ob(−) is the
functor that takes the underlying objects of a category; therefore it is cocontinuous
and strong monoidal (Ob(A⊗ B) = Ob(A)×Ob(B)).
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9. (2-Cat,□, 1) with the “funny tensor product” [96, Section 2]: same reasons as above.

10. (2-Cat,⊠, 1) with the pseudo Gray tensor product: same reasons as above (see [96,
Section 6]).

11. (Met,⊗, 1) of Lawvere metric spaces (see [3] and [72]).

In the next example the monoidal structure is not cartesian, the unit is not the terminal
object, and V0(I,−) is only weakly cocontinuous and weakly strong monoidal:

12. (Set∗,∧, I) the category of pointed sets endowed with the smash product. This is
locally presentable being the co-slice 1/Set. Since the unit is given by the pointed set
I = ({0, 1}, 0), it follows that the functor U := Set∗(I,−) : Set∗ → Set is just the
underlying set functor. Note now that the tensor product (A, a)∧(B, b) is defined as a
quotient of the set A×B; thus U is weakly strong monoidal but not strong monoidal,
nor does it preserve the unit. Moreover, it is easy to see that epimorphisms in Set∗
are just surjections, and that the coproduct of a family (Ai, ai)i∈I is the quotient of∑

i∈I Ai obtained identifying all he ai’s. As a consequence the functor U preserves
all regular epimorphisms and weakly preserves all coproducts, but does not preserve
coproducts in the usual sense.

Remark 3.1.4. The last example can be generalized as follows. Assume that V = (V0,⊗, I)
satisfies the conditions (a) and (b) above. Then 1/V0 is still locally presentable and
symmetric monoidal closed with monoidal structure given by the smash product ∧ induced
by the tensor product on V (see for example [40, Lemma 4.20]); moreover the forgetful
functor U : 1/V0 → V0 is monoidal and has a strong monoidal left adjoint F . Note now
that, since the unit of 1/V is FI, the functor (1/V0)(FI,−) ∼= V0(I, U−) weakly preserves
the same colimits that both U and V0(I,−) weakly preserves. Since the comparison map
UX ⊗UY → U(X ∧Y ) is a regular epimorphism in V0 (by construction) and U is weakly
cocontinuous, it follows that (1/V0)(FI,−) is weakly cocontinuous and weakly strong
monoidal as well. In conclusion 1/V = (1/V0,∧, F I) still satisfies the conditions (a) and
(b).

The following is an easy consequence of the two conditions above, but is also the foun-
dation of the results of this section.

Lemma 3.1.5. Let M : Cop → V and H : C → V be two V-functors. Then for each arrow
x : I →M ∗H there exist C ∈ C, y : I →MC, and z : I → HC for which the triangle

MC ⊗HCI

M ∗H

y ⊗ z

ρCx

commutes; where the vertical map is taken from the colimiting cocone defining M ∗H.

Proof. The counit of a colimit M ∗H determines a family

(ρC : MC ⊗HC −→M ∗H)C∈C

which is jointly a regular epimorphism in V0. Since V0(I,−) preserves such families it
follows that x factors through ρC via a map h : I →MC ⊗HC, for some C ∈ C. Finally,
by condition (2) on the unit, h = y ⊗ z for some y : I →MC and z : I → HC. The claim
then follows.
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Remark 3.1.6. Given a pair M : Cop → V and H : C → V, we can consider the weighted
colimit M ∗H in V and the ordinary weighted colimit MI ∗HI in Set. Note that there is
always a comparison map

c : MI ∗HI −→ V0(I,M ∗H).

It is easy to see that if conditions (1) and (2) hold then the map c is a surjection (use
the Lemma above); thus in a certain sense the functor V0(I,−) weakly preserves weighted
colimits — this can be made precise using change of base for composition of profunctors.
When V0(I,−) is moreover cocontinuous and strong monoidal the comparison map c is
actually an isomorphism: V0(I,M ∗H) ∼=MI∗HI (this is a general fact about cocontinuous
functors and strong monoidal change of base).

The following is a generalization of [57, Proposition 6.6] to our context; the proof is very
similar to that and is based on the lemma above.

Corollary 3.1.7. Let M : Cop → V be a weight for which M ∗ − : [C,V] → V preserves
α-small conical limits of representables and let MI := V0(I,M0−) : Cop

0 → Set; then the
ordinary category El(MI) is α-filtered, and so MI is α-flat.

Proof. Let B be an α-small category and H : B → El(MI) be a functor; we need to prove
that H has a cocone in El(MI). Denote by π : El(MI) → C0 the projection; then H induces

a cone (I
Hb−→M(πHb))b∈B, which is the same as an arrow

x : I −→ lim
b∈B

M(πHb).

Now, since M ∗ − preserves α-small limits of representables, we obtain the following
isomorphisms

lim
b∈B

M(πHb) ∼= lim
b∈B

(M ∗ C(πHb,−)) ∼=M ∗ (lim
b∈B

C(πHb,−)).

Therefore, by the previous Lemma, there exist C ∈ C, y : I →MC, and z : I → lim C(πH−, C)
which map down to x when taking the colimit. Note now that to give z is the same as to
give a cone ∆I → C(πH−, C), which then corresponds to a cocone (ηb : πHb → C)b∈B in
C. Finally the fact that y ⊗ z gets mapped down to x means that η is actually a cocone
(ηb : Hb→ (C, y))b∈B in El(MI).

This shows that in the current setting condition (I) from the Introduction holds. Next
we turn to (II) — such an M is actually an α-filtered colimit of representables — but for
that we need some work.

Definition 3.1.8. Let h : Y → X be a morphism in V. Denote by 2Y the V-category
with two objects ∗1 and ∗2, and with hom-objects 2Y (∗i, ∗i) = I, 2Y (∗2, ∗1) = 0, and
2Y (∗1, ∗2) = Y . Let Nh : 2Y → V be the weight for which Nh(∗1) = I, Nh(∗2) = X and
determined on the hom-objects by (Nh)∗1,∗2 = h.
When h is the co-diagonal ∇ : X +X → X we write NX for N∇.

Note that, when X and Y are α-presentable, the weight Nh is α-small.

Example 3.1.9. When V = Cat and h : 22 → 2 is the projection from the free category
on a parallel pair to 2, then limits weighted by Nh correspond to equifiers (see [61]).
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Consider the case of NX . To give a diagram H : 2X+X → K is the same as to give two
objects D1, D2 and arrows g1, g2 : X → K(D1, D2). In that case, if K has enough limits,
{NX , H} can be seen as the equalizer:

{NX , H} D1 X ⋔ D2

gt1

gt2

where gt1 and gt2 are the transposes of g1 and g2. When K = V, to give an arrow I →
{NX , H} is then equivalent to giving x : I → D1 for which the diagram

X

[D1, D2]⊗D1

[D1, D2]⊗D1

D2

g1 ⊗ x

g2 ⊗ x ev

ev

commutes. We are now ready to prove the following:

Proposition 3.1.10. Let M : Cop → V be a weight for which M ∗− : [C,V] → V preserves
α-small limits of representables. Then

M ∼= colim
(
El(MI)V

πV−→ C Y−→ [Cop,V]
)

and so M is an α-filtered colimit of representables.

Proof. The category El(MI) is α-filtered by Corollary 3.1.7; thus we only need to prove
that the canonical map colim(Y ◦ πV) → M is invertible. Since colimits are computed
pointwise it is enough to show that the canonical map c : colim C(C, πV−) → M(C) is
invertible for any C ∈ C.
Consider now a strong generator G of V made of α-presentable objects; then the mor-

phism c above is invertible if and only if V0(X, c) is invertible for any X ∈ G. Since every
object of G is α-presentable and El(MI) is α-filtered, the functor V0(X,−) preserves the
colimit colim C(C, πV−). Therefore it suffices to show that the canonical map

cX : colim

(
El(MI)

π
−−→ Cop

0

V0(X,C(C,−)0)

−−−−−−−−−→ Set

)
−→ V0(X,M(C))

is an isomorphism for any X ∈ G. Below we are going to consider the elements of the
colimit on the left as equivalence classes defined in the standard way.
Consider f : X →MC; then, since X-powers are α-small limits, we have

V0(X,M(C)) ∼= V0(I, [X,M(C)]) ∼= V0(I,M ∗ (X ⋔ C(C,−)));

by Lemma 3.1.5 we find D ∈ C, x : I → MD, and g : X → C(C,D) such that f coincides
with

X
g⊗x

−−−−→ C(C,D)⊗MD
M⊗id
−−−−→ [MD,MC]⊗MD

ev−→MC.

In other words cX [g, x] = f , so that cX is surjective. To prove the injectivity of cX we
need the α-small weight NX introduced in Definition 3.1.8. Consider gi : X → C(C,Di)
and xi : I → MDi, for i = 1, 2, such that cX [g1, x1] = cX [g2, x2]; we need to prove that
[g1, x1] = [g1, x1]. First, since El(MI) is filtered we can assume that D = D1 = D2 and
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x = x1 = x2. Now g1, g2 : X → C(C,D) determine a diagram H : 2X+X → C, and x
corresponds to an arrow x̄ : I → {NX ,MH} (see comments above). SinceM ∗− preserves
α-small limits of representables we obtain

{NX ,MHop} ∼= {NX ,M ∗ Y H} ∼=M ∗ {NX , Y H};

then, using Lemma 3.1.5 again, we find that x̄ factors through y : I → ME and h ∈
C0(D,E), for some E ∈ C. This means that M(h)y = x and C(C, h) ◦ g1 = C(C, h) ◦ g2.
Thus [g1, x1] = [g1, x1] as desired and cX is an isomorphism.

Remark 3.1.11. When V0(I,−) is cocontinuous and strong monoidal, as in most of the
examples, the proof becomes simpler. Consider any α-presentable X in V0; then

V0(X,M(C)) ∼= V0(I, [X,M ∗ C(C,−)])
∼= V0(I,M ∗ (X ⋔ C(C,−)))
∼=MI ∗ (X ⋔ C(C,−)I)
∼=MI ∗ V0(X, C(C,−)0)

∼= colim

(
El(MI)

π
−−−→ C0

C(C,−)0
−−−−→ V0

V0(X,−)

−−−−→ Set

)

∼= V0

(
X, colim

(
El(MI)

M
−−−→ Cop

0

C(C,−)0
−−−−→ V0

))
.

Since the α-presentable objects form a strongly generating family the result follows.

Recall that we assume V to satisfy the conditions (a) and (b) from the beginning of this
section; in this context we can characterize the α-flat V-functors as follows:

Proposition 3.1.12. Let M : Cop → V be a weight; the following are equivalent:

1. M is α-flat;

2. M ∗ − : [C,V] → V preserves α-small limits of representables;

3. M is a (conical) α-filtered colimit of representables.

Proof. (1) ⇒ (2) is trivial, (2) ⇒ (3) is a direct consequence of the previous Proposition,
while (3) ⇒ (1) follows from the fact that representable functors are α-flat and these are
closed under α-filtered colimits in [C,V].

And as a consequence:

Theorem 3.1.13. A V-category A has α-flat colimits if and only if it has α-filtered col-
imits. A V-functor from such an A preserves α-flat colimits if and only if it preserves
α-filtered colimits.

Proof. One direction is trivial. Conversely assume that A has all α-filtered colimits and
let M : Cop → V be an α-flat weight. By Proposition 3.1.12 we can write M ∼= colim(Y K)
where Y : C → [Cop,V] is Yoneda and K : DV → C in indexed on an α-filtered category D.
Therefore, given any H : C → A, we obtain a chain of isomorphisms (either side existing
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if the other does):

M ∗H ∼= (colimY K) ∗H
∼= colim(Y K ∗H)
∼= colim(HK).

Thus the M ∗ H exists since A has α-filtered colimits. For the same reason a functor
F : A → K preserves M ∗H if and only if it preserves colim(HK).

Theorem 3.1.14. A V-category A is α-accessible if and only if it is conically α-accessible.

Proof. By the theorem above an object A of A is α-presentable if and only if is conically
α-presentable, so that Aα = Ac

α. Arguing as above, for any α-flat M : Cop → V and
a diagram H : C → Aα ⊆ A, the colimit M ∗ H can be replaced by an α-filtered one
colim(HK), which still lands in Aα. Thus an object is an α-flat colimit of α-presentables
if and only if it is an α-filtered colimit of (conically) α-presentables. The result then
follows.

We considered a notion of enriched sketch in Section 2.2.1; there we proved that being
accessible is equivalent to being the V-category of models of a sketch (Theorem 2.2.4).
Putting this together with our result above we obtain:

Theorem 3.1.15. Let A be a V-category; the following are equivalent:

1. A is accessible;

2. A is conically accessible;

3. A is equivalent to the V-category of models of a sketch.

Remark 3.1.16. The paper [20] contains some powerful techniques for proving that a wide
range of 2-categories of categories with structure are conically accessible as Cat-enriched
categories; the structures in question should contain “no equations between objects”, and
the morphisms are functors which preserve the structure up to coherent isomorphism. One
typical example is the 2-category of monoidal categories, strong monoidal functors, and
monoidal natural transformations; another is the 2-category of regular categories, regular
functors, and natural transformations. In [22], it was shown how to adapt these techniques
to the simplicially enriched case, and in particular to show that most of the key examples
of ∞-cosmoi studied in [89] are conically accessible as SSet-enriched categories. By the
results proved here, these conically accessible Cat-enriched or SSet-enriched categories
are in fact accessible; thus they are also sketchable, and the whole theory of enriched
accessible categories applies. This in turn allows us, for example, to consider models of
the corresponding enriched sketches in other (suitable) enriched categories than V, and
deduce the accessibility of the resulting enriched categories of models.

Corollary 3.1.17. A V-category is Cauchy complete if and only if idempotents split.

Proof. If C is Cauchy complete as a V-category then it certainly has splittings of idempo-
tents. Conversely, if C has splittings of idempotents then it has all those conical colimits
indexed on ordinary absolute diagrams. Let M : Bop → V be a Cauchy weight; this means
that M is α-flat for each α. By Proposition 3.1.10 the ordinary category El(MI) is then
α-filtered for each α, and hence absolute in the ordinary sense. Arguing as above, M -
weighted colimits in C can be reduced to conical colimits indexed on El(MI). It follows
then that C has M -weighted colimits and therefore is Cauchy complete.



3.1 When flat equals filtered 61

Remark 3.1.18. When V0(I,−) is strong monoidal, the result above is given by [79, Propo-
sition 3.2].

3.1.1 The cartesian closed case

We now give a more explicit characterization of α-flat V-functors in the case where V0

is endowed with the cartesian monoidal structure and satisfies condition (a) from before
(condition (b) is automatic).
In this case, for eachX ∈ V0 the functor V0(X,−) is (strong) monoidal; therefore induces

a change of base 2-functor WX : V-Cat −→ Cat. Hence for every weight M : Cop → V we
obtain an ordinary functor

MX : WXCop
WXM
−−−−→ WXV

WXV(I,−)

−−−−−−→ Set

generalizing an earlier notation MI for V0(I,M0−) : Cop
0 → Set.

Remark 3.1.19. For each X ∈ V and M : Cop → V we consider the category of elements
El(MX); this can be described explicitly as follows:

• an object is a pair (C ∈ C, x : X →MC);

• a morphism f : (C, x) → (D, y) is an arrow f : X → C(C,D) for which the triangle

C(C,D)×M(D)X

M(C)

(f, y)

evMx

commutes (remember that M is contravariant);

• for each (C, x) the identity is given by id(C,x) : X
!→ 1

1C−→ C(C,C);

• composition is as follows: given f : (C, x) → (D, y) and g : (D, y) → (E, z) the
composite g ◦ f is

X
(g,f)

−−−−→ C(D,E)× C(C,D)
M
−−→ C(C,E)

where M is the composition map in C.

Note that El(MX) is not in general El(V0(X,M0−)): they have same objects but a
morphism in El(V0(X,M0−)) from (C, x) to (D, y) is a morphism 1 → C(C,D) such that
the induced X → 1 → C(C,D) defines a morphism in El(MX). Finally observe that for
each X there is an induced functor

JX : El(M1) −→ El(MX)

which acts by precomposition with the unique morphism ! : X → 1.

Proposition 3.1.20. Let V = (V0,×, 1) be as above and G ⊆ Vα a strong generator. A
V-functor M : Cop → V is α-flat if and only if:

1. El(M1) is α-filtered;
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2. for each X ∈ G the functor JX : El(M1) −→ El(MX) is final.

Proof. By Propositions 3.1.10 and 3.1.12 above, M is α-flat if and only if El(M1) is α-
filtered and for any C ∈ C the following isomorphism holds

M(C) ∼= colim

(
El(M1)

π
−−→ C0

C(C,−)0
−−−−→ V0

)
.

Equivalently, since G is a strong generator, M is α-flat if and only if El(M1) is α-filtered
and for any C ∈ C and X ∈ G we have

V0(X,M(C)) ∼= colim

(
El(M1)

π
−−→ C0

V0(X,C(C,−)0)

−−−−−−−−−→ Set

)
.

Bearing in mind that El(M1) is α-filtered, the isomorphism above holds if and only if for
all X ∈ G and C ∈ C:

• for any x : X →MC there exist D ∈ C, y : 1 →MD, and g : X → C(C,D) such that
x coincides with the composite

X
g×x

−−−−→ C(C,D)×MD
evM

−−−−→MC.

In other words, such that g defines a morphism (C, x) → JX(D, y) in El(MX).

• for any (y1, D1, g1) and (y2, D2, g2) as above there exist E ∈ C, z : 1 → ME, and
maps hi : Di → E such that MI(hi)(z) = xi and C(h1, C) ◦ g1 = C(h2, C) ◦ g2. In
other words, such that we have a commutative square

(C, x)

JX(D1, y1)

JX(D2, y2)

JX(E, z)

g1

g2 h1

h2

in El(MX).

These conditions are easily seen to be equivalent to (2).

As a consequence all the categories El(MX), for X ∈ G, are also α-filtered (see Re-
mark 1.3.3).

3.1.2 2-categories

We now further specialize to the case V = Cat and give a characterization of α-flat
2-functors in terms of a certain double category.

Definition 3.1.21 ([47]). Let M : Cop → Cat be a 2-functor. The double category of
elements El(M) of M is the one with:

• objects: pairs (C, x) with C ∈ C and x ∈M(C);

• horizontal arrows f : (C, x) → (D, y): morphisms f : C → D in C withM(f)(y) = x;
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• vertical arrows ξ : (C, x) •→ (C, x′): morphisms ξ : x→ x′ in M(C).

• double cells:

(C, x) (D, y)

• •⇓ α

(C, x′) (D, y′)

f

g

ξ µ

2-cells α : f ⇒ g in C for which M(α)(µ) = ξ.

Notation: Let D be a double category.

• We denote by H(D) the horizontal category of D; this has the same objects as D and
the horizontal arrows as morphisms.

• We denote by H1(D) the category with vertical arrows as objects and double cells
as morphisms, endowed with the horizontal composition of cells.

It follows that the horizontal categoryH(El(M)) of El(M) corresponds to El(M1), where
M1 := Cat0(1,M0−) : C0 → Set as usual. For any D there is a functor 1H : : H(D) →
H1(D) which sends an object D to the vertical identity D •→ D, and an arrow f : D → C
to the identity 2-cell 1f .

Definition 3.1.22. Let D be a double category; we say that the horizontal category H(D)
of D is final in D if the ordinary functor 1H : H(D) → H1(D) is final.

Remark 3.1.23. If H(D) is final in D, then double colimits indexed on D are the same as
ordinary colimits on H(D) in the following sense:
Let C be a 2-category and K : D → C a double functor (where C is seen as a double

category with identity vertical morphisms). Let K : H(D) → C be the induced horizontal
functor; then the double colimit of K exists in C if and only if the conical colimit of K
does so, and in that case they coincide.

Definition 3.1.24. We say that a double category D is α-filtered if the horizontal category
H(D) is α-filtered and final in D. Equivalently, D is α-filtered if and only if:

1. H(D) is α-filtered;

2. for any vertical morphism ξ : C •→ D there exists a square as below;

C B

• •⇓ α

D B

f

g

ξ id

3. for any pair of double cells α and β
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C B

• •⇓ α, β

D B

f

g

ξ id

there exists a horizontal arrow h : B → A such that αh = βh.

Proposition 3.1.25. Let C be a 2-category and M : C → Cat a 2-functor; the following
are equivalent:

1. M is α-flat;

2. the double category El(M) is α-filtered.

Proof. Note that, by Corollary 3.1.20 applied to the strong generator {2}, the 2-functorM
is α-flat if and only if El(M1) is α-filtered and the functor J : El(M1) −→ El(M2), induced
by precomposition with ! : 2 → 1, is final. But El(M1) = H(El(M)) is the underlying
category spanned by the horizontal arrows of El(M), and El(M2) = H1(El(M)) is the
ordinary category with vertical arrows as objects and double cells as morphisms. Under
this interpretation the functor J is the same as 1H : H(El(M)) → H1(El(M)); therefore
the result follows by the definition of α-filtered double category.

3.2 When flat equals filtered plus absolute

In Section 3.2.1 we briefly recall the notion of dualizable object, then in Section 3.2.2 we
introduce what we are calling the locally dualizable categories. Finally in Section 3.2.3 we
show that if V is locally dualizable then α-flat colimits are generated by absolute colimits
and the usual α-filtered ones. Key examples of locally dualizable categories can be found
in Example 3.2.7 below.

3.2.1 Dualizable objects

Definition 3.2.1. We say that an object P of V is dualizable if there exist P ∗ ∈ V and
morphisms ηP : I → P ⊗ P ∗ and ϵP : P ∗ ⊗ P → I, called unit and counit respectively,
satisfying the triangle equalities. In that case P ∗ is unique up to isomorphism and is
called the dual of P .

Note that the unit I is always dualizable and that if P is dualizable then P ∗ is too with
(P ∗)∗ ∼= P . When, as we assume here, V is symmetric monoidal closed, P is dualizable if
and only if there exists P ∗ ∈ V such that [P,−] ∼= P ∗ ⊗− : V0 → V0.
The following is a well-known result about powers and copowers by dualizable objects:

Proposition 3.2.2. Powers and copowers by dualizable objects are absolute; moreover for
any A ∈ A and any dualizable P we have P ⋔ A ∼= P ∗ ·A (either side existing if the other
does).

Proof. Let P be dualizable in V; then P⊗− ∼= [P ∗,−] is continuous and hence copowers by
P are dualizable by [59, Theorem 6.22]. About the last statement, consider the following
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isomorphisms natural in B ∈ A

A(B,P ⋔ A) ∼= [P,A(B,A)]
∼= P ∗ ⊗A(B,A)
∼= A(B,P ∗ ·A)

where the last isomorphism holds since copowers by P ∗ are absolute; therefore P ⋔ A ∼=
P ∗ ·A. Finally, powers by P are absolute because they are the same as copowers by P ∗.

3.2.2 Locally dualizable categories

We can now introduce the bases of enrichment considered in this section:

Definition 3.2.3. Let V = (V0,⊗, I) be a cocomplete symmetric monoidal closed cate-
gory; we say that V is locally dualizable if:

(a) V0 has finite direct sums;

(b) The unit I is regular projective and finitely presentable;

(c) V0 has a strong generator G made of dualizable objects;

(d) for every A,B ∈ V and every arrow z : I → A ⊗ B there exists a dualizable object
P ∈ V and maps x : P → A and y : P ∗ → B such that

P ⊗ P ∗I

A⊗B

ηP

x⊗ yz

commutes.

Notation: From now on we write simply x
P

⊗ y in place of the composite (x⊗ y) ◦ ηP ,
for any dualizable object P , x : P → A, and y : P ∗ → B. Note in particular that if P = I

then x
I

⊗ y is just x⊗ y up to the isomorphism I ⊗ I ∼= I.
By condition (a), we know in particular that V0 is the underlying category of a CMon-

enriched category V̄; this notation will also be used later on.
For every P ∈ G we have [P,−] ∼= P ∗ ⊗ −, so that [P,−] is cocontinuous and hence

V0(P,−) ∼= V0(I, [P,−]) is finitary and preserves regular epimorphisms. Therefore G is a
strong generator made of finitely presentable regular projective objects and V0 is hence
a finitary quasivariety [64, Definition 4.4], and in particular locally finitely presentable.
Moreover, for any P,Q ∈ G, the functor V0(P ⊗Q,−) ∼= V0(P, [Q,−]) is finitary and pre-
serves regular epimorphisms as well. This means that V is actually a symmetric monoidal
finitary quasivariety in the sense of [64, Definition 4.11], and in particular V is locally
finitely presentable as a closed category.

Proposition 3.2.4. Assume that V = (V0, I,⊗) satisfies the conditions (a), (b) and (c)
above. Then (d) holds if and only if:

(d∗) for every A,B ∈ V, any arrow z : I → A⊗B can be written as

z =
n∑

i=1
(xi

Pi

⊗ yi)
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for some Pi ∈ G, xi : Pi → A, and yi : P
∗
i → B.

When writing the sum above we are seeing V0 as the CMon-category V̄.

Proof. Fix A,B ∈ V and an arrow z : I → A ⊗ B. If (d∗) holds then it is enough to
consider P :=

⊕n
i=1 Pi, x :=

∑n
i=1 xi, and y :=

∑n
i=1 yi. Then P is still dualizable, with

dual P ∗ ∼=
⊕n

i=1 P
∗
i , and by construction x

P

⊗ y = z.
Conversely, assume that (d) holds. Since G is a strong generator made of finitely pre-

sentable and projective objects, and P is finitely presentable and regular projective as
well, we can find P1, . . . , Pn ∈ G and a split epimorphism q : Q :=

⊕n
i=1 Pi ↠ P , with

section s : P ↣ Q (see for example [64, Proposition 4.8.(4)]). It follows that the following
triangle commutes

Q⊗Q∗I

P ⊗ P ∗

ηQ

q ⊗ s∗ηP

in other words ηP = q
Q

⊗ s∗. Therefore z = x
P

⊗ y = (x ◦ q)
Q

⊗ (y ◦ s∗). Now it is enough
to define xi and yi as the i-th components of (x ◦ q) and (y ◦ s∗) respectively.

Remark 3.2.5. Assume that V satisfies conditions (a), (b), and (c). Define the map

qA,B :=
∑

(x
P

⊗ y) :
∑

(P,x : P→A,y : P ∗→B)

I −→ A⊗B.

It is then easy to see that V satisfies (d∗) if and only if V0(I, qA,B) is a surjection. It is
not true in general, not even for graded abelian groups, that the map qA,B is a regular
epimorphism in V0. What is true in some cases, which include graded abelian groups, is
that the following ∑

(P,Q,x : P→A,y : P ∗⊗Q→B)

Q −→ A⊗B

is a regular epimorphism in V0; where the component (P,Q, x, y) is given by the composite

Q ∼= I ⊗Q
iP−→ (P ⊗ P ∗)⊗Q ∼= P ⊗ (P ∗ ⊗Q)

x⊗y

−−−−→ A⊗B.

But condition (d) is all we need.

Proposition 3.2.6. Let V be locally dualizable with strong generator G, and let C be a
small compact closed V-category. Then W0 := [C,V]0, endowed with Day’s convolution as
tensor products, is locally dualizable with strong generator

G′ := {P · Y g | P ∈ G, g ∈ C},

where Y g = C(g,−).

Proof. The category W is symmetric monoidal closed and cocomplete by construction.
Observe that the unit of W0 is Y e = C(e,−), where e is the unit of C; this is regular
projective and finitely presentable because

W0(Y e,−) ∼= V0(I, [C,V](Y e,−)) ∼= V0(I, eve−)
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and the unit I of V is such. Moreover W has finite direct sums since V has them and the
representables have duals (Y g)∗ = Y (g∗). For each P ∈ G and A ∈ W we have

[C,V]0(P · Y g,A) ∼= V0(P, [C,V](Y g,A)) ∼= V0(P,A(g)).

In particular an arrow z : Y e → A⊗B in W corresponds to an arrow z̄ : I → (A⊗B)(e)
in V. Now note that by definition

(A⊗B)(e) ∼=
∫ g,h

C(g ⊗ h, e)⊗A(g)⊗B(h)

∼=
∫ g,h

C(h, g∗)⊗A(g)⊗B(h)

∼=
∫ g

A(g)⊗B(g∗)

and that moreover we have a regular epimorphism in V

∑
g
A(g)⊗B(g∗) ↠

∫ g

A(g)⊗B(g∗).

Since I is finitely presentable and projective, z̄ factors as a finite direct sum z̄ =
∑

i ȳi

for some ȳi : I → A(gi) ⊗ B(g∗i ); by hypothesis we have ȳi = x̄i
Pi

⊗ ȳi for some dualizable
Pi in V, x̄i : Pi → A(gi) and ȳi : P

∗
i → B(g∗i ). Let xi : Pi · Y gi → A and yi : (Pi · Y gi)∗ ∼=

(P ∗
i · Y (g∗i )) → B be the induced morphisms in W. Then

z =
∑
i
xi

Pi·Y gi

⊗ yi,

and therefore W is locally dualizable by Proposition 3.2.4 with strong generator G′ :=
{P · Y g | P ∈ G, g ∈ C}.

As a consequence, for any compact closed CMon-category C the presheaf category
[Cop,CMon] is locally dualizable with strong generator given by the representables.
All the examples below can be constructed as above starting from the first.

Examples 3.2.7.

• The symmetric monoidal category CMon of commutative monoids is locally dual-
izable with strong generator G = {N}.

• The symmetric monoidal category Ab of abelian groups; more generally the sym-
metric monoidal closed category R-Mod of modules over a commutative ring R with
G = {R}.

• The symmetric monoidal category G-Gr(R-Mod) of G-graded R-modules, for an
abelian group G and a commutative ring R, with G = {SgR}g∈G.

Proposition 3.2.8. Let V̄ be a cocomplete symmetric monoidal closed CMon-category;
then V is locally dualizable if and only if there exists a small compact closed G and a
monoidal adjunction

V̄ [Gop,CMon]⊥
U

F
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(where [Gop,CMon] has Day’s convolution as monoidal structure) with U a conservative,
filtered-colimit-preserving, and regular CMon-functor for which the comparison maps

UA⊗ UB → U(A⊗B)

are regular epimorphisms for any A,B ∈ V0. The last requirement is also equivalent to

UFX ⊗ UFY → UF (X ⊗ Y )

being regular epimorphisms for any X,Y ∈ [Gop,CMon].

Proof. Assume first that V is locally dualizable; as specified at the beginning we can
assume G to contain the unit and be closed in V0 under tensor product and duals. For
any P ∈ G the CMon-functor V̄(G,−) preserves finite direct sums, filtered colimits,
regular epimorphisms, and so also all coproducts. We can then consider the induced
CMon-functor U = V̄(G, 1) : V̄ −→ [Gop,CMon] which is then conservative, continuous,
and preserves filtered colimits, direct sums and regular epimorphism. Moreover, since
V0 is cocomplete, U has a left adjoint F which sends the representables to G. This is a
monoidal adjunction because F is strong monoidal: the restriction of F to Y G is strong
monoidal by construction (being isomorphic to the identity) and hence, since Y G generates
[Gop,CMon] under colimits, the tensor product is cocontinuous in each variable, and F
is itself cocontinuous, it follows that F is strong monoidal too. We are only left to show
that the comparisons UA ⊗ UB → U(A ⊗ B), induced by the monoidal structure on U ,
are regular epimorphisms in [Gop,CMon]. This will be the case if and only if, for each
G ∈ G, the map (UA⊗ UB)G → U(A⊗ B)G is a surjection (of monoids); that is, if and
only if the canonical map∫ P,H∈G

G(G,P ⊗H)⊗ V̄(P,A)⊗ V̄(H,B) −→ V̄(G,A⊗B)

is surjective. But G(G,P ⊗H) ∼= G(P ∗ ⊗G,H), so the coend on the left hand side can be
rewritten as ∫ P∈G

V̄(P,A)⊗ V̄(P ∗ ⊗G,B),

and this is covered by the coproduct of its components. As a consequence the morphism
(UA⊗ UB)G→ U(A⊗B)G is a regular epimorphism if and only if the induced map∑

P∈G
V̄(P,A)⊗ V̄(P ∗ ⊗G,B) −→ V̄(G,A⊗B)

is surjective. For that, given any G ∈ G and a map f : G→ A⊗B, we can transpose f to

obtain f t : I → A⊗ (B⊗G∗). By hypothesis this can be expressed as f t =
∑n

i=1(xi
Pi

⊗ yti)
for some Pi ∈ G, xi : Pi → A and yti : P

∗
i → B ⊗G∗. Transposing again we can then write

f =
n∑

i=1
(xi ⊗ yi) ◦ (ηPi ⊗G)

where yi : P
∗
i ⊗G→ B is the transpose of yti , and iPi⊗G : G→ (Pi⊗P ∗

i )⊗G ∼= Pi⊗(P ∗
i ⊗G).

This proves that the desired map is a surjection of monoids.
Assume conversely that we have such an adjunction. V0 has direct sums by hypoth-

esis. Denote by G(−, J) the unit of [Gop,CMon]; then I ∼= FG(−, J) and V0(I,−) ∼=
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CMon(N, evJU−) preserves filtered colimits and regular epimorphisms because U does.
Moreover, since F is strong monoidal the image FG of the representables under F con-
sists of dualizable objects; these form a strong generator of V0 since U is conservative
and G is a strong generator of [Gop,CMon]. It remains to check property (d∗). Consider
z : I → A ⊗ B, since I ∼= FG(−, J) this corresponds to a map zt : G(−, J) → U(A ⊗ B).
By hypothesis the comparison UA ⊗ UB → U(A ⊗ B) is a regular epimorphism; thus
zt factors through it (since representables are projective), giving a map z′ : G(−, J) →
UA ⊗ UB. Since [Gop,CMon] is locally dualizable with strong generator given by the

representables it follows that z′ =
∑n

i=1(x
t
i

Pi

⊗ yti) for some Pi ∈ G, xti : G(−, Pi) → UA
and yti : G(−, Pi)

∗ → UB. Transposing again through the adjunction we obtain maps

xi : FG(−, Pi) → A and yi : FG(−, Pi)
∗ → B for which z =

∑n
i=1(xi

Pi

⊗ yi). Therefore V0

is locally dualizable.
The last part of the statement is an easy consequence of the fact that whenever U is

conservative the counit of the adjunction is pointwise a strong epimorphism and in CMon
strong and regular epimorphisms coincide.

Remark 3.2.9. When V0 is exact this adjunction is monadic by Duskin’s monadicity the-
orem [8, Theorem 9.1.3].

An immediate consequence is:

Proposition 3.2.10. Let V = (V0,⊗, I) be locally dualizable and W̄ be a symmetric
monoidal closed CMon-category together with a monoidal CMon-adjunction

W̄ V̄⊥
U

F

with U a conservative, filtered colimit and regular epimorphism preserving V-functor for
which the comparison maps UA ⊗ UB → U(A ⊗ B) are regular epimorphisms. Then W
is locally dualizable.

Remark 3.2.11. As a final observation before the next step take two V-functors M : Cop →
V and H : C → V, where C has G-copowers. Consider any P ∈ G, C ∈ C, and maps
x : P →MC and y : P ∗ → HC. Since P ∼= I⊗P we can consider the transposes of x to get
a map I → [P,MC] which, sinceM preserves such powers (being absolute), corresponds to
a map x′ : I →M(P ·C). Similarly, y corresponds to a morphism I → [P ∗, HC] ∼= P⊗HC
which, since H preserves such copowers, is the same as a map y′ : I → H(P · C). Then it
is easy to see that the square below commutes.

I

M(C)⊗HC M(P · C)⊗H(P · C)

M ∗H

x
P

⊗ y x′ ⊗ y′

qC qP ·C
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3.2.3 The characterization theorem

We are now ready to prove our results starting with an adapted version of Lemma 3.1.5.
For the remainder of this section V is assumed to be locally dualizable.

