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Summary
Effective foraging for food is such a necessity for most animals it is reasonable to expect

natural selection to favour individuals that optimise their nutrient intake and minimise energy

expenditure. One way to achieve these goals is through the use of specific behaviours,

called “foraging strategies”. Pollinators such as bees present a very interesting case of

foraging optimisation. Since the nectar offered by plants is a renewable resource bees have

a strong incentive to learn and memorise the positions of the flowers they have discovered.

Many studies have investigated the foraging behaviour of bees, leading to the identification

of two foraging strategies: the use of stable, repeated routes between subsets of flowers

(“traplines”) and the development of areas of exclusion of other bees in competitive

situations (“resource partitioning”). The use of these two strategies by bees has been

demonstrated multiple times in different situations, but we still know very little about how

such strategies develop. These two strategies have mostly been described through

cognitively complex mechanisms. However, while they have been observed and

characterised in controlled environments, these strategies were seldom seen in more natural

environments, suggesting our current explanations of these phenomena are incomplete.

This gap in knowledge leads me to question what are the behavioural rules individual bees

follow to establish these strategies? My thesis focused on attempting to gain some insight on

how these foraging strategies form by complementing experiments with a modelling

approach. I built an agent-based model of multiple bees foraging in a wide variety of

environments. With it I tried to explain the establishment of these strategies through the use

of simple positive and negative reinforcement rules as bees found flowers with or without

rewards, respectively. Exploration of the model showed that both traplining and partitioning

strategies could emerge in simple competitive situations with two bees foraging on 10

feeding sites. I then conducted three experiments to challenge the assumptions of the

model. My results suggest that the foraging strategies of bees could emerge from simple

foraging rules, but more importantly that their development in natural conditions could be

mostly driven from the spatial and temporal constraints of the environment which are altering

the availability in resources. Bees were able to improve their foraging efficiency in most

experimental conditions, but how they did so was not limited to the establishment of traplines

or resource partitioning. By explaining their formation mostly through these constraints, we

are able to present these foraging strategies not as cognitively intensive processes, but

rather paths of least resistance to environmental constraints.

Keywords: foraging behaviour, traplines, partitioning, agent-based model
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Résumé
Être efficace lors de la recherche de nourriture est tant important, qu’il est raisonnable de

s’attendre à ce que la sélection naturelle favorise les individus qui optimisent leurs apports

nutritionnels et minimisent leurs dépenses énergétiques. Cette optimisation peut prendre la

forme de comportements spécifiques, que l’on nomme "stratégies de recherche de

nourriture”. Les pollinisateurs, tels que les abeilles (au sens large), présentent un cas très

intéressant d’optimisation de recherche de nourriture. Le nectar offert par les fleurs se

renouvelant au fil du temps, les abeilles sont encouragées à apprendre et mémoriser les

positions des fleurs qu’elles découvrent. Plusieurs études sur leur comportement lors du

butinage ont mené à l’identification de deux stratégies: l’utilisation de routes stables et

répétées entre plusieurs fleurs (nommées “traplines”), ainsi que le développement de zones

d’exclusion d’autres abeilles dans des situations compétitives (nommée “partitioning”). Ces

stratégies ont été démontrées dans diverses situations, mais nous ne savons encore que

peu sur comment elles se développent. Ces stratégies ont toujours été decrites au travers

de mécanismes cognitifs complexes. Cependant, bien qu’elles aient été observées en milieu

contrôlé, ces stratégies n’ont pas souvent été observées en milieu naturel, suggérant une

connaissance incomplète de ces phénomènes. Cette lacune m'amène à me demander

quelles sont les règles comportementales suivies par les abeilles pour développer ces

stratégies? Ma thèse a eu pour but d’apporter des réponses sur comment ces stratégies se

forment, en combinant des approches expérimentale et de modélisation. J’ai développé un

modèle individu-centré de plusieurs abeilles butinant sur plusieurs environnements. Avec ce

modèle j’ai tenté d’expliquer l'établissement de ces stratégies via l’utilisation de simples

règles de renforcement positif et négatif lorsque les abeilles trouvaient des fleurs avec ou

sans nectar, respectivement. L’exploration de ce modèle a démontré que les “traplines” et

“partitioning” pouvaient émerger en situations compétitives simples avec deux abeilles

butinant sur 10 ressources. J’ai réalisé trois manipulations afin de confronter les prédictions

du modèle. Les résultats suggèrent que ces stratégies de recherche de nourriture pourraient

émerger à partir de simples règles d’apprentissage, mais également que leur émergence en

conditions naturelles pourraient être majoritairement dû aux contraintes spatiales et

temporelles de leur environnement; qui affecte la disponibilité des ressources. Les abeilles

ont été capables d'améliorer l'efficacité de leur recherche de nourriture dans la majorité des

situations expérimentales. Cependant, cette amélioration ne s’est pas limitée à l’utilisation

des stratégies de “trapline” et “partitioning”. En expliquant leur formation au travers de ces

contraintes environnementales, j’ai pu présenter ces stratégies de recherche de nourriture

7



non pas comme le résultat de mécanismes cognitifs complexes, mais comme des chemins

de moindre résistance aux contraintes environnementales.

Mots-clés: recherche de nourriture, traplines, partitioning, modèle individu-centré
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1 - Bees: a model for optimal foraging

Social bees, and in particular honey bees, have featured in mythology, literature and art for

millennia, as far back as ancient Egypt where their caste and social system was richly

represented in hieroglyphs. The works of pioneers in the study of animal cognition, such as

Charles H. Turner and Karl von Frisch, a century ago, sparked a new interest in the cognitive

abilities of bees (von Frisch, 1915; Dona & Chittka, 2020). Notably, it has been demonstrated

that bees are capable of olfactory, visual and tactile learning (honey bees: Schubert et al.,

2002), path integration (Collett & Collett, 2000; Wehner & Srinivasan, 2003), social learning

(Leadbeater & Chittka, 2007), concept learning (honey bees: Avarguès-Weber & Giurfa,

2013), numerosity (honey bees: Chittka & Geiger, 1995; Dacke & Srinivasan, 2008) and

metacognition (honey bees: Perry & Barron, 2013), among other cognitive abilities. Honey

bees and bumblebees have been notoriously favoured in studies of insect foraging

behaviour, since they are easily maintained, manipulated (i.e. individually tagged), docile,

numerous, they adapt easily to new foraging tasks presented to them, and forage constantly

(Goulson & Osborne, 2010). Thus, these species have often been used to study foraging

optimisation problems. Throughout this thesis, references to honey bees and bumblebees

are made as a simplification for studies on Apis mellifera and various species of Bombus sp.,

respectively.

Under the hypothesis that a better foraging success would consequently increase

one’s survival and reproduction, we have expected animals to be selected for optimal

foraging. Hypotheses as to how to assess foraging performance have been improved by the

establishment of the Optimal Foraging Theory (“OFT”; Emlen, 1966). This theoretical

framework tries to predict the foraging behaviour of animals by assuming that they should

exploit optimally their environment (Pyke et al., 1977; Pyke, 1984), based on the

assumptions that (i) a more efficient foraging behaviour affects the fitness of the next

generation; (ii) the foraging behaviour is inheritable; (iii) the effect of the foraging behaviour
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on the fitness (i.e. the “currency”) is known; (iv) there is no genetic reason preventing the

evolution of the foraging behaviour; (v) the evolution of the foraging behaviour is constrained

by the biology of the animal; and (vi) the foraging behaviour evolves faster than the rate at

which the relevant conditions change (Pyke, 1984).

That bees are effective and efficient foragers is not in doubt, but how they achieve

this is an open question. Bees naturally forage in large areas on resources that are

dispersed, ephemeral and unpredictably varying, making the foraging task very difficult. How

are bees able to forage efficiently in such environments? What is the extent of their cognitive

abilities enabling their effective foraging?

Bees exploit patches of flowers, from which they extract pollen and nectar. Foragers

of a colony usually specialise in the exploitation of either resource (honey bees: Page et al.,

2006), and are usually distinguishable during foraging by the presence of accumulated

pollen in their pollen basket. While there is no reason to suspect a difference in how bees

forage for these two resources, manipulating pollen and designing experimental protocols

around the exploitation of pollen is generally more difficult than nectar, which is easily

replaced in experimental setups by sucrose solution. As such, studies on foraging strategies

and resource optimisation have mostly focused on nectar foraging. Unless stated otherwise,

the “foraging behaviour” mentioned throughout this work will specifically refer to nectar

foraging.

The foraging behaviour of bees consists in visiting a series of flower patches

distributed in their environment, and within each visit a certain number of flowers for nectar.

Within a patch of flowers, studies have observed rules generally followed by bees and

structuring how they exploit such resources. Namely, bees were reported moving between

flowers by moving to the nearest unvisited flower (i.e. “nearest-neighbour movements'',

bumblebees: Ohashi et al., 2007; Saleh & Chittka, 2007), often retaining their heading for
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multiple successive movements (i.e. “directionality of movements'', Levin et al., 1971; Pyke &

Cartar, 1992; Cresswell et al., 1995), and making decisions as to when they should leave a

patch to visit another one (Pyke, 1982a). These foraging behaviours based on hard-wired

rules are cognitively simple solutions for maximising foraging efficiency, in accordance with

optimal foraging theory.

However, when navigating between patches, bees typically cannot follow these rules.

Indeed bees usually cannot rely on visual cues as these patches are too distant from each

other. As a consequence, they need to use a completely different set of behaviours and cues

to navigate within patches (i.e. “intra-patch foraging”) and between patches (i.e. “inter-patch

foraging”). One behaviour in particular has drawn interest when studying the foraging

behaviour of bees over large spatial scales. Bees have been observed establishing routes

between the same patches of flowers, and revisiting them in a similar order every time they

would do a foraging bout. These stable routes have been called traplines (Thomson, 1996;

Ohashi et al., 2007; Lihoreau et al., 2012a), and have since been studied for their role as a

foraging strategy. In recent studies, bees have been observed establishing traplines in a way

that reduces the overall distance travelled, i.e. by using the shortest path starting from their

nest, passing by all the flowers and back to their nest (bumblebees: Ohashi et al., 2007;

Lihoreau et al., 2012a; Lihoreau et al., 2012b; honey bees: Buatois & Lihoreau, 2016).

Finding the shortest path between a set of points is analogous to the Traveling Salesman

Problem, a NP-complete mathematical problem for which the solution cannot be known

unless all options are tested. This analogy highlights the complexity of the foraging task of

bees, and puts the focus on an aspect of foraging optimisation often debated: the cognitive

load of the task. The notion of cognitive load presented throughout this thesis is used to

depict the theoretical amount of information transferred to execute a behavioural response to

a stimulus. Since measuring the load of information between neurons is difficult, we chose to

use the information as it is presented in the behavioural models we use in the thesis as a
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proxy. While such a proxy can sometimes be misleading, it remains a relevant estimate of

information transfer, as depicted in information theory.

In trying to understand how bees optimise their foraging intake at these large spatial

scales, many models relied on complex calculations of energetic returns (Pyke, 1978), route

comparisons (Reynolds et al., 2013), or the existence of a cognitive map to navigate (Menzel

et al., 2005; argued against in Cruse & Wehner, 2011; Collett et al., 2013). The mechanisms

suggested in these strategies are computationally intense and impose heavy demands on

learning and memory systems, hence we can describe them as imposing a high cognitive

load on a bee. Whether such a load is reasonable is still not clear. Traplines, for example,

present bees faithfully following learned routes between flowers. Although highly efficient

and effective, bees have very small brains, and while they are capable of many things, their

processing power and memory are likely size constrained (Chittka & Niven, 2009). While

most studies trying to explain traplines measure the efficiency in terms of energetic returns,

distance travelled, the cognitive load is often not considered. In this thesis, we argue that

beyond considerations of whether a task is cognitively possible for a bee, we should also try

to consider whether an improvement in efficiency is worth the cognitive load it demands. We

suggest in this thesis that the optimisation behaviour of bees, so far explained through these

cognitively intensive task solving behaviours, could also be the result of more parsimonious,

very simple behavioural rules.

2 - Technological challenge

Despite the popularity of bees in studies of foraging behaviour, technology currently limits

what can be observed. For a long time research on bee spatial behaviour has been made on

small spatial scales (in inflorescences or flower patches; Pyke, 1978;1982; Williams, 1997).

Researchers opportunistically focused on one bee at a time and recorded their behaviour by

following until they lost it (Thomson et al., 1987). Tracking animals over long distances and
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times has been a constant challenge, and while there has been huge progress in developing

new technologies (Maggiora et al., 2019; Vo-Doan & Straw, 2020; Ratnayake et al., 2021),

one of the main obstacles to their application to bees is how small they are, but also their

large foraging range which is hard to cover even with current technology. When it comes to

studies on spatial use and movements, tracking methods of bees fall into two categories:

discrete tracking and continuous tracking.

Discrete tracking refers to methods where the points of interest (in our case, flowers

or patches of flowers, natural or artificial) are monitored, and not the bee itself. These

methods’ aim is to record visits to a specific place of interest, by any individual or a specific

bee (in which case bees are individually tagged). Recordings of visits can be done manually

(i.e. observers) or automatically (RFID: reviewed in Nunes-Silva et al., 2019; computer vision

with QR Codes: Wario et al., 2015; Gernat et al., 2018) using different technologies. This

approach is useful if the behaviour studied is displayed at the monitored site (e.g. feeding

behaviour, acceptance/rejection of flowers, interference competition, etc), as it can provide

fine observations of behaviours (e.g. through the use of video recordings and pose analysis;

Nath et al., 2019). Furthermore, video recordings are now being processed through machine

learning programs to identify and track multiple individuals simultaneously, allowing the

tracking of multiple untagged individuals within the scope of the recording (Lauer et al.,

2021).

However, the discrete approach is ill-suited to studies of behaviours happening

between the different resources the bees visit. Continuous tracking is addressing this issue

by monitoring the bees themselves, allowing the study of fine movements in their

environments such as the exploration behaviour. Such systems used to track bees are

usually composed of a transponder attached to the bee, and of an antennae held by the

observer (details of methods reviewed in Kissling et al., 2014). Yet, the application of these

methods with insects is difficult. Bees are generally small, and lightweight (~3 grams),
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meaning that the transponder would have to be very minimal to fit the bee without being

invasive. Moreover, these methods are often expensive to deploy as they require heavy

machinery (harmonic radar; Riley et al., 1996) or logistical support (use of planes to scout

the area; Pasquet et al., 2008). Also, these methods are still quite limited in how often

positions can be recorded, and how accurate these positions are. When studying the

movements of an animal, the resolution of the observations will have a significant impact on

the patterns that can be discerned (Pasquaretta et al., 2019). Lastly, tracking multiple bees

at the same time through these methods is still difficult, as the signals detected from the

bees are not specific to each individual.

To all these technological constraints are usually added the difficulties to follow

animals in natural environments, such as an uneven terrain, disruptions from other signals

(for telemetry and harmonic radar trackings) or the disappearance of the focal bee (either

predated or a bee losing its transponder). Thus, most experiments on bee movements have

been limited to controlled environments (flight cage, flight room in laboratory), and in doing

so have reduced the complexity of the foraging environment while simplifying the tracking

process by drastically limiting the space in which the bee can forage. Yet, these methods too

are not without constraints or limits. In flight rooms, bees lose access to cues such as the

polarised light or the sun’s position, which are important elements in their navigation (Gould,

1998). By also reducing their environment to a set of minimal functional features (a nest and

flowers in an otherwise empty room), it is reasonable to assume that they become deprived

of cues and information from their environment that could affect their foraging behaviour, and

would not be able to escape an imposed foraging situation (e.g. competition pressure or

unprofitable patch) from a lack of other options in the limited space.

Finding a compromise between controlled experiments and studies in natural

conditions is difficult. The emerging field of cognitive ecology is pushing towards the design
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of experiments accounting for the social context of a cognitive task to bring controlled

experiments to the field (Dukas & Ratcliffe, 2009; Muth et al., 2018; Lihoreau et al., 2019).

3 - Modelling approach

Because experiments with real bees in the field are challenging, a complementary approach

is running experiments with simulated bees using computational models. The use of models

in science has surged in the past decades with the developments in computational power

and accessibility of computer languages. Models are mathematical descriptions of ecological

systems, based on our knowledge of these systems. They allow, on the basis of this

knowledge, to explicit specific hypotheses and virtually integrate them to the system to test

them. Models, however, remain simplified representations of reality and as such are unfit to

prove the hypotheses they test. Instead, they allow us to see if these hypotheses could have

an effect on the system, or if an experimental situation would be appropriate to test this

hypothesis, effectively guiding the experimental process. Models to study bees are

numerous (e.g. Ohashi & Thomson, 2005; Reynolds et al., 2013; Becher et al.,

2014;2016;2018; Olsson et al., 2015; Qu & Drummond, 2018), covering a large range of

behaviours, as well as a range of purposes.

Models like BEEHAVE and further additions (Becher et al., 2014;2016;2018) are

models including a wide range of variables covering most aspects of the life cycle of bees

(colony dynamics, nutrition, predation, parasitism, foraging…). These models can simulate a

very large range of scenarios, but the predictions resulting from it will generally not be

generalisable to other contexts, meaning that their principal application will be to help

decision-makers in conservation and agricultural fields looking for predictions to rely on

when acting on specific field situations.
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Most models on bees have otherwise focused on narrower aspects of their biology,

hypothesising on the effect of parasitism (Sumpter & Martin, 2004; DeGrandi-Hoffman &

Curry, 2004), pesticides (Thompson et al., 2005;2007) or nutrition (Schmickl & Crailsheim,

2007; Khoury et al., 2013) on the dynamics of the colony (reviewed in Becher et al., 2013).

Very few models focused on the process by which foraging strategies may emerge

(Reynolds et al., 2013). This model by Reynolds et al. is to our knowledge the first to

suggest a mechanism to explain the formation of traplines in bees, based on the idea that

bees would compare multi-leg routes to find the shortest. Our own work is inspired by this

initial model, as both rely on similar navigation systems based on probability matrices and

reinforcement rules.

4 - Thesis prospectus

The work conducted in this thesis applied theoretical, modelling and experimental

approaches to try to understand what traplines are, how they are able to form, and by

answering these questions highlighted the role of foraging strategies in the broader context

of the foraging behaviour of bees. The aim is to try to reconcile observations of foraging

behaviour performed at small spatial scales and at larger spatial scales by finding

mechanisms able to explain both.

In Chapter II, we first reviewed our knowledge on the foraging behaviour of bees, and

advocated for the need to explain the emergence of foraging strategies through simpler

processes than what has currently been suggested in the literature.

In Chapter III, we attempted to model these simpler processes in an attempt to

showcase how traplines could emerge from very parsimonious foraging rules of positive and

negative reinforcement in competitive environments.
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In Chapter IV, we put our model to the test against a simple experiment for which the

predictions of the models were very clear. These first results allowed us to refine further our

models.

In Chapter V, we conducted multiple experiments to try to understand how groups of

bees would be able to optimise their foraging efficiency at the scale of a single patch.

Finally, in Chapter VI, we conclude on our results and highlight the need to consider

the foraging strategies of bees in their general context.
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Abstract

Foraging bees often form traplines: stable, repeated routes between the flowers they visit

during foraging, that minimise path length. In this review we explore how traplines form. This

is of interest because forming traplines appears to pose a prodigious challenge, which has

been likened to the famous Travelling Salesman problem, and understanding how foraging

bees move between flowers has important consequences for the efficiency and performance

of bees. In this review, we synthesise various studies on traplining in bees and other

animals, and focus on understanding how the spatial and temporal constraints of their

environment and behaviour can affect the formation of traplines, and also of similar foraging

strategies such as resource partitioning. The definition of traplines limits us to recognise only

a “perfected” form of traplines. These only occur in simplified controlled environments. In

natural environments traplines do not show complete repeatability and reliability. The natural

environments the routes of the bees are strongly influenced by constraints on resource

availability in the environment, variability in resources and simple foraging strategies

adopted by bees including floral constancy, nearest-neighbour movements and competitor

avoidance. We argue that traplines emerge as a consequence of these constraints. By

hypothesising that trapline formation mostly relies on these spatial and temporal constraints,

we suggest that forming traplines would, under these assumptions, require little to no

cognitive load. This new hypothesis opens a new opportunity to understand traplines and

foraging strategies of bees in general under a new light, one that recognises them outside of

their “perfected” form.
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1 - Introduction

Bees have been studied for a long time in order to understand their foraging habits (von

Frisch, 1915; Gould, 1990; Seeley 2010). A common observation has been that some

species of bees develop stable, repeated routes between food sources. These routes are

called “traplines” (Euglossine bees: Janzen, 1971; bumblebees: Thomson et al., 1997;

Ohashi et al., 2007; Lihoreau et al., 2012b; honey bees: Buatois & Lihoreau, 2016).

Traplines have been observed in many species other than bees, including hummingbirds

(Gill, 1988; Garrison & Gass, 1999), bats (Lemke, 1984), primates (Menzel, 1973; Cramer &

Gallistel, 1997) and more (reviewed in Berger-Tal & Bar-David, 2015), suggesting this

behaviour is common in animals foraging on renewable resources. Although traplining has

been extensively studied, the very definition of traplines remains unclear. Indeed, their

properties (i.e. stable, repeated and optimised) ask more questions than the definition

answers. How stable does a route have to be to be a trapline? How often does a route have

to be repeated to be a trapline? What is optimised in a trapline, and to what degree? To

understand traplines we need to explore these questions, and through them learn about the

development and function of traplines.

Defining traplines as stable, repeated and optimised routes poses a fundamental

problem. We can only recognise a trapline if it is in its ideal, perfected form (Thomson et al.,

1997) where an optimised route (assuming some criterion of optimisation, e.g. distance

travelled or net energy intake) between food sources is repeated without any deviation from

it. This is sometimes seen in experiments in controlled environments (bumblebees: “positive

array” of Ohashi et al., 2007; Lihoreau et al., 2012a), but most observations of traplines in

field conditions are far from perfect. In field conditions bees developed fidelities toward

foraging areas (bumblebees: Thomson et al., 1982; Thomson et al., 1987; honey bees:

Williams, 1997) or suboptimal foraging routes (euglossine bees: Janzen,1971). Here, we

hypothesise that the perfect traplines in controlled environments and the various behaviours
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observed in field conditions are different outcomes of the same general foraging strategy

applied in different foraging environments. We propose that traplines can form as a result of

very simple decision-making processes that impose little cognitive load.