Lemma 3.2.12. Let C be a V-category with finite direct sums and G-copowers. Let
M : Cop → V and H : C → V be two V-functors. Then for each arrow x : I → M ∗ H
there exist C ∈ C, y : I →MC, and z : I → HC for which the triangle

MC ⊗HCI

M ∗H

y ⊗ z

ρCx

commutes, where the vertical map is taken from the colimiting cocone defining M ∗H.

Proof. The weighted colimit M ∗ H can be seen as a coend; hence we have a regular
epimorphism in V0

∑
C∈C

MC ⊗HC
ρ−→
∫ C∈C

MC ⊗HC ∼=M ∗H.

Since V̄(I,−) preserves regular epimorphisms and coproducts it follows that x factors
through an element h ∈

∑
C∈C V̄(I,MC ⊗ HC) in CMon. Such an element is given by

h =
∑n

i=1 hi with h : I → MDi ⊗ HDi (by definition of coproduct in CMon). By the

hypotheses on V we can write each hi as a finite direct sum of elements of the form y′j
Pj

⊗ z′j ,
for y′j : Pj → M(Di) and z′j : P

∗
j → H(Di). In other words, relabelling the objects and

the morphisms, we can write h =
∑n

j=1(y
′
j

Pj

⊗ z′j) for some Pj ∈ P, y′j : Pj → M(Dj), and

z′j : P
∗
j → H(Dj).

Remember now that powers by Pi and P ∗
i are absolute, it then follows that each y′j

corresponds by transposition to yj : I → M(Pj ·Dj), since M is contravariant, and each
z′j corresponds to zj : I → H(Pj ·Dj). Therefore

x = ρ(h) = ρ(
n∑

j=1
y′j

Pj

⊗ z′j) =
n∑

j=1
ρ(y′j

Pj

⊗ z′j) =
n∑

j=1
ρ(yj ⊗ zj)

as an element of V̄(I,M ∗ H), where the last equality holds thanks to Remark 3.2.11.
Consider then the object of C given by

C :=
n⊕

j=1

Pj ·Dj ;

we can define y :=
∑n

j=1 yj : I → M(C) and z :=
∑n

j=1 zj : I → H(C) so that by con-
struction we have

ρ(y ⊗ z) =
n∑

j=1
ρ(yj ⊗ zj) = x

as desired.

With the same hypotheses as in the Lemma above we can reduce flat colimits to filtered
colimits, giving (under assumptions on C) a proof of condition (I) from the introduction
to the chapter.
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Corollary 3.2.13. Let C be a V-category with finite direct sums and G-copowers. Let
M : Cop → V be a V-functor for which M ∗ − : [C,V] → V preserves α-small conical limits
of representables, and define MI := V0(I,M0−) : Cop

0 −→ Set as usual. Then the ordinary
category El(MI) is α-filtered, and so MI is α-flat.

Proof. Using the Lemma above the proof is exactly the same as that of Corollary 3.1.7.

As a consequence we obtain the following proposition, showing that (II) also holds under
these conditions.

Proposition 3.2.14. Let C be a V-category with finite direct sums and G-copowers, and
let M : Cop → V be a V-functor. The following are equivalent:

1. M is α-flat;

2. M ∗ − : [C,V] → V preserves α-small conical limits of representables;

3. El(MI) is α-filtered;

4. M is an α-filtered colimit of representables.

Moreover, in this case the canonical map:

colim
(
El(MI)V

πV−→ C Y−→ [Cop,V]
)
−→M

is invertible.

Proof. (1) ⇒ (2) is trivial, (2) ⇒ (3) is true by the Corollary above, while (4) ⇒ (1)
follows from the fact that representables V-functors are α-flat and the α-flat V-functors
are closed under α-filtered colimits in [Cop,V].
It only remains to show (3) ⇒ (4). Since the category of elements is α-filtered, we

only need to prove that the isomorphism in the statement holds. Colimits are computed
pointwise in [Cop,V]; thus it is enough to show that the canonical map

colim

(
El(MI)V

πV
−−−→ C

C(C,−)

−−−−→ V

)
−→M(C)

is invertible for any C ∈ C. For that consider the strong generator G; we know that G-
powers are absolute and that G consists of finitely presentable objects in V0. Moreover the
ordinary functor MI = V0(I,M0−) is the colimit of the corresponding ordinary diagram
based on El(MI). Thus for each P ∈ G we can write

V0(P,M(C)) ∼= V0(I, [P,M(C)])
∼= V0(I,M(P · C))
∼=MI(P · C)
∼= colim

(x,D)∈El(MI)
C0(P · C,D)

∼= colim
(x,D)∈El(MI)

V0(I, C(P · C,D))

∼= colim
(x,D)∈El(MI)

V0(I, [P, C(C,D)])

∼= colim
(x,D)∈El(MI)

V0(P, C(C,D))

∼= V0(P, colim
(x,D)∈El(MI)

C(C,D)).
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As a consequence, since the family G is strongly generating, it follows at once thatM(C) ∼=
colim C(C, πV−) as desired.

Remark 3.2.15. When α = ℵ0 it is enough to ask that M ∗ − preserve equalizers, since it
already preserves finite products (being direct sums). Moreover, for V = Ab and α = ℵ0

this is Theorem 3.2 of [81].

Therefore we obtain a characterization of α-flat V-functors in general:

Proposition 3.2.16. Let M : Cop → V be a V-functor; the following are equivalent:

1. M is α-flat, or equivalently M ∗ − : [C,V] → V preserves α-small limits;

2. M ∗ − : [C,V] → V preserves α-small limits of representables;

3. M lies in the closure of the representables under G-copowers, finite direct sums, and
α-filtered colimits.

Proof. (1) ⇒ (2) is trivial, while (3) ⇒ (1) follows from the fact that representables
functors are α-flat and these are closed under α-filtered and absolute colimits in [C,V].
(2) ⇒ (3). LetM : Cop → V be as in (2) and J : C ↪→ D be the inclusion of C into its free

completion under finite direct sums and G-copowers. Consider the weightM ′ := LanJopM ,
this still has the property that M ′ ∗ − : [D,V] → V preserves α-small conical limits of
representables: since finite direct sums and G-copowers are α-small, the limit of any α-
small diagram landing in Dop can be rewritten as the weighted limit of one landing in Cop;
thus M ′ ∗ − preserves α-small conical limits of representables by condition (2). Now the
domain of M ′ : Dop → V satisfies the conditions of Proposition 3.2.14, therefore we can
write M ′ ∼= colim(Y K) with K : BV → D an α-filtered diagram, and Y : D → [Dop,V] the
Yoneda embedding. Then one concludes since each element of D is a finite direct sum of
G-copowers of objects from C.

Examples 3.2.17.

• For V = Ab and α = ℵ0 we recover the characterization of flat additive functors
from [81, Theorem 3.2].

• When V = GAb we obtain that a V-functor is flat if and only if it is a filtered
colimit of suspensions of finite direct sums of representables.

• When V = R-Mod, α = ℵ0, and C = I we recover Lazard’s criterion [71]: an
R-module is flat if and only if it is a filtered colimit of free modules.

This allows us to characterize α-flat colimits in terms of absolute and α-filtered ones.

Theorem 3.2.18. A V-category A has α-flat colimits if and only if it has finite direct
sums, G-copowers and α-filtered colimits. A V-functor from such an A preserves α-flat
colimits if and only if it preserves α-filtered colimits.

Proof. Since α-filtered colimits and absolute colimits are α-flat, any V-category A with
α-flat colimits has all of them.
Vice versa, assume thatA has the colimits above and consider an α-flat weightM : Cop →

V together with a diagram H : C → A in A. Let J : C ↪→ D be the inclusion of C into
its free cocompletion under finite direct sums and G-copowers. Since A has these colimits
we can consider H ′ := LanJH, while on the weighted side we take M ′ := LanJopM . By
Lemma 1.3.2 the weight M ′ is still α-flat and, by construction, its domain satisfies the
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hypotheses of Proposition 3.2.14. Thus we can write M ′ ∼= colimY F as an α-filtered
colimit of representables; here Y : D → [Dop,V] is Yoneda and F : BV → D is a functor
with α-filtered domain. As a consequence M ∗H exists if and only if M ′ ∗H ′ exists, and
so if and only if colim(H ′F ) exists (see the isomorphisms in the proof of 3.1.13) and they
coincide. Thus the existence and preservation of the α-flat colimit M ∗H is equivalent to
the existence and preservation of the α-filtered colimit colimH ′F .

Therefore:

Theorem 3.2.19. A V-category A is α-accessible if and only if it has finite direct sums
and G-copowers, and is conically α-accessible.

Proof. By Theorem 3.2.18 above an object A of A is α-presentable if and only if is conically
α-presentable, so that Aα = Ac

α. Arguing as above, for any α-flat M : Cop → V and
diagram H : C → Aα ⊆ A, the colimit M ∗ H can be replaced by an α-filtered one
colim(H ′F ), where H ′ is the left Kan extension of H along the free cocompletion D of C
under finite direct sums and G-copowers, and F : BV → D has α-filtered domain. Then
H ′F : BV → A still lands in Aα since this is closed in A under finite direct sums and
G-copowers. Thus an object of A is an α-flat colimit of α-presentables if and only if it is
an α-filtered colimit of (conically) α-presentables. The result then follows.

Remark 3.2.20. For V = Ab and α = ℵ0 see Example 9.2 of [18].

Once more, using Theorem 3.2.19 and Theorem 2.2.4, we can compare conical accessible
V-categories and models of sketches as follows:

Theorem 3.2.21. Let A be a V-category; the following are equivalent:

1. A is accessible;

2. A has finite direct sums and G-copowers, and is conically accessible;

3. A is equivalent to the V-category of models of a sketch.

As a direct consequence we characterize the Cauchy complete V-categories.

Corollary 3.2.22. Let C be a V-category; the following are equivalent:

1. C is Cauchy complete;

2. C has finite direct sums, copowers (and hence powers) by dualizable objects, and
splitting idempotents;

3. C has finite direct sums, G-copowers, and splitting of idempotents.

Proof. (1) ⇒ (2) ⇒ (3) are trivial, and (3) ⇒ (1) is a consequence of Theorem 3.2.18,
using the fact that an absolute weight is one that is α-flat for any α.

For the next result consider the set ⟨G⟩ given by the closure of G ∪ {I} under tensor
product.

Proposition 3.2.23. Let C be any small V-category. A weight M : Cop → V is absolute if
and only if there exist objects C1, . . . , Cn ∈ C and P1, . . . .Pn ∈ ⟨G⟩ such that M is a split
subobject of

n⊕
i=1

Pi · C(−, Ci).
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Proof. If the latter holds then M is an absolute colimit of absolute weights; thus it is
absolute itself.
Assume now that M is absolute. Let D be the full subcategory of [Cop,V] spanned by

the finite direct sums of ⟨G⟩-copowers of representables; denote by J : C ↪→ D and note
that D is closed in [Cop,V] under finite direct sums and G-copowers. Consider now M ′ :=
LanJop(M); then by Lemma 1.3.2 the weight M ′ is still absolute and, by construction, its
domain satisfies the hypotheses of Proposition 3.2.14. It follows thatM ′, seen in [Dop,V]0 is
an ordinary absolute colimit of representables; thereforeM ′ is a split subobject of D(−, D)
for some D ∈ D. As a consequence M ∼=M ′ ◦ Jop is a split subobject of D(J−, D). Now,
by construction of D, the object D can be written as

∑n
i=1(Pi · JCi) for some Ci ∈ C and

Pi ∈ ⟨G⟩. Therefore D(J−, D) ∼=
∑n

i=1 Pi · C(−, Ci) and the result follows.

Remark 3.2.24. If we consider V = GAb we recover the results of section 6 from [80].
In fact we can consider G = {SnI}n∈Z given by the suspensions of the unit. Then the
proposition above is [80, Proposition 6.1] and Corollary 3.2.22 is [80, Proposition 6.2].

3.3 Flat does not equal filtered plus absolute in general

In this section we consider the base of enrichment to be the cartesian closed category
V = SetG of G-sets, for a non-trivial finite group G. We will prove that in this case
the flat V-functors do not lie in the closure of representable functors under absolute and
filtered colimits.
First of all note that we have an adjunction

SetG Set⊥
U

F

where U = SetG(G,−) takes the underlying sets, F = G × − sends a set A to the G-set
G × A with the free action, and we are denoting with G ∈ SetG also the representable
functor corresponding to the only object of the group G. Note that U is conservative,
continuous, cocontinuous, strong monoidal, and strong closed.
The object G is finitely presentable and a strong generator for SetG; moreover the

functors SetG(1,−) and SetG(G × G,−) ∼= Set(G,U−) are finitary (since G is finite).
Therefore SetG is locally finitely presentable as a closed category.
Since U is strong monoidal it follows that there is an induced 2-functor:

U∗ : V-Cat −→ Cat

and a V-functor Û = (U∗V)(1,−) : U∗V → Set which acts as U on objects. Now, for each
V-weight M : Cop → V we can define

MU : U∗Cop
U∗M
−−−→ U∗V

Û
−−→ Set.

Since U is moreover cocontinuous it follows that for any V-category C, any M : Cop → V
and H : C → V, we have an isomorphism

U(M ∗H) ∼=MU ∗HU

where the colimit on the right is an ordinary weighted colimit. See also Section 3.4.1 for
related properties about change of base.
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Note that to give a V-category C is equivalently to give an ordinary category C whose
homs are endowed with group actions G×C(A,B) → C(A,B) for which the identities are
fixed points and the composition maps are equivariant. It follows that U∗C is the same as
C with the only difference being that the group actions on the homs are forgotten. The
category U∗C should not be mistaken with the underlying category C0 of C which has homs
C0(A,B) = Fix C(A,B) given by the fixed points of the action on C(A,B).
Let us start with a result comparing enriched and ordinary flatness which can be seen

as a consequence of [19, Theorem 18].

Proposition 3.3.1. Let C be a V-category and M : Cop → V be a V-functor. Then M is
α-flat if and only if MU is α-flat.

Proof. Assume first that M is α-flat; it is enough to prove that El(MU ) is α-filtered. Note
that, since U = SetG(G,−), the category El(MU ) can be described as in Remark 3.1.19
with G in place of X. Using that and the fact that SetG(G,−) is cocontinuous and strong
monoidal, one can easily adapt the proofs of Lemma 3.1.5 and Corollary 3.1.7 to show
that El(MU ) is α-filtered (just replace with G all instances of I in the proofs).
Conversely assume that MU is α-flat; we need to show that M ∗− : [C,V] → V preserves

all α-small conical limits and powers by G. Since U is continuous and conservative, M ∗−
preserves α-small conical limits if and only if U(M ∗−) : [C,V]0 → Set preserves them. But
U(M ∗−) ∼=MU ∗ (−)U , where (−)U is continuous (since U is) andMU ∗− is α-continuous
because MU is α-flat. Thus we are left to prove that M ∗ − preserves powers by G. Let
H : C → V be any V-functor; then the comparison map M ∗ (G ⋔ H) → G ⋔ (M ∗H) is
invertible if and only if its image under U is so. Therefore

U(M ∗ (G ⋔ H)) ∼=MU ∗ (G ⋔ H)U
∼=MU ∗ Set(UG,HU−) (3.1)
∼= Set(UG,MU ∗HU ) (3.2)
∼= Set(UG,U(M ∗H))
∼= U(G ⋔ (M ∗H)) (3.3)

where we used that (G ⋔ H)U ∼= Set(UG,HU−) for (3.1), that MU is α-flat and G is
finite for (3.2), and that U is strong closed for (3.3). It follows that M is α-flat.

We are now ready to provide an explicit example of a V-category for which flat presheaves
on C are not in the closure of the representables under absolute and filtered colimit.
Define C as follows: the objects Ob(C) = N are natural numbers; for each n,m ∈ N we

set C(n,m) = ∅ if n > m, while C(n,m) = {1n} consists only of the identity map (with
trivial action) if n = m, and C(n,m) = G = F1 (with action given by multiplication) if
n < m. Composition −◦− : C(m, l)×C(n,m) → C(n, l) is non-trivial only when n < m < l
and in that case is given by g ◦ h := g, for any g, h ∈ G. It is now easy to see that the
composition maps are equivariant and well defined, and that the identities are fixed points
of the action; therefore we obtain a V-category C.

Proposition 3.3.2. The V-category C has absolute colimits and filtered colimits, and the
Yoneda embedding Y : C → [Cop,V] preserves them.

Proof. To begin with note that the underlying category C0 of C is the discrete category
N; this is because C0(n, n) = {1n} and C0(n,m) = Fix C(n,m) = ∅ for any n ̸= m (here
we are using the fact that the group G is non trivial). As a consequence the only filtered
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diagrams that exist in C are the constant ones, and these have as colimit the same object
they pick; these colimits are clearly preserved by Y . (Thus in fact the filtered colimits in
C are absolute.)
To conclude it is enough to show that every Cauchy V-functor M : Cop → V is repre-

sentable. Let thenM be Cauchy; by Proposition 3.3.1 the ordinary functorMU : U∗Cop →
Set is Cauchy as well (as usual use that a weight is Cauchy if and only if it is α-flat for
every α). The category U∗C is Cauchy complete in the ordinary sense (since the only idem-
potents are the identities); therefore there exists n ∈ U∗C such that MU

∼= (U∗C)(−, n).
We wish to prove that actually M ∼= C(−, n). For that, let m ∈ C be any other object and

Mn,m : C(m,n) −→ [Mn,Mm]

be the action of M on morphisms in SetG. Since UMn ∼= MUn ∼= (U∗C)(n, n) = {1n}, it
follows that Mn = 1 is the terminal object in SetG. As a consequence the maps Mn,m

are actually of the form
Mn,m : C(m,n) −→Mm

and define a V-natural transformation C(−, n) → M . Since MU
∼= (U∗C)(−, n) the maps

U(Mn,m) are bijections of sets and hence, since U is conservative, the V-natural transfor-
mation Mn,m is an isomorphism. This proves that M is representable.

Theorem 3.3.3. The terminal object ∆1 in [Cop,V] is flat but does not lie in the closure
of the representables under absolute and filtered colimits.

Proof. By the proposition above the closure of C in [Cop,V] under absolute and filtered
colimits is C itself; therefore it is enough to prove that ∆1 is flat but not representable.
By Proposition 3.3.1, the V-functor ∆1 is flat if and only if the functor ∆1: U∗Cop → Set

is; and the latter is flat since its category of elements is equal to U∗C, which is filtered.
Finally, ∆1: Cop → V is not representable since C does not have a terminal object.

Corollary 3.3.4. The V-category C is Cauchy complete and conically finitely accessible,
but does not have all flat colimits. In particular C is not finitely accessible.

Proof. Filtered colimits are trivial in C; therefore every object is conically finitely pre-
sentable. Since C is small this is enough to imply that it is conically finitely accessible.
By the theorem above, the terminal V-functor ∆1: Cop → V is flat; thus to conclude

it is enough to show that the colimit ∆1 ∗ idC does not exist in C. In order to obtain a
contradiction assume that n ∼= ∆1 ∗ idC exists; then

C(n, n+ 1) ∼= [Cop,V](∆1, C(−, n+ 1))

by the universal property of the colimit. But C(n, n+1) is not empty, while the underlying
set of [Cop,V](∆1, C(−, n + 1)) is empty since there are no maps 1 → C(n + 2, n + 1).
Therefore ∆1 ∗ idC does not exist.

3.4 When flat equals protofiltered plus absolute

We begin this section by introducing the bases we are interested in, the main example to
keep in mind being the symmetric monoidal closed categoryDGAb of chain complexes. In
Section 3.4.2 we show that in this context the α-flat colimits are generated by the absolute
colimits together with what we call α-protofiltered colimits. These include, but may not
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reduce to, the usual α-filtered colimits. In Section 3.4.3 we prove that α-protofiltered
colimits are genuine α-flat colimits.

3.4.1 Setting

Let V = (V0,⊗, I) and W = (W0,⊗, J) be symmetric monoidal closed complete and
cocomplete categories for which V is locally dualizable with strong generator G ∋ I, and
W has finite direct sums. Moreover we assume that there is a functor U : W0 → V0 with
adjoints L ⊣ U ⊣ R such that:

(a) U is conservative, strong monoidal, and strong closed;

(b) ULG is still a strong generator of V;

(c) for any X ∈ G the objects ULX is still dualizable.

Remark 3.4.1. It is useful to note the following properties:

(i) U is conservative if and only if LG is a strong generator.

(ii) Given (a), similarly R is conservative if and only if ULG is a strong generator.

(iii) Given (a), an object Y ∈ W is dualizable if and only if UY is so, thus (c) is equivalent
to the objects of LG being dualizable. And if UL ∼= ULI ⊗− then this is equivalent
to ULI (or LI) being dualizable.

Examples 3.4.2.

• Let W = DGAb, V = GAb, and U be the forgetful functor. Then U has both
adjoints and LI is the chain complex having (0) in all the degrees but (LI)0 =
(LI)−1 = Z, with differential d = id between them. Moreover U is conservative,
strong monoidal, and strong closed [39, Section 6]. Let now G be the strong generator
of GAb consisting of the dualizable objects SnI, for n ∈ Z. Then ULG = {SnI ⊕
Sn−1I}n∈Z is still a strong generator of GAb made of dualizable objects. It follows
that DGAb is an example of such base of enrichment.

• Let V be locally dualizable and H be a cocommutative Hopf algebra in V which is
dualizable as an object of V. We can consider W to be the symmetric monoidal
closed category of H-modules with U : W → V the forgetful functor. Then U has
both adjoints, satisfies UL ∼= H ⊗ −, and (a) holds. If G is a strong generator
made of dualizable objects for V, then the elements of ULG are of the form H ⊗X,
for X ∈ G. Then (c) holds by the remark above since H is dualizable, moreover
ULG is still a strong generator since for every X ∈ G we have a split epimorphism
ϵ ⊗ 1: H ⊗ X → X, where ϵ : H → I is the counit of H. (The facts about Hopf
algebras mentioned above can be found in Chapter 15 of [97]).

The following are a consequence of (a)-(c):

• L ⊣ U is an op-monoidal adjunction [55, Theorem 1.2] and L(UY ⊗X) ∼= A⊗ LX;

• U ⊣ R is a monoidal adjunction [55, Theorem 1.2] and R[UY,X] ∼= [Y,RX];

• U is monadic by Beck’s monadicity theorem [16, Theorem 4.4.4];

• T = UL is an op-monoidal Hopf monad [24, Proposition 2.14].
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In particular LU ∼= LI ⊗− and RU ∼= [LI,−].
Since U is strong monoidal it follows that there is an induced 2-functor:

U∗ : W-Cat −→ V-Cat

and a V-functor Û = (U∗W)(I,−) : U∗W → V which acts as U on objects. Now, for each
W-weight M : C → W we can consider the composite

MU : U∗C
U∗M
−−−→ U∗W

Û
−−→ V

as a V-weight. Given a W-category C we denote by SC : C0 → (U∗C)0 the identity-on-
objects functor which acts by applying U on morphisms: given a morphism f : J →
C(A,B) in C0 we define SC(f) := Uf : I ∼= UJ → UC(A,B) = (U∗C)(A,B).
The following lemmas are standard results about change of base along a monoidal functor

which is continuous, cocontinuous, strong monoidal and strong closed.

Lemma 3.4.3. Let C be a W-category. Then:

1. for any ordinary H : E → C0, if the limit of H exists in C then it is also the limit of
SCH in U∗C;

2. if the power X ⋔ A exists in C then it is also the power UX ⋔ A in U∗C.

The same property holds with the corresponding conical colimits and copowers.

Proof. (1) Assume that limH exists in C; we need to prove that it is also the limit of
(SCH), if seen as an object of U∗C. Let C be any object of U∗C; then

(U∗C)(C, limH) ∼= U(lim C(C,H−)0)
∼= limU ◦ C(C,H−)0
∼= lim(U∗C)(C, SCH−)0

in V0, where we used that U is continuous and that (U∗C)(C, SC−)0 ∼= U ◦ C(C,−)0. It
follows that limH is lim(SCH) in U∗C.
(2) Assume that X ⋔ A exists in C; then

(U∗C)(C,X ⋔ A) ∼= U [X, C(C,A)]
∼= [UX,UC(C,A)]
∼= [UX, (U∗C)(C,A)]

naturally in C ∈ U∗C. It follows that X ⋔ A, seen in U∗C, is the power of A by UX.
The dual property involving colimits holds by the arguments above just replacing C with

Cop.

Lemma 3.4.4. Let C be a W-category. The ordinary functor

(−)U : [C,W]0 → [U∗C,V]0

is continuous; moreover C(C,−)U ∼= (U∗C)(C,−).

Proof. To prove the first assertion note that (−)U can be written as the composite

[C,W]0
S[C,W]

−−−−→ (U∗[C,W])0
K

−−→ [U∗C, U∗W]0
Û◦−

−−−−→ [U∗C,V]0
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whereK = (U∗)C,W is the action of U∗ on homs. Now, S[C,W] is continuous by Lemma 3.4.3,

and Û ◦ − preserves all limits that exist in [U∗C, U∗W]0 since Û does so (being repre-
sentable). Finally, observe that K is fully faithful (since U is continuous and strong
closed) and (U∗[C,W])0 contains the representables (since K ◦ U∗(YC) ∼= YU∗C); therefore
K preserves all limits that exists in (U∗[C,W])0 (this is a general fact about full subcat-
egories of presheaf categories which contain the representables). It follows at once that
(−)U is continuous. Finally, that C(C,−)U ∼= (U∗C)(C,−) is an immediate consequence of
fact that K ◦ U∗(YC) ∼= YU∗C .

Lemma 3.4.5. Let M : Cop → W be a W-weight and H : C → W be a W-functor. Then

U(M ∗H) ∼=MU ∗HU .

Proof. The weighted colimit M ∗H can be seen as a coend∑
D,E∈C

C(D,E)⊗MD ⊗HE
∑
C∈C

MC ⊗HC M ∗H.

Since U is cocontinuous and strong monoidal, the image of this under it leads to the
coequalizer∑

D,E∈U∗C
(U∗C)(D,E)⊗MUD ⊗HUE

∑
C∈U∗C

MUC ⊗MUC U(M ∗H),

where we used that UC(D,E) ∼= (U∗C)(D,E) and that UMC ∼= MUC, similarly for H.
Since MU ∗HU can be seen as the coend above, it follows that U(M ∗H) ∼=MU ∗HU .

Before moving on let us point out some properties of the base W. First note that, even
though LG is a strong generator of W made of dualizable objects, W may not be locally
dualizable since the unit need not be projective.
Since the elements of G are finitely presentable and projective in V, and U is cocontin-

uous, the elements of LG are finitely presentable and projective as well; it follows that
W is a finitary quasivariety [64, Definition 4.4]. Moreover U sends a strong generator
made of finitely presentable objects to one with the same property in V. Finally note that
for any X,Y ∈ LG the hom W0(X ⊗ Y,−) ∼= W0(X, [Y,−]0) preserves all colimits that
W0(X,−) preserves; therefore W is a symmetric monoidal closed finitary quasivariety and
in particular locally finitely presentable as a closed category.

3.4.2 The characterization theorem

Fix W, V, and U : W → V as in the previous section.

Remark 3.4.6. Note that the α-small W-weighted limits are generated by the α-small
conical ones and powers by the strong generator LG. Since the latter are dualizable
objects, and powers by them are absolute, it follows that a W-functor preserves α-small
weighted limits of and only if it preserves α-small conical ones. Therefore a W-weight M
is α-flat if and only if M ∗ − preserves all α-small conical limits.

Given M : Cop → W we can consider two different categories of elements:

• El(MJ): this has objects pairs (C ∈ C, x : J →M(C)) and arrows f : (C, x) → (D, y)
given by f ∈ C0(C,D) with Mf(y) = x.
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• El(MLI): objects are pairs (C ∈ U∗C, y : I →MU (C)) and arrows f : (C, x) → (D, y)
are given by f ∈ (U∗C)0(C,D) with Mf(y) = x.

Therefore we have an induced ordinary functor SM : El(MJ) −→ El(MLI) which makes
the square below commute.

C0 (U∗C)0

El(MJ) El(MLI)

SC

π π

SM

Proposition 3.4.7. Let C be a W-category with copowers by LI and M : Cop → W be a
W-weight. Then:

1. the functor SC : C0 → (U∗C)0 has a left adjoint TC given by TCC : = LI · C;

2. the functor SM : El(MJ) → El(MLI) has a left adjoint TM which makes the square
below commute.

C0 (U∗C)0

El(MJ) El(MLI)

TC

π π

TM

Proof. (1). For any C ∈ (U∗C)0 we obtain:

(U∗C)0(C, SC−) ∼= V0(I, (U∗C)(C, SC−)0)
∼= V0(I, U ◦ C(C,−)0)
∼= W0(LI, C(C,−)0)
∼= C0(LI · C,−)

where we used the fact that (U∗C)(C, SC−)0 ∼= U ◦ C(C,−)0. Therefore (U∗C)0(C, SC−) is
represented by the object LI · C of C0, and hence LI · (−) : (U∗C)0 → C0 is a left adjoint
to SC .
(2). By point (1) applied to C = Wop the functor SW : W0 → (U∗W)0 has a right

adjoint given pointwise by [LI,−]; notice that to give an arrow X → Y in (U∗W)0 is
the same as giving UX → UY in V0. Now, since M preserves powers by LI (these
being absolute), the left adjoint TC to SC extends to a left adjoint of SM as follows:
T (C, y) := (TCC, y

t) where TCC = LI · C as above and yt : J → M(TCC) ∼= [LI,MC] is
the transpose of y : I ∼= UJ → MUC ∼= UM(C) seen as a map J → M(C) in (U∗W)0. A
routine verification shows that the resulting TM is left adjoint to SM .

In the presence of such a nice change of base we can reduce W-flatness to V-flatness:

Proposition 3.4.8. Let C be a W-category with finite direct sums and copowers by LG;
let M : Cop → W be a W-weight. The following are equivalent:

1. M is α-flat;
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2. M ∗ − preserves conical α-small limits of representables;

3. MU is α-flat as a V-weight.

Proof. (1) ⇒ (2) is trivial. Let us consider (2) ⇒ (3). To begin with, note that by
Lemma 3.4.3 the V-category U∗C has finite direct sums and copowers by ULG, which is
a strong generator of V made of dualizable objects. Thus, by Proposition 3.2.14, it is
enough to prove that the category El(MLI) = El((MU )I) is α-filtered.
Consider therefore an α-small family of objects (Ci, xi)i∈I in El(MLI); we need to find

a cocone for that. Note that the family (xi)i corresponds to a map x : I →
∏
i
UM(Ci) in

V. Moreover ∏
i
UM(Ci) ∼= U(

∏
i
M ∗ C(Ci,−))

∼= U(M ∗
∏
i
C(Ci,−))

∼=MU ∗ (
∏
i
C(Ci,−))U

∼=MU ∗
∏
i
U∗C(Ci,−).

As a consequence, x corresponds to a map x′ : I →MU ∗
∏

i U∗C(Ci,−). By Lemma 3.2.12
there exist then D ∈ U∗C, y : I → MU (D) and f = (fi)i ∈

∏
i(U∗C)0(Ci, D) which map

down to x′. In other words we obtained (D, y) and maps fi : (Ci, x, i) → (D, y) in El(MLI),
as desired.
Consider now an α-small family of parallel maps {fi : (C, x) → (D, y)}i∈I in El(MLI);

we need to find an arrow coequalizing them. Since SM has a left adjoint TM we can
consider the square below.

SMTM (C, x) SMTM (D, y)

(C, x) (D, y)

η(C,x) η(D,y)

SMTM (fi)

fi

It is then enough to find a map out of SMT (D, y) which coequalizes the SMT (fi)’s.
Therefore, without loss of generality, we can assume fi = SM (gi) for some gi in C0. Now
we can argue as in the previous case: y defines an arrow ȳ : I → Eq U(M(gi))i in V and
we have

Eq U(M(gi))i ∼= U (Eq(M ∗ C(gi,−))i)
∼= U (M ∗ Eq C(gi,−)i)
∼=MU ∗ Eq (U∗C)(fi,−)i

As a consequence, ȳ corresponds to a map y′ : I →MU ∗Eq(U∗C)(fi,−)i. By Lemma 3.2.12
there exist then E ∈ U∗C, z : I → MU (E) and f ∈ Eq (U∗C)0(fi, E) which map down to
x′. In other words we obtained an object (E, z) and a map g : (D, y) → (E, z) in El(MLI)
coequalizing the fi’s. It follows that El(MLI) is α-filtered.
(3) ⇒ (1). Assume now that MU is α-flat; it is enough to prove that the W-functor

M ∗ − : [C,W] → W preserves all α-small conical limits (by Remark 3.4.6). Since U is
continuous and conservative, that holds if and only if U(M ∗ −) : [C,W]0 → V0 preserves
all α-small conical limits. But U(M ∗ −) ∼= MU ∗ (−)U , where (−)U is continuous (by
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Lemma 3.4.4) and MU ∗− preserves α-small conical limits because MU is α-flat. Thus the
result follows.

The following is a consequence of the results above and is what justifies the notion of
protofiltered colimit introduced below.

Corollary 3.4.9. Let C be a W-category with finite direct sums and copowers by LG, and
let M : Cop → W be an α-flat W-weight. Then:

(i) El(MLI) is α-filtered;

(ii) SM : El(MJ) → El(MLI) is final.

Proof. The first point follows directly by the proof of (1) ⇒ (3) above. The second point
holds since SM has a left adjoint by Proposition 3.4.7.

Given a W-category A consider the ordinary functor SA : A0 → (U∗A)0 introduced near
the beginning of Section 3.4.1.

Definition 3.4.10. We say that an ordinary functor S : E → F is an α-protofiltered index
if F is α-filtered and S is final.
An S-indexed diagram in aW-categoryA is a pair of functors (H1, H2) making the diagram

F (U∗A)0

E A0

H2

S SA

H1

commute (strictly). We define its colimit, if it exists, as colim(H1, H2) := colimH1 the
conical colimit of H1 in A.

When colim(H1, H2) exists in A then colim(SAH1) exists as a conical colimit in U∗A
and

SA(colimH1) ∼= colim(SAH1) ∼= colimH2

where the first isomorphism holds because SA preserves all conical colimits that exist in
A (by Lemma 3.4.3), while the latter is true since S is final.

Remark 3.4.11. Note that if S is an α-protofiltered index the category C is in general not
α-filtered (the protosplit coequalizer below gives a counterexample); see also 1.3.3.

Example 3.4.12.

• Protosplit coequalizers. The protosplit index is defined as the inclusion H of
the free-living pair into the free-living split pair. Then protosplit coequalizers are
just H-indexed colimits; these are α-filtered indexes for any α. For W = DGAb
protosplit coequalizers were first introduced in [80].

• Categories of elements. Let M : Cop → W be as in Proposition 3.4.8 above; then
the functor SM : El(MJ) → El(MLI) is an α-protofiltered index.

There is a way to express α-protofiltered colimits as honest α-flat weighted colimits: see
Section 3.4.3.
The following is needed for the characterization of α-flat W-functors.
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Proposition 3.4.13. Let C be a W-category with finite direct sums and copowers by LG,
and let M : Cop → W be an α-flat W-weight; then

M ∼= colim
(
El(MJ)W

πW−→ C Y−→ [Cop,W]
)
.

Proof. As usual it is enough to prove that for any C ∈ C the comparison map between
M(C) and the colimit of C(C, π−)0 : El(MJ) → W0 is an isomorphism. For that, note
that we can consider the commutative square below.

El(MLI) (U∗C)0

El(MJ) C0 W0

V0
π

SM SC

π′

U

C(−, C)0

(U∗C)(C,−)0

Since SM is final (Corollary 3.4.9) and U is conservative and cocontinuous, it is then
enough to show that MU (C) = UM(C) is the colimit of (U∗C)(C, π′−)0. But this is a
consequence of Proposition 3.2.14 since MU is α-flat by Proposition 3.4.8.

Then, under the presence of some absolute colimits, we can express every α-flat colimit
as an α-protofiltered colimit of representables:

Corollary 3.4.14. Let C be a W-category with finite direct sums and copowers by LG,
and let M : Cop → W be an α-flat W-weight. Then M is an α-protofiltered colimit of
representables; more precisely M is the α-protofiltered colimit of the diagram below.

El(MLI) (U∗C)0

El(MJ) C0 [Cop,W]0

(U∗[Cop,W])0
π

SM SC

π

R[C,W]

Y0

(U∗Y )0

Proof. This is a direct consequence of the proposition above and Example 3.4.12.

In conclusion:

Theorem 3.4.15. If M : Cop → W is a W-functor, the following are equivalent:

1. M is α-flat;

2. M ∗ − : [C,W] → W preserves α-small weighted limits of representables;

3. M lies in the closure of the representables under copowers by LG, finite direct sums,
and α-protofiltered colimits.

Proof. Same as that of Proposition 3.2.16.

Theorem 3.4.16. A W-category A has α-flat colimits if and only if it has finite direct
sums, copowers by LG, and α-protofiltered colimits. A V-functor from such an A preserves
α-flat colimits if and only if it preserves α-protofiltered colimits.

Proof. Same as that of Theorem 3.2.18.
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Since in this case we do not know whether the flat colimits are generated by absolute
and filtered colimits, we cannot compare accessible and conically accessible V-categories
(as we did in the previous sections). What we can say is the following:

Theorem 3.4.17. Let A be a W-category with α-flat colimits; then:

1. A ∈ Aα if and only if A(A,−) preserves α-protofiltered colimits;

2. A is α-accessible if and only if Aα is small and every object is an α-protofiltered
colimit of α-presentable objects.

Proof. (1) is a consequence of the Theorem above. To prove (2) we use Theorem 3.4.15
and argue as in the proof of Theorem 3.2.19. Given an α-flat M : Cop → W and a diagram
K : C → Aα ⊆ A, we can consider the free cocompletion D of C under finite direct sums
and LG-copowers, with inclusion J : C → D. Let M ′ := LanJopM and K ′ := LanJK;
then: M ∗K ∼=M ′ ∗K ′, the diagram K ′ still lands in Aα (since this is closed in A under
finite direct sums and LG-copowers), the weight M ′ is still α-flat (Lemma 1.3.2), and
the domain of M ′ satisfies the hypotheses of Corollary 3.4.14. Thus we can write M ′ ∼=
colim(Y0H1, (U∗Y )0H2) as an α-protofiltered colimit of representables, where (H1, H2) is
an α-protofiltered diagram in D. It follows that

M ∗K ∼= colim (K ′
0H1, (U∗K

′)0H2),

either side existing if the other does. Thus an object of A is an α-flat colimit of α-
presentables if and only if it is an α-protofiltered colimit of α-presentables. The result
then follows.

Remark 3.4.18. Let A be an α-accessible W-category; then every object A of A can be
written canonically as the α-protofiltered colimit of the diagram below.

(U∗Aα)0/A (U∗A)0

(Aα)0/A A0

π

SA SA

π

Indeed, let H : Aα → A be the inclusion; since A is α-accessible, every object A
can be written as the α-flat colimit A(H−, A) ∗ H. Then the result follows thanks
to Corollary 3.4.14 applied to M = A(H−, A) since (Aα)0/A = El(A(H−, A)J) and
(U∗Aα)0/A = El(A(H−, A)LI).
We say that an index J : E → F is protoabsolute if it is α-protofiltered for every α;

equivalently if F-colimits are Cauchy in the ordinary sense. The following result then
generalizes [80, Theorem 7.2] to our setting:

Corollary 3.4.19. Let C be a W-category; the following are equivalent:

1. C is Cauchy complete;

2. C has finite direct sums, powers and copowers by dualizable objects, and protoabsolute
colimits;

3. C has finite direct sums, copowers by LG, and protoabsolute colimits.

Proof. The proof is completely analogous to that of Corollary 3.2.22.
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3.4.3 Protofiltered colimits as weighted colimits

Let W,V, and U : W → V be as in Section 3.4.1. Given an α-protofiltered index S : E → F
we construct a W-category S and a weight ∆: Sop → W such that S-indexed colimits
correspond to ∆-weighted colimits and ∆ is α-flat.

Remark 3.4.20. The 2-category W-Cat is locally finitely presentable as a 2-category. In-
deed its underlying ordinary category W-Cat0 is locally finitely presentable by [58, The-
orem 4.5] and the finitely presentable objects are closed under copowers by 2 [58, Propo-
sition 4.8]. It follows that every object which is finitely presentable in the ordinary sense
is also finitely presentable in the 2-categorical sense. Therefore W-Cat is locally finitely
presentable by [57, 7.5].

Let us first define S. Consider the 2-functor S∗ : W-Cat → Cat defined pointwise as
the pullback

S∗A Cat(F , (U∗A)0)

Cat(E ,A0) Cat(E , (U∗A)0)

⌟
− ◦ S

SA ◦ −

in Cat for any A ∈ W-Cat, where SA : A0 → (U∗A)0 is the ordinary functor introduced in
Section 3.4. Note that U∗ : W-Cat → V-Cat, (−)0 : W-Cat → Cat, and (−)0 : V-Cat →
Cat are continuous as 2-functors; indeed they preserves all conical limits as well as powers
by 2 (since U is continuous and strong closed). Moreover they preserve α-filtered colimits
for some α. Similarly Cat(E ,−) and Cat(F ,−) are continuous and preserve β-filtered
colimits for some β ≥ α (as is true for every object of a locally presentable category). It
follows that S∗ is a finite limit of 2-functors which are continuous and preserve β-filtered
colimits. Since finite limits commute with β-filtered colimits in Cat, it follows that S∗ is
continuous and preserves β-filtered colimits as well. As a consequence, since W-Cat and
Cat are locally presentable 2-categories, it follows that S∗ has a left adjoint [57, 7.9] and
therefore S∗ is a representable 2-functor. Now we can define S as the W-category which
represents S∗.
For any small W-category A we have an isomorphism of categories [S,A]0 ∼= S∗A; it

is easy to see that this isomorphism actually holds for any (possibly large) W-category
A. It follows in particular that to give a W-functor H : S → A is the same as to give
a S-indexed diagram (H1, H2) in A. The same holds for W-functors out of Sop just by
moving the (−)op to the codomain.

Remark 3.4.21. Taking A = S, we note that the identity on S corresponds to functors
K1 : E → (S)0 and K2 : F → (U∗S)0. These two functors induce the bijection just men-
tioned: given H : S → A then H1 = H0 ◦K1 and H2 = (U∗H)0 ◦K2.
In particular it follows that Ht

1 = H ◦Kt
1 and Ht

2 = U∗H ◦Kt
2, where K

t
1 : EW → S and

Kt
2 : FV → U∗S are the transposes of K1 and K2 respectively. Therefore for any A ∈ A

we obtain A(H−, A)t1 ∼= A(Ht
1−, A), and for any X ∈ V we have X ⋔ Ht

1
∼= (X ⋔ H)t1

whenever such powers exist in A.

Next we define the weight ∆: Sop → W as the one such that ∆op corresponds under the
isomorphism W-Cat(S,Wop) ∼= S∗Wop to the S-indexed diagram

(∆J : E → Wop
0 ,∆J : F → (U∗W)op0 ).
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We can now prove that limits and colimits weighted by ∆ are the same as S-indexed
limits and colimits.

Proposition 3.4.22. Let H : Sop → W be any W-functor with induced S-index (H1, H2)
in W. Then

[Sop,W](∆, H) ∼= [Eop
W ,W](∆J t, Ht

1)

where ∆J t, Ht
1 : E

op
W → W are the transposes of ∆J,H1 : Eop → W0, and the isomorphism

in induced by precomposition with Kt
1. In other words {∆, H} ∼= limH1.

Proof. The isomorphism above holds if and only if applying W0(X,−) on each side we get
a bijection of sets. But

W0(X, [Sop,W](∆, H)) ∼= [Sop,W]0(∆, X ⋔ H),

similarly on the right-hand-side (using that X ⋔ Ht
1
∼= (X ⋔ H)t1, see Remark 3.4.21).

Therefore it is enough to prove that we have a bijection betweenW-natural transformations
η : ∆ ⇒ H and η1 : ∆J ⇒ H1 for any H.
Since we have an isomorphism of categories [S,Wop]0 ∼= S∗Wop, it follows that to give

a W-natural transformation η : ∆ ⇒ H is the same as giving a pair of ordinary natural
transformations ηi : ∆J ⇒ Hi, for i = 1, 2, such that SWη1 = η2S. Since S is final, η2
is uniquely determined by SWη1; therefore it is enough to give η1 and hence we have the
desired bijection.

An immediate consequence is the following:

Corollary 3.4.23. Let A be any W-category. For any H : S → A let (H1, H2) be the
induced S-indexed diagram in A; then

∆ ∗H ∼= colim(H1, H2)

either side existing if the other does.

Proof. It is enough to consider the following chain of isomorphisms for any A ∈ A:

A(∆ ∗H,A) ∼= [Sop,W](∆,A(H−, A))
∼= [Eop

W ,W](∆J t,A(H−, A)t1)
∼= [Eop

W ,W](∆J t,A(Ht
1−, A))

∼= A(colimH1, A)

where the second isomorphism holds by the proposition above, while the third follows from
the fact that A(H−, A)t1 ∼= A(Ht

1−, A) from Remark 3.4.21.

The final step is to prove that the weight ∆ is α-flat.

Proposition 3.4.24. Let S : E → F be an α-protofiltered index; then ∆: Sop → W is an
α-flat W-weight.

Proof. First note that there is a commutative triangle as below,

(U∗W)0

W0 V0

SW Û0

U
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where Û = (U∗W)(I,−) : U∗W → V was introduced in Section 3.4.1 and is such that
(−)U = Û ◦U∗(−). Let H : S → W be a W-functor; then by the corollary above we know
that

U(∆ ∗H) ∼= U(colim
E

H1) ∼= colim
E

(Û0SWH1) ∼= colim
E

(Û0H2S) ∼= colim
F

(Û0H2)

and this can be rewritten as

U(∆ ∗ −) ∼= colim
F

((−)U ◦Kt
2) : [S,W]0 → V0

where Kt
2 : FV → U∗EJ is the transpose of the ordinary functor K2 : F → (U∗S)0 intro-

duced in Remark 3.4.21. Now, (−)U and (− ◦Kt
2) are continuous and colim

F
(−) preserves

α-small ordinary limits (F is α-filtered); therefore U(∆ ∗ −) preserves α-small limits as
well. To conclude then note that, since U is continuous and conservative, ∆ ∗ − pre-
serves all α-small conical limits, and this is enough to guarantee that ∆ is α-flat by
Remark 3.4.6.



CHAPTER

4
On continuity of accessible functors

Because of the variety of ways of characterizing locally presentable categories, different
notions of morphisms between them have been considered in the literature. In this chapter
we define a morphism between locally α-presentable categories to consist of a functor which
is continuous and α-accessible; these, together with the natural transformations, identify
a 2-category that we call Lpα. Alternatively one could define a morphism between locally
α-presentable categories to be a cocontinuous functor which preserves the α-presentable
objects; this describes a 2-category biequivalent to Lpop

α .
Our aim is then to give a characterization of the morphisms out of a locally α-presentable

category K ∈ Lpα in terms of those that preserve γ-small limits, for some determined γ.
More specifically we prove that for any locally α-presentable category K there exists a
regular cardinal γ such that an α-accessible F : K → L, with L locally α-presentable, is
continuous if and only if it preserves all γ-small limits (Theorem 4.1.6). The choice of γ
depends entirely on the category Kα (Remark 4.1.7).
In Section 4.1 we introduce the necessary background notions, prove the main result,

and then give a few applications including a new adjoint functor theorem relative the α-
presentable case. Then, in Section 4.2 we prove an enriched version of the main result based
on the notion of locally presentable V-category that we have already considered. We obtain
again an adjoint functor theorem specialized to the α-accessible case (Theorem 4.2.4), and
moreover we prove that a small V-category is accessible if and only if it is Cauchy complete
(Theorem 4.2.7).

The content of this chapter has been published in
Applied Categorical Structures [101].

Chapter published under a CC BY 4.0 licence as: 

Tendas, G. (2022) On Continuity of Accessible Functors. Applied Categorical 
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4.1 The Set-case

We start this section by recalling the notion of α-small functor:

Definition 4.1.1. [57, 4.1] A functorM : Cop → Set is called α-small if C is an (essentially)
α-small category and M lands in Setα.

Note that, assuming we are given an α-small category C, to say that M : Cop → Set is
α-small is the same as saying that it is α-presentable as an object of [Cop,Set].
The result below first appeared (with a different choice of γ) in the proof of [77, Theo-

rem 2.2.2].

Lemma 4.1.2. Let C be such that C(B,C) is β-small for any B and C, and let γ > β.
Then any γ-flat functor M : Cop → Set lands in Setβ. If moreover C has less than γ
objects, then M is γ-small.

Proof. Assume that M does not land in Setβ; then we can find C ∈ C and a family
(xi ∈ M(C))i<β of cardinality β where the xi are all distinct. Since M is γ-flat, its
category of elements El(M) is γ-filtered. Now, the xi form a γ-small family of objects of
El(M); thus there exists y ∈MD and morphisms fi : C → D in C such thatM(fi)(y) = xi
for any i < β. But by hypothesis the fi cannot all be be distinct; contradicting the fact
that all the xi actually are.

Lemma 4.1.3. Every α-small and α-flat functor is Cauchy.

Proof. Let M : Cop → Set be α-small and α-flat. Consider the free completion Φ†
αC of

C under α-small limits, this comes together with the inclusion J : C → Φ†
αC. Since M is

α-small, El(M) is an essentially α-small category; thus we can consider the limit

X := lim(El(M)
π−→ C J−→ Φ†

αC)

in Φ†
αC. Next we prove that LanJM is isomorphic to the representable Φ†

αC(X,−): since
M is α-flat the Kan extension LanJ(M) is α-flat too (by Lemma 1.3.2) and hence α-
continuous; therefore it is enough to prove that LanJ(M) and Φ†

αC(X,−) coincide when
restricted to C:

Φ†
αC(X, J−) ∼= Φ†

αC(limx (J ◦ πx), J−)

∼= colim
x

Φ†
αC(J ◦ πx, J−) (4.1)

∼= colim
x

C(πx,−)

∼=M(−)
∼= LanJ(M)(J−)

as required, where (4.1) holds since Φ†
αC(−, JC) is α-cocontinuous for any C ∈ C (property

of the free completion). It follows that LanJM is representable, and hence a Cauchy weight
(the left Kan extension of a representable functor along Yoneda is an evaluation map, and
hence is continuous); by Lemma 1.3.2 then M is Cauchy as well.

Remark 4.1.4. This Lemma is true more generally for a weakly sound class Φ: if M is
such that El(M) is at the same time in Φ and Φ-filtered, then M is Cauchy.

As a consequence:
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Corollary 4.1.5. Let C be a small category and γ be a regular cardinal as in the last part
of Lemma 4.1.2. Then every γ-flat functor M : Cop → Set is Cauchy.

Proof. This is a direct consequence of Lemma 4.1.2 and 4.1.3.

In short, it is enough to take γ = β+, where β is such that C is β-small, but the
description given in the Corollary above might provide a smaller cardinal. For example
taking K = Set and α = ℵ0, since Setf is ℵ1-small, then we can certainly consider γ = ℵ2;
however the hypotheses of Lemma 4.1.2 provide a better γ, in fact one can actually choose
γ = ℵ1 (since Setf has countably many objects and the hom-sets are all finite).
We can now prove the main result of this section:

Theorem 4.1.6. Let K be locally α-presentable. There exists a regular cardinal γ for
which every α-accessible and γ-continuous F : K → L, with L locally α-presentable, is in
fact continuous.

Proof. Let γ be the one given in Corollary 4.1.5 for C = Kop
α , and denote by J : Kα ↪→ K

the inclusion.
Notice that a functor F : K → L as above is continuous if and only if L(A,F−) is

such for any A ∈ Lα. Since L(A,F−) is still α-accessible and preserves all the limits
that F preserves, we can assume without loss of generality L = Set. Therefore, we are
given an α-accessible and γ-continuous F : K → Set, and we need to prove that it is
actually continuous. Since F is α accessible, it is the left Kan extension of its restriction
FJ : Kα → Set; as a consequence the following triangles commute (up to isomorphism),

[Kop
α ,Set]

K Set

Kα

K(J, 1)

J

LanY (FJ)

F

FJ

where the vertical composite is the Yoneda embedding Y : Kα → [Kop
α ,Set], and K(J, 1)

is continuous since it identifies K with the α-continuous functors out of Kop
α . Now, F is γ-

continuous by hypothesis; thus LanY (FJ) preserves γ-small limits of representables (these
being γ-small limits in K) and hence FJ is γ-flat by Proposition 1.2.3. By our choice of
γ, it follows from Corollary 4.1.5 that FJ is Cauchy and thus LanY (FJ) is continuous.
Therefore F is continuous being the composite of two continuous functors.

Remark 4.1.7. The optimal regular cardinal γ provided by our proofs is one for which:

• Kα has less than γ objects (up to isomorphism);

• there exists β such that γ > β > #K(X,Y ) for each X,Y ∈ Kα.

By taking K = Set, α = ℵ0, and γ = ℵ1 (thanks to the comments above the Theorem),
it follows that a finitary functor F : Set → Set is continuous if and only if it preserves
countable products and equalizers.
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4.1.1 Some Applications

An(other) adjoint functor theorem

Freyd’s general adjoint functor theorem says that if K is complete and F : K → L is
continuous and satisfies the solution set condition, then it has a left adjoint. In the context
of locally presentable categories this is implies that every continuous and accessible functor
between locally presentable categories has a left adjoint [1, Theorem 1.66]. Our result is
a specialization of this to the case of α-accessible functors:

Theorem 4.1.8. Let K be locally α-presentable. There exists a regular cardinal γ such that
for any α-accessible U : K → L, with L locally α-presentable, the following are equivalent:

1. U has a left adjoint;

2. U is γ-continuous.

Note that γ can be chosen again as in Remark 4.1.7.

Dualizable modules

Let K = R-Mod be the monoidal category of R-modules for a commutative ring R, and
α = ℵ0. Then we can use Theorem 4.1.6 to characterize the dualizable R-modules (that
is, the dualizable objects of R-Mod).
First let us focus on the optimal choice of γ:

• if R if finite, then R-Modf has countably many objects and its hom-sets are all
finite; so we can choose γ = ℵ1;

• if α = #R is infinite, then R-Mod has countably many objects but its hom-sets
have cardinality α. Thus we can take γ = α++.

LetM be an R-module; thenM is dualizable if and only if the functorM⊗− : R-Mod →
R-Mod is continuous (it should actually be continuous as an enriched R-Mod-functor,
but these are equivalent conditions, see also Section 4.2.1). Since every functor M ⊗− is
cocontinuous (and hence finitary), a consequence of Theorem 4.1.6 is:

Proposition 4.1.9. An R-module M is dualizable if and only if it is flat and M ⊗ −
preserves γ-small products.

For a finite R this is saying that M needs to be flat and M ⊗ − needs to preserve
countable products. Note however that the choice of γ is not optimal in general: for
R = Z it is enough to take γ = ℵ1 (easy to check), while by the results above we are given
γ = ℵ2.

Recognising the α-presentables

Let K be a locally α-presentable category for which Kα is α-complete. Let K̂ := Indα(Kop
α )

be the free cocompletion of Kop
α under α-filtered colimits, so that K̂ ≃ α-Cont(Kα,Set);

denote by H : Kα → K and J : Kop
α → K̂ the inclusions. Then we can consider the following

composite:

K α-Cont(Kop
α ,Set) α-Filt(K̂,Set)

K(H, 1) LanJ



4.2 The enriched case 92

where K(H, 1) is actually an equivalence, and α-Filt(K̂,Set) is the full subcategory of
[K̂,Set] spanned by the functors that preserve α-filtered colimits (which is equivalent to
[Kop

α ,Set]). Note that LanJ is fully faithful and its essential image is given by those
α-accessible functors which are also α-continuous.
Call the composite of these G : K → α-Filt(K̂,Set). It is easy to see that if X ∈ Kα

then GX ∼= K̂(X,−) is representable and hence continuous; conversely if F : K̂ → Set is
continuous and preserves α-filtered colimits then F ∼= K̂(X,−) for some X ∈ K̂α ≃ Kop

α ;
thus F ∼= GX. Let now γ be as in Remark 4.1.7, then:

Proposition 4.1.10. An object X of K is α-presentable if and only if GX preserves
γ-small products.

Proof. Use the results above and Theorem 4.1.6, plus the fact that GX preserves γ-
small limits if and only if it preserves γ-small products (since it already preserves finite
limits).

As an example, consider α = ℵ0 and K = Bool the category of boolean algebras

and morphisms between them. Now, since Boolf ≃ Setopf , it follows that B̂ool = Set;
moreover for any B ∈ Bool the functor GB : Set → Set defined above can be described
as the one sending a set X to the set

GB(X) = {f : X → B of finite support |
∨
i

fi = 1 and fi ∧ fj = 0 ∀i ̸= j}.

(since this preserves filtered colimits and, with this definition of G, we have GB(X) ∼=
Bool(2X , B) for any finite set X ). Then by Remark 4.1.7 we can choose γ = ℵ1, and
hence the proposition above says that a boolean algebra B is finite if and only if the
functor GB preserves countable products. The endofunctor GB is actually a monad on
Set whose algebras are the B-sets (see [10] where GB(X) is denoted by X[B]∗).

4.2 The enriched case

We now fix V = (V0,⊗, I) to be a symmetric monoidal closed and locally presentable
category, and consider α such that V is locally presentable as a closed category. Then we
can immediately generalize Theorem 4.1.6 to the enriched setting:

Theorem 4.2.1. Let K be a locally α-presentable V-category. There exists a regular
cardinal γ for which every α-accessible and γ-continuous F : K → L, with L locally α-
presentable, is in fact continuous.

Proof. It is enough to consider γ as in Theorem 4.1.6 for K0, which is locally α-presentable
as an ordinary category. Indeed, if F is γ-continuous in the weighted sense, then F0 : K0 →
L0 is γ continuous as an ordinary functor, and hence continuous by Theorem 4.1.6. It
follows then that F preserves all conical limits and powers by γ-presentable objects. This
is enough to ensure that F is continuous since each object of V is a conical colimit of
γ-presentable ones, thus each power in K is a conical limit of powers by γ-presentables,
which are preserved by F .

Recall that, in the enriched context, a weight M : Cop → V is called α-small if C has less
than α objects (up to isomorphism), C(C,D) ∈ Vα for any C,D ∈ C, and M lands in Vα.
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Cauchy V-functors have also been widely used and, like in the ordinary setting, can be
characterized as those V-functors whose left Kan extension along the Yoneda embedding
is continuous, as well as those that are weights for absolute colimits (see for example
[59, 95]).
We are now ready to deduce the enriched analogue of Corollary 4.1.5.

Corollary 4.2.2. Let C be a small V-category; then there exists γ such that every γ-flat
V-functor M : Cop → V is Cauchy.

Proof. The weight M is γ-flat if and only if LanYM : [C,V] → V is γ-continuous, and is
Cauchy if and only if LanYM is continuous. Thus it is enough to take γ as in Theorem 4.2.1
for K = [C,V], which is locally α-presentable, and F = LanYM (which is cocontinuous,
and hence α-accessible).

Note also that Lemma 4.1.3 has an enriched version:

Lemma 4.2.3. Every α-small and α-flat weight is Cauchy.

Proof. Let M : Cop → V be α-small and α-flat. Consider the free completion ΦαC of C
under α-small weighted colimits, this comes together with the inclusion J : C → ΦαC.
Since M is α-small we can consider the colimit X := M ∗ J in ΦαC. Then we prove
that LanJopM is isomorphic to the representable ΦαC(−, X): since M is α-flat the Kan
extension LanJopM is α-flat too and hence α-continuous; therefore it is enough to prove
that LanJopM and ΦαC(−, X) coincide when restricted to C:

ΦαC(J−, X) ∼= ΦαC(J−,M ∗ J)
∼=M□ ∗ ΦαC(J−, J□)
∼=M□ ∗ C(−,□)
∼=M(−).

Since also LanJopM restricts toM we are done. It follows that LanJopM is a Cauchy weight
(since every representable V-functor is); by Lemma 1.3.2 then M is Cauchy too.

4.2.1 Some Applications

An(other) adjoint functor theorem

As in the ordinary case we obtain an adjoint functor theorem specialized to the α-accessible
V-functors. This is again a consequence of Theorem 4.2.1 and of the fact that every
continuous and accessible V-functor between locally presentable V-categories has a left
adjoint.

Theorem 4.2.4. Let K be a locally α-presentable V-category. There exists a regular
cardinal γ such that for any α-accessible V-functor U : K → L, with L locally α-presentable,
the following are equivalent:

1. U has a left adjoint;

2. U is γ-continuous.

Note that γ can be chosen again as in Remark 4.1.7 for K0.
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Dualizable objects

Recall from Section 3.2.1 that an object X ∈ V is called dualizable if there exist X∗ ∈ V
and morphisms ηX : I → X⊗X∗ and ϵX : X∗⊗X → I, called unit and counit respectively,
satisfying the triangle equalities. Equivalently, since V is closed, X is dualizable if and
only if there exists X∗ ∈ V such that X ⊗− ∼= [X∗,−] : V0 → V0. By [59, Section 6], this
is equivalent to X ⊗ − being continuous. Then a direct application of Theorem 4.2.1 to
F =M ⊗− gives:

Proposition 4.2.5. There exists a regular cardinal γ such that an object X ∈ V is dual-
izable if and only if X ⊗− : V → V is γ-continuous.

The following is an application of Lemma 4.2.3:

Proposition 4.2.6. Let V be locally α-presentable as a closed category. An object X ∈ V
is dualizable if and only if:

1. X is α-presentable;

2. X is α-flat, or equivalently X ⊗− is α-continuous.

Small accessible V-categories

As an application of the main Theorem we can prove a generalization of [1, Proposition 2.6]
which shows that a small ordinary category is accessible if and only if it has splittings of
idempotents, or, equivalently, if it is Cauchy complete.
In the enriched context we have the notions of accessible and conically accessible V-

category. It is easy to see, using the ordinary characterization, that a small V-category is
conically accessible if and only if it has splittings of idempotents (that is, if the underlying
category is Cauchy complete). As we see below, the analogue result for accessible V-
categories requires the enriched notion of Cauchy completeness.
Recall that a V-category is called Cauchy complete if it has all colimits weighted by

Cauchy V-functors; this is equivalent to saying that every Cauchy M : Cop → V is repre-
sentable. We are now ready to prove:

Theorem 4.2.7. A small V-category is accessible if and only if it is Cauchy complete.

Proof. Every accessible V-category is Cauchy complete since Cauchy weights are α-flat for
every α. For the opposite direction consider any Cauchy complete and small V-category C.
By Corollary 4.2.2 we can find γ such that every γ-flat V-functor M : Cop → V is Cauchy.
Since C is Cauchy complete, this means that every γ-flat weight out of Cop is representable;
therefore C ≃ γ-Flat(Cop,V) is accessible.



CHAPTER

5
Accessible categories with limits of some

class

In this chapter we characterize those accessible V-categories that have limits of a specified
class. We do this by introducing the notion of companion C for a class of weights Ψ, as
a collection of special types of colimit diagrams that are compatible with Ψ. We then
characterize the accessible V-categories with Ψ-limits as those accessibly embedded and
C-reflective in a presheaf V-category, and as the V-categories of C-models of sketches. This
allows us to recover the standard theorems for locally presentable, locally multipresentable,
and locally polypresentable categories as instances of the same general framework. In
addition, our theorem covers the case of any weakly sound class Ψ, and provides a new
perspective on the case of weakly locally presentable categories.
We begin by introducing the general setting of the chapter (section 5.1). The main

results are discussed in Section 5.2 where we introduce the notion of companions and
prove the characterization theorems (5.2.16 and 5.2.17). In Section 5.2.2 we define the
notion of C-model of a sketch whenever C is a companion for a class Ψ, and give conditions
on C so that V-categories of C-models characterize accessible V-categories with Ψ-limits
(Theorem 5.2.27).
Section 5.3 is entirely devoted to examples. We first discuss the case of a weakly sound

class Ψ (Section 5.3.1); in this case the colimit types are actually classes of weights and,
unlike in the general case, we are able to give a corresponding weakening of orthogonality.
The main results of the section are Theorems 5.3.15 and 5.3.16. Next we consider the class
of wide pullbacks (Section 5.3.2); here we recover the classical results on locally polyp-
resentable categories and compare our results with those given in [50]. In Section 5.3.3
we consider a generalization of the weakly locally presentable categories to the enriched
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setting, while in Section 5.3.4 we discuss the case of accessible 2-categories with flexible
limits.
Finally, in Section 5.4, we compare reflectivity with respect to a colimit type C with the

existing notions of weak reflectivity. We do this to obtain the characterization theorems
of [1] for weakly locally presentable categories, and of [63] for accessible 2-categories with
flexible limits, as instances of our theory.

5.1 The general setting

To begin, recall that by a weight we mean a V-functor M : Cop → V with small domain.
From now on we shall consider a class Ψ of weights representing the kind of limits that
our accessible V-categories will be assumed to have. In general, this class Ψ will not be
locally small in the sense of [59], meaning that the free completion of a small category
under Ψ-limits might not be small. Examples of such are the classes for connected limits,
products, and wide pullbacks.
We denote (co)completions under Ψ-colimits and under Ψ-limits by ΨA and Ψ†A re-

spectively. When Ψ = P is the class of all weights, we recover the free (co)completions
PA and P†A under small colimits and limits.
In this section we aim to capture a notion of Ψ-continuity, for a class Ψ as above,

in the absence of Ψ-limits. Then we use this description to obtain a first instance of a
characterization theorem for accessible V-categories with Ψ-limits (Theorem 5.1.11).
To begin with, consider a small V-category A; we are interested in those V-functors

M : Aop → V for which LanYM : [A,V] → V preserves Ψ-limits of diagrams landing in
Aop, where Y : Aop → [A,V] is the Yoneda embedding. When A is Ψ-cocomplete, and so
Aop is Ψ-complete, this is just requiring that M is a Ψ-continuous V-functor.
Since LanYM ∼=M ∗−, the condition above is saying thatM -weighted colimits commute

in V with Ψ-limits of representable V-functors. That is, for any N : D → V in Ψ and
H : D → Aop the canonical map defines an isomorphism

M ∗ {N,Y H} ∼= {N,M ∗ Y H}. (5.1)

This approach turns out still to be useful when the V-category A is not assumed to be
small, but M : Aop → V is a small V-functor. In fact, in this case the collection of V-
functors [A,V] does not form a V-category in general, but colimits of arbitrary V-functors
A → V weighted by M do exist (since M is small), and weighted limits of V-functors
are always defined pointwise in V. Therefore, both sides of (5.1) still exist, as does the
canonical comparison, and we can give the following definition:

Definition 5.1.1. Let Ψ be a class of weights, A be a V-category, and M : Aop → V a
small V-functor. We say that M is Ψ-precontinuous if M -weighted colimits commute in
V with Ψ-limits of representable V-functors; in other words if M ∗− preserves Ψ-limits of
representables. Denote by Ψ-PCts(Aop,V) the full subcategory of [Aop,V] spanned by the
small Ψ-precontinuous V-functors.

Note that we have the inclusions A ⊆ Ψ-PCts(Aop,V) ⊆ PA so that Ψ-PCts(Aop,V) is
in particular a V-category.

Example 5.1.2. If Ψ is a sound class of weights then Ψ-precontinuous and Ψ-flat V-
functors coincide; hence Ψ-PCts(Aop,V) = Ψ+A, where Ψ+ is the class of all the Ψ-flat
weights.
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Proposition 5.1.3. Let M : Aop → V be Ψ-precontinuous; then M preserves any existing
Ψ-limits. If A is Ψ-cocomplete, then a small M is Ψ-precontinuous if and only if it is
Ψ-continuous.

Proof. The Yoneda embedding Y : Aop ↪→ [A,V] preserves any existing Ψ-limits in Aop

and M ∗ Y− ∼= M . Therefore if M is Ψ-precontinuous then it preserves any Ψ-limit
that happens to exist. If A is Ψ-cocomplete then Ψ-limits of representables are still
representables so Ψ-continuity implies Ψ-precontinuity.

Corollary 5.1.4. The inclusion V : A → Ψ-PCts(Aop,V) preserves any existing Ψ-colimits.

Proof. This says that for anyM ∈ Ψ-PCts(Aop,V) the V-functor Ψ-PCts(Aop,V)(V−,M)
preserves any existing Ψ-limits. But Ψ-PCts(Aop,V)(V−,M) ∼=M , so that follows by the
proposition above.

Corollary 5.1.5. For any Ψ-cocomplete V-category A we have an equality

Ψ-PCts(Aop,V) = PA ∩Ψ-Cont(Aop,V)

so that Ψ-precontinuous V-functors out of Aop coincide with the small Ψ-continuous V-
functors. Moreover V : A → Ψ-PCts(Aop,V) is Ψ-cocontinuous.

Proof. By Proposition 5.1.3, if A is Ψ-cocomplete then a small V-functor M : Aop → V is
Ψ-precontinuous if and only if it is Ψ-continuous.

Recall that the notion of virtual cocompleteness for a V-category A was introduced in
Definition 2.2.15; it says that the free completion P†A has colimits of objects from A.

Proposition 5.1.6. The following are equivalent for a Ψ-complete V-category A:

1. A is virtually cocomplete;

2. P†A is cocomplete;

3. Ψ-PCts(A,V)op is cocomplete;

4. Ψ-PCts(A,V)op has colimits of representables.

Proof. (1) ⇔ (2) is always true by the dual of [33, Theorem 3.8]. For the other implications
note that, since A is Ψ-complete, Ψ-PCts(A,V)op consists of the small Ψ-continuous V-
functors out of A, seen in P†A. It follows that (2) ⇒ (3) since Ψ-PCts(A,V)op is then
closed under colimits in P†A. That (3) ⇒ (4) is trivial, while (4) ⇒ (1) since the inclusion
Ψ-PCts(A,V)op ↪→ P†A preserves any existing limits.

A V-functor F : A → K has a left adjoint if each K(X,F−) : A → V is representable;
while it has a virtual left adjoint if each K(X,F−) is small. Similarly:

Definition 5.1.7. We say that a V-functor F : A → K has a Ψ-virtual left adjoint if for
each X ∈ K the V-functor K(X,F−) is Ψ-precontinuous. If F is fully faithful we say that
A is Ψ-virtually reflective in K.

In other words, F has a Ψ-virtual left adjoint if and only if for each X ∈ K the functor
K(X,F−) has a relative left V -adjoint, where V : A ↪→ Ψ-PCts(A,V)op is the inclusion. If
Ψ = ∅ is the class with no weights, a ∅-precontinuous V-functor is simply a small V-functor;
thus ∅-virtual left adjoints coincide with virtual left adjoints.
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Proposition 5.1.8. The following are equivalent for a Ψ-complete and virtually cocom-
plete V-category A, and a V-functor F : A → V:

1. F is small and Ψ-continuous;

2. F has a Ψ-virtual left adjoint.

Proof. A Ψ-virtual left adjoint L : V → Ψ-PCts(A,V)op exists if and only if the V-functor
[X,F−] is small and Ψ-precontinuous, and in that case is given by LX := [X,F−]. Now,
if F is small and Ψ-continuous it is in particular Ψ-precontinuous; thus [X,F−] is Ψ-
precontinuous too (since [X,−] preserves all limits) and small (being the copower of F
by X in P†A, which is cocomplete). Conversely, if F has a Ψ-virtual left adjoint then
F ∼= [I, F−] is in Ψ-PCts(A,V)op, and therefore it is small and Ψ-continuous.

In the accessible case we then obtain:

Corollary 5.1.9. The following are equivalent for a V-functor F : A → K between Ψ-
complete accessible V-categories:

1. F is accessible and Ψ-continuous;

2. F has a Ψ-virtual left adjoint.

Proof. It follows from the proposition above plus the fact that every accessible V-category
is virtually cocomplete, and that, for A an accessible V-category, K(X,F−) : A → V is
accessible if and only if it is small (Proposition 2.2.9).