Through this review, we reconsider traplines in the context of evolved foraging

strategies, and detail how a simple foraging strategy based on basic behavioural responses

can explain the wide range of traplines observed in controlled and field conditions. We

discuss the factors that constrain the foraging behaviour of bees spatially and temporally in

their natural environment, and argue how constraints can shape the emergence of traplines.

2 - Spatial constraints

2.1 - Flower constancy

The resources available to generalist bees (honey bees, bumblebees...) usually come from a

large range of different species of plants. Different plant species will display various floral

cues that affect their attraction for bees, such as the shape and colour of flowers (Dyer et al.,

2011), or odour (euglossine bees: Dressler, 1968). These cues have often co-evolved with

the pollinators that enable their reproduction through their services, and thus have been

selected to be easily recognisable and attractive for bees. Bees learn to associate the visual

and odour stimuli of a flower and its nectar content and look for flowers with similar cues in

the future. This can lead to a phenomenon called flower constancy (Grant, 1950; Chittka et

al., 1999). Such learned foral preferences in conjunction with the distribution of these flowers

in the foraging range will constrain the pool of flowers that will be visited.

2.2 - Nearest-neighbour movements

Flowers are typically distributed in a heterogeneous way, or “patchy” distribution (Kotliar &

Wiens, 1990). Flowers can be aggregated on many levels: flowers in inflorescences,

inflorescences on a single plant, plants aggregated in patches (Goulson, 2000). Patches can
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also have a heterogeneous distribution. Patches are often far enough from each other to be

out of sight, and require bees to learn and remember their positions. The foraging behaviour

of bees is known to be affected by the distribution of flowers (i.e. patchy vs. uniform

distributions; bumblebees: Creswell, 2000) and also the distance between patches

(bumblebees: Burns & Thomson, 2006).

Navigating between distant patches of resources is one of the challenges bees face

as they forage. How they move while exploring will determine which patches are found, in

turn shaping how traplines are formed. Studies on animal navigation have used random

walks as a way to approximate how animals explore their environment (Bovet & Benhamou,

1988; Bartumeus et al., 2005; Edwards et al., 2007). While recent studies are questioning

the ability of random walks and Levy-flight algorithms to accurately capture the properties of

animal movements (reviewed in Chapter 4 of Klages, 2018), no better alternative solution

has been suggested so far. Correlated random walks still provide a decent approximation of

bee movements. Any lack of accuracy of this model is compensated by its conservative

underlying assumptions. In Chapter III of this thesis, we show how, at least in exploitation

situations, random walks can be good predictors of the likelihood of visiting a flower.

One of the emergent properties of random walks is that closer points of interest have

a higher chance of being found first (Bartumeus et al., 2005). Multiple studies, including our

experiments (Chapter V), have shown empirically that bees favoured nearest-neighbour

(hereafter “NN”) movements in both intra-patch (bumblebees: Saleh & Chittka, 2007;

Chapter V) and inter-patch (bumblebees: Ohashi et al., 2007; Woodgate et al., 2017;

Kembro et al., 2019) movements. In various studies on the development of traplines, bees

were faster to establish traplines on the shortest route if it corresponded to the route

established by doing NN movements (bumblebees: “Positive array” of Ohashi et al., 2007;

Lihoreau et al., 2012b; honey bees: Buatois & Lihoreau, 2016), and either established

suboptimal routes, or required a longer training phase to reach the shortest route, when it did
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not correspond to the NN route (bumblebees: “Negative array” of Ohashi et al., 2007;

Lihoreau et al., 2012a; Woodgate et al., 2017).

This preference for NN movements in both intra-patch and inter-patch foraging could

be the result of simple decision-making processes. In intra-patch foraging, a large number of

flowers are spatially close. At this scale, moving between two flowers has a negligible cost. It

is fair to assume that given the complex 3D distribution of these flowers memorising the

routes between many specific flowers would imply a high cognitive load for a negligible

improvement in efficiency since travels costs are trivial. At a higher scale (i.e. inter-patch

foraging), the observation of NN movements would influence the order of discovery of the

flower patches, since for a random walk model closer points of interests are usually found

first. The nearest neighbour movements constrain how bees might move within and between

patches and impose an order on the sequence of flowers or patches visited, in turn affecting

learning and influencing trapline development.

3 - Temporal constraints

3.1 - History of rewards

There will be variations in nectar content between individual flowers of a given

species (Leiss & Klinkhamer, 2005) and even within the same flower (Pacini & Nepi, 2007)

that will negatively impact flower constancy. Nectar varies, with the time of day, or the

flower’s age. Everytime a bee visits a flower, it is able to quantify how much nectar is

available and make comparisons with rewards offered by other flowers (bumblebees: Makino

& Sakai, 2007). Bees establish with experience a history of reward for each flower type.

Being able to discriminate which flowers are rewarding and which are not, or offer too little

reward, is essential for bees to best exploit a renewable food source, and also for bees to

adapt to temporal variation in resources. Bees form a stable memory of the association

between floral cues and history of reward (honey bees: Menzel, 1993). While different bees
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display differential learning speeds (bumblebees: Chittka et al., 2003), learning associations

is fast, and can be updated quickly in situations where rewarding flowers shift throughout the

observation period (honey bees: Gil et al., 2007; Gil, 2010).

If flowers vary temporally in the nectar reward they offer, bees cannot be expected to

keep a same trapline indefinitely, but instead should adapt to this characteristic by updating

their learning and as a consequence we would expect traplines to change. How fast the

rewards change will thus be a defining factor for how stable a trapline can become before it

becomes unprofitable. In such a context, we should expect bees to show a tradeoff between

the trapline stability and profitability as they abandon routes that become unprofitable and

create new routes from new options. Such a balance shows that traplines cannot be defined

solely by their stability.

3.2 - Exploration to exploitation ratio

Bees need to explore their environment to find the resources they forage on. In most

experiments on bees and their foraging strategies, the environment is controlled, limiting the

space available to them (i.e. flight cages and rooms) and/or the number of flowers available

to them. Because of this, bees have little to no need to keep exploring beyond their first few

foraging bouts. Consequently, in most lab studies bees are in a accrued state of exploitation

of the known resources. However, in natural conditions, space is rarely limiting, the

rewarding flowers are constantly changing, and their nectar content is usually rare and

sparse. These characteristics drive a need for bees to keep exploring new foraging options.

Exploration and exploitation are complementary parts of a solution for a problem of

optimising nutrient intake. Exploration and exploitation need to be balanced to achieve

efficient foraging: too much exploitation means missing new foraging opportunities and

depleting your current resources, while too much exploration diminishes nutrient income and
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risks wasting energy. How to balance these facets is a difficult problem, often based on

incomplete information with degrees of uncertainty. Theoretical and empirical studies on this

subject have led to the identification of two possible strategies regarding the exploration to

exploitation ratio: probability maximising and probability matching strategies (tits: Krebs et

al., 1978; honey bees: MaBouDi et al., 2020).

These strategies can be best understood in the theoretical context of the multi-armed

bandit problem (Mahajan & Teneketzis, 2008; Morimoto, 2019). In this problem, the subject

must allocate resources between a set of alternative rewarding choices (the arms of an

imagined multi-armed bandit gambling machine). Each choice has a different probability of

payout that is only partially known to the subject at the allocation time. For this problem, the

probability maximising solution always picks the highest potential reward (i.e. if two choices

have respectively a 80% and 20% probability of giving a reward, the bee will always choose

the 80% option). In the probability matching solution, however, the allocation is made

proportionally to the prospect of payout (i.e. if a flower rewards 80% of the time, the bee

would visit this flower 80% of the time, regardless of other options).

While it feels intuitive to exclusively focus on the option giving the best odds of

rewards, most studies done on bees found that they were following the probability matching

solution (bumblebees: Keasar et al., 2002; Niv et al., 2002; honey bees: MaBouDi et al.,

2020). Explanations for this preference can be found when looking at the underlying

assumptions of both strategies. Probability maximising requires the subject to have

knowledge of and confidence in all the options in order to choose the best one. However, in

the case of bees, there is no a priori knowledge of the nectar content of new patches, except

potentially extrapolated information from knowledge gathered from other patches. Probability

matching means the bee will allocate efforts on each option proportionally to their

expectations for each, but will not need to draw comparisons between their different options,

making it a more parsimonious strategy. Exploration would emerge naturally from probability

37



matching since bees will not dedicate all their effort to a single known and exploited

resources. Probability maximising inhibits exploration, and if the environment changes it

risks locking bees onto a no longer favourable option.

How probability matching, which promotes visits to different species, and flower

constancy, which promotes visits to a single species, interact is of great interest.

Bumblebees observed during foraging were seen favouring same-species visits within a few

seconds (i.e. flower constancy) of their last flower visit, and then expand to other species

(Raine & Chittka, 2006). In the same paper, the authors suggest a similar phenomenon in

honey bees, based on analogous observations in another paper (Zhang et al., 2005). Under

the hypothesis that the other species the search is expanded to are chosen based on

profitability, the probability matching strategy and the flower constancy could be used

sequentially during the foraging process.

That foraging bees employ a probability matching strategy is further supported by

studies in which artificial flowers were set in a field, thus allowing natural alternatives to be

explored. In these experiments, while bees were seen mostly foraging on the artificial

flowers (the best option given their higher nectar content), they were often observed

exploring other options and never developed a “perfect” trapline (i.e. a trapline as defined in

its ideal form; Woodgate et al., 2017; Kembro et al., 2019). Under the hypothesis that

probability matching behaviours, which have only been observed in small scale experiments,

can be applied to larger scales, this suggests the bees were still exploring alternative

resources, even as they made use of the rewarding artificial flowers. While it could appear

that exploring new foraging options takes the bee away from forming perfect traplines, it

serves to help react to any changes in their exploited patches. Hence it facilitates traplines to

adapt to changing nectar distributions. A similar behaviour was noted in bats, which

developed repertoires of available cacti, composed of a core set of regularly visited cacti and

“peripheral” cacti less often visited but kept in memory (Goldshtein et al., 2020).
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4 - Social interactions

Social interactions, such as competitive interactions and general use of social cues, act as

both spatial and temporal constraints. They involve the interactions of multiple individuals,

each with their own foraging history and their own spatial and temporal constraints on their

foraging.

4.1 - Competition and resource partitioning

Bees face strong competition when foraging affecting their foraging behaviour. This can be

either interspecific or intraspecific, from other colonies as well as their own (Balfour et al.,

2015). For nectar feeding animals competition takes on a very interesting form: a bee needs

to visit a flower regularly enough to keep its content low and unattractive to competitors, but

not so much that it would be unprofitable. From this requirement emerged a foraging

strategy intimately linked with traplines: repeated revisits and resource partitioning.

Resource partitioning was described in species communities as adaptations to different

dietary niches, or foraging behaviours to avoid competing with other species over the same

resources (e.g. African grazers, Kleynhaus et al., 2011; squirrels, Wauters et al., 2002; bats,

Emrich et al., 2014; Goldshtein et al., 2020; bumblebees, Morse, 1977; Inouye, 1978;

seabirds, Kappes et al., 2011). In our context, we particularly focus on the development of a

repertoire of patches a bee is revisiting regularly. This behaviour is closely related to

traplines, as it can be described by its repeatability. In a competitive environment, we argue

that these repertoires are the first step towards developing traplines through successive

revisits of patches. These competitive interactions are thus crucial elements of the foraging

environments, leading each different individual towards foraging areas with minimal

competition.

39



Through these regular revisits to patches, bees also control the information and

resources the other foragers will get from visiting the patch. While finding empty flowers is

enough to drive a bee away from the patch (Gil et al., 2007; Gil, 2010), there are other cues

bees use to judge the competition pressure within a patch. Bees passively secrete chemicals

from their tarsi, which are commonly referred to as “scent marks” and act as a footprint

(honey bees: Giurfa, 1993). These scent marks usually degrade in a few hours after being

deposited, allowing other bees to assess the time that has passed since the last visit of a

bee to a flower through the concentration of the chemical, and use this information to decide

whether they should probe or not a flower (honey bees: Giurfa & Nunez, 1992). In many

studies of the establishment of partitioning, bees were observed extending their area of

exploitation as a result of a reduction of competition pressure (removal of competitors;

bumblebees: Thomson et al., 1987; Ohashi et al., 2013; honey bees: Williams, 1997). This

behaviour reflects their ability to continuously explore other options, and their ability to notice

the disappearance of competitors, potentially through changes in scent marks.

4.2 - Social learning

Not all social interactions are for competition purposes. Some species of bees use social

cues to improve their foraging intake (honey bees: Donaldson-Matasci & Dornhaus, 2014).

Honey bees are well known to recruit nestmates to forage on an advertised patch, while

other species such as bumblebees display passive learning through replication of

behaviours of other foragers (Leadbeater & Chittka, 2007; Avargues-Weber & Chittka, 2014;

Dunlap et al., 2016). In particular, two strategies emerging from the use of social cues have

been identified: local enhancement (i.e. learning to forage on a flower on which a conspecific

is) and stimulus enhancement (i.e. learning to forage on flowers with similar visual cues as

the one on which a conspecific is). Bumblebees were observed using both strategies in

different foraging contexts (Avargues-Weber & Chittka, 2014), but also weighing social

information against their own (Dunlap et al., 2016).
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Bees must then balance the use of social cues with their own knowledge, and

balance the acquisition of information through social learning with the competition pressure it

creates. In this regard, social learning appears to be intimately linked to the exploration

behaviour of bees: a necessary deviation from exploitation of resources to gather information

and anticipate changes in the environment.

5 - Conclusion

Traplines have been defined as stable, repeated and optimised routes between patches

(Lihoreau et al., 2012a; Lihoreau et al., 2012b). It has been presumed that their emergence

relies on cognitively intensive mapping and memorising processes. We present arguments

supporting the idea that in natural conditions the spatial and temporal constraints that limit

the foraging options of bees are able to explain the emergence of routes whose stability,

repeatability and efficiency are far greater than random, and sufficient to be recognised as

traplines.

Bees explore their environment with a clear NN preference, searching for profitable

patches of flowers. Through their own experience, and also through social learning and

learned flower constancy, bees develop a history of rewards for each flower type allowing

them to discriminate profitable and non-profitable flower types and patches. Competitive

interactions can force bees away from areas of high competition pressure, ultimately driving

them towards the establishment of repertoires of flower patches where competition is low.

Continuous exploitation of these patches in a regular fashion will meet the criteria of

traplining behaviour. Because of the inherent spatial and temporal variability of resources,

bees need to react quickly to a drop in reward in any of the patches they exploit. The degree

of exploration afforded by a probability matching strategy will allow bees to explore new

options while continuing to exploit their current patches. Low reward probabilities from

41



known patches will increase the degree of exploration, whereas high reward probabilities

from known patches will increase the degree of exploitation and apparent trapline stability.

All these factors and constraints are expected to interact. How they do so will

determine if and how traplines develop. In most controlled environments where they are

observed, traplines emerge from bees foraging in environments with a low number of stable

resources, with little to no other foraging option available to them. These limitations explain

why traplines under such conditions are able to be fully stable and repeatable. However,

such conditions are rarely found under natural conditions. This perspective does not

invalidate the insights observed in controlled environments, but rather tries to bring our

perspective back to the ecological role of traplines within the bigger picture of the foraging

behaviour, a necessity shared with many other aspects in insect cognition (Lihoreau et al.,

2019).
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Abstract

Central place foraging pollinators tend to develop multi-destination routes (traplines) to

exploit patchily distributed plant resources. While the formation of traplines by individual

pollinators has been studied in detail, how populations of foragers use resources in a

common area is an open question, difficult to address experimentally. We explored

conditions for the emergence of resource partitioning among traplining bees using

agent-based models built from experimental data of bumblebees foraging on artificial

flowers. In the models, bees learn to develop routes as a consequence of feedback loops

that change their probabilities of moving between flowers. While a positive reinforcement of

movements leading to rewarding flowers is sufficient for the emergence of resource

partitioning when flowers are evenly distributed, the addition of a negative reinforcement of

movements leading to unrewarding flowers is necessary when flowers are patchily

distributed. In environments with more complex spatial structures, the negative experiences

of individual bees on flowers favour spatial segregation and efficient collective foraging. Our

study fills a major gap in modelling pollinator behaviour and constitutes a unique tool to

guide future experimental programs.
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1 - Introduction

Foraging animals are expected to self-distribute on food resources in order to minimise

competition and maximise their individual net energy gain (Fretwell, 1969, Giraldeau et al.,

2000). Resource partitioning between individuals of different species is well documented,

and often results from functional (Fründ et al., 2010;2013) or behavioural (Nagamitsu &

Inoue, 1997; Valdovinos et al., 2016) specialisations. By contrast, how individuals of the

same species interact to exploit resources in a common foraging area is less understood

(Johst et al., 2008; Tinker et al., 2012).

For pollinators, such as bees that individually exploit patchily distributed floral

resources in environments with high competition pressure, efficient resource partitioning

appears a prodigious problem to solve. It involves assessing the quality of food resources,

their spatial distribution, their replenishment rate, and the activity of other pollinators. As

central place foragers, bees often visit familiar feeding sites (plants or flower patches) in a

stable sequence called a “trapline” (Janzen, 1971; Thomson et al., 1997). Individual bees

with exclusive access to an array of artificial flowers tend to develop traplines minimising

travel distances to visit all the necessary flowers to fill their nectar crop and return to the nest

(e.g. bumblebees: Ohashi et al., 2008; Lihoreau et al., 2012a; Woodgate et al., 2017; honey

bees: Buatois & Lihoreau, 2016). This routing behaviour involves spatial memories that can

persist days (Lihoreau et al., 2010) or weeks (Thomson, 1996).

How bees partition resources, when several conspecifics exploit the same foraging

area, is however an open question. Experimentally the problem is challenging to address as

it requires monitoring the movements of numerous bees simultaneously over large spatial

and temporal scales. In theory, bees should develop individualistic traplines that minimise

travel distances and spatial overlap with other foragers, thereby improving their own foraging

efficiency and minimising the costs of competition (Ohashi & Thomson, 2005; Lihoreau et al.,
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2016). Best available data supporting this hypothesis come from observations of small

numbers of bumblebees foraging on potted plants (Makino & Sakai, 2005; Makino, 2013) or

artificial flowers (in effect mimicking inflorescences or plants; Lihoreau et al., 2016;

Pasquaretta et al., 2019) in large flight tents. In these experimental foraging conditions with

limited numbers of bees and feeding sites, foragers tend to avoid spatial overlaps as a

consequence of competition by exploitation (when bees visited empty flowers) and

interference (when bees interacted on flowers) (Pasquaretta et al., 2019).

Computational modelling is a powerful approach to further explore the mechanisms

by which such partitioning might emerge from spatial learning and competitive interactions.

At the individual level, trapline formation has been modelled using an iterative improvement

algorithm where a bee compares the net length of the route it has just travelled (sum of the

lengths of all transitions between two flowers, or the nest and a flower, comprising the flower

visitation sequence) to the length of the shortest route experienced so far (Lihoreau et al.,

2012b). If the new route is shorter (or equivalent), the bee increases its probability of using

all the transitions composing this route in its subsequent foraging bout. After several

iterations, this route-based learning heuristic typically leads to the discovery and selection of

a short (if not the shortest possible) trapline, thereby replicating observations in bees across

a wide range of experimental conditions (Reynolds et al., 2013). Note however that this

model makes the strong assumption that bees can compute, memorise and compare the

lengths of multiple routes upon return to their nest. To address this issue, it was proposed

that trapline formation could also emerge from vector-based learning (Le Moël et al., 2019),

in which the bee remembers independent vectors instead of complete routes. This form of

learning was thought to be more parsimonious and plausible considering the current

understanding of spatial computation in the insect brain (Stone et al., 2017). So far, however,

none of these traplining algorithms have accounted for social interactions and current

models that include bee foraging either did not consider individual specificities of movements

based on learning and memory (Qu & Drummond, 2018; Everaars et al., 2018; Rands, 2014;
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Becher et al., 2014;2016), or implemented them very succinctly without being the focus of

the model (Becher et al., 2018). Thus presently, there has been no formal exploration of how

resource partitioning between interacting bees might form.

Here, we investigated the behavioural mechanisms underlying resource partitioning

among traplining bees by comparing predictions of three agent-based models to each other.

The different models integrate learning behaviour and social interactions in slightly different

ways. Recent work showed that resource partitioning in bats foraging on patchily distributed

cacti can be explained by basic reinforcement rules, so that a bat that finds an abundant

feeding site tends to return to this site more often than its conspecifics (Goldshtein et al.,

2020). Since bees extensively rely on associative learnings to recognise flowers and develop

foraging preferences (Giurfa, 2013), we hypothesised that the combination of positive

experiences (when a flower is full of nectar) and negative experiences (when a flower is

unrewarding) could lead to the emergence of resource partitioning when different bees learn

to use spatially segregated routes (Lihoreau et al., 2016; Pasquaretta et al., 2019). While the

role of positive reinforcement in forming traplines has often been shown (Reynolds et al.,

2013; Goldshtein et al., 2020), the potential role of the negative reinforcement has not been

addressed, most likely as a result of trapline studies focusing on non-competitive situations.

First, we developed models implementing biologically plausible navigation (derived

from vector-based learning) based on positive and negative reinforcements of transition

probabilities between flowers and tested the independent and combined influences of these

feedback loops on trapline formation by comparing simulations to published experimental

data. Next, we explored how these simple learning rules at the individual level can promote

complex patterns of resource partitioning at the collective level, using simulations with

multiple foragers in environments with different resource distributions.

53



2 - Results

2.1 - Overview of models

We designed models of agents (bees) foraging simultaneously in a common set of feeding

sites (flowers) from a central location (colony nest) (see summary in Fig 1). A full description

of the models is available in the ODD protocol (S1 Text). Briefly, each bee completes a

succession of foraging trips (foraging bouts) defined as the set of movements and flower

visits between the moment it leaves the nest until the moment it returns to it. Each bee

initially moves between the different flowers using a distance-based probability matrix

(Lihoreau et al., 2012b; Reynolds et al., 2013). The probability to move between each flower

is then modulated each time the bee finds the flower rewarding (positive reinforcement) or

unrewarding (negative reinforcement). Learning occurs after each flower visit (online

learning). We implemented three models to explore different combinations of positive and

negative reinforcements: model 1: positive reinforcement only (hereafter “Model 1[+]”),

model 2: negative reinforcement only (Model 2[-]), model 3: positive and negative

reinforcements (Model 3[+/-]). Model comparison thus informed about the effect of each of

the rules separately and in combination.
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Fig 1. Flowchart summarising the agent-based models.