Theorem 5.1.10. Let K be an accessible V-category with Ψ-limits and A a full subcategory
of K. The following are equivalent:

1. A is accessible, accessibly embedded, and closed under Ψ-limits;

2. A is accessibly embedded and Ψ-virtually reflective.

Proof. (1) ⇒ (2). This follows by Corollary 5.1.9 above.
(2) ⇒ (1). Since A is Ψ-virtually reflective it is also virtually reflective; thus we are

given a diagram as below

BA

K

P†A

P†K

⊢

V

LJ

Z

Z′

P†J L′

where B := Ψ-PCts(A,V)op, L is a relative left V -adjoint to J , and ZL ∼= L′Z ′. Being
virtually reflective and accessibly embedded, A is also accessible and a virtual orthogonal-
ity class in K by Proposition 2.2.29. It only remains to prove that A is closed in K under
Ψ-limits. By the proof of Proposition 2.2.29 the virtual orthogonality class defining A can
be defined by the units ηX : ZX → (P†J)ZLX of the virtual adjunction, for all X ∈ Kα

(and some α). This can equivalently be seen as the set

M = {ηX : ZX → {LX,Z ′J} | X ∈ Kα}.

To conclude it is then enough to prove that any Ψ-limit in K of a diagram in A is still
orthogonal to M.
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Consider then Y = {N, JS} with N : D → V in Ψ and S : D → A = M⊥, and let X
be any object of Kα; then LX = K(X, J) : A → V is Ψ-precontinuous. Consider then the
following chain of isomorphisms

K(X,Y ) ∼= {N−,K(X, JS−)}
∼= {N−,B(LX, V S−)}
∼= {N−, LX□ ∗ B(V□, V S−)}
∼= {N−, LX□ ∗ A(□, S−)}
∼= LX□ ∗ {N−,A(□, S−)} (5.2)
∼= LX□ ∗ {N−,K(J□, JS−)}
∼= LX□ ∗ K(J□, Y )

∼= P†K({LX,Z ′J}, Z ′Y )

where (5.2) is true by construction since LX is Ψ-precontinuous. This proves that Y is
still orthogonal to M, and therefore lies in A.

Theorem 5.1.11. The following are equivalent for a V-category A:

1. A is accessible and Ψ-complete;

2. A is accessible and Ψ-PCts(A,V)op is cocomplete;

3. A is accessible and Ψ-PCts(A,V)op has colimits of representables;

4. A is accessibly embedded and Ψ-virtually reflective in [C,V] for some C.

In that case Ψ-PCts(A,V) consists of the small Ψ-continuous V-functors.

Proof. (2) ⇒ (3) is trivial and (4) ⇒ (1) is a consequence of Theorem 5.1.10.
(1) ⇒ (2). A is accessible and therefore virtually cocomplete; thus it follows from

Proposition 5.1.6 that Ψ-PCts(A,V)op is cocomplete.
(3) ⇒ (4). Let α be such that A is α-accessible; then take C = Aop

α so that we have an ac-
cessible embedding J : A ↪→ [C,V]. There is a V-functor G : Cop → Ψ-PCts(A,V)op which,
up to isomorphism, is just the inclusion Aα ⊆ A ⊆ Ψ-PCts(A,V)op. Since Ψ-PCts(A,V)op
has colimits of objects of A and G lands in A by construction, it has a essentially unique
cocontinuous extension L : [C,V] → Ψ-PCts(A,V)op which is a left V -adjoint to J , as
desired.

5.2 Main results

5.2.1 Colimit types and companions

The notion of Ψ-precontinuous V-functor introduced in the previous section is not enough
to capture the known characterization theorems for locally polypresentable and weakly
locally presentable categories. To obtain them we need some explicit description of the
Ψ-precontinuous functors. For this reason we now introduce the notions of colimit type
and companion. This will also allow us to capture things like colimits of free groupoid
actions which, as we saw in the introduction, arise in the characterization theorem of
locally polypresentable categories.
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Definition 5.2.1. A colimit type C is the data of a full replete subcategory

CM ↪→ [C,V]

for any weight M : Cop → V. This may equivalently be given by specifying the class

C = {(M,H) | H ∈ CM}

of weighted diagrams.

Let us see some examples.

Example 5.2.2. If Φ is a class of weights there is a colimit type CΦ with

CΦ
M =

{
[C,V] if M ∈ [Cop,V] is in Φ,

∅ otherwise.

Example 5.2.3. For V = Set, consider the colimit type F defined by: H ∈ FM , for
M : Cop → Set, if and only if C is a groupoid, M = ∆1, and H : C → Set is free, in the
sense that

0 HA HB
Hf

Hg

is an equalizer for any f, g : A→ B with f ̸= g.

Example 5.2.4. For V = Set, consider the colimit type R defined by: H ∈ RM , for
M : Cop → Set, if and only if C = {x ⇒ y} is the free category on a pair of arrows,
M = ∆1, and H : C → Set is a pseudo equivalence relation, in the sense that the pair of
functions identified by H factors as

Hx Z Hy
e h

k

an epimorphism e followed by a kernel pair (h, k). Such a factorization, when it exists, is
unique since it will be given by the epi-mono factorization of the induced Hx→ Hy×Hy.
An equivalent definition is [29, Definition 6] which explains why these are called pseudo
equivalence relations.

Given a class of weights Ψ and a colimit type C, we express the commutativity of Ψ-limits
with colimits of diagrams indexed on C as follows:

Definition 5.2.5. Let Ψ be a class of weights and C be a colimit type; we say that C is
compatible with Ψ if, for any presheaf M : Cop → V, either CM = ∅ or CM ⊆ [C,V] is closed
under Ψ-limits and the composite

CM [C,V] V
M ∗ −

preserves them.

Remark 5.2.6. For our purposes it would be enough to require thatM ∗− preserve Ψ-limits
of diagrams landing in CM ; however, since the condition above seems more natural and is
satisfied by all the examples we have, we opted for that.
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Example 5.2.7.

1. If C = CΦ, for a class of weights Φ, the compatibility condition says that Φ consists
of (some or all) Ψ-flat weights (see Section 5.3.1).

2. The colimit type F of free groupoid actions is compatible with wide pullbacks (see
Section 5.3.2).

3. The colimit type R of pseudo equivalence relations is compatible with small products
(see Section 5.3.3).

With the following definition we introduce the V-categories C1A and C†
1A which can be

interpreted as a generalization of free (co)completions to the context of our colimit types.

Definition 5.2.8. Let C be a colimit type and A be a V-category. We define C1A to be
the full subcategory of PA consisting of:

1. the representables;

2. M ∗ Y H for any M : Cop → V and H : C → A for which A(A,H−) : C → A lies in
CM for all A ∈ A.

Dually, let C†
1A = C1(Aop)op; this consists of certain V-functors F : A → V.

Proposition 5.2.9. If C is a colimit type that is compatible with Ψ then

C1A ⊆ Ψ-PCts(Aop,V).

In particular every F : Aop → V in C1A preserves any existing Ψ-limits and the inclusion
A ↪→ C1A preserves any existing Ψ-colimits.

Proof. Consider X ∈ C1A; if X is representable it is Ψ-precontinuous, so suppose that
X ∼=M ∗Y H for some M : Cop → V and H : C → A for which A(A,H−) ∈ CM for all A ∈
A. We need to show that X-weighted colimits commute with Ψ-limits of representables.
For that, consider N : D → V in Ψ and S : D → Aop; then:

X ∗ {N,Y S} ∼= (M ∗ Y H) ∗ {N,Y S}
∼=M − ∗{N□,A(S□, H−)}
∼= {N□,M − ∗A(S□, H−)} (5.3)
∼= {N, (M ∗ Y H) ∗ Y S)}
∼= {N,X ∗ Y S)}

where (5.3) holds since A(SD,H−) lies in CM by hypothesis (for any D ∈ D) and M ∗ −
preserves Ψ-limits of diagrams landing in CM .

Corollary 5.2.10. If C is a colimit type compatible with Ψ and A is Ψ-cocomplete, then
any F ∈ C1A is Ψ-continuous and small.

The following definition identifies when, for a given class of weights Ψ, a colimit type C
is rich enough to capture results in the spirit of Theorem 5.1.10 and Theorem 5.1.11.

Definition 5.2.11. We say that a colimit type C is a companion for Ψ if:

(I) C is compatible with Ψ;
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(II) for any Ψ-complete and virtually cocomplete A, each small Ψ-continuous V-functor
F : A → V lies in C†

1A.

Assuming (I), condition (II) is equivalent to saying that for any Ψ-complete and virtually

cocomplete A we have C†
1A = Ψ-PCts(A,V)op; that is, C†

1A consists of the small Ψ-
continuous V-functors F : A → V.

Examples 5.2.12.

1. All the weakly sound classes from Section 5.3.1, where the classes of diagrams are
actually classes of weights, give examples of companions.

2. V = Set, the colimit type F given by the free groupoid actions is a companion for
wide pullbacks diagrams — see Section 5.3.2.

3. V = Set, the colimit typeR given by the pseudo equivalence relations is a companion
for small products — see Example 5.3.35 and Section 5.4.

4. More generally, we consider enriched colimit types similar to the class R above when
the class of weights is given by small products and powers by a dense generator —
see Sections 5.3.3 and 5.4.

5. V = Cat, the colimit type P of the pseudo-equivalence 2-relations is a companion
for the class of flexible limits — see Sections 5.3.4 and 5.4.

6. V = Set, the colimit type Sλ (including λ = ∞) of λ-sifted diagrams is a companion
for the class of λ-small powers — see Section 5.3.5.

Note that, since C†
1A contains the representables, all existing colimits in C†

1A are com-

puted pointwise, so that the inclusion C†
1A ↪→ P†A always preserves any existing colimits.

Proposition 5.2.13. Let C be a companion for Ψ. The following are equivalent for a
Ψ-complete V-category A:

1. A is virtually cocomplete;

2. PA is cocomplete;

3. C†
1A is cocomplete;

4. C†
1A has colimits of representables.

Proof. This follows from Proposition 5.1.6 since in this case C†
1A = Ψ-PCts(A,V)op.

Once again we can generalize the notion of left adjoint and of virtual left adjoint to the
case of a colimit type:

Definition 5.2.14. We say that a V-functor F : A → K has a left C-adjoint if for each
X ∈ K the V-functor K(X,F−) lies in C†

1A. If F is fully faithful we then say that A is
C-reflective in K.

In other words, F has a left C-adjoint if and only if it has a relative left V -adjoint, where
V : A ↪→ C†

1A is the inclusion.

Proposition 5.2.15. Let C be a companion for Ψ. The following are equivalent for a
V-functor F : A → K between Ψ-complete accessible V-categories:
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1. F is accessible and Ψ-continuous;

2. F has a left C-adjoint.

Proof. This is a consequence of Corollary 5.1.9 plus the fact that C†
1A = Ψ-PCts(A,V)op

under these assumptions.

Theorem 5.2.16. Let C be a companion for Ψ, and K be an accessible V-category with
Ψ-limits. The following are equivalent for a full subcategory A of K:

1. A is accessible, accessibly embedded, and closed under Ψ-limits;

2. A is accessibly embedded and C-reflective.

Proof. (1) ⇒ (2) by the proposition above, while (2) ⇒ (1) is a consequence of Theo-
rem 5.1.10 plus the fact that C†A ⊆ Ψ-PCts(A,V)op.

Theorem 5.2.17. Let C be a companion for the class Ψ. The following are equivalent for
a V-category A:

1. A is accessible and Ψ-complete;

2. A is accessible and C†
1A is cocomplete;

3. A is accessible and C†
1A has colimits of representables;

4. A is accessibly embedded and C-reflective in [C,V] for some C.

Proof. Use Theorem 5.2.16 and apply the same proof of Theorem 5.1.11.

Remark 5.2.18. In Section 5.3.1 we define a notion of Φ-orthogonality class for a class
of weights Φ; this will not be possible in the case of a colimit type C. For example
if we consider the type F associated to wide pullbacks, then F-orthogonality in a locally
presentable category would coincide with multiorthogonality since F†

1K = Fam†K whenever
K is a category of presheaves (if K has a terminal object, all free groupoid actions based
in K must be indexed on the discrete groupoids). This would be in contrast with the
existence of locally polypresentable categories which are not locally multipresentable.

5.2.2 Sketches

In this section we treat a notion of model of a sketch which differs from the usual one;
to justify and better understand this notion it might be helpful to see models of sketches
as morphisms in the category of sketches. This can be described as the category whose
objects are sketches S = (B,L,C) and a morphisms F : S → S ′ are functors F : B → B′

which send the classes of cylinders L and C to the classes L′ and C′ respectively.
Denote by VP the large sketch based on V itself and with the two specified classes given

by all the limiting and colimiting cylinders in V (here we are allowing the base of our
sketch to be large). Then, under this notation, a model of a sketch S = (B,L,C) is just a
morphism of sketches F : S → VP .
Consider now a colimit type C and recall that, given a weight M : Dop → V, we denote

by CM ⊆ [D,V] the full subcategory of those H for which (M,H) ∈ C. To introduce the
notion of C-model consider instead of VP the sketch VC given by V together with the class
L of all limiting cylinders and the class C of all colimiting cylinders η : M ⇒ V(H−, X)
for which H ∈ CM . Then we define a C-model of a sketch S = (B,L,C) to be a morphism
F : S → VC in the category of sketches. More explicitly:
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Definition 5.2.19. Let C be a colimit type and S = (B,L,C) a sketch. A C-model of S
is a V-functor F : B → V satisfying the following conditions:

(i) for every γ in L, its image Fγ is a limiting cylinder in V;

(ii) for every η in C, its image Fη is a colimiting cocylinder in V;

(iii) for every η : M ⇒ B(H−, B) in C, the functor FH lies in CM .

Denote by ModC(S) the full subcategory of [B,V] spanned by the C-models of S in V.

In other words a C-model is a model of S (in the usual sense) which in addition satisfies
condition (iii).

Remark 5.2.20. When C = CΦ is the colimit type defined by a class of weights Φ, then
V-categories of CΦ-models of (general) sketches and V-categories of models of limit/Φ-
colimit sketches are the same. In fact, given a sketch S = (B,L,C), if C contains a weight
which is not in Φ, then ModCΦ(S) = ∅; while, if all weights appearing in C lie in Φ, then
ModCΦ(S) = Mod(S).
Accessible V-categories with Ψ-limits can be seen as V-categories of C-models:

Proposition 5.2.21. Let C be a companion for Ψ, and let A be accessible, accessibly
embedded, and closed under Ψ-limits in [C,V]. Then there exist a fully faithful J : C ↪→ B
and a sketch S on B such that RanJ induces an equivalence

A ≃ ModC(S).

Proof. We argue as in the proof of Theorem 5.2.16. Fix K = [C,V] and an accessible
embedding J : A ↪→ K; by 5.2.16 we can consider the following diagram

C†
1AA

K

P†A

P†K

⊢

V

LJ

Z

Z′

P†J L′

with L relative left V -adjoint to J and ZL ∼= L′Z ′. Moreover by Proposition 2.2.29 we
can write A as a virtual orthogonality class in K with respect to

M := {ηX : ZX → (P†J)ZLX | X ∈ Kα}.

Now, for each X ∈ Kα, we have an isomorphism LX ∼= {MX , V HX} with A(HX−, A) in
CMX

for any A ∈ A. It follows that we can rewrite M as

M = {ηX : ZX → {MX , Z
′JHX} | X ∈ Kα}.

Consider Bop to be the closure of Cop in K under β-small colimits, where β is such that
for every X ∈ Kα, the functor JHX lands in Bop (then Bop will coincide with Kβ). Now
let (H ′

X)op be the factorization of JHX through the inclusion Bop ↪→ K; then every ηX in
M corresponds to a cocylinder γX : MX → K(X, JHX−) ∼= B(H ′

X−, X). It is proved in
Proposition 2.2.30 that A is the equivalent to the V-category of models of the sketch S on
B with

• L consisting of all the β-small limiting cylinders in B;
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• C given by all the γX for X ∈ Kα;

The equivalence is RJ : A → Mod(S) where R is obtained by right Kan extending along
the inclusion C ↪→ B. It is now enough to prove that for this S we already have

Mod(S) = ModC(S);

The inclusion ModC(S) ⊆ Mod(S) is obvious. For the other consider an object F of
Mod(S); this is of the form RJA for some A in A, thus for any ηX as above we are given
the following commutative diagram

A [C,V]

Bop [B,V]

Dop

J

R

Y

HX

(H′
X)op

and obtain

RJA ◦H ′
X

∼= [B,V](Y (H ′
X)op−, RJA) ∼= [C,V](JHX−, JA) ∼= A(HX−, A) ∈ CMX

.

Thus F ∼= RJA ∈ ModC(S).

And a consequence of the proof is the following:

Corollary 5.2.22. Let C be a companion for Ψ and A be an accessible V-category with
Ψ-limits. Then there exists a sketch S for which

A ≃ Mod(S) = ModC(S).

Remark 5.2.23. Note that, for arbitrary C and S, it is not necessarily true that ModC(S)
is accessible since it may not be a V-category of models in the usual sense., as we now
see. For each M , the V-category CM itself can be expressed as ModC(S) for a sketch S:
given M : Dop → V, consider it as the colimit M ∼=M ∗Y in [Dop,V] and denote by B the
full subcategory of [Dop,V] spanned by the representables and M ; let W : D ↪→ B be the
inclusion. If we consider the colimit cocylinder η : M → B(W−,M), then

CM ≃ ModC(S)

where S = (B,L = ∅,C = {η}) and the equivalence is obtained left Kan extending along
the inclusion W .

Thus, if we want any ModC(S) to be accessible for any sketch S, we should at least ask
CM to be accessible and accessibly embedded in its ambient V-category, for each weight
M . And this is all we need:

Definition 5.2.24. Let C be a companion for Ψ; we say that C is an accessible companion
for Ψ if for each M : Dop → V the V-category CM is accessible and accessibly embedded
in [D,V].

Recall that CM , when non-empty, is assumed to be closed under Ψ-limits in [C,V].

Example 5.2.25. The following are examples of accessible companions:



5.2 Main results 106

1. for every weakly sound class Ψ, the companion CΨ+
given by the Ψ-flat weights:

indeed CΨ+

M is either empty or the whole presheaf V-category.

2. V = Set and the companion F, of free groupoid diagrams, for the class of wide
pullbacks: for each groupoid G consider the category G′ obtained from G adding
an initial object 0. On G′ consider the sketch with limit diagrams in L the pairs
g, h : G → H, for every morphisms g ̸= h in G, and with cone specification the
unique arrow 0 → G. The only colimit diagram in C is the empty one with empty
cocone given by the object 0. Let J : G → G′ be the inclusion; then restriction along
J induces an equivalence

Mod(G′,L,C) ≃ FG .

On one side, if F : G′ → Set is a model then FJ is clearly a free groupoid action;
conversely, if F : G → Set is in FG then F ′ : G′ → Set, defined extending F with
F ′(0) = ∅, is a model of the sketch (since F is a free groupoid action). It follows
that each FG is accessible and closed under filtered colimits in [G,Set]. Since the
only colimit specification in the sketch is an initial object, FG is closed under (all
connected limits, and in particular) wide pullbacks.

3. V = Set and the companion R, of pseudo-equivalence relations, for the class of
products: let C be the category with two parallel non-identity arrows f, g : X → Y ,
then RM is non empty only for M = ∆1: Cop → Set. Consider the category C′ in
PC spanned by: C, the coequalizer q of (f, g), the kernel pair h, k : Z → Y of q, and
the kernel pair (h′, k′) of the map e : X → Z induced by the kernel pair (h, k). Then
define the sketch on C′ with limit conditions L saying that (h, k) and (h′, k′) are the
kernel pairs of q and e respectively; the only colimit conditions C are saying that q
and e are the coequalizers of (h, k) and (h′, k′) respectively. It is then easy to see
that

R∆1 ≃ Mod(C′,L,C),

and as a consequence it is accessible and closed under filtered colimits and products
in [C,Set].

4. See also examples from Section 5.3.3 and 5.3.4.

Proposition 5.2.26. Let C be an accessible companion for Ψ. For any sketch S =
(B,L,C) the V-category ModC(S) of C-models of S is accessible, accessibly embedded, and
closed under Ψ-limits in [B,V].

Proof. First note that we can see ModC(S) as the intersection, in [B,V], of all the ModC(Sη),
for all η ∈ C and Sη = (B,L, {η}). Now, each ModC(Sη) can be seen as the pullback

ModC(Sη) CM

Mod(B,L) [C,V]

⌟

− ◦H

with η : M ⇒ B(H−, B), M : Cop → V, and H : C → B. Since the inclusion of CM in [C,V]
is an isofibration, the V-categories involved are accessible and Ψ-complete, and the V-
functors are accessible and Ψ-continuous, it follows by Corollary 2.3.7 that each ModC(Sη)
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is accessible, accessibly embedded, and closed under Ψ-limits in [B,V]. For the same
reason ModC(S) is also an accessible and Ψ-complete V-category.

Hence we can characterize accessible V-categories with Ψ-limits as V-categories of C-
models:

Theorem 5.2.27. Let Ψ be a class of weights, C be an accessible companion for Ψ, and
A be a V-category; the following are equivalent:

1. A is accessible with Ψ-limits;

2. A is equivalent to the V-category of C-models of a sketch.

Proof. Put together Proposition 5.2.21 and 5.2.26.

C-sketches:

Instead of using the notion of C-model of a general sketch, we can also introduce a notion
of C-sketch whose V-categories of (standard) models characterize accessible V-categories
with Ψ-limits. In general this notion is more technical than that of C-model (as we see
below); however in the case of pseudo-equivalence relations and free groupoid actions we
recover the notions of limit/epi and galoisian sketches.
Let C be an accessible companion for Ψ. By accessibility of C, for any M : Dop → V we

can fix a fully faithful WM : D ↪→ DM and a sketch SM = (DM ,LM ,CM ) on DM together
with an equivalence

− ◦WM : Mod(SM ) −→ CM . (5.4)

Using this we define the notion of C-sketch as follows:

Definition 5.2.28. A C-sketch T is determined by a sketch S = (B,L,C) for which every
cocylinder in C is of the form

η : N ⇒ B(H−, B) : Dop
M → V

and such that N ∼= LanW op
M
M , for some weight M . Then T , as a sketch, is given by S

together with the additional classes of cylinders H(LM ) and of cocylinders H(CM ), for
each η ∈ C and M as above. A model of T is then a model of

(B,L ⊔η∈C H(LM ),C ⊔η∈C H(CM ))

in the standard sense.

The following lemma will be important for the characterization theorem.

Lemma 5.2.29. The following are equivalent for an accessible V-category A, a weight
M : Dop → V, and a diagram H : Dop → A:

1. A(H−, A) ∈ CM for any A ∈ A;

2. Hop can be extended to a model Ĥop : DM → P(Aop) of SM in P(Aop).

Proof. It is clear that if Ĥop extends Hop and is a model of SM then H lies representably
in CM . Conversely, if H : Dop → A lies representably in CM , then the transpose S : A →
[D,V] of Y Hop : D → P(Aop) is accessible and lands in CM . Then we can compose it with
the given equivalence to obtain an accessible V-functor T : A → [DM ,V] that lands in
Mod(SM ). Transposing again we obtain a V-functor Ĥop : DM → P(Aop) which extends
Hop and is a model of SM .
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Then, accessible V-categories with Ψ-limits can equivalently be described as V-categories
of models of a C-sketch:

Theorem 5.2.30. Let Ψ be a class of weights, and C be an accessible companion with a
fixed sketch presentation as in (5.4). A V-category A is accessible with Ψ-limits if and
only if it is equivalent to the V-category of models of a C-sketch.

Proof. Let T be a C-sketch as in Definition 5.2.28; then a V-functor F : B → V is a model
of T if and only if it is a C-model of the sketch S = (B,L,C′), where C′ = {η ◦W op

M }η∈C
(with η as in Definition 5.2.28). Thus Mod(T ) = ModC(S) is accessible with Ψ-limits by
Theorem 5.2.27.
Conversely, given an accessible V-category A with Ψ-limits, we consider a fully faithful

and accessible J : A → K = [C,V] and work in the setting of the proof of Proposition 5.2.21.
The diagrams HX : Dop → A considered there satisfy condition (1) of Lemma 5.2.29; thus
they can be extended to some ĤX : Dop

MX
→ P†A such that Ĥop

X is a model of SMX
. Then,

by possibly replacing C with a larger (but still small) V-category, we can assume that every
P†J ◦ ĤX : Dop

MX
→ P†K lands in K.

In addition, we take the V-category Bop ⊆ K (considered in the proof) to contain the
images of all the ĤX ; call the resulting V-functors Ĥ ′

X : DM → B. Now consider the
sketch S = (B,L,C) given in Proposition 5.2.21, and define the C-sketch T with same
base V-category B, same set of cylinders L, and cocylinders

γ̂X : LanW op
MX

MX → B(Ĥ ′
X−, X)

induced by the γX specified in 5.2.21 for each given X. It is then easy to see that
ModC(S) = Mod(T ), and hence A, being equivalent to ModC(T ), is the V-category of
models of a C-sketch.

Example 5.2.31. In the case of the companion F for wide pullbacks (V = Set), the re-
mark above says that the sketches characterizing accessible categories with wide pullbacks
have the following restrictions on the colimit cocones:

1. there is always an empty cocone, denote its vertex by 0;

2. any other cocone H → ∆C is indexed on a groupoid G and comes together with a
cone specification

0

HA HB
Hf

Hg

for any parallel pair f ̸= g in G.

By seeing every groupoid as (equivalent to) a coproduct of groups, these sketches can be
easily recognized as the galoisian sketches of Ageron [6, Definition 4.14].

Example 5.2.32. We can apply the same arguments to the companion R for products
(V = Set). By the remark above, the only restriction for colimit cocones appearing in
the sketches for accessible categories with products is that they need to be coequalizers of
kernel pairs. Since we are working in Set, this is equivalent to the specification of a set
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of maps which need to be sent to epimorphisms. That’s exactly the data of a limit/epi
sketch where all the cocones are as below.

B C

C C

e

1C

e 1C

Thus we recover the characterization of [2, Theorem 4.13]. The same argument can be
applied in the more general setting of Section 5.3.3.

5.2.3 The Set-case

For this section we take V to be Set and give a further characterization of companions.
To do that we need to make the following assumption:

Assumption 5.2.33. All the components CM , of a colimit type C, are assumed to be
accessible, accessibly embedded, and such that the sketches defining them involve only
colimits and connected limits.

All the classes of colimits in Example 5.2.25 satisfy this condition.
The following lemma is a straightforward extension of the well-known special case where

A is small.

Lemma 5.2.34. Let F : Aop → Set be a small functor and El(F ) be its category of
elements, so that we have a projection q : El(F ) → A. Then

P(El(F )) ≃ PA/F

and, under this equivalence, Pq is the projection Q : PA/F → PA.

Proof. For the proof it is easier to see El(F ) as the slice category A/F , which comes
together a fully faithful inclusion J : A/F → [Aop,Set]/F . It is well-known that we
have an equivalence at the level of presheaves E : [Aop,Set]/F → [(A/F )op,Set] given
by Ep ∼= [Aop,Set]/F (J−, p) for any p : G → F . To conclude it is then enough to show
that if p : G→ F has small domain then Ep is small. Indeed PA/F would then be a full
subcategory of P(A/F ) which contains the representables and is closed under colimits;
thus it is equivalent to P(A/F ). For any p : G → F with G small in [Aop,Set], consider
a small category C and H : C → A such that colimY H ∼= G (here Y is the Yoneda
embedding). Then we can express Ep : (A/F )op → Set as the colimit

Ep ∼= colim

(
C/(GH)

p∗

−−−−→ C/FH
H∗

−−−−→ A/F −−−→ [(A/F )op,Set]
)

where p∗ and H∗ are the obvious maps induced by p and H. The fact that Ep is indeed
isomorphic to the colimit above can be checked pointwise using that both the colimit
evaluated at (A, x) and Ep(A, x) coincide with p−1

A (x) ⊆ GA. The fact that Pq ≃ Q is a
direct consequence of how E is defined.

The following then provides an easy way to recognize companions:
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Proposition 5.2.35. Let C be a colimit type as in Assumption 5.2.33 and Ψ a class of
weights. Then C is a companion for Ψ if and only if:

(i) C is compatible with Ψ;

(ii) for any Ψ-complete and virtually cocomplete B, the category C†
1B has an initial object.

Proof. If C is a companion for Ψ then (i) holds by definition. For (ii), note that by
property (II) defining a companion, and the fact the constant functor ∆1: Bop → Set is

Ψ-continuous, it follows that ∆1 ∈ C†
1B which then has an initial object.

Conversely assume that (i) and (ii) hold. We only need to prove that for any Ψ-complete
and virtually cocomplete A, each small Ψ-continuous functor F : A → V lies in C1(Aop).
Given F as above, the category B := El(F )op is Ψ-complete and virtually cocomplete
(since by Lemma 5.2.34 P(Bop) ≃ P(Aop)/F and A is virtually cocomplete). Thus, by

(ii), the category C1(Bop)op ≃ C†
1B has an initial object, which must coincide with the

constant functor ∆1: B → Set.
To conclude it is then enough to prove that the projection q : B → A induces a functor
C1(q

op) : C1(Bop) → C1(Aop) which is the restriction of P(qop). This will suffice since then
C1(q

op)(∆1) coincides with ∆1 ∗ Y q ∼= F which then lies in C1(Aop). Now, if X : B → Set
is in C1(Bop), then we can write it as X ∼=M ∗ Y H with B(H−, B) ∈ CM for any B ∈ B.
Note that the diagram H : C → B above is representably in B if and only if Y H : B →
P(Bop) is a model of the sketch corresponding to CM . Moreover, by our assumption on
C, the sketch defining CM can be assumed to be such that its limit specifications are
all connected. By Lemma 5.2.34 the induced functor P(qop) is, up to equivalence, the
projection Q : P(Aop)/F → P(Aop) and thus it preserves all colimits and all connected
limits. It follows that (Pqop)Y Hop is a model in P(Aop) of the sketch corresponding to CM ;
since (Pqop)Y Hop ∼= Y ◦ (qH)op this means that qH lies representably in CM . Therefore
Pqop(X) ∼=M ∗ Y (qH) lies in C1(Aop).

5.3 Examples

5.3.1 The weakly sound case

In this section we focus on the case where our companion C, for a class of weights Ψ, is
determined by a class of weights Φ; that is C = CΦ. For simplicity we denote the colimit
type simply by Φ instead of CΦ, but note that whenever we say that Φ is a companion we
mean that the corresponding CΦ is one.
We denote with Φ†

1A = (CΦ)†1A the full subcategory of P†A spanned by the representa-
bles and Φ-limits of those. This is not in general the free completion of A under Φ-limits
(which is denoted by Φ†A). When it is so for all A, we say that Φ is a pre-saturated class
of weights (Section A.1), which for simplicity we shall henceforth assume for any class Φ
considered in this section.
In this context then Definition 5.2.11 translates into the following: let Ψ and Φ be classes

of weights; then Φ is a companion for Ψ if and only if:

(I) Φ-colimits commute in V with Ψ-limits;

(II) for any Ψ-complete and virtually cocomplete A, each small Ψ-continuous V-functor
F : A → V lies in Φ†A.
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Recall that, unlike in the case of the Ψ-accessible V-categories of Section 2.1.1, we do
not assume our class Ψ to be small; in other words, completions under Ψ-limits of small
V-categories might be large.

Remark 5.3.1. If Ψ is a small class of weights and Φ is a class of weights compatible with Ψ,
then it is enough to check the companion property (II) above only for small V-categories.
Indeed, suppose that the condition holds for any small V-category, let A be any (possibly
large) Ψ-complete V-category, and suppose that F : A → V is small and Ψ-continuous.
Then F = LanJ(FJ), with J : C ↪→ A small; since Ψ is small we can suppose that C is
closed in A under Ψ-limits, and hence that FJ is Ψ-continuous. By hypothesis then FJ is
a Φ-colimit of representables, but LanJ(−) preserves colimits as well as the representables,
so F is a Φ-colimit of representables too.

We begin by extending the definition of flat V-functors and soundness to a possibly large
class of weights Ψ:

Definition 5.3.2. Let Ψ be a class of weights. We say that a small presheafM : Aop → V
is Ψ-flat ifM -colimits commute in V with Ψ-limits. We call Ψ-flat weight a Ψ-flat presheaf
with small domain. Denote by Ψ+ the class given by the Ψ-flat weights.

As noted at the beginning of Section 5.1, when M : Aop → V is a small V-functor,
M -weighted colimits exist in any cocomplete V-category making the notion above well
defined. Recall moreover that when we talk about a Ψ-flat weight M ∈ Ψ+, we assume
M to have a small domain (and hence it is just any presheaf).

Definition 5.3.3. A class of weights Ψ is called weakly sound if every Ψ-continuous and
small V-functor M : A → V, from a virtually cocomplete and Ψ-complete A, is Ψ-flat.

When Ψ is locally small, thanks to the same argument of Remark 5.3.1, we recover
the usual notion of weakly sound class of Section 1.3 that only involves small Ψ-complete
V-categories.
The relationship between Ψ being weakly sound and it having a companion identified

by a class of weights is explained by the following proposition.

Proposition 5.3.4. If a class Φ of weights is a companion for Ψ then Ψ is a weakly sound
class and Φ ⊆ Ψ+. Conversely, if Ψ is a weakly sound class then Ψ+ is a companion for
Ψ.

Proof. For the first assertion consider M : A → V to be small and Ψ-continuous (with A
virtually cocomplete and Ψ-complete); then M is a Φ-colimit of representables since Φ is
a companion for Ψ. As a consequence M ∗ − is a Φ-colimit of evaluation functors, which
are continuous. Then, since Φ-colimits commute with Ψ-limits in V, it follows at once
that M ∗ − preserves Ψ-limits, and hence that Ψ is weakly sound.
For the second part we already know, by definition, that Ψ+-colimits commute in V

with Ψ-limits; therefore consider again M : A → V small and Ψ-continuous, we need to
prove that it is a Ψ+-colimit of representables. By assumption, M ∼= LanJ(MJ) for some
small full subcategory J : C → A. Therefore, since M is Ψ-flat (being Ψ-continuous), MJ
is Ψ-flat as well by Lemma 1.3.2 and hence M ∼= MJ ∗ ZJ (where Z is the inclusion of
Aop in P(Aop)) is a Ψ+-colimit of representables. This shows that Ψ+ is a companion for
Ψ.

As a consequence, given a companion Φ for Ψ and any V-category A the following
inclusions hold:

ΦA ⊆ Ψ+A;
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and that becomes an equality whenever Aop is Ψ-complete and virtually cocomplete. If in
addition every Ψ-flat V-functor is a Φ-colimit of representables, then the equality

ΦA = Ψ+A

always holds.

Remark 5.3.5. It is not true in general, given a companion Φ for Ψ, that all Ψ-flat V-
functors are Φ-colimits of representables. For example, when V = Ab, the filtered colimits
form a companion for the class of finite limits, but flat Ab-functors are not just filtered
colimits of representables. In fact they are filtered colimits of finite sums of representables
(see [81, Theorem 3.2] or our Section 3.2).

Example 5.3.6. In the following examples Ψ is a weakly sound class; we spell out when
the companion can be taken to consist of some, but not all, the Ψ-flat weights. See
Example 1.3.6 for explanations of why most of these classes are sound.

1. Ψ = P is the class of all small weights. Then the class Φ = ∅ is a companion for
P since ∅-colimits (trivially) commute in V with all limits, and any continuous V-
functor F : A → V, from a complete and virtually cocomplete A, has a left adjoint by
Lemma 5.3.8 below. A P-flat weight is a Cauchy (or absolute) weight. An accessible
V-category with all limits is a locally presentable V-category.