Rectangles represent actions performed by a bee. Diamonds indicate conditional

statements. Arrows connect the different modules. The dashed rectangles are subject to the

different rules of the three models.
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2.2 - Simulations with one forager

We first tested the ability of our models to replicate trapline formation by real bees, by

comparing simulations of a single forager to published experimental data in which individual

bumblebees were observed developing traplines between five equally rewarding artificial

flowers in a large open field (Woodgate et al., 2017; Lihoreau et al., 2012b). Lihoreau et al.

(Lihoreau et al., 2012b) tested seven bumblebees in a regular pentagonal array (S1A Fig),

which we judged enough to run quantitative comparisons with model simulations. While

Woodgate et al. (Woodgate et al., 2017) tested six bees in a narrow pentagonal array (S1B

Fig), only three of them presented enough successive foraging bouts in a single day to allow

statistical comparisons with our model. Thus, for this dataset only qualitative comparisons

were made with the model simulations. All statistical results are presented in Table 1.

We assessed the ability of bees to develop efficient routes by computing an index of

route quality (i.e. the squared volume of nectar gathered divided by the distance travelled;

see Methods). For real bees, route quality increased significantly with time in the regular

pentagonal array of flowers (Fig 2A). When comparing simulations to experimental data,

there were no significant differences in trends with models 1[+] and 3[+/-] (Table 1), meaning

that simulated bees developed routes of similar qualities as real bees. However, route

qualities predicted by model 2[-] were significantly lower than the experimental data. Similar

trends were observed in the narrow pentagonal array of flowers (S3 Text).
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Fig 2. Comparisons of experimental and simulated route qualities.

Comparisons of route qualities (a) and route similarities (b) between simulations and

experimental data (regular pentagonal array of flowers as in Lihoreau et al., 2012b). See

details of models in Fig 1. For each dataset, we show the estimated average trends across

foraging bouts (coloured curves), along the standard error (grey areas) of the mean. For the

sake of eye comparison, in the simulation plots the standard error of the mean is estimated

from a sample of 7 simulations (N = 7 bees in Lihoreau et al., 2012b). Average trends were

estimated over 500 simulation runs, using GLMM Binomial model with bee identity as

random effect (bee identity nested in simulation identity for simulated data).
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We assessed the ability of bees to develop stable routes using an index of route

similarity (i.e. computing the number and percentage of transitions between two flowers (or

the nest and a flower) shared between two successive routes; see Methods). Route

similarity is set between 0 (the two routes are completely different) and 1 (the two routes are

completely identical). For real bees, route similarity increased with time in the regular

pentagonal array (Fig 2B). When comparing simulations to experimental data, route

similarity increased significantly more in models 1[+] and 3[+/-] than for real bees. However,

route similarity in model 2[-] was significantly lower than for real bees. Similar trends were

observed in the narrow pentagonal array (S3 Text).

Thus overall, positive reinforcement is necessary and sufficient to replicate the

behavioural observations (although with a significant difference found for route similarity

between the experimental data and the models 1[+] and 3[+/-]), while negative reinforcement

has no detectable effect.

Table 1. Statistical output for simulations with one individual.

Comparisons of route quality and route similarity through Binomial GLMMs using bee identity

as a random effect (bee identity nested in simulation identity for simulated data).

Variable Data Estimate P

Route Quality Exp. Data (Intercept) 0.153 ± 0.023 0.001

Model 1[+] -0.027 ± 0.023 0.224

Model 2[-] -0.155 ± 0.023 0.001

Model 3[+/-] -0.022 ± 0.023 0.339

Route Similarity Exp. Data (Intercept) 0.110 ± 0.020 0.001

Model 1[+] 0.088 ± 0.020 0.001

Model 2[-] -0.109 ± 0.020 0.001

Model 3[+/-] 0.086 ± 0.020 0.001
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2.3 - Simulations with two foragers

Having tested our models with one forager, we next explored conditions for the emergence

of resource partitioning within pairs of foragers. Here experimental data are not available for

comparison. We thus simulated foraging patterns and interactions of bees in different types

of environments defined by flower patchiness. Each environment contained 10 flowers that

were either distributed in one patch, two patches, or three patches (see examples in S2 Fig;

for details, see Methods). Each bee had to visit five rewarding flowers to fill its crop to

capacity. All the statistical results of this part are presented in Table 2.

Exploitation and interference competition

We first analysed exploitation competition by quantifying the frequency of visits to

non-rewarding flowers by each bee during each foraging bout. The frequency of visits to

non-rewarding flowers decreased for simulated bees in models 2[-] and 3[+/-] (Fig 3A and

Table 2), irrespective of the environment they were tested in. However, in model 1[+], bees

behaved differently in the different environments. In the one patch environment, bees

decreased their visits to non-rewarding flowers, whereas in the two and three patch

environments, bees tended to increase their visits to non-rewarding flowers. The increase of

non-rewarding visits in environments with patchily distributed resources can be explained as

follows. If bees start reinforcing visits to flowers of a shared patch, they will become more

likely to visit the same patch. Given the much larger space between flowers of different

patches than between flowers of the same patch, the probability to switch from one patch to

the next (without the help of the negative reinforcement) is low, leading to bees flying

between the empty flowers of a patch repeatedly. This process ultimately increases visits to

empty flowers, and also occurrences of interference between the two bees if they are both at

the same patch.
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Fig 3. Model comparisons for observed variables.

Results of simulations with two foragers in environments with 10 flowers. See details of

models in Fig 1. The x axis is the number of completed foraging bouts by the two foragers.

The y axis represents respectively: (a) the estimated mean frequency of visits to empty

flowers; (b) the estimated mean frequency of encounters on flowers; (c) the similarity index

between two successive flower visitation sequences; (d) the index of resource𝑆𝐼
𝑎𝑏

partitioning (0: both bees visit the same set of flowers; 1: bees do not visit any flower in𝑄
𝑛𝑜𝑟𝑚

common); (e) the collective foraging efficiency index . Average trends for each model𝑄𝐿
𝑔𝑟𝑜𝑢𝑝

are estimated across all types of environments (one patch, two patches and three patches;

see S2 Fig).
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We analysed interference competition by quantifying the number of interactions on

flowers at each foraging bout between the two bees. The frequency of encounters on flowers

decreased with time for both models 2[-] and 3[+/-] (Fig 3B and Table 2), irrespective of the

type of environment. Here again, bees of model 1[+] behaved differently in the different

environments. In the one patch environment, bees decreased their frequency of encounters

on flowers, whereas in the two and three patches environments they increased their

frequency of interactions. Again this is likely due to the absence of negative reinforcement,

leading bees to be trapped in an empty patch.

These differences in the occurrence of exploitation and interference competition

correlate to a variation in the total number of visits to flowers, effectively improving the bees’

foraging efficiency. The strength of this effect is greater for the exploitation competition as it

is occurring much more often (exploitation: 2 to 10 occurrences in average; interference: 0 to

2 occurrences in average; Fig 3A and 3B).

Thus, overall negative reinforcement was necessary for reducing exploitation and

interference competition. By allowing bees to avoid empty flowers, negative reinforcement

facilitated the discovery of new flowers and thus gradually relaxed competition. In the

absence of negative reinforcement, both types of competition increased in environments with

several flower patches.

Route similarity

We analysed the tendency of bees to develop repeated routes by comparing the similarity

between flower visitation sequences of consecutive foraging bouts for each individual (Fig

3C). Bees increased route similarity through time in all types of environments in models 1[+]

and 3[+/-] (Table 2). By contrast, in model 2[-], route similarity did not vary in the one patch

environment and decreased through time in the other environments. The presence of
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negative reinforcement in models 2[-] and 3[+/-] reduced the final level of route similarity

compared to trends found in model 1[+]. In these conditions, bees learned to avoid revisits to

empty flowers and showed greater variation in their visitation sequences as a result of

searching for new flowers.

Resource partitioning

We analysed the level of resource partitioning by quantifying the tendency of the two bees to

use different flowers. This index varies between 0 (the two bees use the same set of flowers)

and 1 (the two bees use completely different sets of flowers; see Methods).

In model 1[+], bees showed an increase of resource partitioning with time in

environments with one patch, and a decrease in environments with two or three patches (Fig

3D and Table 2). By contrast, in model 2[-] and model 3[+/-], bees showed an increase of

resource partitioning with time in all types of environments. Model 3[+/-] displayed similar

levels of partitioning in all the different environments where models 1[+] and 2[-] showed a

greater variance. Model 1[+] had greater partitioning only in the one patch environment,

while model 2[-] had greater partitioning in the two and three patch environments. This

suggests positive and negative reinforcements contributed unevenly but complementarily in

the model 3[+/-] with different spatial distributions of flowers. Positive reinforcement would be

the main driver for partitioning in the one patch environment, while negative reinforcement

would be the main driver in the two and three patches environments.

Collective foraging efficiency

To quantify the collective foraging efficiency of bees, we analysed the capacity of the two

foragers to reach the most efficient combination of route qualities (i.e. minimum distance

travelled by a pair of bees needed to visit the 10 flowers; see Methods).
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In model 1[+], pairs of bees increased their collective foraging efficiency with time in

environments with one and three patches (Fig 3E and Table 2). By contrast, bees decreased

their level of foraging efficiency in the environment with two patches. In model 2[-] pairs of

bees decreased their collective foraging efficiency with time in all types of environments. In

model 3[+/-] bees increased their collective foraging efficiency with time in all types of

environments. Positive reinforcement seems to be the main driver for collective foraging

efficiency in the one patch environment. However, neither the positive or negative

reinforcements alone managed to increase foraging efficiency in the two and three patch

environments. Only their interaction, as seen in the model 3[+/-], brought an increase in

collective foraging efficiency. Collective efficiency is generally higher in the one patch

environment than in the two and three patches environments because the difference

between the best possible path (for which the collective foraging efficiency is equal to 1) and

a typical suboptimal path of a simulated bee is lower due to the absence of long inter-patch

movements.
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Table 2. Statistical output for simulations with two individuals.

Comparisons of (i) exploitation competition, (ii) interference competition, (iii) route similarity,

(iv) route partitioning and (v) collective foraging efficiency through GLMMs using bee identity

as a random effect (bee identity nested in simulation identity for simulated data). The results

presented are the slope estimate along with a 95% confidence interval of the mean, for each

type of environment tested (See Methods for details).

Variable Model Estimate

(1 patch)

Estimate

(2 patches)

Estimate

(3 patches)

Exploitation

Competition

Model 1[+] -4.26e-03 ± 2.10e-04 6.27e-03 ± 1.80e-04 6.65e-03 ± 1.90e-04

Model 2[-] -3.32e-03 ± 1.90e-04 -2.10e-02 ± 2.00e-04 -2.06e-02 ± 2.00e-04

Model 3[+/-] -8.94e-03 ± 2.20e-04 -1.88e-02 ± 3.00e-04 -1.05e-02 ± 2.00e-04

Interference

Competition

Model 1[+] -4.57e-03 ± 7.20e-04 1.05e-02 ± 4.00e-04 9.16e-03 ± 5.20e-04

Model 2[-] -2.49e-03 ± 7.40e-04 -2.10e-02 ± 6.00e-04 -1.68e-02 ± 7.00e-04

Model 3[+/-] -1.53e-02 ± 8.00e-04 -1.66e-02 ± 7.00e-04 -1.01e-02 ± 6.00e-04

Route

Similarity

Model 1[+] 1.34e-01 ± 2.00-e03 9.56e-02 ± 1.30e-03 7.76e-02 ± 1.20e-03

Model 2[-] 7.46e-04 ± 6.65e-03 1.91e-02 ± 2.90e-03 -3.20e-02 ± 3.10e-03

Model 3[+/-] 1.33e-01 ± 2.00e-03 6.95e-02 ± 1.20e-03 6.14e-02 ± 1.30e-03

Route

Partitioning

Model 1[+] 2.90e-02 ± 1.30e-03 -1.02e-02 ± 1.30e-03 -8.26e-03 ± 1.26e-03

Model 2[-] 1.22e-02 ± 1.30e-03 1.28e-02 ± 1.20e-03 1.82e-02 ± 1.20e-03

Model 3[+/-] 3.55e-02 ± 1.30e-03 3.17e-02 ± 1.30e-03 2.19e-02 ± 1.30e-03

Collective

Foraging

Efficiency

Model 1[+] 4.20e-02 ± 1.50e-03 -4.61e-03 ± 1.27e-03 3.04e-03 ± 1.25e-03

Model 2[-] -5.08e-03 ± 1.24e-03 -8.03e-03 ± 1.27e-03 -4.24e-03 ± 1.24e-03

Model 3[+/-] 4.12e-02 ± 1.50e-03 8.77e-03 ± 1.25e-03 1.83e-02 ± 1.30e-03
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3 - Discussion

Central place foraging animals exploiting patchily distributed resources that replenish over

time are expected to develop foraging routes (traplines) minimising travel distances and

interactions with competitors (Ohashi & Thomson, 2005; Lihoreau et al., 2016; Possingham,

1989). Here we developed cognitively plausible agent-based models of probabilistic

navigation to explore the behavioural mechanisms leading to resource partitioning between

traplining bees. In the models, bees learn to develop routes as a consequence of feedback

loops that modify the probabilities of moving between flowers. Simulations show that, in

environments where resources are evenly distributed, bees can reach high levels of

resource partitioning based on positive reinforcement only, but cannot do so based on

negative reinforcement only. However, in environments with patchily distributed resources,

both positive and negative reinforcements become necessary.

We developed our hypotheses and models based on observations on single foraging

bees (Woodgate et al., 2017; Lihoreau et al., 2012b). Our first step was therefore to test how

the models compared to existing data. Models with positive reinforcement showed a good

general fit to the experimental data (Fig 2 and Fig A in S3 Text), although they often

overestimated the increase of route similarity with experience in real bees. This imperfect

match could be due to the low amount of available experimental data in the original studies

(seven individuals in Lihoreau et al., 2012b, three individuals in Woodgate et al., 2017), but

also a result from the limitations of our models. First, the model bees navigate with the only

intent of finding resources, while real bees sometimes show phases of stochastic exploration

during and after the trapline formation (Woodgate et al., 2017; Kembro et al., 2019). Second,

real bees do not always find a flower when exploring their environment, especially when

naïve. On the contrary, there is no probability of not finding a flower for the model’s bees,

which then visit on average more flowers from the first foraging bout. The resulting routes

are of higher route quality as they visit more different flowers, but of lower similarity as they
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also use different transitions between flowers, while real bees navigate back and forth

between the same few flowers.

We then used our models for predicting behaviours of two competing bees in

different types of environments. To develop a trapline in this competitive situation, the bees

needed to find rewarding flowers but also avoid competitors. These two goals were

independently fulfilled by the positive reinforcement and the negative reinforcement.

Simulated bees were fastest to develop a trapline when using the positive reinforcement

only, and unable to follow any stable route when solely using the negative reinforcement.

However, this does not indicate that the use of both reinforcements was less effective than

just positive reinforcement. Simulated bees were indeed more likely to establish a stable

route with positive reinforcement only, but these routes most likely contained contested

flowers that the bees were not able to give up on, as they did not change their behaviour

after experiencing unrewarded visits. This assumption is supported by the fact that both

reinforcements (model 3[+\-]) leads to a greater resource partitioning and a higher collective

foraging efficiency.

When foraging in uniformly distributed plant resources (one patch), it is easiest to

encounter all the resources available as none of them are isolated far from any other (with

thus a low probability of being reached). Consequently, two bees are very likely over time to

learn non-overlapping foraging routes and show resource partitioning. However, in

environments with non-uniformly distributed resources (two or three patches), the added

spatial complexity can interfere with this process. The initial likelihood of moving between

distant patches is relatively low. Thus, the sole implementation of positive reinforcement

often does not allow bees to explore all possible patches, so that the paths of competing

bees overlap and interfere within a subset of the available patches. Adding a negative

reinforcement for movement transitions leading to unrewarded flowers increases aversion for

these empty flowers, the spatial segregation of foraging paths between competing bees and
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the collective exploitation of all available patches, even if the initial probabilities of moving to

distant patches are low. This interplay between the influences of positive and negative

experiences at flowers on the spatial and competitive decisions of bees is in accordance with

the behavioural observations that bees tend to return to rewarding flowers and avoid

unrewarding flowers, either because flowers were found empty or because the bees were

displaced by a competitor during a physical encounter (Lihoreau et al., 2016; Pasquaretta et

al., 2019).

The need for a negative reinforcement to enhance discrimination between different

options or stimuli is well-known in learning theory and behavioural studies (Beshers &

Fewell, 2001; Garrison et al., 2018; Kazakova et al., 2020). At the individual level, negative

experiences modulate learning. For both honey bees and bumblebees, adding negative

reinforcement to a learning paradigm (e.g. quinine or salt in sucrose solution) enhances fine

scale colour discrimination (Avarguès-Weber et al., 2015) and performance in cognitive

tasks requiring learning of rules of non-elemental associations (Giurfa, 2004). The insect

brain contains multiple distinct neuromodulatory systems that independently modulate

negative and positive reinforcement (Schwaerzel et al., 2003) and the ability of bees to learn

negative consequences is well-established (Vergoz et al., 2007). At the collective level,

negative feedbacks are also known to modulate social and competitive interactions. This is

especially notable in collective decisions making by groups of animals and robots (Sumpter,

2010), where negative feedbacks enable individuals to make fast and flexible decisions in

response to changing environments (Robinson et al., 2005; Seeley et al., 2012). Even so,

the utility of negative reinforcement to enhance efficient trapline formation and the

consequences of this for the emergence of effective resource partitioning has not been

commented on previously. It may be that this is a general phenomenon with applicability to

other resource partitioning systems.
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Our study implies that some very basic learning and interaction rules are sufficient for

trapline formation and resource partitioning to emerge in bee populations, providing a solid

basis for future experimental work. Nonetheless, several improvements of the model could

already be considered for further theoretical investigations of bee spatial foraging

movements and interactions. These could include adding to the model the documented

inter-individual variability in cognitive abilities (Chittka et al., 2003; Raine et al., 2012) and

spatial strategies (Klein et al., 2017) of bees, the variability in the nutritional quality of

resources (Wright et al., 2018; Hendriksma et al., 2019) and the specific needs of each

colony (Kraus et al., 2019), or the well-known ability of bees to use chemical (Leadbeater &

Chittka, 2005), visual (Dunlap et al., 2016) and social information to decide whether to visit

or avoid flowers. For instance, foragers of many bee species leave chemical cues as

footprints on the flowers they have visited (bumblebees and honeybees: Stout & Goulson,

2001; solitary bees: Yokoi & Fujisaki, 2009). Bees learn to associate the presence or

absence of a reward to these footprints and to revisit or avoid scented flowers (Leadbeater &

Chittka, 2011). Such a pheromone system is a beneficial signal for all participants in the

interaction (Stout & Goulson, 2001). This additional information could significantly enhance

the positive or negative experiences of bees visiting flowers and thus increase resource

partitioning to the benefit of all bees coexisting in the patch (S4 Text). Even different species

of bee can learn to use these cues (Stout & Goulson, 2001; Dawson & Chittka, 2012). More

exploration could also be done in the future in regards to the probability of winning a

competitive interaction on flower. While we considered all individuals to have similar

probabilities to access floral nectar when bees encounter on flowers, resource partitioning

has been suggested to be favoured by asymmetries in foraging experiences (Ohashi et al.,

2008; Lihoreau et al., 2016). Differences in experience or motivation would ultimately affect

the outcome of competition, both passively (more consistent depletion of the flowers in a

trapline) and actively (active displacement of other bees from one’s established trapline).
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Our study fills a major gap in our understanding of pollinator behaviour and

interactions by building on recent attempts to simulate trapline foraging by individual bees

(Lihoreau et al., 2012b; Reynolds et al., 2013; Le Moël et al., 2019). It constitutes a unique

theoretical modelling framework to explore the spatial foraging movements and interactions

of bees in ecologically relevant conditions within and between plant patches, thereby holding

considerable premises to guide novel experiments. Further developments of the model could

be used to test predictions with more than two bees (see examples S1 Video and S4 Text),

several colonies, or even different species of bees (e.g. honey bees) and thus complement

current predictions about pollinator population dynamics (Becher et al., 2014;2016;2018).

Ultimately, the robust predictions of the spatial movements and interactions of bees over

large spatio-temporal scales, through experimental validations of the model, have the

potential to show the influence of bee movements on plant reproduction patterns and

pollination efficiency (Ohashi & Thomson, 2009; Pasquaretta et al., 2017).

4 - Methods

4.1 - Description of models

We built three agent-based models in which bees learn to develop routes in an array of

flowers (see summary diagram in Fig 1). The environment contains flowers each delivering

the same quality and volume of nectar. At each foraging bout (flower visitation sequence,

beginning and ending at the colony nest entrance as the bee starts and finishes a foraging

trip, respectively), each bee attempts to collect nectar from five different flowers in order to

fill its nectar crop (stomach) to capacity. Flowers are refilled between foraging bouts. In

simulations with two bees, the two individuals start their foraging bout synchronously, and

the flowers are refilled with nectar after the last bee has returned to the nest. For each bee,

flower choice is described using movement transitions (orientated jumps between two

flowers or between the nest and a flower). The initial probability of using each possible

transition is based on the length of the movement, so that short transitions have a higher
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probability than longer ones. This probability is then modulated through learning when the

bee used a transition for the first time during a bout.

We implemented two learning rules: (i) a positive reinforcement, i.e. if the flower at

the end of a transition contains nectar and the bee feeds on it, it is set as a rewarding

experience and the probability to reuse the transition later is increased; (ii) a negative

reinforcement, i.e. if the flower is empty or if the bee is pushed away by competitors, it is set

as a non-rewarding experience and the probability to reuse the transition later is decreased.

The three models implemented either one of these two rules (model 1[+]: positive

reinforcement only; model 2[-]: negative reinforcement only) or both rules (model 3[+/-]).

A flower is empty if it had previously been visited in the same foraging bout by the

same or another bee (exploitation competition). If multiple bees visit a flower at the same

time (interference competition), only one bee (randomly selected) is allowed to stay and take

the reward if there is one. The other bees react as if the flower was empty. After each flower

visit, all bees update their probabilities to reuse the movement transitions accordingly.

Trapline formation thus depends on the experience of the bee and its interactions

with other foragers. For simplicity, we restricted our analysis to two bees. Working with pairs

of bees facilitates future experimental tests of the models’ predictions by reducing the

number of bees to manipulate and control in experiments (Ohashi et al., 2008; Lihoreau et

al., 2016). Note, however, that the same models can be used to simulate interactions among

more bees (see examples with five bees in S1 Video, S4 Text).

A detailed description of the model is provided in S1 Text, in the form of an

Overview, Design concepts and Details (ODD) protocol (Grimm et al., 2006;2020). The

complete R code is available at

https://gitlab.com/jgautrais/resourcepartitioninginbees/-/releases.
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4.2 - Environments

Simulations with one forager

Our first goal was to test the ability of our models to replicate observations of real bees. To

do so, we ran simulations in environments replicating published experimental studies in

which individual bumblebees (Bombus terrestris) were observed developing traplines

between five equally rewarding artificial flowers in a large open field (Woodgate et al., 2017;

Lihoreau et al., 2012b). To our knowledge, these studies provide the most detailed available

datasets on trapline formation by bees. Lihoreau et al. (Lihoreau et al., 2012b) used a

regular pentagonal array of flowers (S1A Fig) in which they tracked seven bumblebees. We

judged this sample size enough to run quantitative comparisons with model simulations (raw

data are available in the supporting information of [22]). Woodgate et al. (Woodgate et al.,

2017) used a narrow pentagonal array of flowers (S1B Fig). Here, however, the small

sample size of the original dataset (three bumblebees, data shared by J. L. Woodgate) only

enabled a qualitative comparison with the model simulations (S3 Text).

Simulations with two foragers

We then explored conditions leading to resource partitioning by running model simulations

with two foragers. Here we simulated environments containing 10 flowers, in which each bee

had to visit five rewarding flowers to fill its crop to capacity. The simulated flowers should

thus be considered as feeding sites such as plants or inflorescences, which are more likely

to contain such large amounts of resources (20% of the bee’s crop). To test whether model

predictions were robust to variations in spatial distributions of resources we simulated three

types of environments characterised by different levels of resource patchiness: (i) a patch of

10 flowers, (ii) two patches of five flowers each, and (iii) three patches of five, three and two

flowers respectively (see examples in S2 Fig). We generated flower patches in a spatial

configuration comparable to the one used in both experimental setups (Woodgate et al.,
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2017; Lihoreau et al., 2012b). In a 500m x 500m plane, a nest was set as the centre

(coordinates 0,0). Then, patch centres were placed with a minimum distance of 160m

between each, and at least 20m from the nest. Within a patch, flowers were randomly

distributed according to two constraints: (i) flowers were at least 20m apart from each other

and from the nest, (ii) the maximum distance of each flower from the centre of their patch

was 40m. This ensured that each patch had a maximum diameter of 80m and inter-flower

distances were smaller between all flowers of the same patch than between all flowers of

different patches (See ODD Protocol for more details, S1 Text, Ch.7 “Submodels”). The

distances used in the simulated environments were chosen to replicate the experimental

data used to test the model (Woodgate et al., 2017; Lihoreau et al., 2012b) where closest

flowers were spaced by 25 metres. In our model, however, only the relative distance

between the different elements of the environment mattered as all distances were

normalised in the process of creating the probability matrix (S1 Text).

4.3 - Movements

At each step, a bee chooses to visit a target location (flower or nest) based on a matrix of

movement probabilities. This matrix is initially defined using the inverse of the square

distance between the current position of the bee and all possible target locations (Lihoreau

et al., 2012b; Reynolds et al., 2013). The probability of moving from location i to location j

among multiple possible targets, is initially set to:

(1) 𝑃 𝑖→𝑗( ) =
1

𝑑2
𝑖𝑗

∑
𝑗

1

𝑑
𝑖𝑗
2

Where is the distance between locations i and j. The use of a movement probability𝑑
𝑖𝑗

matrix is justified by its capacity to approximate accurately the probability to reach a flower
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using a random walk, although it is significantly dependent on what exponent is used in the

formula transforming distances to probabilities (See S6 Text for details). Thus, while the

probability matrix allows unexperienced bees (during their first foraging bout) to move

between all flowers, it should not be interpreted as a knowledge of their positions, but rather

a probability of finding them by chance.

Before choosing its destination, the bee lists all possible target locations. For

simplicity, the bee excludes its current location, thus preventing looping flights to and from

the same target (flower or nest), which are rare in experienced bumblebee foragers (Saleh &

Chittka, 2007) and provide little information about bee routing behaviour. The bee also

excludes the location it had just come from to simulate the tendency of bumblebees to avoid

recently visited (and thus depleted) flowers (Saleh & Chittka, 2007). The foraging bout ends

if: (i) the bee fills its crop to capacity, (ii) the bee chooses the nest as a target destination, or

(iii) the bee reaches a maximum travelled distance of 3000 m. The latest was added to avoid

endless foraging trips in the model. The maximum distance was chosen based on the

observation that bumblebees typically forage within a distance of less than 1km from their

nest (Osborne et al., 1999; Wolf & Moritz, 2008; Woodgate et al., 2016).

4.4 - Learning

Learning modulates the probability of using transition movements as soon as the bee

experiences the chosen target and only once within a foraging bout (the first time the

transition is used during the foraging bout; Fig 1). This approach has the advantage of

implementing vector navigation (Le Moël et al., 2019; Stone et al., 2017) (S6 Text) and thus

avoids assumptions about computation and comparison of complete routes (Lihoreau et al.,

2012b; Reynolds et al., 2013), but it makes new assumptions about bees remembering a

large number of locations and distances of flowers. Bees are known to be able to learn few

independent feeding sites, and even to create shortcuts between these locations (Menzel et
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al., 2005;2011). By keeping a low number of flowers, we ensured the number of transitions

to remember would be low so that this hypothesis was reasonable. In comparison, bees in

the wild can be expected to visit 50 to 100 flowers on average, although this number can

vary greatly depending on many factors such as the flower species available, the

competition pressure, the seasons, the weather or the time of the day. As such, the “flowers”

used in our study would be closer to plants featuring multiple flowers.

Positive reinforcement was implemented in models 1[+] and 3[+/-]. It occurred when

a bee used a transition leading to a rewarding flower. The probability of using this transition

was then multiplied by 1.5, then normalised among other transition probabilities to ensure

that all sum up to 1 and no single probability goes beyond a value of 1, as in Reynolds et al.

(Reynolds et al., 2013). This positive reinforcement is based on the well-known tendency of

bumblebees to return to nectar-rewarding places through appetitive learning (Goulson,

2010). Negative reinforcement was implemented in models 2[-] and 3[+/-]. It occurred when

a bee used a transition leading to a non-rewarding flower. The bee reduced the probability of

using that transition by multiplying it by 0.75 (here also rescaling the probabilities after

application of the reinforcement). This negative reinforcement rule was based on the

tendency of bumblebees to reduce their frequency of revisits to unrewarded flowers with

experience (Pasquaretta et al., 2019). We applied a lower value to negative reinforcement

because bees are much more effective at learning positive stimuli (visits to rewarding

flowers) than negative stimuli (visits to non-rewarding flowers) (review in Menzel, 2014).

Sensitivity analyses of these two parameters show that increasing positive and/or negative

reinforcement increases the speed and level of resource partitioning (S2 Text). However,

only positive reinforcement has a significative effect on route similarity (Fig C in S2 Text).
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4.5 - Competitive interactions

We implemented competitive interactions between foragers in the form of exploitation and

interference (Fig 1). Exploitation competition occurred when a bee landed on a flower whose

nectar reward had already been collected by another bee. If the flower was empty, the

probability to reuse the transition was either left unchanged (Model 1[+]) or decreased

(negative reinforcement, Models 2[-] and 3[+/-]). Interference competition occurred when two

bees arrived simultaneously on a flower. Only one bee could stay on the flower and access

the potential nectar reward with a random probability (p=0.5). After the interaction, the

winner bee took the reward if there was one. The loser bee reacted as it would for an empty

flower. To our knowledge, there is no empirical data suggesting that bees would react

differently to these types of competitive interactions. Therefore, we made the parsimonious

assumption that the effect was the same. We note, however, that the model assumes all

direct interactions are of competitive nature, while in nature whether bees would engage in a

competitive interaction or share the resource would likely depend on different factors such as

flower size, amount of reward, or the species and physiology of the interacting bees. This

simplification was made to keep the focus of the model towards competition, and to avoid

adding too much complexity to the model.

4.6 - Data Analyses

All analyses were performed in R version 3.3 (R Core Team, 2018).

Simulations with one forager

For each model, we compared the results of the simulations to the reference observational

data, either quantitatively (for Lihoreau et al., 2012b) or qualitatively (for Woodgate et al.,

2017; S3 Text). We stopped the simulations after the bees completed a number of foraging

bouts matching the maximum observed during the experimental conditions of the published

data (37 foraging bouts in Lihoreau et al., 2012b; 61 foraging bouts in Woodgate et al.,
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2017). We ran 500 simulations for each model and we estimated how models fitted the

experimental data using two main measures:

(i) the quality of each route, , calculated as:𝑄𝐿

(2) 𝑄𝐿 =
𝐹2

𝑑

𝑄𝐿
𝑜𝑝𝑡

Where F is the number of rewarding flowers visited during a foraging bout and d is the net

length of all transition movements travelled during the foraging bout. QL is standardised

between 0 and 1 by the quality of the optimal route in each array (shortest possible𝑄𝐿
𝑜𝑝𝑡

route to visit all 5 flowers).

(ii) a similarity index between flower visitation sequences experienced during two𝑆𝐼
𝑎𝑏

consecutive foraging bouts a and b as follows:

(3) 𝑆𝐼
𝑎𝑏

=
𝑠

𝑎𝑏

2𝑙
𝑎𝑏

Where represents the number of flowers in transitions found in both sequences, and𝑠
𝑎𝑏

𝑙
𝑎𝑏

the length of the longest flower visitation sequence between i and j multiplied by 2 to make

sure that = 1 occurs only when two consecutive sequences sharing the same transitions𝑆𝐼
𝑎𝑏

also have the same length (more details and examples in S5 Text).
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We applied generalised linear mixed effect models (GLMM) with binomial error, using

the glmer function in ‘lme4’ package (Bates et al., 2015), to assess whether the estimated

trends across foraging bouts for and obtained from model simulations with one𝑄𝐿 𝑆𝐼
𝑎𝑏

forager differed from trends obtained from experimental data. In each model, we used a

random structure to account for the identity of bees.

Simulations with two foragers

We generated 10 arrays of flowers for each of the three types of environments (one patch,

two patches and three patches) and ran 100 simulations for each of the three models (9000

simulations in total). We compared the simulation outcomes of the models using four

measures:

i) the frequency at which each bee experienced exploitation competition (i.e. flower visits

when the reward has already been collected) and interference competition (i.e. flower visits

when two bees encounter on the flower).

ii) the similarity index between successive foraging bouts by the same bee.𝑆𝐼
𝑎𝑏

iii) the degree of resource partitioning among bees, based on network modularity 𝑄

(Pasquaretta & Jeanson, 2018; Pasquaretta et al., 2019). is calculated using the𝑄

computeModules function implemented in the R package ‘bipartite’ (Dormann et al., 2008)

using the DIRTLPAwb+ algorithm developed by Beckett (Beckett, 2016). Although ranges𝑄

between 0 (the two bees visit the same flowers) and 1 (the two bees do not visit any flower

in common), the comparison of modularity between networks requires normalisation

because the magnitude of modularity depends on network configuration (e.g., total number

of flower visits) (Beckett, 2016; Dormann & Strauss, 2014). For each network, we calculated:
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(4) 𝑄
𝑛𝑜𝑟𝑚

= 𝑄
𝑄

𝑚𝑎𝑥

where is the modularity in a rearranged network that maximises the number of modules𝑄
𝑚𝑎𝑥

(Pasquaretta & Jeanson, 2018).

iv) an index of collective foraging efficiency, , computed for each foraging bout b, to𝑄𝐿
𝑔𝑟𝑜𝑢𝑝

estimate the collective efficiency of all foraging bees, as:

(5) 𝑄𝐿
𝑔𝑟𝑜𝑢𝑝,𝑏

= 𝑝=1

𝑛

∑ 𝑄𝐿
𝑝,𝑏

𝑄𝐿
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

where is the route quality of the individual p during bout b, n the number of bees, and𝑄𝐿
𝑝,𝑏

is the maximum value of all the possible sums of individual route qualities.𝑄𝐿
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝑄𝐿
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

was calculated in each environment by computing all possible combinations of two routes

visiting five flowers each and extracting the combination with the highest quality.

To assess whether the trends across foraging bouts obtained from simulations

with two bees differed between models (Fig 1) and types of environments (S2 Fig), we

applied GLMMs for each of the following response variables: (i) frequency of competition

types (Poisson error distribution), (ii) (Binomial error distribution), (iii) (Binomial𝑆𝐼
𝑎𝑏

𝑄
𝑛𝑜𝑟𝑚

error distribution) and (iv) (Binomial error distribution). In each model, we used a𝑄𝐿
𝑔𝑟𝑜𝑢𝑝

random structure to account for bee identity nested in flower arrays (i.e. 100 simulations of

each spatial array for each model). To statistically compare the trends across foraging bouts,

we estimated the marginal trends of the models, as well as the 95% confidence intervals of
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the mean using the emtrends function in ‘emmeans’ package (Lenth et al., 2019). When the

95% confidence intervals of the estimated trends included zero, the null hypothesis was not

rejected. Statistical models were run using the glmer function in ‘lme4’ package (Bates et al.,

2015).
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Supporting Information

S1 Text. ODD Protocol.

Below we provide a description of our models following the ODD (Overview, Design

concepts, Details) protocol (Grimm et al., 2006;2020).

1 – Purpose and patterns

The purpose of the models is to offer an explanation to how multiple bees learn to optimise

their foraging efficiency. Bees are expected to do so by developing efficient routes (traplines)

minimising spatial overlaps with other foragers (resource partitioning) (Lihoreau et al., 2016).

We suggest such process can be achieved through combinations of positive and negative

reinforcements during flower visits.

The patterns we look at are the development, partial or complete, of stable

partitioned routes between flowers by bees, which are observed in most studies on bee

foraging strategies. Sensitivity of this behaviour to the parameters of the model is key to

determine the usefulness of the model.

2 - Entities, state variables and scales

The models depict three kinds of entities: bees, flowers and the colony nest. Bees go out

foraging for nectar rewards on flowers and return to the nest. Numbers of bees and flowers

can be adjusted in the model. In our simulations we set a ratio of five flowers per bee as to fit

the experimental data we replicated (Woodgate et al., 2017; Lihoreau et al., 2012). A single

colony nest is represented, from which all bees forage and come back to. The bees are

defined by the following set of state variables:
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Variable name Variable type and

units

Meaning

ID Integer, constant A simple number to identify each bee in the

model.

Crop Integer, dynamic A count of how many flower rewards (volume of

nectar) the bee has collected since its departure

from the nest.

maxCrop Integer, constant A maximum number of rewards (volume of

nectar) a bee can hold at a time.

probabilityMatrix Matrix of

probabilities,

dynamic

A square matrix of length equal to the sum of

number of flowers and the nest, depicting the

probability to move between each entity.

indPos Integer, dynamic An integer showing the ID of the flower currently

visited by the bee.

winProbabilities Float, constant Value indicative of the probability of winning an

encounter on a flower (competition by

interference).

indFlowerOutcom

e

Matrix of integers,

dynamic

A square matrix of length equal to the sum of

number of flowers and the nest, depicting a

transition’s outcome (1: rewarding; 0: not used;

-1: non-rewarding)
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The flowers are static entities placed in the environment. They are defined by:

Variable name Variable type and

units

Meaning

ID Integer, constant A simple number to identify each flower in the

model.

resourceOnFlow

er

Integer, dynamic Variable showing the resource availability on the

flower (0 or 1).

x,y Floats, constant Coordinates of the flower in the environment.

The nest is a unique entity which is represented by the following variables:

Variable name Variable type and

units

Meaning

x,y Floats, constant Coordinates of the nest in the environment.

Both the spatial and temporal scales are represented. Space is represented by the

relative distance between the different flowers. Internal parameters define min/max ranges in

which each entity can be placed, relative to other entities (see CreateEnvironment

submodel). Time is represented abstractly. At each step, the bees visit a flower, and possibly

feed on it. We assume all travel and flower manipulation times are identical. The use of a

movement probability matrix is justified by its capacity to approximate accurately the

probability to reach a flower using a random walk, although significantly dependent on what

exponent is used in the formula transforming distances in probabilities (See S5 Text for

details).
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3 - Process overview and scheduling

The model covers the execution of a series of foraging bouts (foraging trip starting and

ending at the colony nest) by all the bees. During a foraging bout, the model keeps running

as long as one bee is foraging. The number of foraging bouts performed by the bees is set

as a parameter of the simulation. Each foraging bee chooses its next destination, using the

ChooseDestination submodel, and updates its position to this new destination. This action is

executed in the order of the bees’ ID value. If a bee chooses the nest as next destination, its

bout is over. Before feeding, the bees resolve any competition occurrences (if more than one

bee is on a single flower), in the order of the flower’s ID on which the competition occurs. A

weighed sampling of the winProbabilities decides which individual wins the interaction

(default values are uniform for all bees). Bees that either were alone on a flower or won an

interaction feed on the flowers, using the Feeding submodel. All foraging bees update their

movement probability matrix according to their recent experience (details in the Learning

submodel). Finally, each foraging bee checks if it has reached one of the conditions to return

to the nest (crop full or maximum distance of travel), and if so, finishes its foraging bout.

4 - Design concepts

a - Basic principles

Animals are expected to distribute themselves among different resources to optimise the

energetic intake, following what is commonly called the Ideal Free Distribution theory

(Fretwell, 1969). The environment in which bees forage present multiple constraints. Flowers

provide a renewable resource in very low amounts and have a fast turnover changing the

distribution of resources. Competition with other bees is strong but also very dynamic as new

foragers arrive daily while older ones die.

Bees tend to optimise their foraging activity (Lihoreau et al., 2016; Lihoreau et al.,

2012; Ohashi et al., 2007) by traplining (developing stable routes between feeding sites) and
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partitioning resources (exploiting feeding sites in different areas of the environment to

minimise competition). The aim of the model is to explore the conditions under which

traplining emerges from the behaviour of independent bees interacting with the resources

and other agents according to the principles of the Ideal Free Distribution. The models reuse

parts of a previously published model (Lihoreau et al., 2012; Reynolds et al., 2013) which

has been to our knowledge the only model trying to represent the ontogeny of the traplining

behaviour to this date.

b - Emergence

We focused on how both optimisation strategies (traplining and partitioning) can emerge

from simple rules of positive and negative reinforcements derived from the foraging

experience of individual bees. We explored how these outcomes change when we alter the

spatial distribution of the flowers, or remove either type of reinforcement. When bees

partition resources, the partitioning index (Pasquaretta & Jeanson, 2018) reaches a𝑄
𝑛𝑜𝑟𝑚

maximum value of 1. When bees follow traplines, the cumulated foraging efficiency and

route similarity index of the bees approaches a maximum value of 1.

Resource partitioning and traplining are emergent and vary depending on the

parameters of the simulation. While traplining could be achieved with a positive

reinforcement only, resource partitioning required both positive and negative reinforcements

to emerge.

c - Adaptation

Bees follow a heuristic in the form of a matrix of movement probability to choose their next

destination. This matrix changes with experience to favour the flowers where the bees had a

positive experience (collection of nectar). Bees thus learn to fill their nectar crop to capacity.

More information on the probability matrix is given in the ChooseDestination submodel.

92



d - Objectives

The bees have a unique goal: finding a set amount of nectar to fill their crop (whose capacity

is set by the maxCrop parameter). In all the conditions explored, this crop capacity was set

to 5 resources (units of nectar volume): an arbitrary value used to fit the experimental data of

Lihoreau et al. (Lihoreau et al., 2012). The decision-making process is altered by this crop

filling (described by the crop variable) if it reaches the same value as maxCrop. If so, the

foraging bout is over, and the bee returns to the nest. This behaviour has been observed in

experimental conditions (Woodgate et al., 2017; Lihoreau et al., 2012).

e - Learning

The learning process occurs as changes made to the probability matrix during the simulation

through two components: a positive and a negative reinforcement. Positive reinforcement is

triggered when a bee finds a resource on a flower. When it happens, the bee increases the

probability of reusing the transition it just used. Values of the positive reinforcement factor

are typically set to be superior or equal to 1. Negative reinforcement is similar but reduces

the probability of reuse of the transition. Negative reinforcement occurs when there is either

no resource on the flower or if the bee has been evicted from the flower by a competitor.

Values of the negative reinforcement factor are typically set to be less than or equal to 1.

f - Prediction

In the models the movement probability matrix acts as a prediction tool for the bees. After

some experience in the environment, these probabilities become proxies for the probability

of finding nectar in flowers, as the positive and negative experiences shape the matrix. The

choice of visiting a flower is done prior to the knowledge of presence of a reward on the

flower, and only relies on the previous experience on this flower. More information on the

movement probability matrix is given in the ChooseDestination submodel.
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g - Sensing

When the model is initialised, the movement probability matrix is based on the distances the

bees have to travel between each flower. However, the model does not depict a probability

of “not finding any flower”. In experimental situations, it is not rare that the bees would not

find all the flowers during their first bout (Woodgate et al., 2017; Lihoreau et al., 2012).

However, in our models it is assumed that the bee always finds a flower, even if it has never

visited it. Moreover, it is assumed that the bee knows how to link all the flowers together

(knowledge of all the existing transitions) even if these links have never been performed.