2. Ψ = ∅. Then Ψ+ = P is the class of all weights. When V = Set, the class Φ of
all small categories is a companion for Ψ. This choice of Ψ will classify accessible
V-categories (with no limits specified).

3. V locally α-presentable as a closed category, Ψ is the class of α-small weights. Then
the class Φ of α-filtered categories is a companion for Ψ; in general not every α-flat
V-functor is a filtered colimit of representables.

4. V symmetric monoidal closed finitary quasivariety, Ψ is the class for finite products
and finitely presentable projective powers. Then the class Φ of sifted categories is
a companion for Ψ; we do not know whether Ψ-flat V-functors are always sifted
colimits of representables.

5. V cartesian closed, Ψ is the class of finite discrete diagrams. Then M is Ψ-flat if and
only if Lan∆M ∼=M ×M .

6. V = Set, Ψ is the class of connected categories. Then the class Φ of discrete
categories is a companion for Ψ; every Ψ-flat weight is a split subobject of coproducts
of representables. The fact that connected limits commute in Set with coproducts is
standard. Moreover, if F : A → Set is small and preserves connected limits, then the
connected components of the category of elements of F are (α-filtered for any α and
hence) absolute; this makes F a coproduct of representable functors. An accessible
category with connected limits is called a locally multipresentable category.

7. V = Set, Ψ = {∅}. Then Ψ+ is generated by the class of connected categories [4].

8. V = Set, Ψ consists of the finite connected categories. Then Ψ+ is generated by
coproducts of filtered categories [4].

9. V = Set, Ψ is the class of finite non empty categories. Then Ψ+ is generated by the
filtered categories plus the empty category.
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10. V = Set, Ψ is the class of finite discrete non empty categories. Then Ψ+ is generated
by the sifted categories plus the empty category.

11. V = Cat, Ψ is the class generated by connected conical limits and powers by con-
nected categories. Then the class Φ of discrete categories is a companion for Ψ;
every Ψ-flat weight is a split subobject of coproducts of representables. The proof is
based on that of (6) using that every small 2-functor F : A → Cat can be written as
the coproduct of a conical connected colimit of connected copowers of representable
2-functors.

12. V = ([Cop,Set],⊗, I) with the representables closed under the monoidal structure,
Ψ is the class defined by powers by representables. Then the class Φ of all conical
weights is a companion for Ψ (see Example 1.3.6(10)).

In this context, companions of locally small classes of weights can be characterized as
follows. When Φ = Ψ+ part of this was proved in [59, Theorem 8.11].

Proposition 5.3.7. Let Φ and Ψ be a pair of classes of weights with Ψ locally small. The
following are equivalent:

1. Φ is a companion for Ψ.

2. Φ-colimits commute in V with Ψ-limits, and for any V-category A every object of
PA is a Φ-colimit of objects from ΨA.

3. W := LanKZ : Φ ◦ Ψ(−) → P(−) is an equivalence of endofunctors on V-CAT,
where Z : Ψ(−) → P(−) and K : Ψ(−) → Φ ◦Ψ(−) are the inclusions.

4. For each Ψ-cocomplete A the inclusion V : A → ΦA is Ψ-cocontinuous, and freely
adding Φ-colimits induces a 2-functor

Φ(−) : Ψ-Coct-CAT −→ Coct-CAT

from the 2-category of Ψ-cocomplete V-categories to that of cocomplete V-categories.

Proof. (1) ⇒ (2). The first part is already in the definition of companion. For the latter
assume first that A is small, so that ΨA is small as well, and consider F : Aop → V (an
object of PA). Let W : A → ΨA = Ψ†(Aop)op be the inclusion; then RanW opF is Ψ-
continuous (and small, since ΨA is). The fact that Φ is a companion for Ψ implies that
RanW opF is a Φ-colimit of representables: there existM in ΦC and H : C → ΨA such that
RanW opF ∼=M ∗ Y H, where Y is the Yoneda embedding. Since pre-composition with W
is cocontinuous, it follows that F ∼= (M ∗ Y H)W ∼=M ∗ ZH, where Z : ΨA → PA is the
inclusion, as desired.
Consider now the case of a general A; let F : Aop → V be small, then F ∼= LanJ(FJ)

for some small J : Bop → Aop. By the argument above we know that FJ ∼=M ∗ ZBH is a
Φ-colimit of objects from ΨB; thus

F ∼= LanJ(M ∗ ZBH) ∼=M ∗ LanJZBH

but LanJZB takes values in ΨA, thus F is a Φ-colimit of objects from ΨA.
(2) ⇒ (3). Let W : Φ(ΨA) → PA be as in (3). The fact that every object of PA

is a Φ-colimit of objects from ΨA is equivalent to the request of W being essentially
surjective. Similarly, we will now show that commutativity of Φ-colimits with Ψ-limits in
V is equivalent to W being fully faithful; this will be enough to show (3).
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Since Φ-colimits commute in V with Ψ-limits, the Ψ-continuous M : Ψ(A)op → V are
closed under Φ-colimits. Of course the representables are also Ψ-continuous; thus any
N : Ψ(A)op → V in Φ(ΨA) is Ψ-continuous, and so the canonical N → RanJ(NJ) is
invertible, where J : Aop → (ΨA)op is the inclusion. Note moreover that W acts by
precomposition with J ; indeed, by the arguments above, this defines a Φ-cocontinuous
V-functor Φ(ΨA) → PA which coincides with Z when restricted to ΨA. Now for any
M,N : Ψ(A)op → V in Φ(ΨA) we have

Φ(ΨA)(M,N) ∼= [Ψ(A)op,V](M,N)
∼= [Ψ(A)op,V](M,RanJ(NJ))
∼= [Aop,V](MJ,NJ)

giving the fully faithfulness of W .
(3) ⇒ (4). Let A be Ψ-complete and consider the induced square

ΦA ΦΨA⊥

A ΨA⊥

ΦL

ΦJ

V V ′

J

L

where L exists since A is Ψ-cocomplete. Note that V ′ is Ψ-cocontinuous because it co-
incides, up to equivalence, with the inclusion ΨA ↪→ PA. Thus it is easy to see that V
must be Ψ-cocontinuous as well.
For the second statement, consider the endofunctors

Id(−),Ψ(−) : Ψ-Coct-CAT → Ψ-Coct-CAT

given respectively by the identity and by freely adding Ψ-colimits. Since we are restricted
to Ψ-cocomplete categories, the inclusion Id(−) ↪→ Ψ(−) has a left adjoint Ψ(−) → Id(−);
by applying Φ(−) this induces an adjunction

Φ(−) Φ ◦Ψ(−)⊥

but Φ ◦ Ψ(−) ≃ P(−). Thus ΦA is cocomplete whenever A is Ψ-cocomplete, and ΦF is
cocontinuous whenever F is Ψ-cocontinuous.
(4) ⇒ (1). Let us prove first that Φ-colimits commute in V with Ψ-limits. LetM : Cop →

V be a weight in Φ, we need to prove that M ∗ − : [C,V] → V is Ψ-continuous. For this,
consider A = [C,V]op; by the assumptions V : A → ΦA is Ψ-cocontinuous and hence for
each X ∈ ΦA the functor ΦA(V−, X) : Aop → V is Ψ-continuous. Take now X :=M ∗V Y ,
where Y : C → [C,V]op = A is the Yoneda embedding, then

ΦA(V−, X) ∼=M ∗ A(−, Y ) ∼=M ∗ [C,V](Y,−) ∼=M ∗ −

is Ψ-continuous, as required.
It remains to prove property (II) from the definition of companion; by Remark 5.3.1 we

can reduce it to the case when A is small and Ψ-complete. Let A be small and Ψ-complete,
and F : A → V be Ψ-continuous; then by (4) the V-category Φ†A = Φ(Aop)op is complete
and Φ†F is continuous, moreover F has a virtual left adjoint (since A is small). By Lemma
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5.3.8 below it follows that Φ†F has a left adjoint. Equivalently RanV F : Φ†A → V has a
left adjoint L; hence F ∼= L(I) ∈ Φ†A is a Φ-colimit of representables.

Lemma 5.3.8. Let F : A → B be such that Φ†A is complete and Φ†F : Φ†A → Φ†B is
continuous; then F has a virtual left adjoint if and only if Φ†F has a left adjoint.

Proof. Recall that F has a virtual left adjoint if and only if B(B,F−) is small for any
B ∈ B; while Φ†F has a left adjoint if and only if B(B,F−) lies in Φ†A for any B ∈ B.
Thus, if Φ†F has a left adjoint then F has a virtual left adjoint.
Conversely, assume that B(B,F−) is small for any B ∈ B and let V : A ↪→ Φ†A and

W : B ↪→ Φ†B be the inclusions. To conclude it is enough to show that Φ†B(WB,Φ†F−)
is representable for any B ∈ B; this would in fact define a relative left adjoint of F with
respect to V and hence say that B(B,F−) lies in Φ†A.
Since Φ†F is continuous, the V-functor Φ†B(WB,Φ†F−) is continuous too, call this G.

By [56, Theorem 4.80] it is enough to show that {G, 1Φ†A} exists in Φ†A and is preserved
by G. Since G : Φ†A → V is continuous, G ∼= RanV (GV ), and GV = B(B,F−) which is
small. Thus {GV, V } exists in Φ†A and

{GV, V } ∼= {G,RanV V } ∼= {G, 1Φ†A}.

Likewise

G{G, 1Φ†A} ∼= G{GV, V } ∼= {GV,GV } ∼= {G,RanV (GV )} ∼= {G,G}.

Corollary 5.3.9. Let Ψ be locally small and Φ be a companion for Ψ. For each Ψ-
cocomplete A the V-category ΦA is the free cocompletion of A relative to Ψ-colimits. In
other words the following is a bi-adjunction

Coct-CAT Ψ-Coct-CAT
⊥

Φ(−)

U

where U is the forgetful functor.

It is now time to introduce the ingredients of the characterization theorem for accessible
V-categories with Ψ-limits. We begin by introducing Φ-orthogonality classes which gener-
alize the usual notion of orthogonality and that of virtual orthogonality class of Chapter 2.

Definition 5.3.10. Let Φ be a companion for Ψ, and K be a V-category with inclusion
Z : K ↪→ Φ†K. Let f : ZX → P be a morphism in Φ†K with representable domain. We
say that an object A of K is orthogonal with respect to f if

Φ†K(f, ZA) : Φ†K(P,ZA) −→ Φ†K(ZX,ZA)

is an isomorphism in V.

Given an object P in Φ†K, we can write it as a Φ-limit of representables P ∼= {M,ZH}.
Thus to give f : ZX → P is the same as giving a cylinder f̄ : M → K(X,H−); moreover
Φ†K(ZX,ZA) ∼= K(X,A) and Φ†K(P,ZA) ∼=M ∗K(H−, A). As a consequence, an object
A of K is orthogonal with respect to f : ZX → P if and only if the map

M ∗ K(H−, A) → K(X,A)
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induced by f̄ : M → K(X,H−) is an isomorphism.

Definition 5.3.11. Let Φ be a companion for Ψ. Given a V-category K and a small
collection M of morphisms in Φ†K of the form f : ZX → P , we denote by M⊥ the full
subcategory of K spanned by the objects which are orthogonal with respect to each f ∈ M.
We call Φ-orthogonality class any full subcategory of K which arises in this way.

Equivalently, a Φ-orthogonality class in K is a virtual orthogonality class of K for which
the morphisms that define it lie in Φ†K ⊆ P†K.

Examples 5.3.12. Let K be a V-category;

• if Ψ = P and Φ = ∅, then a Φ-orthogonality class in K is an orthogonality class in
the usual sense.

• if Ψ = ∅ and Φ = P, then a Φ-orthogonality class in K is a virtual orthogonality
class in the sense of Section 2.2.4.

• if V = Set, Ψ is the class of connected categories, and Φ that of the discrete ones,
then a Φ-orthogonality class in K is a multiorthogonality class in the sense of [35].

The content of Definition 5.2.14 in this setting specializes to the following:

Definition 5.3.13. Let Φ be a companion for Ψ. We say that a V-functor F : A → K has
a left Φ-adjoint if for each X ∈ K the V-functor K(X,F−) is a Φ-colimit of representables.
If F is fully faithful we say that A is Φ-reflective in K.

Equivalently, F has a left Φ-adjoint if and only if K(X,F−) lies in Φ†A, seen as a
full subcategory of P†A. In other words, F : A → K has a Φ-left adjoint if and only if
F has a relative left adjoint with respect to the inclusion V : A ↪→ Φ†A, if and only if
Φ†F : Φ†A → Φ†K has a left adjoint.

Examples 5.3.14. Let F : A → V be a V-functor.

• if Ψ = P and Φ = ∅, then a left Φ-adjoint for F is a left adjoint.

• if Ψ = ∅ and Φ = P, then a left Φ-adjoint for F is a virtual left adjoint.

• if V = Set, Ψ is the class of connected categories, and Φ that of the discrete ones,
then a left Φ-adjoint is a left multiadjoint.

Theorem 5.3.15. Let Φ and Ψ be classes of weights, Φ be a companion for Ψ, and A be
a full subcategory of some [C,V]. The following are equivalent:

1. A is accessible, accessibly embedded, and closed under Ψ-limits in [C,V];

2. A is accessibly embedded and Φ-reflective in [C,V];

3. A is a Φ-orthogonality class in [C,V].

Proof. (1) ⇔ (2) is a consequence of Theorem 5.2.16.
(2) ⇒ (3). Let K = [C,V] and denote by L′ the left VA-adjoint to J ; in particular

ZAL
′ is a left adjoint to J relative to ZAVA, which means that A is virtually reflective.

Therefore we have:
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P†A

P†K

Φ†A

Φ†K

⊢

A

K

LR

ZA

ZK

Φ†J

VA

VK

J
L′

where ZAL
′ ∼= LZKVK since they are both left (ZAVA)-adjoints to J .

By the virtual case we know that A is the virtual orthogonality class defined by

M := {ηX : ZKVKX → RLZKVKX| X ∈ Kα}.

for some α, where η is the unit of L ⊣ R. We shall show that this is actually a Φ-
orthogonality class. For each X ∈ Kα we have

RLZKVKX ∼= RZAL
′X ∼= ZK(Φ

†J)L′X;

therefore M is contained in Φ†K and coincides (up to isomorphism) with

M′ := {ηX : VKX → (Φ†J)L′X| X ∈ Kα},

which exhibits A as a Φ-orthogonality class.
(3) ⇒ (1). A is accessible by Theorem 2.2.32 because it is in particular a virtual

orthogonality class. Let K = [C,V] and M be the set of arrows in Φ†K defining A; then
A can be seen as the pullback

M⊥ Φ†K

A K

VK

where M⊥ is the an orthogonality class of Φ†K in the usual sense. Now note that M⊥

is closed under all small limits that exist in Φ†K, and VK preserves Ψ-limits since Φ is a
companion for Ψ; it follows then that A is closed in K under Ψ-limits as well.

And for a general V-category A we obtain the following.

Theorem 5.3.16. Let Φ and Ψ be classes of weights for which Φ is a companion for Ψ.
The following are equivalent for a V-category A:

1. A is accessible with Ψ-limits;

2. A is accessible and Φ†A is cocomplete;

3. A is accessible and Φ†A has colimits of representables;

4. A is accessibly embedded and Φ-reflective in some [C,V];

5. A is a Φ-orthogonality class in some [C,V];

6. A is the category of models of a limit/Φ-colimit sketch.
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Proof. Note that Φ is an accessible companion for Ψ since every CΦ is either empty or
the whole presheaf V-category. Thus (1) ⇒ (2) ⇒ (3) ⇒ (4) are a consequence of The-
orem 5.2.17 and (4) ⇒ (5) ⇒ (1) follow from Theorem 5.3.15 above. Finally, (1) ⇔ (6)
follows from Theorem 5.2.27 and Remark 5.2.20.

Remark 5.3.17. Given a class of weights Φ denote by Φ− the class of weights whose indexed
limits commute in V with Φ-colimits. It has been shown in [59, Example 5.8] that even
for a (weakly) sound class Ψ we do not have the equality Ψ+− = Ψ∗, where Ψ∗ is the
saturation of Ψ; the fact that makes this fail is that Ψ∗ need not contain the absolute
weights; that’s exactly what one needs to obtain an equality, as we now show.
Let Ψ be a locally small weakly sound class. Then Ψ+ is both a companion for Ψ and

for Ψ+−; therefore by Theorem 5.3.16 above it follows that an accessible V-category A is
Ψ-complete if and only if it is Ψ+−-complete. When A is small, by Theorem 4.2.7, this
is saying that a small V-category is Cauchy complete and Ψ-complete if and only if it is
Ψ+−-complete (remember that Ψ+− already contains the absolute weights). Similarly, a
V-functor from such a V-category into V is Ψ-continuous if and only if it is Ψ+−-continuous
(since they both correspond to Ψ+-colimits of representables). Thus if we denote by Q
the class of absolute weights we obtain the equality

Ψ+− = (Ψ ∪Q)∗

expressing Ψ+− as the saturation of Ψ together with Q.

5.3.2 Wide Pullbacks

In this section we let V = Set and let Ψ consist of the weights for wide pullbacks. The
colimit type F we consider is the one given by the groupoid indexed diagrams in Set
which induce a free action in the sense of Example 5.2.3. Equivalently, a groupoid indexed
functor G : G → Set is in F if and only if, writing G as a coproduct of groups (Gi)i, for
every non identity g ∈ Gi the function G(g) has no fixed points.
Recall the notion of polylimit in a category:

Definition 5.3.18. [68, Definition 0.12] Let H : C → A be a diagram in a category A.
A polylimit of H is given by a family of cones (ci : ∆Ai → H)i∈I , with Ai ∈ A, with
the following property: for any cone c : ∆C → H there exists a unique i ∈ I and a map
f : C → Ai in A such that c = ci ◦∆f , moreover f is unique up to unique automorphism
of Ai.

Proposition 5.3.19. Let A be a category, V : A ↪→ F1A be the inclusion, and H : C → A
be a diagram. Then H has a polylimit in A if and only if V H has a limit in F1A.
In particular then A has (α-small) polylimits if and only if F1A has (α-small) limits of
representables.

Proof. (This is an adaptation of [50, Proposition 3.4].) Assume first thatH has a polylimit
(∆Ai → H)i∈I in A; then consider the groupoid indexed diagram G :

∑
iAut(Ai) →

A given simply by the inclusions of the Ai’s together with their automorphisms. The
polylimit property implies that A(A,G−) lies in F for any A ∈ A: if f : A → Ai and
g ∈ Aut(Ai) satisfy gf = f then, since f corresponds to a cone ∆A → H, such a g must
be unique, but the identity also satisfies the equality; thus g = 1Ai .
As a consequence the colimit X of V G is an object of F1A. Moreover the maps

(ci : ∆Ai → H)i∈I define a cocone out of V G in F1A which in turn induces a map
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c : ∆X → V H. It is now easy to see that, by the polylimit properties of the Ai’s, the map
c exhibits X as the limit of V H in F1A.
Conversely, let X be the limit of V H in F1A; then we can write X as the colimit of V G

where G :
∑

i Gi → A is representably in F and each Gi is a group. Let Ai be the image in
A of each group component Gi; then the limiting cone of X induces a family (∆Ai → H)i∈I
of cones over H. We prove that these exhibit (Ai)i as the polylimit of A. To give a cone
for A ∈ A over H is the same as giving an arrow V A → X; note now that F1A(V A,−)
preserves the colimit of V G defining X, and therefore F1A(V A,X) ∼= colimA(A,G−) in
Set. It follows that giving an arrow V A → X is the same as giving a map A → Ai,
for a unique i, determined up to composition with some G(g) : Ai → Ai; finally this g is
also unique because A(A,G−) is a free groupoid action by hypothesis. It follows that the
family (Ai)i is the polylimit of H in A.

Recall the following lemma of Lamarche:

Lemma 5.3.20 (Lemma 0.13 of [68]). Let B be a category with wide pushouts. Then B
has a polyterminal object if and only if it has a weakly terminal family.

Thanks to this and Proposition 5.2.35 we can easily prove the following:

Proposition 5.3.21. The class F is an accessible companion for the class of wide pull-
backs.

Proof. Accessibility of F is given by Example 5.2.25, which also shows that the limit spec-
ifications in the sketches defining F are all connected. Thus we can use Proposition 5.2.35
to show that F is a companion for the class of wide pullbacks. That F is compatible
with wide pullbacks is given by [50, Proposition 1.4] — see Section 5.3.2 for a compar-
ison of our work with that in [50]. Thanks to Proposition 5.3.19, to show property (ii)
of Proposition 5.2.35, we need to prove that every virtually cocomplete category B with
wide pullbacks has a polyinitial object. This follows at once by the dual of Lemma 5.3.20
since every virtually cocomplete category B has a weakly initial family. Indeed, by virtual
cocompleteness, the functor ∆1: B → Set is small; thus it is the left Kan extension of its
restriction to a small full subcategory C of B. The elements of C then form a weakly initial
family in B.

Definition 5.3.22. We say that a functor F : A → B has a left polyadjoint if it has a left
F-adjoint; if F is fully faithful we say that A is polyreflective in B.

Traditionally, one says that F : A → B has a left polyadjoint if, for any B ∈ B, the cate-
gory B/F = El(B(B,F−))op has a polyinitial object [68, Page 35]. By Proposition 5.3.19
and the arguments of Section 5.2.3, this is equivalent to saying that B(B,F−) lies in

F†
1(A). Thus our definition coincides with the classical notion of left polyadjoint.

Remark 5.3.23. In [99, Section 1.2] Taylor shows that F : A → B has a left polyadjoint if
and only if the induced functor F/A : A/A→ B/FA has a left adjoint for any A ∈ A.

Now, since F is a companion for the class of wide pullbacks and thanks to Theorem 5.2.16
we obtain:

Theorem 5.3.24. Let K be an accessible category with wide pullbacks and A a full sub-
category of K. The following are equivalent:

1. A is accessible, accessibly embedded, and closed under wide pullbacks in K;
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2. A is accessibly embedded and polyreflective in K.

Regarding sketches, note that, by the presentation of F as in Example 5.2.31, the cate-
gories of F-models of sketches are the same as the categories of models of galoisian sketches
[6]. Thus, thanks to Theorem 5.2.17 and the dual of Proposition 5.3.19, we obtain the
characterization below.

Theorem 5.3.25. Let A be a category; the following are equivalent:

1. A is accessible with wide pullbacks;

2. A is accessible and F†
1A is cocomplete;

3. A is accessible and polycocomplete;

4. A is accessibly embedded and polyreflective in [C,Set] for some C;

5. A is the category of models of a galoisian sketch.

The equivalence of (1) and (3) was first given by Lamarche in [68, Theorem 0.20], then
Ageron further added condition (5) in [6, Theorem 4.19].

Quasi-coproducts

The notion appearing below has been used in [50]:

Definition 5.3.26. A groupoid indexed diagram H : G → B is called quasi-discrete if
for each non-initial B ∈ B the functor B(B,H−) is a free action in Set; that is, if
B(B,H−) ∈ F for any non-initial B. A quasi-coproduct is the colimit of such a diagram.

Given a category B with quasi-coproducts, Hu and Tholen define Bq to be the full sub-
category of B consisting of those objects B for which B(B,−) preserves quasi-coproducts;
they call B quasi-based if each object is a quasi-coproduct of objects from Bq.
The following shows that our notion of diagram representably in F is comparable with

that of quasi-discrete diagram.

Proposition 5.3.27. Let A be a category, V : A ↪→ F1A be the inclusion, and H : G → A
be a groupoid indexed diagram. Then A(A,H−) ∈ F for any A in A if and only if V H is
quasi-discrete in F1A.
Similarly, let B be a quasi-based category and H : G → Bq be a groupoid indexed diagram.

Then H is quasi-discrete in B if and only if Bq(B,H−) ∈ F for any B in Bq.

Proof. Assume that A(A,H−) ∈ F for any A and that there exists a non-initial object
X ∈ F1A such that F1A(X,V H−) is not free. Since X is not initial and is a colimit of
of elements from A, there exists a map V A → X for some A in A. It then follows that
A(A,H−) ∼= F1A(V A, V H−) is not free as well, leading to a contradiction. Conversely,
assume that V H is quasi-discrete in F1A. Since the terminal object of F1A is computed
as in [Aop,Set] it cannot lie in A; thus A(A,H−) is in F for any A ∈ A by definition.
The same proof applies to the second statement since the initial object 0 of B does

not lie in Bq; indeed B(0,−) does not preserve coproducts, and hence cannot preserve
quasi-coproducts.
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By the proposition above, it follows that a category B with quasi-coproducts is quasi-
based if and only if B ≃ F1Bq. Thus, the content of [50, Proposition 3.4] coincides with
that of our Proposition 5.3.19.
The difference between our approach and that of Hu and Tholen is simply that, while

in [50] they are interested in recognising those categories that arise as free cocompletions
under colimits of free groupoid actions, we want to construct such free cocompletions
starting from a given category. In fact, when freely adding colimits of free groupoid actions
to a category A, one needs to consider those diagrams H : G → A that lie representably in
F; however, when determining if a category B is a free completion under colimits of free
groupoid actions the right notion to consider is that of quasi-discrete diagram.

5.3.3 Products and powers by a dense generator

Let V be symmetric monoidal closed and locally presentable as usual, and G be a (possibly
large) dense generator of V0 containing the unit and closed under tensor product.

Definition 5.3.28. Let E ⊆ V2 be the class of maps e for which G ⋔ e is a regular
epimorphism for any G ∈ G. In particular every map in E is a regular epimorphism.

Note: from now on we assume one of the following conditions:

(I) the unit I is regular projective;

(II) if f ◦ g is a regular epimorphism in V then so is f , and E is closed under products
in V2.

Any base of enrichment listed in Example 3.1.3 satisfies (I), while any locally dualizable
base of Section 3.2 satisfies (II).

Lemma 5.3.29. If condition (I) holds then: e ∈ E if and only if V0(P, e) is surjective for
any P ∈ G. In particular E is closed under products and under composition.

Proof. If e ∈ E and P ∈ G then V0(P, e) ∼= V0(I, P ⋔ e) is surjective since I is regular
projective in V0 and P ⋔ e is a regular epimorphism. Conversely, assume that V0(P, e) is
surjective for any P ∈ G. Let H be the inclusion of G in V0; by hypothesis we have a fully
faithful J = V0(H, 1) : V0 ↪→ PG which has a left adjoint L since V0 is cocomplete. Then
our hypothesis is saying that Je is a regular epimorphism in PG: the kernel pair of Je
exists in PG since it is the image through J of the kernel pair of e in V0; hence Je, being
by definition a pointwise surjection, is the coequalizer of its kernel pair. Thus e ∼= LJe is
a regular epimorphism in V0 by cocontinuity of L. Now, given G ∈ G, the morphism G ⋔ e
still satisfies that V0(P,G ⋔ e) is surjective for any P ∈ G (since G is closed under tensor
product); thus G ⋔ e is a regular epimorphism by the previous argument. It follows that
e ∈ E .

Definition 5.3.30. We say that a pair f, g : X → Y in V is a G-pseudo equivalence
relation if it factors as a map e : X ↠ Z in E followed by a kernel pair h, k : Z → Y whose
coequalizer lies in E . Denote by C the colimit type generated by the G-pseudo equivalence
relations: CM is non-empty only for M = ∆I : Cop → V, where C is the free V-category
on a pair of arrows, and in that case C∆I is the full subcategory of [C,V] spanned by the
G-pseudo equivalence relations in V.

Proposition 5.3.31. The class C is a companion for the class of products and G-powers.
If G is small then C is an accessible companion.
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Proof. That C is compatible with products and G-powers in V is a consequence of the fact
that the maps in E are stable under them, and kernel pairs commute with any limit.
Assume now that A is virtually cocomplete with products and G-powers, and consider

F : A → V to be a small functor which preserves these limits. Let Y : Aop → P(Aop) be
the Yoneda embedding; then, by smallness of F and since G is a dense generator, there is
a regular epimorphism

q :
∑
i
(Pi · Y Ai) ↠ F

with Pi ∈ G for any i. Consider now A =
∏

i(Pi ⋔ Ai) in A and the comparison∑
i(Pi · Y Ai) → Y A. Since F preserves products and G-powers, q factorizes through

the comparison via a map
e : Y A −→ F.

We wish to prove that e lies pointwise in E . The proof will depend on which condition,
(I) or (II), holds in V. Assume that (I) holds; since both Y A and F preserve G-powers,
we have an isomorphism G ⋔ eB ∼= eG⋔B for any G ∈ G and B ∈ A. Therefore

V0(G, eB) ∼= V0(I,G ⋔ eB) ∼= V0(I, eG⋔B)

is surjective since V0(I, q) was thanks to condition (I); thus eB ∈ E for any B. On the
other hand, if (II) holds then eB is a regular epimorphism for any B in A (since qB was),
and thus also G ⋔ eB ∼= eG⋔B is. As a consequence eB ∈ E .
Now, since A is virtually cocomplete, P(Aop) is complete, and the kernel pair K of e is

still small and preserves the same limits as F ; hence by the same arguments we can find
a map e′ : Y A′ → K which lies pointwise in E . It follows that F can be expressed as the
coequalizer of a G-pseudo equivalence relation between representables; in other words it
lies in C1(Aop). This proves that C is a companion for products and G-powers.
Assume now that G is small. We define a sketch for C∆I in the same spirit of Exam-

ple 5.2.25(3). Consider the V-category C′ in PC spanned by: C, the coequalizer q of (f, g),
the kernel pair h, k : Z → Y of q, the kernel pair (h′, k′) of the map e : X → Z induced by
the kernel pair (h, k), and G-powers of all these. Then define the sketch on C′ with limit
conditions L specifying that (h, k) and (h′, k′) as the kernel pairs of q and e respectively.
The only colimit conditions C specify, for any G ∈ G, the maps G ⋔ q and G ⋔ e as the
coequalizers of (G ⋔ h,G ⋔ k) and (G ⋔ h′, G ⋔ k′) respectively. Since these conditions
force q and e to be identified with maps in E , it is then easy to see that

C∆I ≃ Mod(C′,L,C).

As a consequence it is accessible and closed under filtered colimits, products and G-powers
in [C,V].

We can now apply Theorem 5.2.16 to obtain:

Theorem 5.3.32. Let K be an accessible V-category with products and G-powers, and let
A be a full subcategory of K. The following are equivalent:

1. A is accessible, accessibly embedded, and closed under products and G-powers;

2. A is accessibly embedded and C-reflective.

Regarding sketches, note that, by the presentation of C as in Proposition 5.3.31 and
Section 5.2.2, the V-categories of C-models of sketches are the same as the V-categories of
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models of limit sketches where in addition some maps are specified to lie in E ; these kind
of sketches are commonly called limit/E sketches. Thus, Theorems 5.2.17 and 5.2.27 in
this case become:

Theorem 5.3.33. The following are equivalent for a V-category A:

1. A is accessible with products and G-powers;

2. A is accessible and C†
1A is cocomplete;

3. A is accessible and C†
1A has colimits of representables;

4. A is accessibly embedded and C-reflective in [C,V] for some C.

If G is small, then they are further equivalent to:

5. A is the V-category of models of a limit/E sketch.

For some of the examples outlined below, this theorem relates to the results of [63],
although at this point, it does not capture them completely. We deal with this in Sec-
tion 5.4.

Example 5.3.34 (Products and small powers). Assume that V satisfies (I) and consider
G = V0 as the dense generator. Then, using Lemma 5.3.29, it is easy to see that the class
E consists exactly of the split epimorphisms in V.

Example 5.3.35 (Products and projective powers). Let V be a symmetric monoidal quasi-
variety as in [64]; in this section we consider G to consist of the enriched finitely presentable
and regular projective objects of V. Then V satisfies condition (II) being regular. The
class E is simply given by the regular epimorphisms in V. The corresponding colimit type
R, like in the ordinary case, is the one formed by the pseudo-equivalence relations in V:
we say that a pair f, g : X → Y in V is a pseudo-equivalence relation if it factors as a
regular epimorphism e : X ↠ Z followed by a kernel pair h, k : Z → Y .
Note that a Cauchy complete V-category has products and G-powers if and only if it
has products and powers by projective objects. This is because every projective object
of V is a split subobject of coproducts of elements of G [64, Proposition 4.8]. Therefore
Theorem 5.3.33 provides a characterization of the accessible V-categories with products
and projective powers.
In the ordinary case, what we obtain is not exactly the traditional characterization of
[1, Chapter 4] which uses weak colimits and weak left adjoints. See Section 5.4 for the

relation between left R-adjoints and weak left adjoints, and between colimits in R†
1A and

weak colimits.

Example 5.3.36 (Products and powers by 2). Let V = Cat, which satisfies condition (I),
and consider G = {2n}n∈N together with the induced class E .
By Lemma 5.3.29, f : C → D in Cat lies in E if and only if it is surjective on cubes; that is,
if 2n ⋔ f is surjective on objects for any n ∈ N. The colimit type H induced by E can be
described as the one formed by the pairs f, g : C → D in Cat which factor as a surjective
on cubes functor e : C → E followed by a kernel pair h, k : E → D whose coequalizer is
surjective on cubes.
Given the ordinal n := {0 → 1 · · · → n − 1}, one could try to consider those morphisms
e such that n ⋔ e is a regular epimorphism for each n ≥ 0. Since n is a split subobject
of 2n−1, it follows that every cube epimorphism also satisfies this property. However
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the converse does not hold: consider the inclusion of the non-commutative square into the
commutative square, this satisfies the condition on ordinals in Cat but is not surjective on
cubes. Note that, by [83, Proposition 6.2] and the observation just made, every surjective
on cubes functor in Cat is an effective descent morphism.

Example 5.3.37 (Products and finite powers). Let V be locally finitely presentable as a
closed category with a regular projective unit, so that condition (I) is satisfied. Consider
G = Vf , then the maps in E are usually called pure epimorphisms: these are the morphisms
e for which V0(A, e) is surjective for any A ∈ Vf .

5.3.4 Flexible Limits

For this section we let V = Cat and consider the class of weights Flex for flexible limits;
these are generated by products, inserters, equifiers, and splittings of idempotents. See
[61] as a reference for 2-limits.

Remark 5.3.38. Note that, when dealing with accessible categories, it is equivalent to con-
sider Flex or the class PIE of PIE-limits. This is because every accessible 2-category is
Cauchy complete, and flexible limits are generated by PIE-limits and splittings of idem-
potents.

Before describing a companion for Flex let us recall some facts about retract equiva-
lences, coisoidentifiers, and a notion of kernel in the 2-categorical context.
A retract equivalence in a 2-category K is a morphism q : D → E for which there exist

a section s : E → D, so that qs = 1E , and an invertible 2-cell σ : sq ∼= 1D. In Cat retract
equivalences are precisely those equivalences that are moreover surjective on objects.
We shall present retract equivalences in Cat as part of a kernel-quotient system ([21],

see also Section 5.4). The kernel of this system is given by what we call an isokernel cell.

Definition 5.3.39. Let q : D → E be a morphism in a 2-category K; the isokernel cell of
q is the universal invertible 2-cell

C D⇓ ϕ
π1

π2

such that qϕ = id.

In Cat, the category C is given by the full subcategory of D2 whose objects are the
isomorphisms f : x → y of D for which q(f) = id. Then π1 and π2 are the domain and
codomain projections, and ϕf = f : π1(f) → π2(f).
The quotient of the system is given by coisoidentifiers:

Definition 5.3.40. Let ϕ : π1 ⇒ π2 : C → D be an invertible 2-cell in a 2-category K. The
coisoidentifier q : D → E of ϕ is the universal morphism out of D satisfying the equality
qϕ = id.

See Section 5.4 for a description in terms of weighted colimits.
The next proposition shows that retract equivalences are the (split) colimit of their

isokernel cells.