The use of distance-weighed probabilities is a good approximation of the probabilities

obtained by a random walk. As bees always keep tracks of their successive movements

after leaving the nest, they can sum these movements to know the direction and

approximate distance of the nest.

h - Interactions

Two types of interactions were included: exploitation competition and interference

competition. Exploitation competition occurs when a bee visits a flower that has already

been depleted by a competitor or by itself during a prior visit. Interference competition occurs

when two or more bees are simultaneously present on the same flower. When this direct

interaction happens, only one bee can access the nectar reward. The winning bee is

selected using uniform probabilities.

i - Stochasticity

Stochasticity is included in three parts of the model: to place all the flowers in the

environment, to choose a bee’s next destination, and to choose a winner from interference

competition. When generating a new environment, the submodel CreateEnvironment sets

rules for placing the flowers. The algorithm will repeatedly try to place a flower at a random

position until it fits all the conditions.
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The choice of the bee’s next destination (described in the ChooseDestination

submodel) is done by consulting the movement probability matrix of the agent. As this choice

relies on probabilities, we used a stochastic process to choose the next destination,

according to the weights of the different destinations’ probabilities. The reason behind this

choice is explained in the Learning and Sensing part of this ODD. Finally, the winner of an

interference interaction is decided by choosing with uniform probabilities which bee wins.

j - Collectives

The model includes no collectives.

k - Observation

There are two observations collected from the bees: visitation sequences and occurrences

of competition.

Every time a bee visits a flower during a foraging bout, the flower’s ID is reported into

a vector containing all the visits in order during the bout. Every time a bee finds an empty

flower or finds a competitor on the same flower, these occurrences are reported throughout

the foraging bouts. This information gives the number of competitive interactions throughout

the bouts. We also save the spatial positions of the flowers to compute the distances

between them and find the theoretically optimal routes for the agents. This allows to

compute the route qualities of the agents’ successive bouts.

5 - Initialisation

The first part of the initialisation of the models is to create the environment. This part,

described in details in the CreateEnvironment submodel, places all the flowers and the nest.

The environment can be initialised in two ways: either by calling for an existing one (all the

environments are stocked in a folder called Arrays, inside the main folder where the R script

is), or by using the models to generate one.
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The variables of the bees that will be dynamic during the simulation are then

initialised: crop, the number of resources gathered during the ongoing foraging bout;

distanceTravelled the distance travelled by the bee during this bout; and then boutFinished,

a Boolean indicating if the bee has finished its bout or not. The movement probability matrix

is then initialised for each bee. Finally, we initialise the output objects to store the visitation

sequences and resources gathered by each bee during each bout, and store all the

information we inputted as parameters to be able to identify what were the parameters used

for this simulation later.

6 - Input data

The model has no input data.

7 - Submodels

Our models can be decomposed in multiple different submodels, which are described here.

a - Input Parameters

The model contains an R script dedicated to the input parameters. While all parameters

have comments to help the user, a description of the important parameters is given here.

environmentType: Can either contain “generate” or the name of an existing and valid

environment found in the Arrays folder (the Arrays folder will only be created after a first

simulation, unless it is created manually beforehand). If using an existing environment, the

parameters in part 3.1. will be ignored.

numberOfResources: Total number of flowers in the environment.

numberOfPatches: In how many patches these flowers should be distributed.
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patchinessIndex: Deprecated index, should be kept at 1. If multiple patches are created, a

value of 1 will ensure the patches are set very distinctly from each other. Values closer to 0

will create a less defined limit between patches. Inputs between 0 and 1 are accepted.

envSize: The size of the environment. It defines a square environment in which the flowers

will be placed. However, if it is impossible to place all the flowers, this value will be

incrementally increased to give enough space.

flowerPerPatch: Should contain as many values as the number of patches. If only one patch,

it must be set to NULL. Otherwise, it must take a succession of values following the syntax

c(a, b, c, …), a, b and c being integer values whose sum equals to numberOfResources.

numberOfArrays: The number of different environments the model should generate using

these parameters.

reuseGeneratedArrays: Can take TRUE or FALSE. If TRUE, the model will look into the

Arrays folder for environments fitting all the parameters. If it does find similar ones, it will use

them instead of generating new ones.

numberOfBees: Number of bee agents in the model.

numberOfSimulations: How many simulations the model will do for each set of parameters.

numberOfBouts: How many foraging bouts each bee will do during a simulation.
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distFactor: Weight given to distance when generating the movement probability matrix. The

probability for a transition movement of distance d is computed as probability =

1/d^distFactor. Changing this number will change the initial probability matrix.

param.useRouteCompare: deprecated, used to switch between our Learning submodel and

the route comparison model of Reynolds et al. (Reynolds et al., 2013). Should be left at

FALSE.

param.learningFactor: the value used for the positive reinforcement process. Values should

be greater than or equal to 1. Requires at least one value. If multiple values are inputted, the

model will run the simulations for each value.

param.abandonFactor: The value used for the negative reinforcement process. Values

should be between 0 and 1.

maximumBoutDistance: Maximum distance a bee can travel during a foraging bout.

In the “Advanced parameters” category different rules can be enforced on the bees.

In the following we detail the ones used in our simulations:

allowNestReturn: Allows the bee to select the nest as its next destination in the

ChooseDestination submodel, based on the distance-weighed probabilities. If the bee does

so, the foraging bout is finished.

forbidReverseVector: This rule forbids the bees to use the reverse movement transition from

the one they just used. If the bee has just moved from flower 2 to flower 3, for its next

movement this bee will not be given the choice to go from flower 3 to flower 2. This

interdiction only applies for the last transition executed.
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onlineReinforcement: This rule forces the trigger of the Learning submodel after each

encounter of a flower, instead of only triggering it when the bee had finished its bout.

Movement probabilities are thus altered directly after the execution of a movement transition.

b - CreateEnvironment

The creation of an environment happens first in the initialisation of the model. The code

relating to this process is found in the Functions script, in a function of the same name.

If the user chooses an environmentType different than “generate” the model will import the

user’s selected environment. The creation of the environment using the “generate” option

calls an algorithm we designed to create flower patches. It follows arbitrary rules without any

ground in experimental data or theoretical background. In this function, all the parameters

inputted in the 3.1.1 part of the Parameters script are being used. Refer to their description

in the Input Parameters submodel for their meaning. The basic distance unit between

entities is set by an internal parameter, perceptionRange, whose default value is 10.

The nest is set first at the centre of the environment (coordinates (0,0)). The different

patch centres are placed between 2*perceptionRange and envSize from the nest. Every time

a patch is placed, the algorithm checks if this patch centre is at least 16*perceptionRange

away from any other patch centre. The algorithm reiterates this process until the condition is

verified. The patch centres act as the first flower of each patch.

Flowers are then placed around the patch centres, respecting the distribution

specified in flowerPerPatch. All flowers are tentatively placed between 2*perceptionRange

and 4*perceptionRange of the patch centre, and must verify the condition that each flower

has to be at least 2*perceptionRange from any other flower. The algorithm reiterates this

process until the condition is verified. If the algorithm fails to place a flower 200 times in a

row, the range at which the flowers can be placed around the patch centre becomes

between 2*perceptionRange and 4*perceptionRange + (envSize/20).
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Once all the flowers are placed in all the patches, a table containing the flowers’ ID,

coordinates x and y, and the patch they belong to (numbered from 1 to numberOfPatches) is

created. The nest is also represented in this table, and takes the ID 0, and is part of its own

patch.

c - ChooseDestination

In order to choose among the possible destinations, the bees refer to a movement

probability matrix they are given at the beginning of the simulation. This matrix has n rows

and columns, n being the number of entities (flowers and nest). It is created by extracting in

a similar matrix the distance between each entity, and from then applying the following

formula for each cell:

(1) 𝑃 𝑖→𝑗( ) =
1

𝑑𝑛
𝑖𝑗

∑
𝑗

1

𝑑
𝑖𝑗
𝑛

Where is the distance between locations i and j, and n is an integer parameter,𝑑
𝑖𝑗

whose default value is 2. See the Input Parameters submodel for more information about

distFactor, which sets the value of n in this equation. The probability to go from a flower to

itself (immediate revisit) was set to 0. Visiting the same flower twice in a row happens when

bees come back to the last departed flower if their search for another flower was

unsuccessful, or if they do short orientation flights on the flower. However, these revisits

have little importance for the establishment of a stable route (Lihoreau et al., 2010), and

were thus ignored. All rows of the probability matrix are normalised so that their sum is equal

to 1. To choose a bee’s next destination, it looks at the matrix’s row matching the flower ID of

its current position. As the use of a “reverse transition” is forbidden (see the

forbidReverseVector parameter described in the Input Parameters submodel), the bee’s
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previous position is removed from the possible destinations. This prevents an artificial

situation the model could create when two flowers are very close to each other, and the

probability to move between them is much higher than any other probability. Without this

rule, bees would often get stuck navigating back and forth between both flowers. If the

allowNestReturn is used, the nest is kept in the possible destinations. Otherwise, it is

removed. A weighed sample is made between all the remaining potential destinations to

choose the one that the bee will use.

d - Feeding

This submodel takes care of all matters that happen when a bee lands on a flower, i.e. all

competition occurrences and the collection of resources. If two or more bees choose the

same destination on the same step, one of them is chosen randomly to access to the

resource. The losing bees will still depart from this flower for the next step, but will not feed.

e - Learning

As bees finish to go through the Feeding module, they have five possible outcomes: (i) the

bee has landed alone on a flower, and found resources; (ii) the bee has landed alone on a

flower, and did not find any resource; (iii) the bee has landed with competitors on a flower,

and has lost the competition; (iv) the bee has landed with competitors on a flower, has won

the competition, but found no resource; (v) the bee has landed with competitors on a flower,

has won the competition, and found resources. These outcomes can be placed into two

categories: the positive (i and v) or negative (ii, iii and iv) outcomes.

Each bee has a square matrix named indFlowerOutcome, with n rows and columns,

n being the combined number of flowers and nest. Every bout it is initialised with 0s in all

cells, and then altered every time a transition is used during the bout. If the outcome of the

transition performed by the bee is positive (rewarding), the cell corresponding to this

transition in the indFlowerOutcome matrix takes a value of 1. Similarly, if the outcome in
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negative (non-rewarding), it takes the value -1. Only the first use of a transition during a bout

will alter this matrix. This matrix is then used as a reference to change the movement

probability matrix as it contains a trace of all the transitions that receive a change.
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S2 Text. Sensitivity analysis of positive and negative

reinforcements.

We ran a sensitivity analysis for the two main parameters: the positive and negative

reinforcements. As we had no a priori understanding of how the model behaved with

different values of reinforcements, we ran simulations on ranges of positive (1, 1.2, 1.4, 1.6,

1.8, 2) and negative (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) reinforcements for a total

of 66 sets of parameters, for each environment type (one, two and three patches; S2 Fig).

We simulated 10 environments for each environment type and computed 100 simulations of

50 foraging bouts per iteration (i.e. 1000 simulations per environment type and set of

parameters).

Since our study focused on resource partitioning, we extracted the index𝑄
𝑛𝑜𝑟𝑚

values for these simulations and compared them. We plotted a heatmap showing the value

of the mean index at the last foraging bout for each set of parameters and environment𝑄
𝑛𝑜𝑟𝑚

type (Fig A). In all types of environments, positive reinforcement had a strong effect on the

final index value. High values of resource partitioning were obtained for positive𝑄
𝑛𝑜𝑟𝑚

reinforcement values > 1.5. By contrast, negative reinforcement only had an impact in

environments with two or three patches. High values of resource partitioning were obtained

for negative reinforcement values larger than 0.75.

For each pair of bees, we also looked at how this same index evolved over

successive foraging bouts. Fig B shows the dynamics of mean index across 50𝑄
𝑛𝑜𝑟𝑚

foraging bouts for each combination of positive reinforcement (1.0, 1.2, 1.4, 1.6, 1.8, 2.0)

and negative reinforcement (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) parameters, and

each environment type (one patch, two patches, three patches). Higher values of both

positive and negative reinforcements most often lead to faster resource partitioning (with
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some uncertainty due to the probabilistic nature of the model). Combinations of values in

which the negative reinforcement factor was missing (violet gradient curves) led to a

decrease in partitioning.

Finally, we also looked at how the Similarity Index was affected by these ranges of

parameters. We drew a similar heatmap showing the Similarity Index at the last foraging

bout for each parameter set and environment type (Fig C). It appeared that positive

reinforcement had a strong impact on route similarity in all environment types, while negative

reinforcement only seemed to have a small effect only on the two and three patches

environments.
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Fig A. Heatmap graph of sensitivity analysis of partitioning index to parameters.

Heatmap showing the mean Index value after 50 foraging bouts (mean over 1000𝑄
𝑛𝑜𝑟𝑚

simulations on 10 arrays of the same environment type), for each combination of positive

reinforcement (1.0, 1.2, 1.4, 1.6, 1.8, 2.0) and negative reinforcement (0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1) parameters, and for each environment type (one patch, two

patches, three patches). For simplicity, we inverted the values of negative reinforcement. 0

indicate models without negative reinforcement.
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Fig B. Partitioning dynamic across the ranges of reinforcement factors. Dynamic of the

mean Index across foraging bouts for each combination of positive (1.0, 1.2, 1.4, 1.6,𝑄
𝑛𝑜𝑟𝑚

1.8, 2.0) and negative (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) reinforcement factors

and for each environment type (one patch, two patches, three patches). For simplicity, we

inverted the values of negative reinforcement here. 0 being models without negative

reinforcement.
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Fig C. Heatmap showing the mean Similarity Index value after 50 foraging bouts (mean over

1000 simulations on 10 arrays of the same environment type), for each combination of

positive reinforcement (1.0, 1.2, 1.4, 1.6, 1.8, 2.0) and negative reinforcement (0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) parameters, and for each environment type (one patch, two

patches, three patches). For simplicity, we inverted the values of negative reinforcement. 0

indicate models without negative reinforcement.
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S3 Text. Qualitative comparison between simulations and

observations in the narrow pentagon.

We ran simulations with one forager to compare model outcomes to observational data

using a second reference field study (Woodgate et al., 2017). In this study, the authors used

five artificial flowers arranged in a narrow pentagon (S1B Fig). Four bumblebees were tested

during 27 to 61 foraging bouts each (flower visitation sequences were kindly provided by Joe

Woodgate). One of these bumblebees was tested over different days and was therefore

removed from the analyses (as bees’ experience memory drops overnight; Lihoreau et al.,

2010). In these conditions, none of the bumblebees developed a stable trapline, although all

significantly increased their foraging efficiency with time (e.g. reduced travel distance and

duration, increased similarity between two consecutive flower visitation sequences).

The sole implementation of positive reinforcement in Model 1[+] was sufficient to

replicate the observations. While the use of the negative reinforcement alone in Model 2[-]

showed drastically different results, its addition with the positive reinforcement in Model 3[+\-]

had no major effect on route quality nor on route similarity trends (Fig A). Overall,

simulations of Models 1[+] and 3[+\-] showed good qualitative fit to the traplining behaviour

observed in real bees – i.e. there is a trend of increasing route similarities across foraging

bouts. Note however that the models tend to overestimate the bee ability to develop stable

routes. This imperfect match could be due to the low amount of available experimental data

in the original study (three individuals in Woodgate et al., 2017). Alternately, the model has

been shown to overestimate the increase of the similarity index and underestimate the initial

similarity of the first few bouts (See Discussion).

109



Fig A. Qualitative comparisons of route qualities (A) and similarities (B) between simulations

and experimental data (narrow pentagon of Woodgate et al., 2017) for one forager (see

details of the models in Fig 1). For each dataset, we show the estimated average trends

across foraging bouts (colored curves), along with the standard error (gray areas). For the

sake of eye comparison, in the simulation plots the standard error of the mean is computed

from a sample of 3 simulations (n = 3 bees in our sample taken from Woodgate et al., 2017).

Average trends were estimated over 500 simulation runs, using GLMM Binomial model with

bee identity as random effect (bee identity nested in simulation identity for simulated data).
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S4 Text. Predictions with more than two bees.

We explored the emergence of resource partitioning in groups of 5 bees, and how this varies

in environments containing 20, 25, 30, 40, 50, 70 and 100 flowers, thus encompassing a

gradient of competition pressures from conditions where there are not enough flowers for all

bees (20) to conditions where there are four times more flowers than necessary for all bees

(100). For simplicity, flowers were evenly distributed (i.e. environment with one patch). The

model used for these simulations is Model 3[+/-]. For each flower density, we generated 10

environments, and ran 100 simulations of 100 foraging bouts, for a total of 1000 simulations

per density value. We computed the resource partitioning index ( ) at each foraging𝑄
𝑛𝑜𝑟𝑚

bout.

The mean final was higher in environments with most flowers (Fig A). Plotting𝑄
𝑛𝑜𝑟𝑚

the mean final partitioning index (final foraging bout) as a function of the number of available

flowers confirmed that bees converge to a plateau when increasing the number of flowers up

until around 50 flowers (Fig A). As the number of flowers increases, positive reinforcement

became more prevalent in driving partitioning, while negative reinforcement became less

relevant. This result simply reflects how unlikely it becomes to come across competition as

the resources become more available.
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Fig A. Evaluation of the mean final index (after 100 foraging bouts) as a function of𝑄
𝑛𝑜𝑟𝑚

increase resources availability. The model run has the positive reinforcement factor set at

1.5, and the negative reinforcement factor set at 0.75 (Model 3[+\-]) with five bees foraging in

environments of one patch.
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S5 Text. Supplementary information on the similarity index.

We used a route similarity index between two consecutive visitation sequences in order to

assess how similar they were. We designed an index that would account for both the

similarity of transitions used, but also the number of transitions used. For the computation of

this index, visitation sequences are decomposed into smaller sequences, whose length is

set by a parameter of the function. In our study, we set this value arbitrarily to 3. These

smaller sequences are made by sliding a window of the specified length through the

visitation sequence, moving the window 1 visit further each time (see example below).

The compared sequences, a and b, are thus decomposed into small sequences of the

defined length after excluding the nest position. The number of similar small sequences used

in both sequences are stored in an object called . All uses of these common small𝑠
𝑎𝑏

sequences in the sequences a and b are then highlighted, and all flower visits highlighted as

such are counted, and stored in an object called . The longest sequence between a and b𝑠
𝑎𝑏

has its number of visits stored in a second object called . The similarity index is then𝑙
𝑎𝑏

calculated using the formula:

𝑆𝐼
𝑎𝑏

=
𝑠

𝑎𝑏

2𝑙
𝑎𝑏

Which represents the number of visits part of common small sequences ( divided by the𝑠
𝑎𝑏

)

total number of visits in both sequences ( ). This multiplication by 2 in the denominator2𝑙
𝑎𝑏

allows for accounting in length differences between the two compared sequences.

Example:

We retrieved two visitation sequences a and b from successive bouts:

Sequence a: N 5 3 4 N

Sequence b: N 5 3 4 2 5 3 4 N
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First, the visits to the nest are removed, giving the following sequences:

Sequence a: 5 3 4

Sequence b: 5 3 4 2 5 3 4

Then, the small sequences used in both sequences are identified:

Small

sequences

Used in seq. a ? Used in seq. b ?

5 ➝ 3 ➝ 4 Yes Yes

3 ➝ 4 ➝ 2 No Yes

4 ➝ 2 ➝ 5 No Yes

2 ➝ 5 ➝ 3 No Yes

The two sequences show a common small sequence: 5-3-4. The uses of this triplet in the

sequences a and b is highlighted (here in bold):

Sequence a: 5 3 4

Sequence b: 5 3 4 2 5 3 4

In this case, 9 total visits are part of repeated sequences. The longest sequence, b, has a

length of 7 visits. Thus, the computation of our index is:

𝑆𝐼
𝑎𝑏

=
𝑠

𝑎𝑏

2𝑙
𝑎𝑏

=  9
2*7 = 0. 643 
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S6 Text. Details on the movement probability matrix.

In our model, the agent bees rely on a movement probability matrix to navigate from one

flower to the other. This design was kept from the initial model developed in Reynolds et al.

(Reynolds et al., 2013). To obtain such a matrix, the coordinates of all flowers and nest are

used to compute the distance between each pair of entities. From there, the probability P to

go from a flower i to a flower j is determined by the following formula:

𝑃 𝑖→𝑗( ) =
1

𝑑𝑛
𝑖𝑗

∑
𝑗

1

𝑑
𝑖𝑗
𝑛

where is the distance between the flower i and j, and n an exponent arbitrarily inserted to𝑑
𝑖𝑗

change the way distance would affect probabilities. This design was chosen because it

approximated closely the probabilities to find the different flowers when using a simple

random walk.

To present their similarities, we compared the probabilities obtained by both our

probability matrix and a lattice-based random walk. We used the regular pentagon used for

Lihoreau et al. (Lihoreau et al., 2012) as an example for this comparison, with all flower

positions rounded to the nearest integer for simplicity. We simulated 10000 bees leaving the

nest, with the goal to find any flower in 5000 steps. In each step, an agent had 4 choices, to

go up or down on either the x or y abscisses, with the same probability. The simulation

stopped if the bee got at a distance of 5 metres or less than a flower, thus mimicking a

perception range. The results of this comparison are presented in Fig A.

The results in Fig A show that as the exponent n increases, the probabilities to do the

shortest movements (towards flowers 1 and 5) increases while those of longer movements

(towards flowers 2, 3 and 4) decreases. In this specific environment, an exponent of 3 would

replicate most accurately the initial probabilities of encountering each flower using a random
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walk. In our study, however, we did set the value of this exponent to 2 throughout all

simulations, as it was the value used in the previous paper using this method (Reynolds et

al., 2013).

Fig A. Comparison of probabilities of reaching any flower (numbered circles) from the nest

(black pentagon) using either a random walk or the probability matrix used in the models.

For the probability matrix, 4 distinct parameter values were tested for the exponent found in

the equation used to compute the transition probabilities.
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S1 Fig. Experimental Flower Arrays.

Arrays of artificial flowers (grey circles) and the colony nest (black pentagons) used to

obtained the experimental datasets. A. Regular pentagon, modified from Lihoreau et al.

(Lihoreau et al., 2012b). B. Narrow pentagon, modified from Woodgate et al. (Woodgate et

al., 2017).
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S2 Fig. Simulated Flower Arrays.

Examples of simulated environments. Spatial distribution of 10 flowers (grey circles) and a

colony nest (black pentagon) in three types of environments defined by different levels of

flower patchiness. A flower patch was characterised by: 1) a uniform distribution of flowers,

2) a lower distance between flowers within the patch than between all flowers from different

patches (see details in methods).
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S1 Video. Animation of a model simulation with 5 bees.

Example of simulation of five bees foraging in an environment with one patch of 50 flowers.

Both positive and negative reinforcement rules are implemented (Model 3[+\-]). Bees

performed 100 foraging bouts. (doi: doi.org/10.1371/journal.pcbi.1009260.s009)
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Chapter IV.

Partial partitioning of foraging resources by honey

bees at small spatial scale
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Abstract

Honey bees tend to optimise their foraging behaviour through the use of stable, repeated

routes called traplines. But these traplines are seldom seen when bees forage at a small

spatial scale, and little is known about how bees adapt their foraging strategies in

competitive situations with nestmates. Competition is omnipresent in the foraging activity of

bees. As such, if bees use strategies to improve their efficiency, it is reasonable to assume

that they are not dissociable from the competition pressure bees face. Thus, in order to

understand the foraging behaviour of bees, we must look at how they forage in competitive

situations. We trained groups of 2 bees to forage in an arena on 6 artificial flowers, and

recorded their visitation sequences throughout a period of observation of 3 hours. We

analysed these visitation sequences to understand how bees foraged in this specific

situation. Our results suggest that bees did not use traplines in this situation, but showed

signs of partial partitioning, as each bee of the same pair often spent different amounts of

time on different flowers in the arena, suggesting a reaction to the presence of a competitor.

These observations support the idea that bees do not use traplines at small spatial scales,

as well as providing new insights on the small scale foraging behaviour of bees.
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1 - Introduction

The literature on foraging behaviours and partitioning of resources between animals is

extensive, and how animals resolve foraging competition has received a lot of attention (e.g.

African grazers, Kleynhaus et al., 2011; squirrels, Wauters et al., 2002; bats, Emrich et al.,

2014; Goldshtein et al., 2020; bumblebees, Morse, 1977; Inouye, 1978; seabirds, Kappes et

al., 2011). This subject has also been considered theoretically in terms of how competition

can influence home ranges (Börger et al., 2008; Riotte-Lambert et al., 2015). However, these

studies have focused on competitive exclusion between species (e.g. honey bees stopping

visits to a patch foraged on by bumblebees, Balfour et al., 2015), and their consequent

specialisation on different resources (e.g. sympatric species of boobies foraging on different

prey, Kappes et al., 2011). Intraspecific competition, or even competition between genetically

related individuals has received far less attention.

Bees are interesting models for the study of foraging strategies, since they easily

learn to forage in artificial situations and they are numerous, allowing us to easily observe

and quantify foraging behaviour (Inouye, 1978). Studies on the foraging strategies of bees in

field conditions suggest they can establish stable repeated routes between sets of flowers

(i.e. “traplines”; Ohashi & Thomson, 2009; Lihoreau et al., 2012b; Woodgate et al., 2017),

and exclusive foraging ranges through competitive interactions (i.e. resource partitioning;

Morse, 1977; Inouye, 1978; Nagamitsu & Inouye, 1997; Lihoreau et al., 2016; Pasquaretta et

al., 2019). We still know very little about the decision-making processes behind these

strategies. In Chapter II, we suggested that the foraging strategies of bees could emerge

from spatial and temporal constraints of their environment and behaviour, with little to no

cognitive load involved. In this chapter, we are interested in how the spatial scale of the

foraging affects the foraging strategies of bees. A recent study suggested that bees were

more likely to establish complete traplines when foraging at a large scale (Reynolds et al.,

2013), a result coherent with the literature on traplining as bees in general establish traplines
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more consistently and faster (lower number of foraging bouts needed) at larger spatial

scales (Lihoreau et al., 2012b; Buatois & Lihoreau, 2016) than at lower scale (Ohashi et al.,

2007; Lihoreau et al., 2012a). This is consistent with our proposal in this thesis; we

hypothesised that learning routes between different resources was unlikely to happen at

lower spatial scales as the cognitive load of finding the shortest path would be an inefficient

use of the limited memorization capacity of bees (Ardin et al., 2016), as they can be brought

to visit hundreds of flowers throughout multiple patches.

To address our poor understanding of how bee foraging strategies develop we

previously developed an agent-based model to explore a hypothesis that resource

partitioning can emerge as a consequence of basic rules of positive and negative

reinforcement associated with the rewards (or lack of) found by bees in flowers (Chapter III).

In our model, we assumed bees to perceive empty flowers as a punishment, in a context of

optimisation of one’s foraging intake. Predictions from the model showed that different

resource distributions and abundances led to different influences of the positive and negative

reinforcements on partitioning. Positive reinforcement had a greater impact on partitioning as

the number of flowers available per bee increased and as flowers became more

homogeneously distributed, whereas negative reinforcement had a greater impact on

partitioning when flowers were heterogeneously distributed between patches.

The objective of this study was to compare predictions from this model with the

foraging behaviour of honey bees competing over a floral array. The first goal was to obtain

clear observations of multiple individually tracked honey bees foraging together in a

controlled competitive foraging environment. The second objective was to provide an

experimental test for the predictions of our model (Chapter III). Since the model predicted

that bees would partition very easily in environments containing low numbers of flowers

(≤10), when given around 40 successive foraging bouts, we replicated such a situation

experimentally. We trained two bees to forage on 6 artificial flowers distributed inside a
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closed arena, and tracked their visitation sequences to the different flowers. Most studies on

partitioning in bees were done on bumble bees (Lihoreau et al., 2016; Pasquaretta et al.,

2019). While this study did not intend to draw comparisons between the two species, looking

at the foraging strategies in honey bees allowed to extend our knowledge on the

phenomenon in a species with slightly different foraging habits, as honey bees forage

socially and recruit nestmates.

2 - Methods

The experiment was conducted between April and May 2020 at Macquarie University

(Sydney, Australia). A honeybee colony was placed at one end of a flight cage of dimensions

30x5m and 5m tall. The flight cage contained bees in an environment where their foraging

experience could be controlled experimentally. In the flight cage the bees were provided with

an ad libitum gravity feeder of 20% (w/w) sucrose solution located 2 metres in front of their

colony, and 30 grams of pollen per day delivered on a flat dish placed next to the gravity

feeder. We used for this experiment two colonies (Colony 1: April, Colony 2: May).

2.1 Foraging Arena

To control which bees were allowed to forage on the array of artificial flowers, we built an

arena of dimensions 120x90x30cm (Fig 1a) using Corflute. The experimental arena was

placed at the opposite end of the flight cage, at about 25m from the colony. A short platform

was set at the entrance of the arena to allow bees to land. The top of the arena was covered

with a removable mesh layer, which could be lifted to release bees at the end of their

foraging bout. Five windows covered with removable mesh were also made in the sides of

the arena to allow the observer to access and manipulate the objects inside the arena. The

floor of the arena was covered with laminated paper covered in a red/white random pattern,

to help the bees navigate inside the arena (Fig 1b).

124



Fig 1: (a) Experimental foraging arena, of size 120x90x30cm. (b) Example of image taken by

the artificial flowers every second when a bee is visiting, which were then used to

reconstruct visitation sequences through identification of the QR codes on the bees.

(c) The positions of flowers (blue circles) inside the arena. Coordinates are marked above

each flower. The entrance to the arena is displayed on the left side (grey circle). An ID

number was given to each flower (as seen in the circles) for identification purposes. (d)

Schematic of an artificial flower as used in the experiment, with descriptive legend.
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2.2 Tagging and training of bees

All the bees used for this experiment were first trained from the ad libitum gravity feeder, to a

set of blue laminated papers in front of the arena. Bees foraging on 20% (w/w) sucrose at

the gravity feeder were presented with a Q-tip soaked in 50% (w/w) sucrose solution that

was touched to their antenna. Most bees then began to drink sucrose from the Q-tip. While

doing so they could be taken to the front of the foraging arena where droplets of the same

50% (w/w) sucrose solution were dispensed ad libitum by the observer onto the laminated

colored papers.

Any bee that arrived on its own at the experimental setup was paint marked using a

dot of paint (thin-tipped POSCA® Markers) on the thorax. If the same bee visited the arena 3

more times in the following 15 minutes, it was selected to be tagged. We used paper tags on

which were printed QR Codes (2.625x2.625 mm, developed by Gernat et al., 2018) and

glued them to the bees thorax using super glue (UHU® Super Glue).

The tagging required the bees to be momentarily anaesthetised by placing them in a

small plastic vial (50 cc), and put for one minute inside a styrofoam ice box. After that, the

anaesthetised bee was taken out of the vial, onto a piece of tissue. A dot of super glue was

applied to its thorax using a toothpick, and then the QR Code was gently and accurately

placed on the middle of the thorax (Fig 1b). Once the tagging was done, the bee was put

back on the laminated paper where it could feed on sucrose solution, and left to recover for

as long as needed. Most bees flew away after < 15 minutes of rest. Then, we waited up to 1

hour for them to come back. If the tagged bee was not seen foraging on either the front of

the arena or the ab libitum feeder at the entrance of its colony, she was considered lost. This

tagging process was repeated until two bees were tagged and successfully returned to the

foraging arena.
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Once that occurred, any other bees that had been trained to the front of the arena

were captured and released into an enclosed mesh box close to the experimental setup, in

which an ad libitum 20% (w/w) sucrose solution was provided. They were kept in this box

until the end of the day to prevent them from interfering with the foraging of the two tagged

focal bees. The two tagged focal bees were trained from the front of the arena, to the

platform at the entrance, through the entrance tunnel, and inside the arena, by moving the

colored laminated paper they were feeding from progressively deeper into the arena in

between their visits. Once inside the arena, 6 laminated papers of the same color were used

instead of 1, placed around the position of flower 1 (see Fig 1c) in an hexagonal shape, and

only 20μL of solution was dispensed on each. During this step, bees learned to move

between locations within the arena to find food. Once the bees visited multiple locations to

feed, we waited until the arena was empty of bees to set up the artificial flowers and start the

experiment.

2.3 Artificial Flowers

For the purpose of the experiment, we built artificial flowers allowing us to track bees visiting

them. The flowers were composed of a main cylindrical chamber of diameter 8cm, which

could be accessed from its base on two opposite sides (Fig 1c). In the middle of this

chamber we put a piece of laminated colored paper that the bees recognised as where they

should go to get a reward. Above this chamber, a Raspberry Pi (Raspberry Pi 4 Model B

8GB) was set, equipped with a camera (Raspberry Pi Camera Module V2, 8 Megapixels)

and plugged to a power bank (imuto® Portable Charger 10000mAH, 5V/2.1A). This device

took time stamped pictures every second and stored them (Fig 1b) on an SD card of 32GB.

All images were stored on a computer after the observation, and analysed to search for QR

codes.
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2.4 Experimental Protocol

The flowers were positioned in a hexagonal formation (Fig 1c), using an edge length of

about 40cm. Sliding doors made of laminated paper in the entrance tunnel were used to

exclude any untagged bees from entering the arena. The entrance was monitored manually

and the doors closed if an untagged bee approached. Otherwise, these doors were kept

opened for the whole experiment as the vast majority of visits were from the tagged bees.

The observation lasted until a total of 80 cumulative foraging bouts were done by the two

bees, or until one of the bees stopped foraging. A bee was considered missing if it stopped

coming for an hour.

When a flower was depleted by a bee, the observer started a 3 minutes timer on a

computer next to the arena, after which it was replenished with 20μL of 50% (w/w) sucrose

solution. Each of the 6 flowers had its own independent timer. A bee that completed its

foraging bout in the arena would fly upwards to the mesh roof of the arena, at which point we

lifted the mesh roof so that the bee could return to the hive. For the duration of the

observation, all visits to flowers were captured by the cameras.

2.5 Data Analysis

All images captured by cameras on each flower were retrieved from the Raspberry Pi to a

computer, and from there, all images were analysed to identify any QR code, using a Python

script (courtesy of Tim Gernat, available at https://beemonitoring.igb.illinois.edu/). From this

analysis, we reconstructed the visitation sequences for both bees. The visitation sequences

were divided into foraging bouts (i.e. foraging trips from nest departure to nest return) by

assuming any gap in detection longer than a minute indicating that the bee had left the

arena. This assumption proved to be very robust when testing the experimental protocol

beforehand.
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We first analysed the extent of traplining of bees in this situation using our similarity

index (see Chapter III) measuring how similar two flower visitation sequences are. To record

this similarity index between two sequences, we first identified in each sequence all the

transitions between flowers (e.g. for a sequence of flowers identified by numbers, 1 - 2 - 3,

the transitions recorded would be 1-2 and 2-3). Then, these transitions were compared to

identify which are used in both sequences. In the following sequences a and b:

Sequence a: 1 - 2 - 3 - 4 - 5

Sequence b: 1 - 2 - 3 - 5

The transitions 1-2 and 2-3 are found in both sequences. The number of flowers included in

these two repeated patterns (highlighted in bold in the sequences above; the flower “2”,

which is part of the two different patterns, is only counted once) form a similarity score, .𝑠
𝑎𝑏

Finally, this score is divided by two times the length of the longest sequence between a and

b, (with in this example ), giving the following equation:𝑙
𝑎𝑏

𝑙
𝑎𝑏

= 5

𝑆𝐼
𝑎𝑏

=
𝑠

𝑎𝑏

2𝑙
𝑎𝑏

Where is the similarity index between the sequences a and b. The goal of the division𝑆𝐼
𝑎𝑏

here is to obtain an index between 0 and 1. As for the value of the denominator, , it is to2𝑙
𝑎𝑏

take into account differences in sequence lengths and not just differences in patterns. This

means that a similarity index of 1 can only be obtained if the two sequences present identical

patterns and are of the same length. All experimental data for this index were fitted to a

binomial distribution using a binomial GLM of formula similarityIndex ~ bout. This fit was

made to summarise the general trend of the model’s predictions in a concise way.
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We also analysed the extent of resource partitioning by the bees using the 𝑄
𝑛𝑜𝑟𝑚

measurement (Becket, 2016; Pasquaretta & Jeanson, 2018), derived from the modularity

index Q (Dormann & Strauss, 2014). To compute this index we used the DIRT_LPA_wb_plus

function from the R library “bipartite”, and the optim_matrix_bip function (Pasquaretta &

Jeanson, 2018) normalised the index (giving ). Because of the asynchronous visits of𝑄
𝑛𝑜𝑟𝑚

both bees to the array, it was not possible to use the foraging bouts of the bees as a

comparison unit. Instead, we extracted the mean time between two successive arrivals of a

bee (i.e. the time for a complete foraging bout), and computed the index in successive𝑄
𝑛𝑜𝑟𝑚

windows of twice this time, to try and have at least one foraging bout per bee in each

window. The mean time to complete a bout was 265 seconds (mean = 264.9927, n=817

foraging bouts), hence each window was 530 seconds. As with the similarity index, we fitted

the data to a binomial distribution using a binomial GLMM of formula partitioningIndex ~

time. This fit was made to summarise the general trend of the model’s predictions in a

concise way.

We also looked into a more direct and precise measurement of partitioning of bees,

with a measurement of time spent on each flower by each bee. We compared the time spent

on each flower by each bee of a pair throughout the whole experiment to test if a given

flower was more prone to be partitioned between the bees based on its spatial location. For

each pair of bees we measured the relative visit time difference, using:

𝐷
𝑓
 =

𝑡
𝑎,𝑓

 − 𝑡
𝑏,𝑓| |

(𝑡
𝑎,𝑓

 + 𝑡
𝑏,𝑓

)  

Where the relative visit time difference of a flower f was equal to the absolute difference𝐷
𝑓

of time spent t by the bees a and b on flower f, normalised by the sum of these times. The

result is an index between 0 and 1, indicating how unbalanced the time spent on a flower is
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(0 meaning the two bees spent exactly the same time on a flower, and 1 meaning that only

one bee spent time on this flower). This normalisation was necessary to combine the

different pairs of bees together for statistical analysis, as each pair of bees did not forage the

same amount of time on all flowers. The data obtained through this method were compared

between flowers to assess any statistical difference. Because of the non-normality of the

residuals obtained using a parametric approach with a one-way ANOVA (Shapiro-Wilk test of

normality: W = 0.94707, p = 0.003), we used a non-parametric Kruskal-Wallis rank sum test

to assess differences between the different flowers. We also wanted to control that any

partitioning observed was not a result of one bee foraging more than the other. If a bee’s

foraging time accounted for 70% of the combined foraging time of the pair, this more active

bee could have spent more time on all flowers by default. To control for this, we searched for

a correlation between our index of relative visit time difference and the absolute difference in

total time spent foraging by both bees.

2.6 Comparison to model simulations

In Chapter III we developed an agent-based model to explore how the spatial foraging

strategies such as traplining and partitioning could emerge from typical competitive

situations. Simulations in a large variety of environments showed that simple rules of positive

and negative reinforcements influencing the probabilities to visit different flowers, were able

to explain the emergence of these strategies (Chapter III). Our model suggests that given a

simple environment (low number of flowers, homogeneously distributed), bees would

constantly be able to partition between different flowers and establish traplines. For a more

thorough description of the model, see S1 Text of Chapter III.

For the sake of testing how each of the reinforcement rules influenced the foraging

strategies of bees, the model was divided into 4 submodels. The first model only used

positive reinforcement (Model 1 [+]), the second only used negative reinforcement (Model
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2[-]), the third used both reinforcements (Model 3[+\-]), and the fourth, a control, used no

reinforcements (Model 4[Null]).

To generate the predictions of this model, we ran 100 simulations per submodel in a

generated environment replicating that of our experiment. We expected for such a spatial

configuration of flowers that positive reinforcement would be the main driver of partitioning,

but with still a certain degree of influence from negative reinforcement as the low number of

flowers would encourage competitive interactions (Chapter III). To compare these predictions

to our experimental data, the same similarity and partitioning indices were computed for all

simulations, and the data fitted to a binomial distribution using a GLM with the formulas

similarityIndex ~ bout (for the similarity index) or partitioningIndex ~ time (for the partitioning

index). As our model did not use time during the simulation, we converted the foraging bouts

in time, using the same mean value from our experimental results (i.e. 1 bout takes 265

seconds).

For the analysis on time spent on flowers (i.e. handling time), the model did not

include such a feature. However, using the experimental data of this study, we were able to

add such a measurement by attributing to rewarding and non-rewarding visits to flowers a

mean amount of time, based on how long the bees stayed landed on a flower in both these

situations during the experiment. In our experiment rewarding flower mean handling time

was 26s; non-rewarding flower mean handling time was 5s). We applied these times to each

visit of the bees in the model and used it to do the same analyses as the experimental data

on differences in time spent on a flower.

For all analyses, we were especially interested in the predictions of the control model

(Model 4[Null]), as it provided a control on what degree of traplining and partitioning was

expected if bees did not learn anything. The model’s implementation of bee navigation
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(abstracted as probabilities to go from one flower to the other) proved to be a very good

proxy of what bees did in experimental situations (Chapter III).

3 - Results

A total of 13 independent pairs of bees were observed for times ranging between 4800

seconds (~1h20) and 12500 seconds (~3h30).

3.1 Route Similarity

For this analysis, the pairs of bees were combined to fit a statistical model following a

binomial distribution, and compared to the output of the 4 different models.

The models using positive reinforcement (Model 1[+] and Model 3[+/-]) predicted both

an increase in similarity index throughout the experiment, while Model 2[-] predicted a slight

decrease in similarity (Fig 2a). The null model (Model 4[Null]) predicted a route similarity

index of approximately 0.25, which remained stable.

The experimental data showed a non-null degree of route similarity higher than that

of the Model 4[Null], but no significant increase of this index with successive foraging bouts.

The bees thus did not seem to develop traplines throughout the experiment, and yet showed

a route similarity higher than what was expected under a null hypothesis. None of the other

models seemed to fit this experimental data either.

3.2 Partitioning

For this analysis, the pairs of bees were combined to fit a statistical model following a

binomial distribution, and compared to the output of the 4 different models.
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Fig 2: (a) Similarity Index throughout the successive foraging bouts. For each model, a

Binomial GLM fit is represented. Experimental data are represented by mean ± sd (n=26).

(b) Partitioning Index throughout time spent foraging. For each model, a Binomial GLM𝑄
𝑛𝑜𝑟𝑚

fit is represented. Experimental data are represented by mean ± sd (n=13). Confidence

intervals of models in both (a) and (b) were omitted to improve visibility.

Models 1[+], 2[-] and 3[+/-] predicted an increase in partitioning throughout the

experiment, with a higher predicted partitioning in the model 3[+/-] (Fig 2b). Model 4[Null],

predicted a null threshold value of the partitioning index of about 0.50. Experimental data,

however, showed a lower partitioning than the null model’s prediction, as well as no increase

of this partitioning index with time. While the predictions of the models were in accordance

with the general conclusions drawn in Chapter III regarding the effect of each type of

reinforcement on the partitioning (i.e. positive reinforcement has a greater impact than

negative reinforcement in this situation), none of them seemed to predict correctly the

behaviour observed experimentally.

3.3 Time spent on flowers

Using the detections of bees every second on each flower, we were able to accurately

assess the time spent on each flower for each observed bee. In most pairs of bees, at least
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one flower was visited significantly more often by one bee than the other (Fig 3). While the

total time spent foraging was never exactly the same for both bees of a pair (Fig 4), no clear

correlation could be established between the different times spent foraging by each bee and

how partitioned the flowers were (Linear Regression Model: Estimate = 4.731e-05 ±

1.318e-04, p = 0.727; Shapiro-Wilk Normality test for normality of residuals: W = 0.906, p =

0.159; See Fig 5), suggesting that any difference observed in the visitation times on each

flower were not a result of different total times spent foraging.