Proposition 5.3.41. Every retract equivalence in a 2-category K is the coisoidentifier of
its isokernel cell.
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Proof. Let q : D → E be a retract equivalence in K; then we can take a section s : E → D
and an invertible 2-cell σ : sq ∼= 1D. Given the isokernel cell ϕ : π1 ⇒ π2 : C → D of q,
by the universal property of the limit applied to σ there exists v : D → C with π1v = sq,
π2v = 1D, and ϕv = σ. It now follows easily that q is the (split) coisoidentifier of ϕ: given
any map h : D → F such that hϕ = id, then (hs)q = hπ1v = hπ2v = h so that h factors
through q. The factorization is unique since q is an epimorphism.

In general, it is not true that the coisoidentifier of any isokernel cell is a retract equiv-
alence. For instance, in Cat, if ϕ : π1 ⇒ π2 : C → D is the isokernel cell of some map
r : D → F , and D has a non-identity isomorphism f : x → x such that r(f) = id, then
the colimit q : D → E of ϕ will send f to the identity map. Thus q is not faithful and in
particular not a retract equivalence.
We can avoid this problem by introducing the notion of acyclic isokernel cell:

Definition 5.3.42. An isokernel cell ϕ : π1 ⇒ π2 : C → D in Cat is called acyclic if
ϕc = id whenever π1c = π2c.

Remark 5.3.43. Let k : B → C be the equalizer of π1 and π2, then ϕ is acyclic if and only
if ϕk = id. Equivalently, ϕ is acyclic if and only if the equalizer k of π1 and π2 coincides
with the identifier of ϕ.

Proposition 5.3.44. An isokernel cell ϕ : π1 ⇒ π2 : C → D in Cat is acyclic if and only
if its coisoidentifier is a retract equivalence. In this case, ϕ is also the isokernel cell of its
coisoidentifier.

Proof. Assume first that the coisoidentifier q : D → E of ϕ is a retract equivalence. By
the property of the colimit, every morphism in D of the form ϕc : d → d is sent to the
identity morphism by q. But q is an equivalence; thus ϕc = 1d and ϕ is acyclic.
Conversely let us assume that ϕ, as above, is an acyclic isokernel cell in Cat. We shall

give an explicit construction of its coisoidentifier.
Consider the following equivalence relation on the objects of D: two objects d and e of

D are related if and only if there exists c in C such that ϕc connects them:

d e
ϕc

in other words: if π1c = d and π2c = e. This is actually an equivalence relation on the
objects of D since ϕ is an isokernel cell (the inverse or composition of any maps of the
form ϕc is still of the form ϕc′ for some c′ ∈ C). Now, for each equivalence class of objects
choose a representative. Let E be the full subcategory of D consisting of the chosen
representatives, and s : E → D be the inclusion; clearly this is essentially surjective on
objects and so an equivalence.
For each d ∈ D, let qd ∈ E be the chosen representative of the equivalence class of d,

and let σd : sqd→ d be the unique isomorphism of the form ϕc for some unique c ∈ C (the
uniqueness of σd follows from the fact that ϕ is acyclic: given any other σ′d the composite
σ−1
d σ′d must be the identity map). Then q defines a functor q : D → E in such a way that
qs = 1E and the σd define a natural isomorphism σ : sq ∼= 1D. It is now easy to see that
ϕ is also the isokernel cell of q and thus, by the universal property of the limit, there is a
unique v : D → C with π1v = 1D, π2v = sq, and ϕv = σ. Now q is a (split) coisoidentifier
of ϕ.

We will now construct a companion P for Flex by considering retract equivalences and
acyclic isokernel cells in Cat.
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Definition 5.3.45. Let P be the colimit type given by: PM is non empty only when
M = ∆1: Wop → Cat, where W = {· ∼= ·} is the 2-category freely generated by an
invertible 2-cell. In that case PM consists of the (invertible) 2-cells

X Y⇓ ψ

f

g

in Cat which factor as a retract equivalence e : X → Z followed by an acyclic isokernel
cell ϕ : π1 ⇒ π2 : Z → Y (so that f = π1e, g = π2e, and ψ = ϕe).

Remark 5.3.46. If ψ in PM as above, since e is in particular surjective on objects the
coisoidentifier of ψ and ϕ coincide and is a retract equivalence by Proposition 5.3.44
above. Moreover ϕ is then the isokernel cell of such a coisoidentifier, and e is the map
induced by the universal property of the limit.

In the next proposition we will use [23, Theorem 6.2], which states that if A is a 2-
category with flexible limits and F : A → Cat is a 2-functor which preserves them and
(whose underlying functor) satisfies the solution-set condition, then there exists A ∈ A
and a pointwise retract equivalence q : A(A,−) → F .

Proposition 5.3.47. The colimit type P is an accessible companion for Flex.

Proof. Let us first show that P is compatible with Flex; for that we need to prove that
the inclusion J : PM ↪→ [W,Cat] (with M and W as in the definition above) and the
composite of J with the colimit 2-functor [W,Cat] → Cat preserve flexible limits.
Consider the 2-category Z generated by the following data below.

w x y∼= ϕ z
e

π1

π2

q

with qϕ = 1. There is a continuous and cocontinuous 2-functor T : [Z,Cat] → [W,Cat]
which acts by sending a diagram (e, ϕ, q) to the invertible 2-cell ϕe.
Let now P be the full subcategory of [Z,Cat] consisting of those diagrams for which

e and q are retract equivalences and ϕ is the isokernel cell of q. We will now see that T
restricts to an equivalence T ′ : P → PM . Note first that if (e, ϕ, q) is in P then ϕe lies in
PM since ϕ is acyclic by Proposition 5.3.44. Moreover, consider the 2-functor S : PM → P
defined by sending a 2-cell ψ to the triple (e, ϕ, q) where q is the coisoidentifier of ψ, ϕ is
the isokernel cell of q, and e is the map induced by ψ into the domain of ϕ; this is well
defined by Remark 5.3.46. It is easy to see that S is an inverse for T ′, and hence T ′ is an
equivalence of 2-categories.
Now, to prove that the inclusion J : PM ↪→ [W,Cat] and the restriction of the colimit

2-functor [W,Cat] → Cat to PM preserve flexible limits, it is enough to show that the
inclusion P ↪→ [Z,Cat] and the the 2-functor [Z,Cat] → Cat, evaluating at z, preserve
them. The latter is continuous and cocontinuous (being an evaluation 2-functor) and the
former preserves flexible limits since retract equivalences are stable in Cat under them
(see for example [63, Section 9]) and isokernel cells are stable under any limits. Thus it
follows that P is compatible with flexible limits in Cat. Moreover the same arguments
also show that PM is closed in [W,Cat] under filtered colimits.
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Let us now prove the companion property (II) from Definition 5.2.11. Consider a vir-
tually cocomplete 2-category A with flexible limits, and a small flexible-limit preserving
F : A → Cat. By virtual cocompleteness of A, the V-category P(Aop) is complete; thus for
any X ∈ Cat the 2-functor [X,F−] is still small and flexible-limit preserving. Therefore
there exists a regular epimorphism∑

i
(Pi · A(Ai,−)) ↠ [X,F−]

which, since [X,F−] preserves products and powers, factors through the comparison as a
map

A(
∏
i
Pi ·Ai,−) ↠ [X,F−]

which is, in particular, pointwise surjective on objects. The corresponding morphism
η : X → F (

∏
i Pi · Ai) has the property that any x : X → FA factorizes through η via

some
∏

i Pi ·Ai → A; thus F satisfies the solution-set condition.
By [23, Theorem 6.2] there exists then a pointwise retract equivalence q : A(A,−) → F .

Form now the isokernel cell ϕ : π1 ⇒ π2 : G → A(A,−) of q. By completeness of P(Aop),
the 2-functor G is still small and, since it preserves flexible limits, we can obtain again a
pointwise retract equivalence p : A(B,−) → G. It follows that f := π1p, g := π2p, and
ψ := ϕp define a 2-cell that lies pointwise in PM and which has coisoidentifier equal to F .
This shows that P is a companion for Flex.
To conclude, we are only left to prove that PM is accessible and accessibly embedded in

[W,Cat]. By the arguments above, it is enough to show that the 2-category P is accessible
and accessibly embedded in [Z,Cat]. Let Z ′ be the full subcategory of P†Z spanned by
the representables, the isokernel cell ϕ′ : π′1 ⇒ π′2 of the map e : w → x, and the equalizers
l and l′ of (π1, π2) and (π′1, π

′
2) respectively.

Then define the sketch on Z ′ with limit conditions L specifying ϕ and ϕ′ as the isokernel
cells of q and e respectively, l as both the equalizer of (π1, π2) and the identifier of ϕ, and
similarly l′ as both the equalizer of (π′1, π

′
2) and the identifier of ϕ′. The colimit cocones

C specify simply the maps q and e as the coisoidentifiers of ϕ and ϕ′ respectively. These
conditions say exactly that ϕ and ϕ′ are acyclic isokernel cells (Remark 5.3.43), and that
q and e are retract equivalences (by Proposition 5.3.44); thus it is then easy to see that

PM ≃ P ≃ Mod(W ′,L,C)

is therefore accessible.

As we did in the previous section, by the presentation of PM given above and Sec-
tion 5.2.2, the 2-categories of P-models of sketches are the same as the 2-categories of
models of limit sketches where in addition some maps are specified to be retract equiva-
lences. If we let E be the class of retract equivalences in Cat, we recover the notion of
limit/E sketch. Thus, Theorem 5.2.17 in this case becomes:

Theorem 5.3.48. Let A be a 2-category; the following are equivalent:

1. A is accessible with flexible limits;

2. A is accessible and P†
1A is cocomplete;

3. A is accessible and P†
1A has colimits of representables;
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4. A is accessibly embedded and P-reflective in [C,V] for some C;

5. A is the V-category of models of a limit/E sketch.

This gives a characterisation of accessible 2-categories with flexible limits similar to that
of [63, Theorem 9.4] and [23, Section 9.3]; for the relation between these two character-
ization see Section 5.4. Notice that in [63] and [23] they consider the conical version of
accessibility while we deal with the flat one; however the two notions coincide by Theo-
rem 3.1.14.

5.3.5 Powers

In this section we denote by Λ the class of weights for powers by λ-small sets.

Definition 5.3.49. [5, Section 4] A functor H : D → Set, with small domain D, is called
λ-sifted if the following conditions hold:

1. given less than λ elements xi ∈ Hdi there exists an object d ∈ D such that each
(di, xi) lies in the same component of El(H) as some element of Hd.

2. given a set I of cardinality less that λ, and families (d, xi)i∈I , (d
′, x′i)i∈I in El(H) such

that for each i the pair (d, xi), (d
′, x′i) lies in one connected component of El(H), there

exists a zig-zag Z in D connecting d and d′ such that each of the pair above can be
connected by a zig-zag in El(H) whose underlying zig-zag is Z.

Denote by Sλ the colimit type given by the λ-sifted functors, with weight ∆1. We allow
λ to be ∞, meaning that we have no restriction on the cardinality of I, and define S∞

accordingly.

Proposition 5.3.50. [5, Section 4] The colimit of a functor H : C → Set commutes with
λ-small powers if and only if H is λ-sifted. In particular Sλ is compatible with Λ.

This allows us to prove that Sλ is a companion for Λ, and to establish a relationship
between being λ-sifted and being Λ-precontinuous.

Proposition 5.3.51. The colimit type Sλ is a companion for Λ. Moreover, for any A
we have an equality

Sλ
1A = Λ-PCts(Aop,Set).

Proof. We already know that Sλ is compatible with Λ, then to conclude it is enough to
prove the equality above.
Compatibility with Λ gives the inclusion Sλ

1A ⊆ Λ-PCts(Aop,Set). Consider now a
Λ-precontinuous functor F : Aop → Set, then since F is small we can find H : C → A,
with C small, such that F ∼= colimY H. By Λ-precontinuity of F , for each X ∈ Setλ and
A ∈ A we have

colim(X ⋔ A(A,H−)) ∼= X ⋔ (colimA(A,H−)).

Therefore, by the proposition above, A(A,H−) is λ-sifted for any A ∈ A; in other words
A(A,H−) ∈ Sλ for all A ∈ A. Thus F ∼= colimY H lies in Sλ

1A.

Remark 5.3.52. This can be done more generally for any V and any class of objects G in
V. Consider the class of weights ⋔G for powers by elements of G, and let CG be the colimit
type given by the pairs (M,H) for which

M ∗ (G ⋔ H) ∼= G ⋔ (M ∗H)

for any G ∈ G.
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5.4 Weak reflections

In this section we plan to capture the standard characterization theorems of [1] for acces-
sible categories with products in terms of weak reflection and weak cocompleteness. We
also obtain the results of [63] involving accessible 2-categories with flexible limits. To do
this we make use of the notion of kernel-quotient system developed in [21, Section 2].

Definition 5.4.1. Let us fix an object X ∈ V together with a map x : X → I; we
define a V-category F with three objects 2, 1, 0 and homs F(2, 2) = F(1, 1) = F(0, 0) = I,
F(2, 1) = X, F(2, 0) = F(1, 0) = I, and F(0, 1) = F(0, 2) = F(1, 2) = 0; the only non-trivial
composition map is x : F(1, 0)⊗ F(2, 1) → F(2, 0). Let now K be the full subcategory of F
with objects 2 and 1; we depict F and K as below.

2 1 0K

We denote the inclusions by k : K → F and h : 2→ F, and consider the adjunction below
(as in [21])

[2,V] [K,V]⊥
K

Q

where K = k∗ ◦Ranh and Q = h∗ ◦ Lank. Given a map f in V we call Kf the F-kernel of
f , and given a diagram H on K we call the map QH the F-quotient of H.

Remark 5.4.2. Note that, for any H : K → V and f : A→ H2 in V, pre-composition with
f induces a diagram Hf : K → V with (Hf )1 = H1, (Hf )0 = H0, and (Hf )2 = A.

Lemma 5.4.3. Every F-quotient is an epimorphism in V. Moreover, for any H : K → V
and any epimorphism e : A→ H2 in V, we have QH ∼= Q(He).

Proof. Consider an F-quotient map e = QH : H1 → P and any pair f, g : P → B such
that fe = ge. Then fe is a cocone for H and factors through QH by f and g; by the
universal property of the colimit then f = g. For the last part of the statement note that,
since e is an epimorphism, giving a cocone for H is equivalent to giving a cocone for He.
Therefore QH ∼= Q(He).

Assumption 5.4.4. Let E be a collection of maps in V. From now on we assume that F
and E satisfy the following proprieties:

1. Every map in E is the F-quotient of its F-kernel.

2. E is closed under composition.

If E consists of all the F-quotient maps, then (1) is saying that F-quotient maps are
effective in the sense of [21].

Examples 5.4.5. The following examples satisfy the conditions above:

1. Let V be either a regular category of have a regular projective unit. Let G be a
dense generator of V0, and E as in Definition 5.3.28 with the properties assumed in
Section 5.3.3. Then we can consider the kernel-quotient system for kernel pairs and
coequalizers (X = I + I and x is the co-diagonal).
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2. Let V = Cat; consider F generated by X = {· ∼= ·} the free-living isomorphism
and x : X → 1 the unique map. Then F-quotients are coisoidentifiers and F-kernels
are isokernel cells. We take E to consist of the retract equivalences (which are
F-quotients, but not all F-quotients are retract equivalences).

The data of a kernel-quotient system and a class of maps E induces a colimit type C:

Definition 5.4.6. Given F and E as above we can define a colimit type C as follows: CM

is non-empty only forM = F(k−, 0) : Kop → V and in that case CM is the full subcategory
of [K,V] spanned by the diagrams of the form (Kq) ◦ e for any compatible e, q ∈ E .

Example 5.4.7. In the case of Example 5.4.5(1) the colimit type induced is that of G-
pseudo equivalence relations (Section 5.3.3); in the case of (2) we obtain the colimit type
of pseudo equivalence 2-relations (Section 5.3.4).

Let Y : Aop → [A,V] be the Yoneda embedding.

Definition 5.4.8. Say that a V-functor P : Aop → V is E -weakly representable if there
exists a map f : Y A→ P which is pointwise in E . Denote by WE (A) the full subcategory
of [Aop,V] spanned by the E -weakly representables.

Note that by construction we then have C1(A) ⊆ WE (A).

Definition 5.4.9. We say that a V-functor F : A → B is E -weakly reflective if B(B,F−)
is E -weakly representable for any B ∈ B.

In the following proposition we assume C1(Kop) to have F-kernels of representables; that
is true in particular when it has all limits of representables and hence whenever K is
cocomplete.

Proposition 5.4.10. The following are equivalent for a fully faithful inclusion J : A ↪→ K
and a V-category K for which C1(Kop) has F-kernels of representables:

1. A is E -weakly reflective in K;

2. A is C-reflective in K.

Proof. Note that (1) says that each K(K,J−) is in WE (Aop), while (2) says that it is in
C1(Aop). Then (2) ⇒ (1) is trivial since C1(Aop) ⊆ WE (Aop).
For (1) ⇒ (2) assume that A is E -weakly reflective in K; we need to prove that K(K,J−)

actually lies in C1(Aop). By hypothesis K(K,J−) is E -weakly representable, so there exists
A ∈ A together with a map pointwise in E

q : A(A,−) ↠ K(K,J−).

Such a q determines a map K → JA in K, and this in turn induces a morphism

q′ : K(JA,−) −→ K(K,−)

which, when restricted to A, gives back q. Now, by the hypothesis on C1(Kop), the F-kernel
Kq′ of q′, with domain S, lies C1(Kop). In particular we obtain a diagram

K(Q,−) S K(JA,−) K(K,−)Kq′
s q′
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where s is a map pointwise in E , and hence an epimorphism by Lemma 5.4.3. Now we
can restrict this diagram to A by pre-composing with J and, since pre-composition in
continuous, (Kq′)J ∼= Kq is the F-kernel of q. Moreover q is the F-quotient of Kq by
our initial assumptions on E . Note also that sJ is still pointwise in E and hence an
epimorphism.
By hypothesisK(Q, J−) is E -weakly representable, so there exists r : A(B,−) ↠ K(Q, J−)

which lies pointwise in E . The map e = sJ ◦ r is still pointwise in E by condition (2); thus
we have a presentation as below

A(B,−) SJ A(A,−) K(K,J−)Kq
e q

showing that K(X, J−) can be written as an F-quotient of representables (by condition
(1) and Lemma 5.4.3). Moreover the diagram is constructed so that it lies pointwise in C,
witnessing that K(X, J−) lies in C1(Aop).

Corollary 5.4.11. The following are equivalent for a V-category A:

1. WE (A) has limits of representables;

2. C1(A) has limits of representables.

Proof. (2) ⇒ (1) is trivial. To show that (1) ⇒ (2) let us prove the dual statement,

that is: if W†
E (A) has colimits of representables then so does C†

1A. Let K = PA and
J : A ↪→ K be the inclusion; then K is cocomplete and hence satisfies the hypothesis of
Proposition 5.4.10. Moreover J has an E -weak left adjoint: given X ∈ K we can write
it as a colimit X ∼= M ∗ JH of objects from A, then K(X, J−) ∼= {M,Y H} is a limit of
representables in [A,V]. In other words K(X, J−) is a colimit of representables when seen

in the opposite V-category, by our assumption then K(X, J−) lies in W†
E (A), as desired.

It follows by the proposition above that J is C-reflective, and thus C†
1A has colimits of

representables: compute the colimits in K and then transport them into C†
1A through the

relative left adjoint.

Remark 5.4.12. Assume that the unit I and the object X (defining F) are α-presentable;
then F-kernels are α-small limits. Thus, if we replace PA in the proof above with the
free cocompletion under α-small colimits, we can prove that WE (A) has α-small limits of
representables if and only if C1A has them.

Now we can apply Proposition 5.4.10 and its corollary in the context of Example 5.4.5(1),
where E is the class of those regular epimorphisms that are stable under G-powers. Then
Theorem 5.3.33 becomes:

Theorem 5.4.13. Let A be a V-category; the following are equivalent:

1. A is accessible with products and G-powers;

2. A is accessible and W†
E (A) has colimits of representables;

3. A is accessibly embedded and E -weakly reflective in [C,V] for some C;

4. A is the V-category of models of a limit/E sketch.
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In this way we recover the characterization of ordinary accessible categories with prod-
ucts given in [2, Chapter 4]; we also obtain an enriched version of it in the context of
categories enriched over finitary quasivarieties.
Similarly, we can apply Proposition 5.4.10 and its corollary in the context of Exam-

ple 5.4.5(2), where V = Cat and E is the class of retract equivalences. Then Theo-
rem 5.3.48 becomes:

Theorem 5.4.14. Let A be a 2-category; the following are equivalent:

1. A is accessible with flexible limits;

2. A is accessible and W†
E (A) has colimits of representables;

3. A is accessibly embedded and E -weakly reflective in [C,V] for some C;

4. A is the V-category of models of a limit/E sketch.

As a consequence we obtain part of [63, Theorem 9.4] characterizing accessible 2-
categories with flexible limits in terms of weak cocompleteness.



CHAPTER

6
Dualities for accessible categories with

limits

Gabriel and Ulmer showed in [44] that a locally finitely presentable category K can be
described, starting from its finitely cocomplete subcategory Kf of finitely presentable
objects, as the category Lex(Kop

f ,Set) of the finite-limit preserving functors from Kop
f into

Set. Therefore we obtain a duality between the 2-category of locally finitely presentable
categories and that of the small and finitely complete ones; this was generalized to the
enriched context in [57] and [18].
When completeness is dropped, and we deal just with the existence of some limits (as

in Chapter 5), some dualities have been considered in the literature. In the absence of
limits, Makkai and Pare gave a duality between the 2-category determined by the finitely
accessible categories and the 2-category of presheaf categories, lex left-adjoint functors
between them, and natural transformations. Similarly, Diers gave a duality in [35] between
locally finitely multipresentable categories (finitely accessible with connected limits) and
finitely complete categories which are the free cocompletions of a small category under
coproducts. In the case of accessible categories with products, Hu gave a duality [49]
between the 2-category of the weakly locally finitely presentable categories and that of
exact categories with enough projectives.
We recover all these dualities as part of the framework of companions. In particular

we shall show in Section 6.2 that, if C is a companion for Ψ and satisfies some additional
properties, then the 2-category of finitely accessible V-categories with Ψ-limits is biequiv-
alent to the opposite of the 2-category whose objects are “lex C-cocompletions” of small
V-categories. This applies for instance to the case of any weakly sound class Ψ (see Sec-
tion 6.3.1 where some examples are spelled out explicitly) and in the context of enriched
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weakly locally presentable categories (Section 6.3.3).

6.1 More on colimit types

Given a colimit type C, in Section 5.2.1 we introduced the V-category C1A as that obtained
from A by freely adding colimits of type C of elements of A. Here we generalize that by
defining a V-category CA as a “free cocompletion” of A under C-colimits, so that in
particular one has the inclusion C1A ⊆ CA. Then we adapt the results of Section 5.2.1 to
the setting where C1A is replaced by CA. This construction will be needed to prove the
duality theorem.

Definition 6.1.1. Let C be a class of diagrams and A be a V-category. We say that
a weight M : Cop → V together with H : C → PA is a colimit diagram of type C if it is
representably in C when restricted to A:

evA ◦H ∈ CM

for any A ∈ A, where evA : PA → V is the evaluation at A ∈ A. Dually, a pair N : C → V
together with H : C → P†A is a limit diagram of type C if (M,Hop) is a colimit diagram
of type C.

Equivalently,M andH as above define a colimit diagram of type C if PA(Y A,H−) ∈ CM

for any A ∈ A. When H lands in A, since PA(Y A,H−) ∼= A(A,H−), we recover the
notion of diagram used to define the elements of C1A.

Definition 6.1.2. Given a V-category A we define CA to be the smallest full subcategory
of PA which contains the representables and is closed under colimits of type C. Dually,
let C†A = C(Aop)op.

Remark 6.1.3. The V-category CA can be described as the intersection of all those full
subcategories B of PA which contain the representables and are closed under colimits of
type C. Alternatively we can define CA by transfinite recursion on the full subcategories
CγA of PA defined as follows: let C0A = A, then Cγ+1A consists of CγA together with
all the colimits in PA of diagrams in CγA which are of type C. Take unions at the limit
steps. Then CA = CλA for an opportune inaccessible cardinal λ.

Note that, by construction, the V-category C1A that appears above is exactly what we
have been using in Section 5.2.1.

Proposition 6.1.4. Let Ψ be a class of weights and C a colimit type compatible with Ψ.
Then the following inclusion holds for any V-category A

CA ⊆ Ψ-PCts[Aop,V]

as full subcategories of PA.

Proof. Since Ψ-PCts[Aop,V] contains the representables, it is enough to show that it is
closed in PA under colimits of type C. Let M : Cop → V be a weight and H : C → PA
be a diagram of type C which lands in Ψ-PCts[Aop,V]. We need to prove that M ∗H is
Ψ-precontinuous; in other words we need to show that (M ∗H) ∗− : [A,V] → V preserves
Ψ-limits of representables. Note that (M ∗ H) ∗ − can be written as the composite of
H ∗− : [A,V] → [C,V] (given pointwise by (H ∗F )(C) ∼= HC∗F ) and ofM ∗− : [C,V] → V.
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Now, since for any A ∈ A the V-functor HA is Ψ-precontinuous, it follows that H ∗ −
preserves Ψ-limits of diagrams landing in Aop; denote the data of such a diagram by
N : D → V ∈ Ψ and S : D → Aop. Then, for any D ∈ D, the image of Y SD := A(SD,−)
through H ∗ − is H ∗ Y SD ∼= Y SD ∗ H(−) ∼= evSD ◦ H and lies in CM by hypothesis
(because H is of type C). Since M ∗ − preserves Ψ-limits of diagrams landing in CM it
follows then that (M ∗H) ∗ − preserves Ψ-limits of representables.

Corollary 6.1.5. If C is a colimit type compatible with Ψ and Aop is Ψ-complete, then
any F ∈ CA is Ψ-continuous and small.

Let us consider now the case where C is a companion for Ψ; from now on it will be more
convenient to use C†A instead of CA. Condition (II) of the notion of companion then
implies in particular that in some cases the one-step completion is already closed under
colimits of type C:

Corollary 6.1.6. Let C be a companion for Ψ; then for every Ψ-complete and virtually
cocomplete A we have C†

1A = C†A.

Proof. The V-categories C†
1A and C†A are both contained in Ψ-PCts[A,V]op. Moreover,

since C is a companion for Ψ, we also have the equality C†
1A = Ψ-PCts[A,V]op.

Then we can adapt the content of Proposition 5.2.13 to this framework:

Proposition 6.1.7. Let C be a companion for Ψ and let A be Ψ-complete; the following
are equivalent:

1. A is virtually cocomplete;

2. C†A is cocomplete;

3. C†A has colimits of representables.

Proof. The same proof as in Proposition 5.2.13 applies thanks to Corollary 6.1.6 above.

Finally one can also obtain a version of Theorem 5.2.16:

Theorem 6.1.8. Let C be a companion for Ψ and K be an accessible V-category with
Ψ-limits. The following are equivalent for a full subcategory J : A ↪→ K:

1. A is accessible, accessibly embedded, and closed under Ψ-limits;

2. A is accessibly embedded and J has a relative left adjoint with respect to the inclusion
V : A ↪→ C†A.

Proof. The implication (1) ⇒ (2) is a consequence of the same implication of Theo-

rem 5.2.16 since C†
1A ⊆ C†A, while (2) ⇒ (1) is a consequence of Theorem 5.1.10 plus the

fact that C†A ⊆ Ψ-PCts[A,V]op.

Theorem 6.1.9. Let C be a companion for Ψ and A be a category; the following are
equivalent:

1. A is accessible and Ψ-complete;

2. A is accessible and C†A is cocomplete;

3. A is accessible and C†A has colimits of representables;

4. A is accessibly embedded in [C,V] for some C, and the inclusion has a relative left
adjoint with respect to V : A ↪→ C†A.

Proof. Use the theorem above and apply the same proof as in Theorem 5.1.11.
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6.2 The duality

Let C be a companion for Ψ, and α be a fixed regular cardinal; in this section we assume
two further conditions:

(a) given any M : Cop → V, the category CM is closed in [C,V] under α-flat colimits.

(b) for any α-accessible V-category A with Ψ-limits, every V-functor F : A → V in
P(Aop) preserving Ψ-limits and α-flat colimits is a colimit of type C of elements
from Aα.

Condition (b) can be rephrased as: there exist M : Cop → V and H : Cop → A landing
in Aα such that A(H−, A) ∈ CM for any A ∈ A, and F ∼= M ∗ Y H. Moreover, condition
(a) is automatically true (for some α) if C is an accessible companion for Ψ.

Examples 6.2.1. The companions listed below satisfy (a) and (b).

1. Ψ a weakly sound class in V and C = CΨ+
, see section 6.3.1.

2. V = Set, Ψ the class for wide pullbacks, and F given by the free groupoid actions
by [50, Proposition 4.2]. See also Section 6.3.2.

3. V = Set, Ψ the class for products, and R the pseudo equivalence relations. For any
α-accessible A with products and any F : A → V preserving products and α-filtered
colimits, we can cover F with a representable q : Y A ↠ F and we can write A as
an α-filtered colimit of α-presentables; then since F preserves this colimit q factors
through a map e : Y B ↠ F , with B ∈ Aα, which is still a regular epimorphism.
Now argue as usual by taking the kernel pair of e and repeating the argument. This
exhibits F as a colimit of type R of elements of Aα.

4. The argument of (3) generalizes to the enriched setting of Section 5.3.3. For a
detailed treatment see Sections 6.3.3 and 6.3.4.

Given an α-accessible V-category A and the inclusion J : Aα ↪→ A, condition (a) allows

us to restrict P†J to a V-functor C†
1J as shown below.

C†
1Aα C†

1A

Aα A

C†
1J

J

This follows from the fact that given any pair (M,H) in Aα for which Aα(H−, A) ∈ CM

for any A ∈ Aα, then (M,JH) still satisfies the same property with respect to any A ∈ A:
given A ∈ A we can write it as an α-flat colimit A ∼= N ∗ JK of elements from Aα;
therefore A(JH−, A) ∼= N□ ∗ Aα(H−,K□) is an α-flat colimit of objects from CM and
hence is itself in CM by (a).
Condition (b) then says that for any α-accessible A with Ψ-limits we obtain

C†
1Aα ≃ α-AccΨ(A,V)op (6.1)

where α-AccΨ(A,V) is the full subcategory of [A,V] spanned by those V-functors which
preserve Ψ-limits and α-flat colimits, and the equivalence is given by left Kan extending
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along the inclusion J : Aα ↪→ A. Indeed, the observation above says that if F : Aα → V
is in C†

1Aα then LanJF is in C†
1A and hence is Ψ-continuous, it moreover preserves α-flat

colimits because A is α-accessible. The converse is just a rephrasing of condition (b).
We now introduce the notion of C-cocontinuous and C-continuous V-functors between

V-categories of the form CB.

Definition 6.2.2. Let B and B′ be V-categories. A V-functor F : CB → CB′ is called
C-cocontinuous if it preserves diagrams of type C as well as their colimits. We define
C-continuous functors accordingly.

In other words, F : CB → CB′ is C-cocontinuous if for any weight M : Cop → V and
diagram H : C → CB of type C (with respect to B), then M and FH also form a diagram
of type C (with respect to B′) and F preserves the colimitM ∗H. Note that C-cocontinuous
V-functors are then the left Kan extension of their restriction to B, but not everything
which arises in this way is C-cocontinuous: they will preserve the colimits but may not
preserve the diagrams of type C.

Proposition 6.2.3. Let A be an α-accessible V-category with Ψ-limits; then C†
1A = C†A

and C†
1Aα = C†Aα. Moreover C†Aα is α-cocomplete and P†J restricts to

C†J : C†Aα ↪→ C†A

which is α-cocontinuous and C-continuous.

Proof. We know that C†
1A = Ψ-Cont(A,V)op ∩ P†A, this is closed in P†A under limits of

type C since the diagrams involved are pointwise in C and colimits of type C commute in
V with Ψ-limits; thus C†

1(A) = C†(A). Consider now the inclusions

P†Aα P†A

C†Aα C†A

Aα A

P†J

C†J

V ′ V

J

W ′ W

to prove that P†J restricts to a C-continuous C†J : C†Aα ↪→ C†A it is enough to show
that given a limit diagram (M : C → V, H : C → C†Aα) of type C, then (M, (P†J)W ′H)
lands in C†A and is of type C as well. This is done by induction on the construction
of C†A. We already know that C†

1J is well defined and C-continuous. Assume now that
also C†

γJ is such, and that H : C → C†Aα as above lands in C†
γAα, then by inductive

hypothesis P†J ◦W ′H lands in C†
γA and therefore in C†A. Then we only need to prove

that (M, (P†J)W ′H) is of type C with respect to A.
Note first that for any X ∈ P†Aα the V-functor

P†A((P†J)X,WV−) ∼= (P†J)X ∼= LanJX

preserves α-flat colimits since A is α-accessible and J is the inclusion of the α-presentable
objects in A. Now, given A ∈ A, we can write it as an α-flat colimit A ∼= N ∗ JK of
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α-presentable objects; thus

P†A((P†J)W ′H−,WV A) ∼= N□ ∗ P†A((P†J)W ′H−,WV JK□)

∼= N□ ∗ P†Aα(W
′H−,W ′V ′K□)

∼= N□ ∗ C†Aα(H−, V ′K□)

where the first isomorphism holds since, by the argument above, P†A((P†J)W ′H−,WV□)
preserves α-flat colimits in the second variable. Thus P†A((P†J)W ′H−,WV A) is an α-
flat colimit of elements of CM , and hence is in CM . This proves that (M,P†J ◦W ′H) is of

type C; thus P†J restricts to C†
γ+1A. The limit steps are easy, and in the end we obtain

ans induced C-continuous C†J : C†Aα ↪→ C†Aα.
To conclude, consider now C†

1Aα ≃ α-AccΨ(A,V)op which is easily seen to be closed in

C†A ≃ Ψ-Cont(A,V)op∩P†A under α-small colimits. Thus C†
1Aα = C†Aα is α-cocomplete

and C†J is α-cocontinuous.

Next we introduce the notion of (C, α)-regular V-functor:

Definition 6.2.4. Let B be a V-category for which CB is α-complete; we say that a
V-functor F : CB → V is (C, α)-regular if it is α-continuous and preserves colimits of
diagrams in CB which are of type C. Denote by C-Regα(CB,V) the full subcategory of
[CB,V] spanned by those functors.

In general CB is large even for a small V-category B, so the fact that C-Regα(CB,V) is
actually a V-category is guaranteed by the following:

Proposition 6.2.5. Let B be a small Cauchy complete V-category for which CB is α-
complete; then

C-Regα(CB,V) ≃ α-Flat(B,V)

is α-accessible with Ψ-limits, and the equivalence is induced by restricting along the in-
clusion. Moreover for any (C, α)-regular G : CB → V and any diagram (M,H) of type C
landing in CB, we have G ◦H ∈ CM .

Proof. Let J : B ↪→ CB be the inclusion; the fact that C-Regα(CB,V) ≃ α-Flat(B,V) is
routine: if F : B → V is α-flat then LanJF is α-flat as well (Lemma 1.3.2) and hence
α-continuous, moreover it preserves the colimits which in CB are computed pointwise;
thus LanJF is (C, α)-regular. Conversely, any (C, α)-regular V-functor G : CB → V is the
left Kan extension of its restriction to B (since it preserves colimits of type C diagrams
that generate CB), and that is α-flat (again by Lemma 1.3.2). It follows that A :=
C-Regα(CB,V) is α-accessible with α-presentable objects Aα ≃ Bop.
Before proving that A has Ψ-limits let us show that the last part of the statement holds.