When looking at the relative difference in visit times of the experimental data (Fig 6a),

no statistical difference was found when comparing the mean absolute difference in time

spent on each flower by all pairs (Kruskal-Wallis rank sum test, chi-squared = 8.3629, df = 5,

p-value = 0.1373), meaning that all flowers showed similar differences in the visit rates of

bees. The results from the models (Fig 6b-e) varied greatly. Models using the positive

reinforcement (Model 1[+] and Model 3[+/-]; Fig 6b & 6d) showed greater partitioning on

flowers 2, 3, 5 and 6, while flowers 1 and 4 were visited in a much more balanced way. This

result was possibly obtained because of how flowers were positioned and how the bees in

the models move; both bees had very high probabilities of visiting the flower 1 as they

entered the arena (91.7%) making it difficult to exclude their competitor, while the other

flowers were part of symmetrical paths (1-2-3 or 1-6-5) that each bee could use, presenting

a simple solution for partitioning. Models 2[-] and Model 4[Null] (Fig 6c & 6e) both showed a

lower time difference on all flowers than the experimental data, although both models

previously showed a high partitioning when looking at the modularity index. This last𝑄
𝑛𝑜𝑟𝑚

result shows that for these two models the partitioning observed, while true, was not a sign

of some flowers being consistently partitioned, but rather different flowers every bout being

partitioned. In each successive foraging bout bees visited flowers that the other bee did not

visit, but these flowers changed at every bout.
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Fig 3: Time spent (in seconds) on each flower for each bee (colors blue and red) of each pair

of each day (a-m). Flower positions are as displayed in Fig 1c. Inside each pie chart, the

number indicates the total number of seconds of activity recorded by the pair of bees. The

percentages represented by the pies are specified around the pie.
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Fig 4: Time spent (in seconds) foraging on all flowers for each bee (“Bee 1” and “Bee 2”) in

each pair (“Day”).

Fig 5: Representation of a linear model between the mean Relative Time DIfference index of

all flowers and the difference in total foraging time of a pair of bees, along with the data

points (n=13).
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Fig 6: Boxplot of the relative difference in time spent on each of the 6 flowers by all pairs of

bees. Experimental data (a) and the different models (b-e) are represented independently.

Flower ID numbers (x axis) refer to ID as represented in Fig 1c.
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4 - Discussion

Studies on bumble bees have found that multiple individuals foraging on the same

patch of flowers were able to partition resources efficiently to avoid competition (Lihoreau et

al., 2016; Pasquaretta et al., 2019). In this study, we set out to understand if honey bees

were able to partition between different resources in a competitive situation at a low spatial

scale (i.e. at the scale of a patch of flowers). To achieve this, we tracked 13 pairs of honey

bees foraging for multiple hours on a set of spatially close artificial flowers to get an idea of

their ability to partition. We built an agent-based model to explore how the establishment of

foraging strategies could be explained by simple learning mechanisms (Chapter III). This

model generated predictions as to the properties of emerging traplines and partitioning

behaviour assuming the hypothesised learning mechanism proposed in the model. We here

compared our experimental results to the model’s predictions.

In our experiment, bees only showed a low, stable level of traplining yet higher than

the one expected from our null model (Model 4[Null]), suggesting their route similarities were

not just the result of distance-based movements between flowers, as is the case in our

models. The low traplining observed in our experiments most likely means bees did not rely

on any learning as they kept the same level of traplining throughout the observation period

(Fig 2a). These results are in accordance with previous observations at a similar scale

(bumblebees on artificial flowers: Saleh & Chittka, 2007; honey bees on natural flower

patches: Williams, 1997), while differing from results found in similarly complex artificial

flower arrays but at larger scales (honey bees: Buatois & Lihoreau, 2016; bumblebees:

Ohashi et al., 2007, Lihoreau et al., 2012a, Lihoreau et al., 2012b). This suggests that scale

is an important factor to consider when considering the formation of traplines.

We further hypothesise that directionality of movements could explain the difference

between our results and the null model’s predictions. Studies on bumblebees have shown
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that a forager’s choice of flower to visit depends on the distance (i.e. they prefer short

distances) but also the angular difference between their previous movement and the next

(Ohashi et al., 2007; Woodgate et al., 2017). This persistence in angular direction could

further drive the bees towards a stable repeated route without relying on any learning. Our

null model ignored directionality and could thus have been the reason why it predicted a

lower traplining.

We assessed the ability of honey bees to partition between resources using two

complementary measurements, the modularity index and the relative visit time𝑄
𝑛𝑜𝑟𝑚

difference. The showed bees had a low, stable degree of partitioning, fitting none of𝑄
𝑛𝑜𝑟𝑚

the model’s predictions, as even the null model (Model 4[Null]) showed higher partitioning.

Using the relative visit time difference, however, we showed that the bees did not spend the

same amount of time on each flower, with on rare occasions flowers exclusively visited by

one bee. The partitioning in this experiment took the form of 1 or 2 flowers being unequally

visited by the pair of bees, but the identity of the partitioned flowers was different between

pairs of bees, implying their position was irrelevant. Moreover, the lack of increase in

partitioning throughout the observation period could mean that the bees did not

progressively learn from experience to avoid certain flowers. We can hypothesise then that

the partitioning observed could have emerged from cues available to bees from their first

visit to the array, such as olfactive cues in the form of scent marks, or visual cues of

competitor presence.

Honey bees produce a footprint chemical, called a scent mark, which they leave on

plants as they visit them (Giurfa & Nùñez, 1992, Giurfa, 1993). Multiple studies have shown

how bees would use these chemical cues during subsequent visits to avoid visiting flowers

visited recently, and thus more likely to be devoid of rewards (Giurfa & Nùñez, 1992;

Goulson et al., 2001). More recent studies on bumblebees showed in more detail how
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individual behaviours were affected by the presence of these footprints (Pearce et al., 2017).

This study in particular showed how the presence of scent marks reduces drastically the

probability of landing and drinking attempts, but not the hovering, meaning that this chemical

cue does not save the bee from navigating to empty flowers. This chemical cue should be

efficient in situations of high density of flowers (a patch of flowers) where the energy and

time cost of travelling between each flower is low, and the largest gain in energy and time for

the bee is to know whether to land and probe a flower or not. However, as flowers get further

apart, the cost in energy and time of travelling to an empty flower increases, making the use

of memories of the rewarding flower’s position much more energetically efficient. Therefore,

it appears to be much more efficient and parsimonious to rely on scent-marks in situations

where a bee visits large numbers of spatially close flowers, instead of trying to memorise the

rewarding flowers’ positions as our model does. This could also explain why it becomes

more efficient to rely on memories of flowers and trajectories as the flowers, or patches of

flowers, get further apart.

Honey bees have long been studied for their visual abilities (review in

Avarguès-Weber et al., 2012), and are able to accurately discriminate different visual cues

(Hempel de Ibarra et al., 2002). Thus, we cannot exclude that they could see the competitors

as they forage and use this information to avoid competition. Bees have often been

observed adapting their behaviour in the presence of competitors, reducing their foraging

area as competitors arrive, and expanding this same area as competitors are removed

(bumblebees: Thomson et al., 1987; Makino & Sakai, 2005; Ohashi et al., 2013; honey bees:

Williams, 1997).

Although our model has provided interesting comparisons with this experiment’s

results, they have also highlighted some of its limitations, some of which appear in hindsight

to be important in the study of foraging strategies in competitive situations. Namely, in the

model bees are always leaving the nest synchronously, and so always have immediate and
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direct foraging competition in the environment. However, in an experimental situation, it was

not conceivable to replicate such behaviour, as bees forage at different speeds and with

different motivations, often leading to differences in activity and inter-trip interval. One of the

proven advantages of traplines being the regularity of visits to flowers by a same bee

(Ohashi & Thomson, 2005), it is important to consider the motivation of a bee as it greatly

affects the time between foraging bouts. Another important discrepancy of the model is the

lack of flower manipulation time. At a low spatial scale, travelling between flowers represents

only a small portion of time compared to the time bees are landed on a flower looking for

nectar and retrieving it. In a situation such as our experiment, this lack of time restraint

allows a bee to potentially compete on multiple successive flowers and potentially win all

these interactions, drastically changing the dynamic of nectar retrieval in the pair of bees and

as a consequence the outcome of the simulation. These new results and observations

therefore provide important feedback on the conception of our model (further developed in

Chapter V), which will be used to further refine our predictions.

This new study has given us some first insights as to the establishment of foraging strategies

of honey bees in intra-patch foraging conditions. As the behaviour observed during our

experiment differed significantly from the predictions of our model based on learning and

memorising the trajectories between flowers, we hypothesise that at this spatial scale,

learning and memorising spatial information about numerous flowers is inefficient, when

compared with other cues available to bees, such as scent-marks and direct visual cues of

competitors. Our results further support the idea that traplines get harder to develop at low

spatial scale, but also suggest that the partitioning strategy could show the same constraint.

Out experimental situation, however, only presented a very limited number of flowers, each

rewarding amounts of sucrose solution exceedingly high when compared to what bees

usually experience in natural conditions. A future step would be to design a controlled

“intra-patch” foraging situation more closely related to their natural counterpart.

142



Bibliography

● Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., & Webb, B. (2016). Using an insect

mushroom body circuit to encode route memory in complex natural environments.

PLoS computational biology, 12(2). doi: doi.org/e1004683.

● Avarguès-Weber, A., Mota, T., & Giurfa, M. (2012). New vistas on honey bee vision.

Apidologie, 43(3), 244-268. doi: doi.org/10.1007/s13592-012-0124-2

● Balfour, N. J., Gandy, S., & Ratnieks, F. L. (2015). Exploitative competition alters bee

foraging and flower choice. Behavioral Ecology and Sociobiology, 69(10), 1731-1738.

doi: doi.org/10.1007/s00265-015-1985-y

● Beckett, S. J. (2016). Improved community detection in weighted bipartite networks.

Royal Society open science, 3(1), 140536. doi: doi.org/10.1098/rsos.140536

● Börger, L., Dalziel, B. D., & Fryxell, J. M. (2008). Are there general mechanisms of

animal home range behaviour? A review and prospects for future research. Ecology

letters, 11(6), 637-650. doi: doi.org/10.1111/j.1461-0248.2008.01182.x

● Buatois, A., & Lihoreau, M. (2016). Evidence of trapline foraging in honeybees.

Journal of Experimental Biology, 219(16), 2426-2429. doi:

doi.org/10.1242/jeb.143214

● Dormann, C. F., & Strauss, R. (2014). A method for detecting modules in quantitative

bipartite networks. Methods in Ecology and Evolution, 5(1), 90-98. doi:

doi.org/10.1111/2041-210X.12139

● Emrich, M. A., Clare, E. L., Symondson, W. O., Koenig, S. E., & Fenton, M. B.

(2014). Resource partitioning by insectivorous bats in J amaica. Molecular Ecology,

23(15), 3648-3656. doi: doi.org/10.1111/mec.12504

● Giurfa, M., & Núñez, J. A. (1992). Honeybees mark with scent and reject recently

visited flowers. Oecologia, 89(1), 113-117. doi: doi.org/10.1007/BF00319022

143



● Giurfa, M. (1993). The repellent scent-mark of the honeybee Apis mellifera ligustica

and its role as communication cue during foraging. Insectes Sociaux, 40(1), 59-67.

doi: doi.org/10.1007/bf01338832

● Goldshtein, A., Handel, M., Eitan, O., Bonstein, A., Shaler, T., Collet, S., ... & Yovel,

Y. (2020). Reinforcement learning enables resource partitioning in foraging bats.

Current Biology, 30(20), 4096-4102. doi: doi.org/10.1016/j.cub.2020.07.079

● Goulson, D., Chapman, J. W., & Hughes, W. O. (2001). Discrimination of

unrewarding flowers by bees; direct detection of rewards and use of repellent scent

marks. Journal of Insect Behavior, 14(5), 669-678. doi:

doi.org/10.1023/A:1012231419067

● De Ibarra, N. H., Giurfa, M., & Vorobyev, M. (2002). Discrimination of coloured

patterns by honeybees through chromatic and achromatic cues. Journal of

Comparative Physiology A, 188(7), 503-512. doi: doi.org/10.1007/s00359-002-0322-x

● Inouye, D. W. (1978). Resource partitioning in bumblebees: experimental studies of

foraging behavior. Ecology, 59(4), 672-678. doi: doi.org/10.2307/1938769

● Kappes, M. A., Weimerskirch, H., Pinaud, D., & Le Corre, M. (2011). Variability of

resource partitioning in sympatric tropical boobies. Marine Ecology Progress Series,

441, 281-294. doi: doi.org/10.3354/meps09376

● Kleynhans, E. J., Jolles, A. E., Bos, M. R., & Olff, H. (2011). Resource partitioning

along multiple niche dimensions in differently sized African savanna grazers. Oikos,

120(4), 591-600. doi: doi.org/10.1111/j.1600-0706.2010.18712.x

● Lihoreau, M., Chittka, L., Le Comber, S. C., & Raine, N. E. (2012). Bees do not use

nearest-neighbour rules for optimization of multi-location routes. Biology Letters, 8(1),

13-16. doi: doi.org/10.1098/rsbl.2011.0661

● Lihoreau, M., Raine, N. E., Reynolds, A. M., Stelzer, R. J., Lim, K. S., Smith, A. D., ...

& Chittka, L. (2012). Radar tracking and motion-sensitive cameras on flowers reveal

the development of pollinator multi-destination routes over large spatial scales. PLoS

Biol., 10(9): 19-21. doi: doi.org/10.1371/journal.pbio.1001392

144



● Lihoreau, M., Chittka, L., & Raine, N. E. (2016). Monitoring flower visitation networks

and interactions between pairs of bumble bees in a large outdoor flight cage. PLoS

One, 11(3), e0150844. doi: doi.org/10.1371/journal.pone.0150844

● Makino, T. T., & Sakai, S. (2005). Does interaction between bumblebees (Bombus

ignitus) reduce their foraging area?: bee-removal experiments in a net cage.

Behavioral Ecology and Sociobiology, 57(6), 617-622. doi:

doi.org/10.1007/s00265-004-0877-3

● Morse, D. H. (1977). Resource partitioning in bumble bees: the role of behavioral

factors. Science, 197(4304), 678-680. doi: doi.org/10.1126/science.197.4304.678

● Nagamitsu, T., & Inoue, T. (1997). Aggressive foraging of social bees as a

mechanism of floral resource partitioning in an Asian tropical rainforest. Oecologia,

110(3), 432-439. doi: doi.org/10.1007/s004420050178

● Ohashi, K., & Thomson, J. D. (2005). Efficient harvesting of renewing resources.

Behavioral Ecology, 16(3), 592-605. doi: doi.org/10.1093/beheco/ari031

● Ohashi, K., Thomson, J. D., & D'souza, D. (2007). Trapline foraging by bumble bees:

IV. Optimization of route geometry in the absence of competition. Behavioral Ecology,

18(1), 1-11. doi: doi.org/10.1093/beheco/arl053

● Ohashi, K., & Thomson, J. D. (2009). Trapline foraging by pollinators: its ontogeny,

economics and possible consequences for plants. Annals of Botany, 103(9),

1365-1378. doi: doi.org/10.1093/aob/mcp088

● Ohashi, K., Leslie, A., & Thomson, J. D. (2013). Trapline foraging by bumble bees:

VII. Adjustments for foraging success following competitor removal. Behavioral

Ecology, 24(3), 768-778. doi: doi.org/10.1093/beheco/ars200

● Pasquaretta, C., & Jeanson, R. (2018). Division of labor as a bipartite network.

Behavioral ecology, 29(2), 342-352. doi: doi.org/10.1093/beheco/arx170

● Pasquaretta, C., Dubois, T., Gomez‐Moracho, T., Delepoulle, V. P., Le Loc’h, G.,

Heeb, P., & Lihoreau, M. (2021). Analysis of temporal patterns in animal movement

145



networks. Methods in Ecology and Evolution, 12(1), 101-113. doi:

doi.org/10.1111/2041-210X.13364

● Pearce, R. F., Giuggioli, L., & Rands, S. A. (2017). Bumblebees can discriminate

between scent-marks deposited by conspecifics. Scientific reports, 7(1), 1-11. doi:

doi.org/10.1038/srep43872

● Reynolds, A. M., Lihoreau, M., & Chittka, L. (2013). A simple iterative model

accurately captures complex trapline formation by bumblebees across spatial scales

and flower arrangements. PLoS Computational Biology, 9(3), e1002938. doi:

doi.org/10.1371/journal.pcbi.1002938

● Riotte-Lambert, L., Benhamou, S., & Chamaillé-Jammes, S. (2015). How

memory-based movement leads to nonterritorial spatial segregation. The American

Naturalist, 185(4), E103-E116. doi: doi.org/10.1086/680009

● Saleh, N., & Chittka, L. (2007). Traplining in bumblebees (Bombus impatiens): a

foraging strategy’s ontogeny and the importance of spatial reference memory in

short-range foraging. Oecologia, 151(4), 719-730. doi:

doi.org/10.1007/s00442-006-0607-9

● Thomson, J. D., Peterson, S. C., & Harder, L. D. (1987). Response of traplining

bumble bees to competition experiments: shifts in feeding location and efficiency.

Oecologia, 71(2), 295-300. doi: doi.org/10.1007/BF00377298

● Wauters, L. A., Gurnell, J., Martinoli, A., & Tosi, G. (2002). Interspecific competition

between native Eurasian red squirrels and alien grey squirrels: does resource

partitioning occur?. Behavioral Ecology and Sociobiology, 52(4), 332-341. doi:

doi.org/10.1007/s00265-002-0516-9

● Williams, C. S. (1997). Foraging ecology of nectar-collecting bumblebees and

honeybees (Doctoral dissertation, University of Cambridge).

● Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M., & Chittka, L. (2017).

Continuous radar tracking illustrates the development of multi-destination routes of

bumblebees. Scientific reports, 7(1), 1-15. doi: doi.org/10.1038/s41598-017-17553-1

146

https://doi.org/10.1371/journal.pcbi.1002938


Chapter V.

Foraging strategies of bees in a competitive

intra-patch situation
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Abstract

The Optimal Foraging Theory proposes that animals such as bees could optimise, along a

given currency, their foraging behaviour. Yet, we have little evidence on how bees improve

their foraging efficiency at the scale of a single patch. We argue that understanding the

foraging behaviour of bees at small spatial scale is key to grasp how foraging strategies can

emerge in their natural context, and what the underlying mechanisms are. We observed

bees foraging in both natural and controlled conditions and used these observations to

assess whether and how bees were optimising their foraging behaviour. We compared our

experimental results to the predictions of our model to gain some insights on the potential

mechanisms responsible for the development of foraging strategies. We found that bees did

not exploit resources randomly, and globally improved their foraging efficiency when

possible. Their strategies appeared much more adaptable to the context of their foraging

than previously thought, and these differences can be reasonably related to variations in the

spatial and temporal constraints of their environments, suggesting these observed strategies

could be emerging from simple behavioural responses of bees to these constraints, and not

from cognitively intensive processes.
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1 - Introduction

When exploiting patches of flowers, generalist bees (such as honey bees and bumblebees)

have been observed establishing “traplines” in a way that often minimises the overall

distance between the different flower patches. While traplines are commonly used in various

situations, they are seldom seen when bees forage at the scale of a single patch of flowers,

where nearest-neighbour movements are preeminent (bumblebee: Burns & Thomson, 2006;

Saleh & Chittka, 2007; honey bee: Williams, 1997; Buatois & Lihoreau, 2016). In Chapter II,

we explored the reasons why traplines could be irrelevant at such spatial scales, yet, the

absence of traplines should not imply an absence of foraging optimisation. Here, we ask the

following question: do bees learn to improve their foraging performance at the scale of a

patch? If so, how?

For forager bees that travel several kilometres every day finding the shortest route

between flowers clustered in a patch would be expected to have a high cognitive load (i.e.

many flowers to learn and remember and different routes to compare with high precision) for

a likely minimal benefit, in terms of saved travel distance (Chapter II). Yet, this does not

mean that bees should not try to improve their foraging efficiency in these conditions. This

could be done by simply learning to avoid empty flowers, avoiding revisiting a flower too

soon, or avoiding any other behaviour that may have a cost without any apparent benefit. In

fact, we argue that traplines might just be one of many different ways bees can improve their

foraging efficiency, but that they could all be different outcomes of a general foraging

behaviour applied to different situations.

To explore the nature of traplines at various spatial scales we developed an

agent-based model to predict how reliable foraging routes might be formed by bees, based

simply on positive and negative reinforcement rules (Chapter III). We conducted experiments

during which we tracked multiple individual bees competing for forage on a plant (Borago
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officinalis), and also in a controlled array of artificial flowers. We then compared our

experimental results to the predictions of our model in order to understand the kinds of

foraging strategies observed in a small scale flower patch. In both experiments, we tried to

identify if the bees were improving their foraging efficiency through changes in behaviour.

Furthermore, the comparison between our model and our experimental results allowed us to

compare the behaviour of bees predicted by our model that used only simple learning rules

with the behaviour of real bees in small scale patches.

2 - Methods

2.1 - Natural Experiment

Experimental protocol

We designed an experiment, inspired by Williams, 1997, to observe the behaviour of bees in

a natural flower patch. This was then used as a comparison with observations of bees

foraging in controlled environments on a small patch of artificial flowers. This experiment

was conducted in October 2020 at the Macquarie University (Sydney, Australia). For this

experiment, two borage plants (Borago officinalis) were planted 1 metre apart from each

other inside the bee yard of the university (Fig 1a), at about 50m from the 20 hives reared in

this area. The choice of the borage plants for this experiment was following their use in

Williams, 1997. Around these plants were other potted plants and naturally growing plants,

giving ample foraging opportunities for bees. Because the borage plants used were located

within a garden with multiple other plants, their maintenance process was not specifically

recorded, as they were maintained along the other plants of the garden (i.e. watered

everyday). Foragers were not trained to forage in this area, but rather allowed to freely

discover, forage and recruit to the borage plans as to not artificially impact the visitation rates

of the plants. Branches of the borage plant were held in place using stakes, to avoid them

from falling over. As flowers opened, we attributed to each an ID number, written on a piece

of yellow-colored tape and stuck to the base of the flower. While the colour of the tag could
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have influenced the bees, all flowers were similarly tagged so no flower should have been

treated differently. Using an array of three rulers, each perpendicular to the others, we

assessed the 3D position of each flower as they opened as cartesian coordinates to 1cm

accuracy. Using these measurements, we were able to reconstruct the 3D distribution of

flowers within the patch of borage.

Fig 1: a) Picture of one of the Borago officinalis plants used for the natural experiment. b)

Experimental setup for the controlled experiment.