Let (M,H) be a diagram of type C in CB and consider an α-presentable G in A; then

G ∼= LanJB(B,−) ∼= CB(JB,−)

for some B ∈ B, and G ◦H ∼= CB(JB,H−) which is in CM by definition. In general, any
G ∈ A is an α-flat colimit of elements of Aα; thus G ◦H ∈ CM since by condition (a) the
full subcategory CM is closed under α-flat colimits in its presheaf category.
To conclude we need to show that A has Ψ-limits. Let N : B → V be in Ψ and S : B → A

be a diagram in A, and consider the limit G := {N,S} in [CB,V]. Then G is still α-
continuous, we need to show that it preserves colimits of type C. Let (M,H) be such a
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diagram; then

M ∗GH ∼=M□ ∗ {N−, S(−) ◦H□}
∼= {N−,M□ ∗ (S(−) ◦H□)} (6.2)
∼= {N−, S(−)(M ∗H)} (6.3)
∼= G(M ∗H)

where in (6.2) we can make the Ψ-limit and the colimit commute since, by the arguments
above, S(X) ◦ H is an element of CM for any X in the domain of S. The isomorphism
(6.3) holds since precomposition by H is cocontinuous. Thus G ∈ A which has therefore
Ψ-limits.

Now we are ready to define the 2-categories involved in the duality theorem.

Definition 6.2.6. Let α-AccΨ be the 2-category of α-accessible V-categories with Ψ-
limits, Ψ-continuous V-functors which preserves α-flat colimits, and V-natural transfor-
mations.

Note that an α-flat colimit preserving V-functor F : A → B between α-accessible V-
categories is Ψ-continuous if and only if it has a C-left adjoint by Proposition 5.2.15.
On the other hand consider:

Definition 6.2.7. Let C-Exα be the 2-category with objects pairs (B,CB) where B is
small and Cauchy complete and CB is α-complete; morphisms are the α-continuous and
C-cocontinuous V-functors CB → CB′, and 2-cells are V-natural transformations between
them.

Remark 6.2.8. Note that we could not have denoted the 2-category introduced above
by C-Regα since (C, α)-regular V-functors are not the same as α-continuous and C-
cocontinuous V-functors. The notation we use is inspired to that of Section 6.3.3 where
exact categories play a central role.

Since CB is determined by B, we will often just take B to represent an object of C-Exα.
Note that in general B cannot be described starting from CB alone, so we cannot take just
CB to represent an object of C-Exα.
Between these 2-categories we consider the 2-functor

C-Regα(−,V) : C-Exop
α −→ α-AccΨ

which sends the pair (B,CB) to C-Regα(CB,V) and acts by precomposition on morphisms;
this is well defined by Proposition 6.2.5.
In the other direction consider the 2-functor

((−)opα , α-AccΨ(−,V)) : α-AccΨ −→ C-Exop
α .

This sends an α-accessible V-category A with Ψ-limits to the small Cauchy complete
V-category Aop

α together with its completion

C(Aop
α ) ≃ α-AccΨ(A,V)

which is α-complete by Proposition 6.2.3. The action on morphisms is given by precompo-
sition: for any V-functor F : A → K which is Ψ-continuous and α-flat-colimit preserving,
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since C(Aop
α ) ≃ α-AccΨ(A,V) (same for K), precomposition with F induces a V-functor

F ∗
α : C(Kop

α ) → C(Aop
α ).

Then the 2-functor sends F to F ∗
α ≃ α-AccΨ(F,V). This is α-continuous and C-cocontinuous

since in the square below

C(Kop) C(Aop)

C(Kop
α ) C(Aop

α )

F ∗

F ∗
α

the two vertical legs are α-continuous and C-cocontinuous (by 6.2.3) and the top arrow
is continuous (limits are computed pointwise and precomposition with F preserves them)
and C-cocontinuous as well: for this it is again enough to prove that F ∗ sends colimit
diagrams of type C for K to ones of type C for A. Let (M,H) be of type C in C(Kop) then
for each A ∈ A the composite

evA ◦ F ∗H = evFA ◦H

is in CM by assumption; thus (M,F ∗H) is of type C. Therefore the 2-functor is well
defined.

Remark 6.2.9. It follows from the considerations above that, given a Ψ-continuous and
α-flat-colimit preserving F : A → K, the opposite of the V-functor α-AccΨ(F,V) is, up
to equivalence, the restriction of the virtual left adjoint L : P†K → P†A of F to the free
completion under limits of type C.

Finally we can prove the following duality theorem which, as we will see in the next
sections, captures the known dualities for locally presentable, multipresentable, polypre-
sentable, and weakly locally presentable categories as instances of the same theory.

Theorem 6.2.10. The 2-functors

((−)opα , α-AccΨ(−,V)) : α-AccΨ C-Exop
α :C-Regα(−,V)

form a biequivalence of 2-categories.

Proof. On one hand, given (B,CB) ∈ C-Exop
α we obtain

C-Regα(CB,V)α ≃ α-Flat(B,V)α ≃ Bop

by Proposition 6.2.5 and the Cauchy completeness of B; moreover

α-AccΨ(C-Regα(CB,V),V) ≃ C(C-Regα(CB,V)opα ) ≃ C(Bop)

where the first equivalence holds by 6.1 and the last by the equivalence above. Conversely,
given an α-accessible V-category A with Ψ-limits, then

A ≃ α-Flat(Aop
α ,V) ≃ C-Regα(C(Aop

α ),V) ≃ C-Regα(α-AccΨ(A,V),V)

where the second equivalence holds by applying Proposition 6.2.5 to B = Aop
α (we can do

that since C(Aop
α ) is α-complete by the dual of Proposition 6.2.3), while the third holds

by 6.1. The action on morphisms and 2-cells follows easily from this.
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Thanks to this the objects of C-Exα can be more easily described.

Corollary 6.2.11. If B is in C-Exα then CB = C1B is a one-step closure.

Proof. Follows from the Theorem above and Proposition 6.2.3.

Moreover, for V-categories of the form CB, having α-small limits of elements of B is
enough to guarantee α-completeness:

Corollary 6.2.12. The following are equivalent for any small and Cauchy complete V-
category B:

1. CB is α-complete;

2. CB has α-small limits of objects in B.
Proof. (1) ⇒ (2) is trivial. For the converse assume that B is small, Cauchy complete,
and that CB has α-small limits of representables. Then the α-accessible V-category A :=
α-Flat(B,V) is equivalent to the full subcategory of [CB,V] spanned by those V-functors
which preserve colimits of type C and α-small limits of diagrams in B (here we are using the
fact that the class of α-small weights is sound, not just weakly sound, by Proposition 1.3.5).
Thus A has Ψ-limits, since such V-functors are stable under them. It follows from the
duality theorem that CB ≃ C(Aop

α ) is α-complete.

6.2.1 A nicer setting

Suppose that in addition each CM is accessible (and thus accessibly embedded in [D,V])
as in Section 5.2.2. Then for any M : Dop → V we can fix a fully faithful WM : D ↪→ DM

and a sketch SM = (DM ,LM ,CM ) on DM together with an equivalence

− ◦WM : Mod(SM ) −→ CM .

What happens in the main examples treated below is that, whenever B lies in C-Exα the
V-category CB is “rich enough” to ensure the existence of an extension Ĥ : DM → CB of
H : D → CB for which a pair (M,H) in CB is of type C if and only if Ĥ lies in Mod(SM ,CB).
This is now a condition on CB, which is independent from B.
We still do not know how to appropriately formalize the statement outlined above; in

particular the properties identifying the V-category CB as “rich enough” are not yet well
determined. However, assuming that such property holds, we can define C-cocompleteness
and C-cocontinuity in any V-category E using the approach above: say that (M,H) is a
diagram of type C in E if H has an extension Ĥ that lies in Mod(SM , E), a C-cocontinuous
functor is then one that preserves diagrams of type C and their colimits.
Moreover, for any such E we can define the full subcategory EC spanned by the C-

presentable objects of E : those E ∈ E for which E(E,−) preserves colimits of diagrams of
type C. It is then easy to check that whenever B is in C-Exα we have (CB)C ≃ B.
Following the notation of [50], we call C-based any C-cocomplete V-category E with a

small EC and such that E ≃ C(EC).
Under this setting C-Exα can be described as the 2-category of C-based and α-complete

V-categories, C-cocontinuous and α-continuous V-functors, and V-natural transformations.
The duality theorem then becomes simpler to state: it says that homming into V on both
sides

α-AccΨ(−,V) : α-AccΨ C-Exop
α :C-Regα(−,V).

induces a biequivalence of 2-categories.
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6.3 Examples

6.3.1 The weakly sound case

We now restrict to the setting of Section 5.3.1 by considering a weakly sound class of
weights Ψ. Then by Proposition 5.3.4, the class Ψ+ of the Ψ-flat weights is an accessible
companion for Ψ and Ψ-Flat(C,V) = Ψ+C for any C.
It follows that Ψ+ satisfies the hypotheses (a) and (b) of Section 6.2 for any α. Indeed,

condition (a) is trivial since Ψ+ is an actual class of weights. For condition (b), let A be
α-accessible with Ψ-limits and F : A → V be Ψ-continuous and α-flat colimit preserving.
Let H : Aα ↪→ A be the inclusion; then F ∼= LanHFH and FH : Aα → V is Ψ-flat by
Proposition 1.3.2 (since F is). By our assumption then FH is a Ψ+-colimit of representa-
bles; therefore taking its left Kan extension along H we can write F as a Ψ+-colimit of
representables from Aα, as desired.
In this case we can directly apply the results of Section 6.2.1. The notion of Ψ+-

cocompleteness and Ψ+-cocontinuity are the usual ones, so that for a Ψ+-cocomplete E
the category EΨ+ is just the full subcategory of the Ψ+-presentable objects. A Ψ+-based
V-category E is then one which is the free cocompletion of a small V-category under Ψ+-
colimits; assuming Cauchy completeness, that small V-category coincides up to equivalence
with EΨ+ by [59, Proposition 7.5].
It follows that Ψ+-Exα can be described as the 2-category of Ψ+-based and α-complete

V-categories, Ψ+-cocontinuous and α-continuous V-functors, and V-natural transforma-
tions. Thus the duality can be rewritten as:

Theorem 6.3.1. The 2-functors

α-AccΨ(−,V) : α-AccΨ Ψ+-Exop
α :Ψ+-Regα(−,V)

form a biequivalence of 2-categories.

Each of the weakly sound classes from Example 5.3.6 then provides a duality theorem.
Let us see some in particular.
When Ψ = P and Ψ+ = Q we recover the Gabriel-Ulmer duality for locally α-presentable

categories which in the enriched context was first proved by Kelly:

Theorem 6.3.2 ([57]). The 2-functors

Lαp(−,V) : Lαp Lexop
α :Lexα(−,V).

form a biequivalence of 2-categories.

When V = Set, Ψ is the class for connected limits, and Ψ+ = Fam is the class gener-
ated by coproducts, we recover the Diers duality for locally α-multipresentable categories.
Below the 2-category Fam-Lexα has α-complete coproduct cocompletions of small cat-
egories as objects, α-continuous and coproduct-preserving functors as morphisms, and
natural transformations as 2-cells.

Theorem 6.3.3 ([35]). The 2-functors

α-Lmp(−,Set) : α-Lmp Fam-Lexop
α :Fam-Lexα(−,Set).

form a biequivalence of 2-categories.
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A 2-categorical version of this duality can be obtained by taking V = Cat and Ψ to be
the weakly sound class consisting of the connected 2-limits described in Example 5.3.6(12).
When V is general, Ψ = ∅, and Ψ+ = P we obtain a duality for α-accessible cate-

gories. Below the 2-category P-Lexα has presheaf V-categories as objects, α-continuous
and cocontinuous V-functors as morphisms, and V-natural transformations as 2-cells.

Theorem 6.3.4. The 2-functors

α-Acc(−,V) : α-Acc P-Lexop
α :P-Lexα(−,V).

form a biequivalence of 2-categories.

For α = ℵ0 and V = Set the duality first appeared as [77, Proposition 4.2.1], moreover
this is part of the Scott adjunction between accessible categories with filtered colimits and
Grothendieck topoi [34]; in Section A.4 we construct an enriched version of it.
When Ψ is a locally small class of weights, then Ψ+-cocompletions of small V-categories

are just free cocompletions of small V-categories under Ψ-flat colimits, and these (by
Proposition 2.1.5) coincide with what we have called Ψ-accessible V-categories in Sec-
tion 2.1.1. It follows that Ψ+-Exα = Ψ-Accα is the same as the 2-category of Ψ-accessible
V-categories with α-small limits, α-continuous and Ψ+-cocontinuous V-functors, and V-
natural transformations. Thus the duality becomes:

Theorem 6.3.5. Let Ψ be a small and weakly sound class of weights; then the 2-functors

α-AccΨ(−,V) : α-AccΨ Ψ-Accopα :Ψ-Accα(−,V).

form a biequivalence of 2-categories.

In particular, when Ψ is the class of α-small weights, a Ψ-accessible V-category is just
an α-accessible V-category. Thus Ψ-Accα = α-Accα is the 2-category of α-complete
and α-accessible V-categories, α-continuous and α-flat-colimit preserving V-functors, and
V-natural transformations. Therefore we obtain the following:

Theorem 6.3.6. There is a biequivalence of 2-categories

α-Accα ≃ (α-Accα)
op

induced by the 2-functor α-Accα(−,V).

Let Σ = α-Accα(−,V) be the 2-functor involved in the duality; then in particular Σ is
a bi-involution: Σ2 ≃ 1. In addition, we can give a more direct way to describe the action
of Σ on objects and morphisms as follows.
Given an α-accessible V-category A, left Kan extending along the inclusion induces an

equivalence [Aα,V] ≃ α-Acc(A,V); if A is moreover α-complete then, by Lemma 1.3.2,
the equivalence restrict to α-Flat(Aα,V) ≃ α-Accα(A,V). Thus

ΣA ≃ α-Flat(Aα,V),

or equivalently: Σ(α-Flat(Cop,V)) ≃ α-Flat(C,V). Similarly, given a morphism F : A → B
in α-Accα with inclusions J : Aα → A and H : Bα → B, a few calculations show that the
2-functor Σ acts as follows:
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α-Flat(Bα,V) α-Flat(Aα,V)

X (LanHX)FJ.

ΣF

The resulting V-functor (LanHX)FJ is still α-flat thanks to Lemma 1.3.2, since X is α-flat
and F is α-continuous and α-flat-colimit preserving.

Remark 6.3.7. The duality can be further generalized to the setting of a locally small
weakly sound class Ψ in place of the class of α-small weights; as it usually happens in
these cases the proofs given above generalize simply by replacing α-small limits with Ψ-
limits. The theorem then will say that the 2-category Ψ-AccΨ of Ψ-accessible categories
with Ψ-limits, Ψ-continuous and Ψ-flat-colimit preserving V-functors, and V-natural trans-
formations, is dual to itself.

6.3.2 Wide pullbacks

Here we consider the case when Ψ consists of the conical weights for wide pullbacks and
C = F consists of the free groupoid actions in Set as in Section 5.3.2. For simplicity let
us restrict to α = ℵ0.
We now wish to describe the 2-category F-Ex. An object there is a Cauchy complete

category B with a lex (finitely complete) FB. By 6.2.12 and 5.3.19 we know that this is
equivalent to B being Cauchy complete and finitely polycomplete. Following the ideas of
Section 6.2.1, we define:

Definition 6.3.8. Let E be a category with an initial object. A diagram H : G → E ,
indexed on a groupoid G, is called a free action if for each g ̸= h in G the equalizer of
(Hg,Hh) is the initial object of E .

It is easy to see that a diagram in FB is of type F if and only if it is a free action in FB
(this is a consequence of the fact that each diagram of type F is pointwise in F, and that
equalizers and the terminal object are computed pointwise in FC).
Let E be a category with colimits of free actions; we denote by EF the full subcategory

of E spanned by those objects E for which E(E,−) preserves colimits of free actions (just
the colimits not the diagrams).

Definition 6.3.9. Let E be a category with colimits of free actions; we say that E is
F-based if the category EF is small and every object of E is the colimit of a free action of
objects from EF.

In other words, a category E with colimits of free actions is F-based if and only if EF
is small and E ≃ F1(EF). When E has finite limits, the last requirement is equivalent to
E ≃ F(EF) by Corollary 6.2.11.

Remark 6.3.10. By the results of Section 5.3.2 comparing our notions with those of [50],
an F-based category is just a quasi-based category in the sense of Hu and Tholen.

Thus, if B is an object of F-Ex, then FB is F-based and moreover (FB)F ≃ B; indeed for
every B ∈ B the hom functor FB(B,−) preserves colimits of free actions by construction,
and if B ∈ (FB)F then, being also a colimit of a free action of representables, it is a split
subobject of representables. Hence B ∈ B because B is Cauchy complete.
Conversely, if E is lex and F-based then (EF, E) is an object of F-Ex. Moreover any lex

functor F : E → E ′, between F-based lex categories, is F-cocontinuous (when seen as a
functor F(EF) → F(E ′

F)) if and only if it preserves colimits of free actions. Indeed, if F is
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F-cocontinuous then it preserves colimits of free actions by definition (since a diagram in
F(EF) is of type F if and only if it is a free action). Conversely, if F preserves colimits of
free actions, then in particular it preserves the initial object of E , and thus, since it it is
lex, it also preserves diagrams of type F.
The same argument shows that a functor F : E ≃ F(EF) → V is F-regular if and only if it

is lex and preserves colimits of free actions. In particular the notions of lex F-cocontinuous
and F-regular functors coincide.
It follows that F-Ex can be described as the 2-category of F-based lex categories, free-

action-colimit preserving lex functors, and natural transformations. We denote by Lfpp
the 2-category of locally finitely polypresentable categories, wide-pullback-preserving and
finitary functors, and natural transformations. Then the duality theorem becomes:

Theorem 6.3.11 ([50]). The 2-functors

Lfpp(−,Set) : Lfpp F-Exop :F-Reg(−,Set)

form a biequivalence of 2-categories.

Let us now give an equivalent description of colimits of free actions, that will allow us
to recognize their existence more easily.

Definition 6.3.12. Let E be a category with an initial object. A groupoid diagram
H : G → E in E is called a weakly-free action if for each g, h ∈ G for which Hg ̸= Hh the
equalizer of (Hg,Hh) is the initial object of E .

An easy consequence of the definition is then:

Proposition 6.3.13. Let H : G → E be a groupoid indexed diagram in E, and let H = H ′◦
F be its (b.o and full, faithful)-factorisation, with H ′ : G′ → E (G′ is still a groupoid). Then
H is a weakly-free action if and only if H ′ is a free action. Moreover colimH = colimH ′

whenever one of them exists.

Now, since every groupoid is equivalent to the sum of some groups, for a category E to
have colimits of free groupoid actions is the same as having small coproducts and colimits
of free group actions. Since every group G is covered by an opportune free group ∗i∈IZ, it
follows by the previous proposition that E has colimits of free group actions if and only if
it has colimits of weakly-free actions by free groups ∗i∈IZ. Finally, note that the colimit
of a weakly free action ∗i∈IZ → E can also be seen as the cointersection (wide pushout)
of the colimits of each i-component separately, which are weakly-free actions by Z. In
conclusion:

Proposition 6.3.14. A category E has colimits of free actions if and only if it has:

1. coproducts;

2. colimits of weakly-free actions by Z;

3. small co-intersections of quotients as in (2).

A functor F preserves colimits of free actions if and only if it preserves the colimits above.

As a final remark note that a weakly-free action by Z in E is the data of an automorphism
f : E → E in E for which every non identity fn is fixed-point-free, meaning that the
equalizer of fn and idE is the initial object of E .
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6.3.3 Products and projective powers

Let V be a symmetric monoidal finitary variety as in [64] for which every finitely accessible
category is conically finitely accessible. For simplicity we restrict ourselves to the case
α = ℵ0.

Example 6.3.15. All the symmetric monoidal finitary varieties of Example 3.1.3, as well
as any locally dualizable base of Section 3.2, satisfy the conditions above.

We now consider the case when Ψ is the class of weights for products and projective
powers as in Example 5.3.35. The colimit type R consists of the pseudo-equivalence
relations in V; this is an accessible companion for Ψ by Proposition 5.3.31. Moreover
R satisfies the conditions (a) and (b) of Section 6.2 for the same reasons explained in
Example 6.2.1(3), since by our assumptions on V we can use filtered colimits rather than
flat colimits.

Remark 6.3.16. We deal with the more general case of products and powers by a dense
generator in the section below; this is because the already existing notions of regularity
and exactness of [64] will play an important role in this case.

Recall that a V-category B is called regular if it has all finite weighted limits, coequalizers
of kernel pairs, and regular epimorphisms are stable under pullbacks and powers by finite
projective objects [64, Definition 5.1]. In addition, B is called exact if it is regular and its
underlying ordinary category is exact (that is, all equivalence relations are kernel pairs).

Remark 6.3.17. Note that, when V = Set, given a small Cauchy complete category B, by
Corollary 6.2.12 and 5.4.12, it follows that RB is lex if and only if B has weak finite limits.

It is easy to see, for B ∈ R-Ex, that every kernel pair in RB is a diagram of type R;
therefore RB is closed in [Bop,V] under finite limits and coequalizers of kernel pairs. Since
[Bop,V] is regular then RB is a regular V-category as well. Moreover, every equivalence
relation (h, k) in RB is a kernel pair in [Bop,V] (since V is a finitary variety, the presheaf
V-category is exact), and hence a diagram of type R in RB; thus the coequalizer of (h, k)
exists in RB and the pair (h, k) is its kernel pair. This shows that every equivalence
relation in B is effective; therefore RB is also an exact V-category.
Remark 6.3.18. When V = Set and B is a category with weak finite limits, then RB
coincides with the free exact completion of B as a weakly lex category described in [29].
Indeed, such an exact completion E is described as the full subcategory of [Bop,Set]
spanned by the coequalizers of pseudo-equivalence relations from B in the sense of [29,
Definition 6], and these are the same as pairs of type R (see before Definition 6 and
Theorem 26 of [29]). The universal property of this free completion says that, for each
exact category D, precomposition with the inclusion induces an equivalence

Reg(E ,D) ≃ Lco(B,D),

where those on the right are the left-covering functors as in [29].

Consider now a pair of arrows (f, g) in RB and the induced regular factorization given
by a regular epimorphism e followed by a monic pair (h, k). It is easy to see that (f, g)
is of type R if and only if (h, k) is a kernel pair. It follows at once that a V-functor
F : RB → V is R-regular if and only if it is regular in the usual sense, and that a lex
functor G : RB → RB′ is R-cocontinuous if and only if it preserves coequalizers of kernel
pairs, if and only if it is a regular V-functor.
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Now, given an exact category E denote by EP the full subcategory spanned by its (reg-
ular) projective objects: those E ∈ E for which E(E,−) preserves regular epimorphisms.
Then for any B in R-Ex, we obtain (RB)P ≃ B. Indeed if B ∈ B then RB(B,−)

preserves regular epimorphisms since they are computed pointwise in RB ⊆ [Bop,V] and
B is a representable object of RB. Conversely, given any projective B ∈ RB, since B is
also a regular quotient of some B′ ∈ B, it is in particular split subobject of B′. But B is
Cauchy complete by hypothesis, thus B ∈ B as desired.
We can therefore consider the following definition. For V = Set this has been studied

for instance in [29].

Definition 6.3.19. We say that a regular V-category E has enough projectives if every
object of E is a regular quotient of an object from EP .

Proposition 6.3.20. A lex V-category E is exact with enough projectives if and only if
E ≃ R(EP ).

Proof. If E ≃ R(EP ), it follows by the arguments above that E has enough projectives and
is an exact V-category.
Conversely, if E is exact and has enough projectives then every object of E is the co-

equalizer of a pseudo equivalence relation in EP (arguing as usual). This shows that EP is
dense in E , so that there is a regular embedding J : E ↪→ [Eop

P ,V], and that such inclusion
J factors through R1(EP ) ⊆ [Eop

P ,V]. Therefore E ⊆ R1(EP ). Consider now X ∈ R1(EP ),
then we can find a pair (f, g) in EP whose image factorization in [Eop

P ,V] is a regular epi-
morphism e followed by a kernel pair (h, k). Since E is regularly embedded in [Eop

P ,V] the
maps e, h, and k lie in E and e is still a regular epimorphism. Moreover, by exactness of
E the pair (h, k) is still a kernel pair in E . It follows that the coequalizer of (f, g) exists
in E and coincides with X. This show E ≃ R1(EP ); since E is closed in [Eop

P ,V] under
coequalizers of pseudo equivalence relations it follows that actually E ≃ R(EP ).

Remark 6.3.21. Note that a regular V-category E with enough projectives is not in general
equivalent to R(EP ), but we only have the inclusion E ⊆ R(EP ).
If E is exact with enough projectives then EP is Cauchy complete, and thus an object

of R-Ex. It follows that the 2-category R-Ex can be described as the 2-category pEx
of small exact V-categories with enough projectives, regular V-functors, and V-natural
transformations.

Definition 6.3.22. We say that a V-category A is weakly locally finitely presentable if it
is finitely accessible with products and projective powers.

Remark 6.3.23. By Theorem 5.2.17, a V-category A is weakly locally finitely presentable
if and only if it is finitely accessible and R†

1A has colimits of representables. Now, by

Corollary 5.4.11, we know that R†
1A has colimits of representables if and only if W †

EA has
them; which is as saying that A is weakly cocomplete in the enriched sense. Thus, in the
ordinary case, we recover the standard characterization of [1].

We denote by wLfp the 2-category of weakly locally finitely presentable V-categories,
finitary V-functors that preserve products and projective powers (these are called definable
in [64]), and V-natural transformations. In conclusion the duality of Theorem 6.2.10 can
be expressed as follows:

Theorem 6.3.24. The 2-functors
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wLfp(−,V) : wLfp pExop :Reg(−,V)

form a biequivalence of 2-categories.

When V = Set this appeared first as [49, Theorem 5.11]. Moreover, the duality above
is a restriction of that between definable and exact V-categories which was considered in
[88] for V = Ab, in [60] for V = Set, and in [64] for a general V as in this section. In
particular this says that a definable category D is finitely accessible if and only if Def(D,V)
has enough projectives. See also Section A.3 for more about definable categories and their
relationship with the colimit type R.

6.3.4 Products and powers by a dense generator

Here we work in the context of Section 5.3.3 and generalize the results of the previous
section to that more general context.
Let us fix a dense generator G ⊆ (V0)f which contains the unit and is closed under

tensor products. Assume moreover that V satisfies at least one of conditions (I) and (II)
of Section 5.3.3 and that every finitely accessible V-category is conically finitely accessible.

Example 6.3.25. Any base of enrichment listed in Example 3.1.3 satisfies (I) and the
condition on accessibility. Similarly, any locally dualizable base of Section 3.2 satisfies (II)
and the accessibility condition.

Then we can consider the collection E of all the regular epimorphisms in V that are stable
under G-powers, and the corresponding colimit type C (Definition 5.3.30). It follows that C
is an accessible companion for the class Ψ of products and G-powers by Proposition 5.3.31;
moreover it satisfies the conditions (a) and (b) of Section 6.2 by the same arguments given
in Example 6.2.1.
Arguing as in the previous sections we can consider the following definition:

Definition 6.3.26. Let E be a V-category with G-powers; we say that a map e : X → Y
in E is a G-epimorphism if G ⋔ e is a regular epimorphism for each G ∈ G. Denote by
EG the full subcategory of E spanned by the objects E ∈ E for which E(E,−) preserves
G-epimorphism.

The G-epimorphisms of V are simply the elements of E .

Definition 6.3.27. We say that a V-category E is G-regular if there exists a fully faith-
ful J : E → [B,V] closed under limits and coequalizers of kernel pairs which are G-
epimorphisms. A V-functor between G-regular V-categories is G-regular if it preserves
finite limits and G-epimorphisms.

Remark 6.3.28. This corresponds to a notion of regularity in the sense of [45] with respect
to a suitable class of lex weights.

Definition 6.3.29. A G-regular category E is called G-exact with enough projectives if
for any X ∈ E there exist a G-epimorphism e : A → X with A ∈ EP , and the induced
V-functor E → [Eop

P ,V] reflects kernel pairs of G-epimorphisms.

Arguing as in the previous section, it is easy to see that a lex V-category E is G-exact
with enough G-projectives if and only if E ≃ C(EG). Moreover, if B is Cauchy complete
and CB is lex, then CB is G-exact with enough G-projectives and (CB)G ≃ B. Similarly,
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in the presence of finite limits, a V-functor is lex C-cocontinuous (Definition 6.2.2) if and
only if it is C-regular (Definition 6.2.4) if and only if it is G-regular in the sense defined
above.
It follows that C-Ex can be described as the 2-category G-pEx of small G-exact V-

categories with enough G-projectives, G-regular V-functors, and V-natural transforma-
tions.
Finally, say that a V-category A is G-weakly locally finitely presentable if it is finitely

accessible with products and G-powers. By Theorem 5.3.33 and Corollary 5.4.11 this is
the same as being finitely accessible and E -weakly cocomplete. Denote by G-wLfp the
corresponding 2-category of G-weakly locally finitely presentable categories, finitary V-
functors which preserve products and G-powers, and V-natural transformations. Then the
duality of Theorem 6.2.10 becomes:

Theorem 6.3.30. The 2-functors

G-wLfp(−,V) : G-wLfp G-pExop :G-Reg(−,V)

form a biequivalence of 2-categories.

Example 6.3.31. Let V = Cat and E be the class of the surjective on cube functors
in Cat as in Example 5.3.36; this is determined by the dense generator H = {2n}n∈N.
Then the theorem above gives a duality between the 2-category of finitely accessible 2-
categories with products and powers by 2, and the 2-category of small H-exact categories
with enough H-projectives.

Example 6.3.32. Let V be locally finitely presentable and such that V0(I,−) is weakly
cocontinuous and weakly strong monoidal as in Section 3.1; then V satisfies the condi-
tions required for this section and we can consider the class E consisting of the pure
epimorphisms in V; this is induced by the dense generator G = Vf (as in Example 5.3.37).
Then the theorem above provides a duality between the 2-category of the finitely acces-
sible V-categories with products and finite powers, and the 2-category of small Vf -exact
V-categories with enough Vf -projectives.

6.3.5 Flexible limits

Let V = Cat and consider Ψ to be the class of all flexible weights together with its
companion P formed by the pseudo equivalence 2-relations (Definition 5.3.45).
Unfortunately, we do not know whether Ψ and P satisfy condition (b) of Section 6.2,

so we cannot deduce a duality theorem in this context. However there are corresponding
notions of regularity and exactness for 2-categories which are strictly related to accessible
2-categories with flexible limits.

Definition 6.3.33. We say that a 2-category B is regular if it has finite limits, coisoiden-
tifiers of acyclic isokernel cells, and admits a fully faithful J : B ↪→ [C,Cat] (for some small
B) which preserves finite limits and said coisoidentifiers. A regular 2-functor between reg-
ular 2-categories is one that preserves finite limits and coisoidentifiers of acyclic isokernel
cells.

Remark 6.3.34. This corresponds to a notion of regularity in the sense of [45], but (ap-
parently) not in the sense of [21]. Moreover it would be interesting to have an intrinsic
definition of regular 2-category, and not one relying on an embedding into a 2-category of
presheaves.
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Definition 6.3.35. We call an object P of a regular 2-category B 2-projective if C(P,−)
preserves coisoidentifiers of acyclic isokernel cells; denote by BP the full subcategory of B
spanned by the 2-projectives. We say that a regular B is exact with enough 2-projectives if
every object B admits a map q : P → B with P ∈ BP and q a coisoidentifier of an acyclic
isokernel cell, and the induced E → [Eop

P ,Cat] reflects acyclic isokernel cells.

Proposition 6.3.36. A lex 2-category B is exact with enough 2-projectives if and only if
E ≃ P(EP ).

Proof. Argue as in the proof Proposition 6.3.20 by replacing coequalizers with coisoiden-
tifiers and kernel pairs with acyclic isokernel cells.

Proposition 6.3.37. Let E be a small regular 2-category; then

1. the 2-category Reg(E ,Cat) is accessible with flexible limits;

2. if E is exact with enough 2-projectives then Reg(E ,Cat) is finitely accessible and has
flexible limits.

Conversely, if A is accessible with flexible limits then the 2-category FlatFlex(A,Cat), of
2-functors preserving flat colimits and flexible limits, is exact.

Proof. Given a small regular 2-category E , since coisoidentifiers of acyclic isokernel cells in
Cat are just the retract equivalences, the 2-category Reg(E ,Cat) is clearly sketchable by
limit/E sketch in the sense of Theorem 5.3.48, and hence is accessible with flexible limits.
If E is moreover exact with enough projectives, then arguing as in the proof of Proposi-

tion 6.2.5 and using that E ≃ P(EP ) by the proposition above, we obtain an equivalence

Reg(E ,Cat) ≃ α-Flat(EP ,Cat)

induced by precomposition with the inclusion EP ↪→ E . Thus Reg(E ,Cat) is finitely
accessible.
Finally, if A is accessible with flexible limits then FlatFlex(A,Cat) is closed in [A,Cat]

under finite limits and coisoidentifiers of equivalence 2-relations; thus it is exact since
[A,Cat] is.



APPENDIX

A
Additional results

A.1 On saturation and pre-saturation

In this section we study those classes of indexing categories (or weights, in the enriched
setting) for which free cocompletions under colimits of that shape arise as one-step closures.
Let us consider first the unenriched and conical case. Given a class Λ of indexing

categories, we denote by ΛC the free completion of a category C under Λ-colimits; this can
be defined as the closure of C in PC under Λ-colimits.

Definition A.1.1 ([7]). Let Λ be a class of small categories. The saturation Λ
∗
of Λ is

the class of all small categories B for which every Λ-cocomplete category is B-cocomplete
and every Λ-cocontinuous functor is B-cocontinuous. Given this, we say that:

1. Λ is pre-saturated if for any category C every object of ΛC is a Λ-colimit of objects
from C;

2. Λ is saturated if Λ = Λ∗.

By construction we always have the inclusion Λ ⊆ Λ∗.

Remark A.1.2. It has been shown in [7] that for B to be in Λ∗ it suffices that Λ-cocomplete
implies B-cocomplete: preservation of B-colimits by Λ-continuous functors is actually a
consequence of that.

Example A.1.3. It is well known that the class Fin of finite categories is pre-saturated.
However, it is not saturated. The saturation of Fin is the class of all small categories
which have a final finite subcategory; these are called L-finite in Section 3 of [82].
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Example A.1.4. The class FD of finite discrete categories is pre-saturated but not sat-
urated. Its saturation is the class of all categories with finite connected components and
local terminal objects.

Example A.1.5. The class α-DPos of small α-directed posets is pre-saturated but not
saturated. Its saturation is the class α-DFilt of the small α-filtered categories.

The fact that the saturations in the examples above can be described in that way, can
be seen as a consequence of Proposition A.1.11.
In [7] it is proved that every saturated class of weights is pre-saturated; our main goal

is to prove the corresponding statement for classes of categories, for which there seems to
be more work to do. In fact, we first need an intermediate step.

Definition A.1.6. Let Λ be a class of categories. We say that Λ is a stable class if given
any small category C, any D ∈ Λ, and H : D → [Cop,Set] such that all the Hd are a
Λ-colimit of representables; then there exists H ∈ Λ together with

H D

C [Cop,Set]

⇒

π

K H

Y

for which Lanπ(Y K) ∼= H.

To give the natural transformation as in the square above, since Lanπ(Y K) ∼= H, it is
enough to give a suitable functor H → Y/H.

Proposition A.1.7. Let Λ be a stable class of categories; then Λ is pre-saturated.

Proof. Let C be any category and let Λ1C be the full subcategory of [Cop,Set] spanned
by the Λ-colimits of representables. It is enough to prove that Λ1C is closed in [Cop,Set]
under Λ-colimits; then we would have Λ1C = ΛC showing that Λ is pre-saturated.
Let D ∈ Λ and H : D → [Cop,Set] be a functor landing in Λ1C. By construction H

satisfies the hypothesis given in the stability condition; since Λ is stable we can then
consider H, K : H → C, and π : H → D as in the definition above. Now, the colimit of
H in [Cop,Set] can be denoted a the functor colimH : 1 → [Cop,Set] out of the terminal
category. The fact that this the colimit of H says exactly that colimH ∼= Lan!H, where
! : D → 1 is the unique functor. Then

colimH ∼= Lan!H ∼= Lan!Lanπ(Y K) ∼= Lan!(Y H) ∼= colim(Y H).

But the latter is a Λ-colimit of representable; therefore colimH ∈ Λ1C as desired.

Proposition A.1.8. Any saturated class is stable, and hence pre-saturated.

Proof. Let Λ be saturated and H : D → [Cop,Set] be as in the definition of stability. For
each d ∈ D we choose Ed ∈ Λ such that Hd ∼= colim(Y Ld) for some Ld : Ed → C; denote by
ηde : Y Ld(e) → Hd the colimiting cocone. Consider now L := (Ld)d :

∑
d Ed → C and the

functor S :
∑

d Ed → D sending each object and morphism of Ed to d and 1d respectively;
then the colimiting cocones define a natural transformation η : Y L ⇒ HS. Let Y/H be
the comma object of Y and H; then there is an induced T :

∑
d Ed → Y/H making the

following diagram commute
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∑
d

Ed

Y/H D

C [Cop,Set]

⇒

T

S

L

P1

P2 H

Y

T acts on objects by sending (d ∈ D, e ∈ Ed) to T (d, e) = (d ∈ D, Ld(e) ∈ C, ηde ). Then
we define H to be given by the (bijective on objects, fully faithful) factorization of T ; this
is the full subcategory of Y/H spanned by T (d, e) for any d ∈ D and e ∈ Ed. Denote
by J : H → Y/H the inclusion; then we define K := P2J and π = P1J ; the natural
transformation is the restriction of that associated to the co-comma object.
The next step is to prove that H, K, and π have the required properties. For any d ∈ D

consider the slice π/d together with its projection Qd : π/d→ H. Since this will be central
for the rest of the proof let us spell out explicitly the objects and morphisms of π/d:

• objects are triples (d1, e1, f1) = (d1 ∈ D, e1 ∈ Ed1 , f1 : d1 → d);

• morphisms (d1, e1, f1) → (d2, e2, f2) are pairs (h, k), with h : d1 → d2 in D and
k : Ld1(e1) → Ld2(e2) in C, for which the diagrams

Y Ld1(e1) Y Ld2(e2)

Hd1 Hd2

d1 d2

d

Y (k)

ηd1e1 ηd2e2

H(h)

h

f1 f2

commute in [Cop,Set] and D respectively.

It follows that there is an induced functor Fd : Ed → π/d which sends an object e ∈ Ed to
Fd(e) := (d, e, 1d) and a morphism g : e → e′ to Fd(g) := (1d, Ld(g)). As a consequence
the following diagram commutes

π/d H

Ed C

Qd

Fd K

Ld

Now we prove that Fd is final for any d ∈ D. Let (d1, e1, f1) be an object of π/d; then we can
consider the composite H(f1) ◦ ηd1e1 : Y Ld1(e1) → Hd in [Cop,Set]. But Hd ∼= colim(Y Ld)
and since Y Ld1(e1) is representable we have

[Cop,Set](Y Ld1(e1), Hd)
∼= colim C(Ld1(e1), Ld−)

it follows that H(f1) ◦ ηd1e1 factors as ηde ◦ Y (k) for some e ∈ Ed and k : Ld1(e1) → Ld(e)
in C. As a consequence we obtain a map (f1, k) : (d1, e1, f1) → Fd(e). Given any other
map (f1, k

′) : (d1, e1, f1) → Fd(e
′) in π/d (the first component is always forced to be f1)

we have that ηde ◦ Y (k) = ηde′ ◦ Y (k′); thus k and k′ induce the same map in the set
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colim C(Ld1(e1), Ld−), and hence there exists a zig-zag in Ed connecting e and e′ whose
image in Ld1(e1)/Ld completes to a zig-zag between k and k′. The same zig-zag connects
(f1, k) and (f1, k

′) in π/d. Thus Fd is final.
Thanks to that we can now prove that Lanπ(Y K) ∼= H: the natural transformation

Y K ⇒ Hπ induces a map γ : Lanπ(Y K) ⇒ H; to conclude it is enough to prove that its
components are isomorphisms. Consider d ∈ D, then γd is given by the composites of the
following isomorphisms:

Lanπ(Y K)(d) ∼= colim(π/d
Qd−→ H K−→ C Y−→ [Cop,Set])

∼= colim(Ed
Fd−→ π/d

Qd−→ H K−→ C Y−→ [Cop,Set])

∼= colim(Ed
Ld−→ C Y−→ [Cop,Set])

∼= Hd

as desired.
Note now that, since Λ is saturated, each slice π/d lies in Λ: existence and preservation

of colimits indexed by π/d can be reduced to that of colimits indexed on Ed, which is in Λ
by definition. We are only left to prove that H itself is in Λ; for that it is enough to show
that every Λ-cocomplete category is also H-cocomplete (again since Λ is saturated). Let
A be Λ-cocomplete and F : H → A be any functor; then LanπF : D → A exists (this is
defined pointwise as a Λ-colimit in A since each π/d is in Λ) and colim(LanπF ) ∼= colimF .
It follows that the colimit of F exists in A and hence H ∈ Λ.

Corollary A.1.9. Let Λ be a saturated class of small categories and let α be an infinite
regular cardinal. Then the class Λα spanned by the α-small categories of Λ is stable, and
hence pre-saturated.

Proof. Let C be any small category and H : D → [Cop,Set] be as in Definition A.1.6
for Λα; our aim is to argue as in the proof of Proposition A.1.8. Consider Ed ∈ Λα

together with functors Ld : Ed → C for which Hd ∼= colim(Y Ld) with colimit cocone
ηde : Y Ld(e) → Hd. Since D and each Ed are α-small we can find an α-small subcategory
J : C1 → C (not necessarily full) which contains the image of each Ed and such that every
morphism H(f : d → d′) is the colimit of maps in C1 between Ld(Ed) and Ld′(Ed′). In
particular it follows that each Ld lands in C1 and hence that Hd ∼= colim(Y JLd). Now
we proceed as in the proof of A.1.8 above with the only difference that instead of the
comma Y/H we consider the comma Y J/H and define H as a full subcategory of it, this
comes with its projections K : H → C1 and π : H → D. Notice now that, since D and C1
are α-small, the category Y J/H has α-small hom-sets (but in general has more than α
objects); as a consequence H is α-small (since D and all the {Ed}d∈D are) and moreover
it still satisfies all the properties shown in the proof above; in particular H ∈ Λ. If follows
by definition then that H ∈ Λα and satisfies Lanπ(Y (JK)) ∼= H as desired.

Remark A.1.10. As a consequence, since the class of all small categories is clearly saturated
it follows that the classes of all the α-small categories, for a given α, are pre-saturated (as
we already knew). Similarly, for given cardinals α and β, the class of the β-small α-filtered
categories is pre-saturated (as proved also in [30, Corollary 4.11]).

Proposition A.1.11. Let Λ be a class of small categories. The following are equivalent

1. Λ is pre-saturated
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2. B ∈ Λ∗ if and only if there exists a final functor K : A → B for some A ∈ Λ.

Proof. Assume that (1) holds. If K : A → B is final and A ∈ Λ, then the existence and
preservation of B-colimits is a consequence of the existence and preservation of A-colimits.
Thus B ∈ Λ∗ by definition.
Conversely assume that B is in Λ∗ and consider the free cocompletion ΛB as a full subcat-
egory of [Bop,Set], which is closed under Λ-colimits. By definition of Λ∗ the category ΛB
has Λ∗-colimits and these are computed as in [Bop,Set]. Consider now the terminal functor
∆1: Bop → Set; then ∆1 ∼= ∆1 ∗ Y = colim(Y ) ∈ ΛB and hence, since Λ is pre-saturated,
∆1 can be expressed a Λ-colimit of representables. There exists thenA ∈ Λ andH : A → B
such that ∆1 ∼= colim(Y H) ∼= ∆1∗Y H. But then ∆1 ∼= LanHop∆1∗Y ∼= LanHop∆1, which
means that H is a final functor.
Assume now that (2) holds. Since Λ∗ is saturated (by construction) then it is also pre-

saturated by Proposition A.1.8; hence for any C the free cocompletion Λ∗C is a one-step
closure. But ΛC = Λ∗C; thus for any X ∈ ΛC we can find B in Λ∗ and F : B → C such
that X ∼= colim JF , where J : C → ΛC is the inclusion. Let K : A → B be as in condition
(2); then X ∼= colim(JFK) is a Λ-colimit of elements of C. Thus ΛC is a one-step closure
and Λ is pre-saturated.

Hence we can characterize the saturated classes as follows:

Corollary A.1.12. Let Λ be a class of small categories. The following are equivalent:

1. Λ is saturated;

2. Λ is stable and such that: A ∈ Λ and H : A → B final implies B ∈ Λ;

3. Λ is pre-saturated and such that: A ∈ Λ and H : A → B final implies B ∈ Λ.

Proof. (1) ⇒ (2) is given by Proposition A.1.8 and the definition of saturated class,
(2) ⇒ (3) follows by Proposition A.1.7, and (3) ⇒ (1) follows from Proposition A.1.11
above since it implies that Λ = Λ∗.

We now move to the enriched context and prove the corresponding versions of Propo-
sition A.1.11 and Corollary A.1.12 above. Let us fix as base of enrichment a symmetric
monoidal closed, complete, and cocomplete category (V0,⊗, I).

Definition A.1.13 ([7]). Let Φ be a class of weights. We define its saturation Φ∗ as the
class of all weights N for which any Φ-cocomplete V-category is N -cocomplete and any
Φ-cocontinuous V-functor is N -cocontinuous. Given this, we say that:

1. Φ is pre-saturated if for any category A the free cocompletion ΦA is a one-step
closure;

2. Φ is saturated if Φ = Φ∗.

Any class of categories Λ corresponds to a class of weights ΦΛ defined by all the conical
weights ∆I : Cop

V → V with C ∈ Λ. It is easy to see that if Λ is pre-saturated in ordinary
sense then ΦΛ is also pre-saturated in the enriched sense; however the same does not hold
for saturation. For instance, the class Filt of small filtered categories is saturated when
seen as a class of categories, but the corresponding class of conical weights is not saturated:
by Proposition A.1.14 below its saturation is the class of those weights N : Dop → V which
arise as the left Kan extension of ∆I : Cop

V → V, for a filtered C, along some H : CV → D.
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Proposition A.1.14. Let Φ be a class of weights. The following are equivalent

1. Φ is pre-saturated

2. N ∈ Φ∗ only if N ∼= LanHM for some H and M ∈ Φ.

Proof. Assume first that Φ is pre-saturated. If N ∼= LanHM for some H and M ∈ Φ,
then the existence and preservation of N -colimits is a consequence of the existence and
preservation of M -colimits. Since Φ∗ is saturated then N ∈ Φ∗.
Conversely assume that N : Cop → V is in Φ∗ and consider the free cocompletion ΦC as
a full subcategory of [Cop,V] closed under Φ-colimits. By definition of Φ∗ the V-category
ΦC has Φ∗-colimits and these are computed as in [Cop,V]. Therefore N ∼= N ∗ Y ∈ ΦC
and hence, since Φ is pre-saturated, N is a Φ-colimit of representables. There exists then
M : Dop → V in Φ and Hop : D → C such that N ∼=M ∗ Y Hop. But then

N ∼=M ∗ Y Hop ∼= LanHM ∗ Y ∼= LanHM

as requested.
Assume now that (2) holds. Since Φ∗ is saturated (by construction) then it is also

pre-saturated and hence for any A the free cocompletion Φ∗A is a one-step closure. But
ΦA = Φ∗A; thus for any X ∈ ΦA we can find N : Cop → V in Ψ∗ and F : C → A such that
X ∼= N ∗ JF , where J : A → ΦA is the inclusion (when A is small we can take N = X
and F = 1A). Let M and H be as in condition (2); then X ∼= N ∗ JF ∼=M ∗ JFHop is a
Φ-limit of elements of A. Thus ΦA is a one-step closure and Φ is pre-saturated.

Every saturated class of weights is pre-saturated by [7]. The converse does not hold in
general but we can give a necessary and sufficient condition for a pre-saturated class to
be saturated:

Corollary A.1.15. A class Φ is saturated if and only if it is pre-saturated and closed
under left Kan extensions.

Proof. If Φ is saturated then it is pre-saturated by [7] and closed under left Kan extension
by definition (since colimits weighted by LanNM are the same as colimits weighted by
M). Vice versa, if Φ is pre-saturated and closed under left Kan extension then Φ = Φ∗ by
Proposition A.1.14, and hence Φ is saturated.

A.2 Enriched pettiness

The aim of this section is to generalize to the context of enriched category theory the
notion of petty functor introduced by Freyd [41], as well as the solution-set condition.
With that we wish then to extend the content of Section 2.2.6 comparing cone and virtual
reflectivity to this more general context.
We assume V = (V0,⊗, I) to be any symmetric monoidal closed, complete, and cocom-

plete category which is closed under regular subobjects in some fixed universe enlargement
V ′ as in [56, Section 3.11]. This is true for most of the bases of enrichment considered
in practice; for instance whenever V consists of the “small” objects of a suitable larger
V ′, then the inclusion V ↪→ V ′ will satisfy the desired property. Standard examples are
V = Set, Ab, Cat, SSet, Gra, and CGTop (compactly generated topological spaces),
where V ′ is the corresponding category of “large objects”.
The first thing we require is an enriched notion of pettiness:
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Definition A.2.1. We say that F : Aop → V is petty if there exist Ai ∈ A and Xi ∈ V,
for i in a small set I, together with a regular epimorphism∑

i∈I
Xi · A(−, Ai) ↠ F.

Let Pt(A) be the full subcategory of [Aop,V] spanned by the petty V-functors.

Note that Pt(A) is a V-category even though [Aop,V] may not be one; indeed for any
F,G ∈ Pt(A), we can cover F by coproducts of copowers of representables as above, and
hence obtain a regular monomorphism

Pt(A)(F,G)
∏
i∈I

[Xi, GAi].
q

which is an object of V by our initial assumption.

Remark A.2.2. When V = Set we recover Freyd’s notion of pettiness since every copower
of a representable functor by a setX coincides with the coproduct of the same representable
indexed on X.

Moreover the free cocompletion PA is contained in Pt(A) since any small V-functor
F : Aop → V is weighted colimit of representables, and thus can be written as a coequalizer∑

h∈H
Yj · A(−, Bh, )

∑
i∈I

Xi · A(−, Ai) F .
q

The map q shows that F is then a petty V-functor.

Definition A.2.3. We say that a V-functor F : A → B satisfies the enriched solution-set
condition if B(B,F−) is petty for any B ∈ B.

The following then generalizes Proposition 2.2.44.

Proposition A.2.4. The following are equivalent for a fully faithful J : A ↪→ K and
virtually cocomplete K:

1. J satisfies the enriched solution-set condition;

2. J has a virtual left adjoint.

Proof. (2) ⇒ (1) is trivial since each small V-functor is petty. For (1) ⇒ (2) assume that
J satisfies the enriched solution-set condition; we need to prove that K(K,J−) is actually
small for any K ∈ K. By hypothesis K(K,J−) is petty, so there exist Ai ∈ A and Xi ∈ V,
for i ∈ I, together with a regular epimorphism

q :
∑
i∈I

Xi · A(Ai,−) ↠ K(K,J−).

Such an arrow determines a family of maps (Xi → K(K,JAi))i∈I , and this in turn induces
a morphism

q′ :
∑
i∈I

Xi · K(JAi,−) → K(K,−)

which, when restricted to A, gives back q. The domain of q′ is still a small V-functor and
hence, since K is virtually cocomplete, the kernel pair P of q′ will then be a (small and
hence) petty V-functor. In particular we obtain
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∑
j∈J

Yj · K(Kj ,−) P
∑
i∈I

Xi · K(JAi,−) K(K,−)
s′ u′

v′

q′

where s is a (regular) epimorphism, and q′ is the coequalizer of (u′, v′), and therefore also
of (u′s′, v′s′). Now we can restrict this diagram to A by pre-composing with J and, since
pre-composition in continuous and cocontinuous, the following is still a coequalizer∑

j∈J
Yj · K(Kj , J−)

∑
i∈I

Xi · A(Ai,−) K(K,J−)
u

v

q

where u = u′s′J and v = v′s′J . By hypothesis each K(Kj , J−) is petty, so it is covered
through a (regular) epimorphism by coproducts of copowers of representables; thus, since
epimorphisms are stable under coproducts and copowers, also

∑
j∈J Yj · K(Kj , J−) is

covered through an epimorphism by coproducts of copowers of representables. Since the
coequalizer of a pair does not change is the pair is pre-composed with an epimorphism,
we can obtain K(X,J−) as a coequalizer∑

h∈H
Yj · A(Bh,−)

∑
i∈I

Xi · A(Ai,−) K(K,J−)
u

v

q

witnessing that K(X, J−) is small.

Finally, the corollary below is a generalization of Proposition 2.2.42.

Corollary A.2.5. The following are equivalent for a V-category A:

1. Pt(A) has limits of representables;

2. PA has limits of representables;

3. PA is complete.

Proof. (3) ⇒ (2) ⇒ (1) are trivial and (2) ⇒ (3) is given by [33, Theorem 3.8]. To
show that (1) ⇒ (2) let us prove that dual statement, that is: if Pt†(A) has colimits of
representables then so does P†A. Let K = PA and J : A ↪→ K be the inclusion; then K is
cocomplete and hence virtually cocomplete. Moreover J satisfies the enriched solution-set
condition: given X ∈ K we can write it as a colimit X ∼=M ∗ JH of objects from A, then
K(X, J−) ∼= {M,Y H} is a limit of representables in [A,V]. In other words K(X, J−) is
a colimit of representables when seen in the opposite category, by our assumption then
K(X, J−) lies in Pt†(A), as desired. It follows by the proposition above that J has a
virtual left adjoint, and thus P†A has colimits of representables.

A.3 Definable categories

Definable categories were first introduced in the additive context by Prest [86] and then
studied also in the ordinary setting by setting by Kuber and Rosický [60]; a general
enriched approach has been given in [64].
One of the problems of the theory, even in the ordinary and additive context, is to

give a satisfactory intrinsic notion of definability; in fact definable categories are generally
introduced as particular subcategories D of some locally finitely presentable category. In
this section, given an accessible category D with products, we use the colimit type R
of Example 5.3.35 to identify a specific locally finitely presentable category L, uniquely
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determined by D, where it is possible to establish whether D is a definable category or
not.
For simplicity we consider just the case of V = Set and V = Ab; however everything

can be extended to the context of [64]. In particular when talking about V-categories and
V-functors we mean ordinary categories and ordinary functors, or preadditive categories
and preadditive functors.
Definable V-categories can be described in multiple ways: as those of the form Reg(C,V),

for some small regular V-category C; as finite injectivity classes of some locally finitely
presentable V-category; and as full subcategories of a locally finitely presentable V-category
closed under products, filtered colimits, and pure subobjects.
Let D be an accessible V-category with products; consider the free completion R†D of

D under equalizers of pseudo equivalence relations (see Example 5.3.35 and Section 6.3.3
where the dual notion is considered). Since R is a companion for the class of products
and D has them, it follows that R†D is cocomplete and can be identified with the full
subcategory of [D,V]op spanned by the accessible V-functors out of D which also preserve
products.
Recall that, when D also has filtered colimits, we denote by Def(D,V) the full sub-

category of [D,V] whose objects are the V-functors that preserves products and filtered
colimits.

Proposition A.3.1. Let D be an accessible V-category with products and filtered colimits;
then

(R†D)f ≃ Def(D,V)op.

Moreover (R†D)f is a small V-category.

Proof. The proof is inspired by that of [100, Lemma 4.2.6]. Denote by J : D → R†D the
inclusion, then the embedding of R†D in [D,V]op sends an object X to R†D(X,J−). Since
J preserves products and filtered colimits it follows at once that (R†D)f ⊆ Def(D,V)op.
Let us now take a definable V-functor F : D → V, by the observations above this can

be seen as an object F of R†D and F ∼= R†D(F, J−); thus homming out of F in R†D
preserves filtered colimits of objects from D. We need to prove that it actually preserves
all of them; by [1, Corollary 1.7] it is enough to show that R†D(F,−) preserves colimits of
smooth chains: diagrams (Lβ)β<α indexed by an ordinal α and for which Lλ = colimβ<λLβ

for every limit λ < α.
Before moving on, note that R†D is a coregular category and coregularly embedded

in [D,V]op; thus a regular monomorphism m : L → S in R†D is just a regular epimor-
phism R†D(S, J−) → R†D(T, J−) in [D,V]. As a consequence m : L → S is a regular
monomorphism in R†D if and only if every object of D is injective with respect to it.
Consider hence a smooth chain (Lβ)β<α in R†D with connecting maps dβ,γ : Lβ → Lγ ;

for each β < α we define by transfinite induction a presentation expressing Lβ as an
equalizer of a pseudo-equivalence relation from D:

Lβ JSβ Mβ JTβ;
sβ

uβ

vβ

tβ

here sβ will be a regular monomorphism in R†D into D (this exists by properties of
R†D), the pair (uβ, vβ) will be the cokernel pair of sβ, and tβ will again be a regular
monomorphism into D. We also define smooth chains of such presentations compatibly
with (Lβ)β<α.
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If β = 0 any such presentation for L0 is fine. Suppose now that everything is defined at
level β < α, then we define a presentation for Lβ+1 and the connecting maps

Lβ JSβ Mβ JTβ

Lβ+1 JSβ+1 Mβ+1 JTβ+1

sβ
uβ

vβ

tβ

sβ+1

uβ+1

vβ+1 tβ+1

dβ,β+1 eβ,β+1 fβ,β+1 gβ,β+1

as follows: take the pushout S̃β+1 of sβ and dβ,β+1 and call the two induced maps
s̃β+1 : Lβ+1 ↣ S̃β+1 and ẽβ,β+1 : Sβ → S̃β+1, where s̃β+1 is a regular monomorphism
because R†D is coregular. Consider now a regular monomorphism rβ+1 : S̃β+1 ↣ JSβ+1

into D; it is then enough to consider sβ+1 := rβ+1 ◦ s̃β+1, which is still a regular monomor-
phism, and eβ,β+1 := rβ+1 ◦ ẽβ,β+1. We define (uβ+1, vβ+1) as the cokernel pair of sβ+1,
while fβ,β+1 is induced by the universal property of uβ and vβ. Finally define tβ+1 and
gβ,β+1 as in the first step. This gives a presentation for Lβ+1 which is compatible with
the chain already defined.
If λ < α is a limit ordinal, we take as presentation associated to Lλ the one obtained as

the colimit of the presentations defined so far, in other words we consider xλ := colim
β<λ

(xβ)

for x = s, u, v, t. It is easy to check that sλ and tλ are still regular monomorphisms, indeed
every object of D is injective with respect to them: given an arrow f : Lλ → T ∈ D, define
by induction compatible arrows f̃β : Sβ → T , for β < λ, such that f ◦ dβ,λ = f̃β ◦ sβ;
then the colimit of the f̃β induces a factorization of f through sλ. As a consequence,
since in addition cokernel pairs commute with filtered colimits, the one just defined is a
presentation for Lλ. Moreover, by construction, the colimit cocones induce maps eβ,λ,
fβ,λ and gβ,λ which are compatible with the chains defined so far. We can then take the
colimit of these chains:

colimβ<α(Lβ) Jcolimβ<α(Sβ) colimβ<α(Mβ) Jcolimβ<α(Tβ)
s u

v

t

By the previous arguments this is a presentation for colimβ<α(Lβ). Now consider the
functor R†D(F,−), this preserves filtered colimits from D as well as the equalizers in such
presentations. It follows that:

R†D(F, colimβ<αLβ) ∼= eq(R†D(F, t ◦ u),R†D(F, t ◦ v))
∼= eq(colimβ<αR

†D(F, tβ ◦ uβ), colimβ<αR
†D(F, tβ ◦ vβ))

∼= colimβ<α(eq(R
†D(F, tβ ◦ uβ),R†D(F, tβ ◦ vβ)))

∼= colimβ<αR
†D(F,Lβ)

as desired. Therefore F ∈ (R†D)f .
Finally the fact that Def(D,V), and hence (R†D)f , is small can be deduced as follows.

Let α be a regular cardinal for which D is α-accessible; then since D also has products it
follows that it is an α-definable category, and thus the V-category α-Def(D,V) spanned
by the α-definable functors is small (thanks to the infinitary version of [64, Theorem 9.7]).
In conclusion Def(D,V) is small because it is contained in α-Def(D,V).
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The point of the following result is that it allows us to test the definability of a V-
category D on a particular locally finitely presentable V-category L that is completely
determined by D itself (unlike in the definition).

Corollary A.3.2. Let D be an accessible V-category with products and filtered colimits;
let L be the closure of (R†D)f in R†D under filtered colimits (this is a locally finitely
presentable V-category). Then D is a definable V-category if and only if it is a definable
subcategory of L.

Proof. If D is a definable subcategory of L then it is by definition a definable V-category.
Conversely, if D is definable then D ≃ Reg(C,V), with C = Def(C,V), and is a definable
subcategory of Lex(C,V). By the previous Proposition (R†D)f ≃ Def(D,V)op = Cop; thus
L ≃ Lex(C,V) and the thesis follows.

We can now give our interpretation of Makkai’s notion of pp-object into a more general
setting: [76]:

Definition A.3.3. Let D be an accessible V-category with products and filtered colimits.
An object X ∈ D is called a pp-object if D(X,−) is the limit in [D,V] of a co-directed
diagram whose limit cone consists of regular epimorphisms D(X,−) ↠ F with codomain
is a definable functor.

When V = Set and D = Reg(C,Set), for an exact category C, Makkai defines the
pp-objects of D in [76, Definition 4.2] and gives a more categorical description in [76,
Definition 4.2’]. It is easy to see that the latter translates into the following: X ∈ D is
a pp-object if and only if X ∈ Lex(C,Set) is a filtered colimit of representable functors
whose colimit cocone consists of weak reflections into D. Using this, the embedding of D
and Lex(C,Set) in [D,Set]op, that C ≃ Def(D,Set) (see [64]), and that weak reflections
into D are just regular epimorphisms in [D,V], we recover Makkai’s notion of pp-object
from ours.
Both for V = Set and V = Ab the pp-objects of a definable category generate it under

filtered colimits; this is proved, using model theory, in [76, Proposition 4.4] for V = Set
and in [87, Theorem 4.9] for V = Ab.
Consider now a generalized notion of purity:

Definition A.3.4. Let K be a cocomplete V-category, we say that a morphism f : X → Y
in K is pure if it lies in the closure L of Kf under filtered colimits and is a pure morphism
in L in the usual sense [1, Definition 2.27].

Then we can conclude the section with the following result:

Theorem A.3.5. Let V = Set or V = Ab. A V-category D is definable if and only if:

1. D is accessible with products and filtered colimits;

2. the pp-objects generate D under filtered colimits;

3. D is closed in R†D under pure subobjects.

Proof. Let L be the closure of (R†D)f inR†D under filtered colimits. If D is definable then
it is a definable subcategory of L (see the proof of the corollary above) and is accessible.
Thus (1) and (3) hold, point (2) holds by the result of Makkai and Prest mentioned above.
Conversely, assume that D satisfies the three conditions. Since the pp-objects generate
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D under filtered colimits, and these are contained in L, the whole category D is a full
subcategory of L. By construction D is closed in L under products and filtered colimits.
Thus, if moreover D is closed in L under pure subobjects, it is a finite injectivity class in
L [92, Theorem 2.2] and hence a definable subcategory of it.

A.4 An adjunction for V-topoi
We have seen, as part of the duality in Theorem 6.3.4, that if A is a finitely accessi-
ble category then ℵ0-Acc(A,Set) is equivalent to the presheaf category [Af ,Set]. Con-
versely, given any category of presheaves [C,Set] the category P-Lex([C,Set],Set) ∼=
Flat(Cop,Set) is finitely accessible. This is actually part of a wider adjunction between
the 2-category of accessible categories with filtered colimits and that of Grothendieck topoi
(see [34]). We shall prove in this section that such an adjunction can be extended to the
enriched setting by considering accessible V-categories with flat (or just filtered) colimits
and the notion of V-topos introduced below.
We assume for simplicity that V is locally finitely presentable as a closed category;

nonetheless, everything can be carried out as usual in the infinitary case.

Definition A.4.1. We say that a V-category E is a V-topos if it is locally presentable and
a left exact localization of a presheaf V-category [Cop,V]. In other words, E is a V-topos
if there exists a fully faithful and accessible J : E → [Cop,V] which has a lex left adjoint.

By [45, Proposition 2.6] C can be chosen to be a full subcategory of E . Morphisms
between them are cocontinuous lex V-functors. Denote by V-Top the 2-category of V-
topoi, morphisms between them, and V-natural transformations.

Remark A.4.2. The one above is not the standard definition of V-topos: local presentability
is usually omitted. We need to add it for the proofs below to work. When V0 is a
Grothendieck topos then the additional condition is automatic (if E is V-topos then E0 is
a Grothendieck topos and hence locally presentable. This is enough to guarantee that E
is also locally presentable as a V-category.) We do not know whether it is true in general
that every left exact localization of a presheaf V-category is locally presentable.

Denote by cAccℵ0 the 2-category of conically accessible V-categories with filtered col-
imits, filtered-colimit-preserving V-functors, and V-natural transformations. Similarly we
denote by Accℵ0 the 2-category of accessible V-categories with flat colimits, flat-colimit-
preserving V-functors, and V-natural transformations; then we have a faithful inclusion
Z : Accℵ0 ↪→ cAccℵ0 .
Then the following can be seen as an extension of the Scott adjunction [34] to the

enriched context.

Proposition A.4.3. The following

cAcc(−,V)ℵ0 : cAccℵ0 V-Topop :V-Top(−,V)⊥

defines a 2-adjunction.

Proof. The only non-trivial part is to show that the 2-functors are well defined, the uni-
versal property that defines the adjunction is in fact an easy consequence of the commu-
tativity of filtered colimits with finite limits in V. Let E be a V-topos; then V-Top(E ,V)
is closed in [E ,V] under filtered colimits, so that we only need to prove that it is acces-
sible. By hypothesis E is locally presentable and we can take H : C ↪→ E small such that
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J := E(H, 1) : E → PC = [Cop,V] has a lex left adjoint L. Consider now α such that E is
locally α-presentable; we will prove that the square below is a bipullback.

V-Top(E ,V)

α-Acc(E ,V)

V-Top(PC,V)

α-Acc(PC,V)

⌟

− ◦ L

− ◦ L

Now, we have the equivalence V-Top(PC,V) ≃ Flat(C,V), while α-Acc(E ,V) ≃ [Eα,V],
and α-Acc(PC,V) ≃ [(PC)α,V] since E and PC are locally α-presentable (note that for a
locally α-presentable category there is no difference between α-Acc(E ,V) and α-cAcc(E ,V)).
Now, to prove that the square is a bipullback it is enough to notice that a V-functor
F : E → V is lex-cocontinuous if and only if FL is. One direction is clear (since L is
lex-cocontinuous), for the other assume that FL is lex-cocontinuous, then F ∼= FLJ
is lex because J preserves all limits, moreover for any diagram D : D → E and weight
M : Dop → V we obtain:

F (M ∗D) ∼= F (M ∗ LJD)
∼= FL(M ∗ JD)
∼=M ∗ FLJD
∼=M ∗ FD

so that F is cocontinuous. It follows that V-Top(E ,V) can be seen as a bipullback of acces-
sible V-categories along accessible V-functors; thus it is itself accessible and in particular
conically accessible.
Let now A be a conically accessible V-category with filtered colimits and consider α such

that A is conically α-accessible. Denote by J : cAccℵ0(A,V) ↪→ α-cAcc(A,V) ≃ [Aα,V]
the inclusion (this preserves all colimits and all finite limits). Now define B := Ind(Aα), so
that B is conically finitely accessible; then we have induced V-functors S : A → B, which
preserves α-filtered colimits and extends the inclusion of Aα in B to A, and T : B → A,
which preserves filtered colimits and extends the inclusion ofAα inA to B. By construction
they satisfy TS ∼= idA. Arguing as in the chain of isomorphisms above it follows that a
V-functor F : A → V preserves filtered colimits if and only if FT preserves them. As a
consequence we can see cAcc(A,V)ℵ0 as the bipullback below.

cAccℵ0(A,V) cAccℵ0(B,V)

α-cAcc(A,V) α-cAcc(B,V)

⌟

− ◦ T

− ◦ T

Since cAccℵ0(B,V) ≃ [Aα,V] ≃ α-cAcc(A,V) and α-cAcc(B,V) ≃ [Bα,V] are locally
presentable and the functors between them are accessible, it follows that E := Acc(A,V)ℵ0

is accessible as well. Moreover since E is closed in [A,V] under colimits, it is also locally
presentable. Now let H : C ↪→ E be a small dense full subcategory of E closed under finite
weighted limits (a small dense subcategory exists by local presentability, then take the
closure of this in E under finite limits). The fully faithful functor E(H, 1) : E ↪→ [Cop,V]
has a left adjoint given by LanYH : [Cop,V] → E ; to conclude that E is a V-topos then
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it is enough to prove that LanYH is lex. Consider the composite J(LanYH), since this
is cocontinuous and it restricts to JH it follows that J(LanYH) ∼= LanY (JH). But
LanY (JH) is lex by [45, Proposition 2.4(4)] (since [Aα,V] is a V-topos); thus also LanYH
is lex, because J is fully faithful and preserves finite limits. As a consequence E is a left
exact localization of [Cop,V] and hence a V-topos.

The proof shows that the adjunction above restricts to the full image of the inclu-
sion Z : Accℵ0 ↪→ cAccℵ0 , so that on the left-hand-side one can have the 2-category of
accessible V-categories with filtered colimits, filtered-colimit-preserving V-functors, and
V-natural transformations.
We can also show that the adjunction still holds if we consider Accℵ0 instead. Note that

this is not a restriction of the adjunction above, since for a general accessible V-category
A with filtered colimits we only have an inclusion Acc(A,V)ℵ0 ⊆ cAcc(A,V)ℵ0 .

Proposition A.4.4. The following

Acc(−,V)ℵ0 : Accℵ0 V-Topop :V-Top(−,V)⊥

defines a 2-adjunction.

Proof. Again it is enough to show that the 2-functors involved are well defined. Given a
V-topos E , the proof above shows that V-Top(E ,V) is an accessible V-category moreover
it has flat colimits since this commute in V with colimits and finite weighted limits. For
the other direction one can argue as above, just replace (α-)filtered colimits by (α-)flat
colimits everywhere.

Remark A.4.5. This can be further generalized in two different directions by considering
companions and weakly sound classes:

1. Given a class of weights Ψ and a companion C for Ψ, replace V-Top with the 2-
category whose objects are the accessible and left exact localizations of finitely com-
plete V-categories of the form CB, for some small B. Morphisms between them are
lex and C-cocontinuous V-functors, and 2-cells as 2-natural transformations. On the
other hand, instead of cAccℵ0 , consider the 2-category of conically accessible cate-
gories with Ψ-limits and filtered colimits, Ψ-continuous and finitary V-functors, and
V-natural transformations. Then we recover the adjunction above by taking Ψ = ∅
and C = P.

2. Given a locally small weakly sound class of weights Φ. On one hand, we could
replace the V-topoi above with Φ-topoi: accessible and reflective subcategories of
a presheaf V-category with a Φ-continuous left adjoint; morphisms between them
are cocontinuous and Φ-continuous V-functors. On the other hand one considers
accessible (or conically accessible) V-categories with Φ-flat colimits and V-functors
which preserves them. Then we recover the adjunction above by taking Φ to be the
class of finite weights.
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[20] J. Bourke. Accessible aspects of 2-category theory. Journal of Pure and Applied
Algebra, 225(3):106519, 2021.

[21] J. Bourke and R. Garner. Two-dimensional regularity and exactness. Journal of
Pure and Applied Algebra, 218(7):1346–1371, 2014.

[22] J. Bourke and S. Lack. Accessible ∞-cosmoi. arXiv preprint arXiv:2111.00147,
2021.
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