On the days the experiment was run, any new flowers were marked and their position

reported. Then, 30 minutes were spent marking any bee visiting the plants with dots of paint

(thin-tipped POSCA® Markers) of different colours on the bees’ backs, to identify them

individually. Once the bees visiting the patch were identified, we started recording the

sequence of flowers visited by bees as they foraged on the borage plant. Because only one

observer was present on the experiment, only one bee could be followed at a time. Thus, the
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first bee to arrive to the patch was followed, the IDs of the visited flowers reported, while

ignoring other bees arriving until the focal bee left. A focal bee’s visit to the patch was

considered over if it left the patch for one minute. A total of 4 days of experiment were

conducted, following bees visiting the patch until visits to the plant stopped.

Data Analysis

We were first interested in quantifying how often bees followed nearest neighbour

movements. When foraging at the scale of a single patch (i.e. intra-patch foraging), bees are

not expected to memorise rewarding flowers and develop stable routes (Chapter II; Burns &

Thomson, 2006). In fact, naive bees were most often observed using nearest neighbour

rules instead. To confirm this, the visitation sequences of bees were extracted from audio

recordings taken during the observations. Then, we quantified the distances travelled

between each two successive flowers visited (hereafter “the interflower distance”), looked at

the proportions at which each distance was observed and compared it to the distribution of

distances between each pair of flowers of the plant.

Secondly, we focused on the ability of bees to establish “repertoires” of flowers

(coined in Williams, 1997): groups of food sources that are memorised and regularly

revisited, although in no specific order. How many flowers are visited in a patch depends on

many factors, such as the rewards from each flower visited (i.e. a low volume on a flower

increases the probability of leaving the patch; Pyke, 1982a), the presence of competitors or

their scent-marks (Stout & Goulson, 2001). While traplining is not expected at this spatial

scale, we still expected to find at least partial partitioning through the development of

different repertoires of flowers (Chapter II). However, because only one bee’s sequence was

recorded at a time, and the visits of bees to the array were sometimes sparse and spread in

time, the use of common partitioning measurements such as the modularity index 𝑄
𝑛𝑜𝑟𝑚

(Chapters III and IV) were irrelevant. Instead, we used a measurement called Mean Location
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Estimates (hereafter MLE; from Williams, 1997), a bootstrapped estimation of the centre of

gravity of all flowers visited. For this index, we grouped all the flowers visited during all bouts

of a same bee, and for 1000 bootstraps we sampled as many flowers as the number of

flowers visited during the bee’s longest bout, and computed the mean position of these

flowers. The result, a scatter of 1000 points per individual bee, was displayed in a 3D graph.

Because of the low sample size in this experiment (2 to 5 bees followed each day, for 4

days, visiting the patch for 1 to 21 foraging bouts), no statistical analysis was conducted on

these data.

2.2 - Controlled experiments

Setup and training

We then planned two controlled experiments as a follow-up on our first natural experiment.

Their goal was to replicate as faithfully as possible the conditions of the natural patch of

flowers, while also providing the control we need to properly quantify the behaviours of bees

and manipulate nectar availability. The two experiments were conducted between February

and May 2021 at Macquarie University (Sydney, Australia). Bees from the nearby hives were

given an ad libitum feeder of 20% sucrose solution (w/w) 10 metres away from the

experimental site. From there, individual bees were taken indiscriminately to be part of the

experiment by presenting a Q-tip imbibed with a 50% (w/w) sucrose solution, and brought to

the experimental array.

We built an artificial array of 64 flowers (Fig 1b). The array consisted of a Corflute

plastic board (120x90 cm) reinforced with a wood frame on the edges. The flowers were set

in a square of 80x80 cm (i.e. 8 rows and 8 columns of 8 flowers spaced by 10cm each).

Each flower consisted of a 1.5ml Eppendorf tube with its cap removed, placed through drilled

holes in the board and hot glued. Around the tube, a 4x4cm paper colored circle was glued

to help the bees locate the positions of the flowers. Circles of blue or yellow colors were
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used during different days. Throughout the experiments the array was held vertically, from

the sides by tripods equipped with clamps. All movements on the array were recorded by a

camera. A 20x20cm array with 4 flowers (hereafter the “training array”) was also made to

train the bees before the experiment and avoid any bias of previous knowledge of the array.

Through these two experiments, we focused on the competition aspect of foraging

behaviour, trying to understand if the consequence of the competition pressure (i.e. empty

flowers) was enough to drive bees to trapline and/or partition and improve their foraging

efficiency, or if other cues (scent-marks, visual cues) were necessary. To test this, in the first

experiment, we trained one bee to forage on our artificial array, where 12 flowers out of 64

(20% of flowers) were rewarded with sucrose solution, mimicking the natural variability in

rewards from various factors (i.e. competition or plant physiology or strategy) through the

empty flowers. In the second experiment, 5 bees were trained to come to the artificial array,

with all flowers rewarding sucrose solution.

One bee experiment

The goal of the first experiment was to observe how a single bee would forage on the array

with stable resources throughout the day. A single bee was brought to the training array from

the ad libitum feeder, by presenting a Q-tip soaked in 50% (w/w) sucrose solution to the

antenna of a bee present at the 20% sucrose gravity feeder until it started feeding on and

climbed onto the Q-tip. The bee was transferred from the Q-tip to one of the flowers of the

training array, which were at first filled with ~15-20μL of 50% (w/w) sucrose solution. The bee

was left to forage freely until its crop was full and left the array. If the bee came back on its

own to the training array, it was tagged using a dot of paint (thin-tipped POSCA® Markers)

on the thorax, and was left to forage again. If the tagged bee came back a third time to the

training array, the training was considered successful and the experiment started.
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The main array was set in place where the training array was initially set, and the

camera started recording before the bee came back. For this experiment, 12 flowers were

chosen pseudorandomly every day to be rewarding. The experiment went on until either the

bee completed 40 foraging bouts on the array (i.e. a foraging trip, with return to the nest

before the next one) or stopped coming to the array. For the duration of the experiment, the

flowers emptied by the bee would be refilled (with a variable volume, see below in

“Estimation of reward volumes dispensed”) between two successive visits to the array. The

sequences of flower visits on the array were then extracted manually through video analysis.

Each flower visit was categorised as either “hover” or “landing”, reflecting the probing

behaviour of the bee. A hover was considered when the bee would momentarily perform a

stationary flight in front of a flower. When looking at visitation sequences for statistical

analyses, both hovers and landings were counted. The number of landings per foraging bout

were used to assess the amount of resources gathered by the bee (i.e. a resource was

considered taken when the bee landed on a rewarded flower).

Five bees experiment

The second experiment’s goal was to test the foraging ability of bees in a competitive

situation. The training was similar to the first experiment, albeit with 5 bees. The bees would

be tagged with a unique colour if they came back on their own (without needing to pick them

with a Q-tip from the main feeder again) to the training array a first time, and then the

experiment started when all 5 tagged bees came back once more. For this experiment, all 64

flowers were rewarded at the beginning of the experiment, then every 5 minutes the left or

right sides of the array were replenished, alternatively. As bees could be present on the

array at the time of replenishing, only the depleted flowers on which there were no bees

were replenished. The bees were then observed for 3 hours, which was enough for the

fastest ones to do about 40 foraging bouts.
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Through video analysis we manually extracted information about the foraging

behaviour. We recorded the times of arrival and departure from the array, and for each flower

visited by each bee, the ID of the flower, as well as the type of visit (hovering or landing).

Because the resolution of the video was too low to confirm whether bees were actually

feeding when they landed on flowers, all bees landing and staying static on a flower were

considered as feeding, unless the flower was already depleted from a previous visit of a bee.

Estimation of reward volumes dispensed

In both experiments, a 50% (w/w) sucrose solution was dispensed in flowers of the array

using a manual plastic transfer pipette. The pipettes used had a thin tip, and were often

cleaned with water during the experiment to avoid crystallisation of sugar. The experimenter

dispensed droplets of the solution at the entrance of the flowers, the volume of which could

vary between droplets (thus mimicking the natural variability of nectar in flowers). We

assessed the amount of solution delivered in a droplet by estimating the volume in a large

sample (n=108) of droplets made using the same process. The volume was estimated using

the area of the droplet as a proxy. The relation between volume and area of droplets was

first quantified by making reference droplets with an electronic micropipette for volumes

between 3μL and 10μL. The measurement of the areas of the reference droplets, done using

the imageJ program, indicated that area was a good predictor of volume using a linear

regression (Adjusted R-squared = 0.8845). The volumes of the sample droplets were then

estimated using the following formula:

𝑉𝑜𝑙𝑢𝑚𝑒 =  − 2. 38 +  1. 125 * 𝐴𝑟𝑒𝑎

where the volume is expressed in μL and the area in mm². The correlation is displayed

graphically in Fig 2, and the distribution of the sample droplets in Fig 3.
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Fig 2: Linear regression showing correlation between area and volume of sucrose solution

droplets, used to assess the volumes typically dispensed by our thin-tip micropipette. The

regression had an adjusted R-squared = 0.8845.

Fig 3: Distribution of sucrose solution volumes dispensed by our thin-tip micropipette by the

experimenter. Vertical red bar represents the mean value of 6.26μL.
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Data Analysis

Firstly, in both experiments we looked at the bees’ ability to form traplines, using our route

similarity index (defined in Chapter III & IV), with the expectation that no traplines would be

formed at this spatial scale. Secondly, we focused on their ability to partition in the 5 bees

experiment, using the modularity index (defined in Chapters III & IV). For these two𝑄
𝑛𝑜𝑟𝑚

indices, we computed statistical models with mixed effects (Binomial GLMMs) looking at the

effect of successive bouts on the indices, while adding a random effect for the identity of the

bees.

Thirdly, we also looked at diverse criteria obtained by analysing the visitation

sequences, such as the number of unrewarded and rewarded visits per bout and the

interflower distance. These criteria provide supplementary details about potential ways bees

could improve their foraging efficiency without needing traplines. They also support

considerably the information given by our indices, which do not always capture completely

the complexity of these behaviours (Chapter IV). For the unrewarded and rewarded visits,

we computed GLMMs to quantify how their numbers varied with each successive foraging

bout. Finally, the interflower distances used by each bee were statistically compared to that

of the distribution of interflower distances in the array.

All analyses were done using R version 4.0.5 (R Core Team, 2021).

2.3 - Modelling

In Chapter III, we designed an agent-based model to attempt to explain the decision

processes behind the establishment of foraging strategies, using simple positive and

negative reinforcements. One of the goals of these experiments was to provide a new

dataset to challenge the model’s assumptions at small spatial scales. After comparing this

model to the results of our first experiment, it appeared that some of the limits of our model
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were preventing us from accurately predicting the bees’ behaviours (Chapter IV). The model

was therefore improved to overcome these shortcomings. We provide here a brief overview

of this model’s algorithm and highlight the changes made to it.

In the model, the main goal of the bees was to fill their crop by visiting feeding sites

(hereafter called “flowers”) which provided resources (sucrose solution). The bees navigated

between the different flowers using a transition probability matrix, which gave for any pair of

flowers a probability of navigating between them. For every movement the bee did within the

environment, the matrix was consulted and the next destination chosen probabilistically. This

system was inspired from a previous model (Reynolds et al., 2013), and we showed that

these distance-based probabilities were accurately mimicking the probabilities of an agent to

find a point in space while navigating according to the rules of a random walk (S6 Text of

Chapter III). These probabilities were then altered throughout the simulation, increasing

probabilities of certain movements if they led to a reward, and decreasing them if they did

not. These two simple reinforcement rules, based on the abilities of bees to learn through

appetitive learning (Goulson, 2010) and to avoid visiting flowers recently visited or on which

they had been previously displaced by a competitor (Pasquaretta et al., 2019). The bees

would thus navigate between different flowers and alter the probabilities of future

movements based on the outcomes of their visits. In each trip to the array (i.e. foraging

bout), each transition vector between 2 flowers was only altered on its first use. Once the

bee reached its crop capacity, it would leave the array and go back to its nest.

The first limit of our model was the forced synchrony of foraging bouts for all bees.

Indeed, in the initial version of the model (Chapter III) all bees were made to leave the nest

together to force them to forage interactively, but also to simplify how the different flowers

were replenished, which was right before all the bees would start a new bout. However, our

various experiments showed that it was impractical to try and keep the bees synchronised,

and that doing so impacted heavily on the dynamics of the foraging activity (Chapter IV). At
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the scale of a single bush with 50 to 100 flowers, how often flowers are depleted by bees

depends on their visitation rates. These vary greatly between individuals may it be from the

distance between this plant and their nest, or their motivation to forage. Moreover, when

multiple bees visit the same patch together, the time required to execute short tasks such as

moving between two flowers or retrieving the nectar from a flower becomes relevant. In our

experiments, bees visiting our array typically stayed for 90 to 120 seconds. During this

period, assessing the status of a flower (unrewarding or rewarding) and travelling between

neighbouring flowers generally took 1 second, while feeding on a flower ranged between 6

and 30 seconds. It is reasonable to assume that these costs in time, as well as the

interindividual variations in revisitation rates, could shape how multiple bees forage in a

patch.

To implement these new constraints in the model, we changed how time was

considered. The previous model directed that at every “time” step, each bee would visit a

new flower or get back to their nest. In our updated model, each step is a second, and we

attributed to each action an amount of time. From our available experimental data (n=35

bees, each doing 10 to 46 foraging bouts), we calculated the average time between a bee’s

departure from the array and the moment it returned (i.e. the “inter-bout time”) and used this

data to implement the same timings in our model. Each modelled individual was given at

random a value from this experimental distribution. For the duration of an unrewarding visit

and the time to travel between flowers, their average duration were not easily assessed as

they often took no more than a second, and would have required a much more detailed

analysis (frame-by-frame) of the video to get a precise assessment. For simplicity, these

durations were approximated to 1 second. For the time taken to consume the reward of a

flower, our recordings were not able to discriminate between a bee feeding and a bee landed

but not feeding. Moreover, as the amounts dispensed in each flower varied, it was not

possible to estimate correctly this value. Thus, it was attributed an arbitrary value of

0.5μL/second.

160



In the former model flowers gave one arbitrary unit of resource and the bees needed

5 of these arbitrary resources to fill their crop. In order to fit the variation in rewards

introduced in our sucrose solution dispensing process, we changed how resources were

attributed to each flower. In our new model, the reward of each flower was sampled from the

distribution we established from 108 samples of sucrose solution droplets (Fig 3). Along with

this change, modelled bees’ crop capacity was changed from the arbitrary 5 units to a value

of 40μL, based on the result of the one bee experiment where bees visited in average 6.5

rewarding flowers per trip, each containing an average of 6.2μL (6.5*6.2=40.3).

While foraging, the bees interacted just as they did in the previous model (Chapter

III). If they encountered a competitor on a flower, each bee had an equal chance of winning

the interaction. The only change to these competitive interactions was that they now could

happen at any time during the presence of a bee feeding on a flower, and the winner of an

interaction would only be able to take whatever reward was left.

The learning rules of the model remained nearly unchanged. They were slightly

adapted as a consequence of the changes in competitive interactions. In this new version of

the model, a bee positively reinforced a transition vector only if it emptied the flower. Any bee

dislodged from a flower before its content was completely emptied negatively reinforced the

associated transition vector. Each transition between pairs of flowers was still only affected

on their first execution each bout, preventing a transition from being affected multiple times

per foraging bout. This change to the learning process reflects the idea that bees would

reduce how often they visit a flower when their previous nectar expectations are not met

anymore (Greggers & Mauelshagen, 1997; Gil et al., 2007; Gil, 2010).
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2.4 - Comparisons between observations and simulations

This updated model was used to predict the outcomes of the controlled experiments. As

each experiment presented specific ways to replenish the flowers during its duration, the

model was adapted to replicate these specificities. To explore the effect of each type of

reinforcement, 4 variants of the models were derived from the main algorithm, based on the

use of each reinforcement. A model using the positive reinforcement (Model 1[+]), a model

using only the negative reinforcement (Model 2[-]), another using both reinforcements

(Model 3[+/-]) or finally none (Model 4[Null]).

For the one bee experiment, each of the 4 models was run for each day, as

rewarding flowers changed between days. For each day of the experiment, each model was

run for 100 simulations, each lasting 10800 seconds (i.e. 3 hours). For the five bees

experiment, the 4 models were run only once for all the experimental days as there were no

constraints on the rewarding flowers. Each model was run for 100 simulations of 10800

seconds. For each model we looked at the same statistics and criteria as the experimental

data (when applicable) with similar statistical models, but only compared the experimental

and model data graphically. To assess if our variables were significantly affected by

experience (successive foraging bouts), we observed the slope values of the GLMMs and

considered them to be statistically different from 0 if their 95% confidence interval did not

include 0. The lower and upper confidence interval limits were calculated and reported in

Table 1 and Table 2 along with their associated variable.

3 - Results

3.1 - Natural experiment

We monitored the visits of bees coming to a patch of Borago officinalis on which we marked

each open flower and reported their 3D positions. A total of 8 bees were tagged throughout 4

days of observations. First we pooled all the visits made to flowers of the patch by each bee
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during a day, and used them to compute a Mean Location Estimate, a cloud of points

representing their average foraging area. All individuals seemed to use similar areas, as

MLEs appear to overlap (Fig 4). For the few individuals that were followed multiple days in a

row, the MLEs of different days differed, likely occurring as previously opened flowers wilted

and new flowers emerged, forcing foragers to change their exploitation area. This lack of

partitioning could be simply explained by a general lack of rewards. The labelled flowers

rewarded very low amounts of nectar (volumes could not be reliably assessed as they were

lower than 0.1μL), which could explain why bees would have to visit most flowers. The

amount of nectar rewards per flower was lower than what would be typically expected from a

borage plant (Descamps et al., 2018; 2021), which could be explained by various abiotic

factors such as temperature, humidity or soil quality. We verified that the bees observed

during the experiment were not pollen foragers, by the lack of accumulated pollen in the

baskets.

Then, we looked at the distribution of trips between flowers, and compared them to

the distribution of inter-flower distances in the patch. If the bees navigated between any

flower at random, we would expect the two distributions to match. Because there were

opened flowers on both borage plants during the first three days the distributions appeared

to be bimodal (Fig 5a-c). Bees displayed a non-negligible amount of long distance

movements, representing in part the movements bees made between the two borage plants.

Throughout the four days where these “inter-plant movements” appeared, they represented

26.81% of all movements. Bees transitioned between the two plants typically 0 to 3 times per

foraging bout, but rarely they did so up to 30 times per foraging bout (Fig 6). Bees very rarely

displayed movements between nearest-neighbours. Bees travelled higher distances

between successive visited flowers (40.88 ± 26.29cm - excluding inter-plant movements)

than what they would have if using nearest-neighbour movements (3.84 ± 2.82cm).

Throughout the 4 days of observations nearest-neighbour movements represented a very

small minority of movements (0.38% of movements).
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Fig 4: Mean Location Estimates for each day of observation (a-d). Legend for each day

shows which individual foraged and in parentheses the number of visits to the plant. Black

dots represent unvisited flowers (either open but not visited, or closed), while grey dots

represent visited flowers.
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Fig 5: Inter-flower travel frequencies for each observation day (a-d). Each day, the data of all

observed bees were pooled together (blue) and compared to the distribution of distance

between all flowers of the patch (red).
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Fig 6: Number of transitions between the two monitored plants of borage by bees per

foraging bout. All 4 days of observations are pooled together.
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3.2 - Controlled experiment: One bee

We next ran an experiment with a set of artificial flowers to see if and how a single bee in a

stable, competition-free, small scale environment would improve its foraging efficiency. In

this experiment, we trained a single bee to forage on an artificial array of 64 flowers, of which

12 were constantly rewarding throughout the period of observation. All flowers that were

depleted during a foraging bout of the focal bee were replenished before its next visit. We

also compared the results of this experiment with our models. For all the criteria observed,

the experimental data of the 4 days were pooled together for analysis, although there is no

certainty that the different rewarding flowers chosen pseudorandomly during each day did

not affect the experience of the foragers. All the statistical results are shown in Table 1.

We first examined the ability of bees to form traplines through our similarity index.

The index did not significantly increase with successive foraging bouts (Table 1), suggesting

bees did not form traplines (Fig 7a). In comparison, the models predicted slightly lower

values of this index. All models showed no significant variation of the similarity index.

Besides the slight underestimation in route similarity, the models predicted correctly the lack

of development of traplines in this experiment.

Bees significantly reduced their visits to empty flowers with each successive visit to

the array (Table 1 and Fig 7b). This suggests that although they did not establish traplines,

bees still seemingly learned to avoid empty flowers. All the models showed a significant

decrease in these visits to empty flowers with visibly different effect strengths. Given the

much lower slope estimate for Model 4[Null] (100 times smaller than other models; Table 1),

we still conclude that the decrease in number of visits to empty flowers is a result of the

learning rules of the model, but we cannot identify clear different effects of the different

learning rules, or their combinations.
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Table 1: Statistical output for the experiments and model simulations in the one bee

experiment. Comparisons of (i) route similarity index, (ii) number of unrewarded visits, (iii)

distance travelled and (iv) number of rewarded visits through GLMMs using bee identity as a

random effect. The results presented are the slope estimate ± Standard Error of the Mean,

along with a 95% confidence interval of the mean (Mean ± 1.96*SEM) and the significance.

The variable observed is counted as having a significant variation from 0 if the 95%

confidence interval of the mean slope does not intersect the value of 0.

Variable Data Slope Est. ± SEM Low. 95% CI Upp. 95% CI Significance

Similarity
Index

Exp. Data 3.59e-02 ± 3.75e-02 -3.76e-02 1.09e-01 No

Model 1[+] 1.98e-02 ± 3.92e-02 -5.71e-02 9.67e-02 No

Model 2[-] -2.33e-02 ± 1.18e-01 -2.54e-01 2.08e-01 No

Model 3[+/-] 1.39e-01 ± 1.05e-01 -6.65e-02 3.45e-01 No

Model 4[Null] 7.84e-02 ± 6.61e-02 -5.12e-02 2.08e-01 No

Unrewarded
Visits

Exp. Data -8.31e-03 ± 1.20e-03 -1.07e-02 -5.96e-03 Yes

Model 1[+] -1.53e-02 ± 2.24e-04 -1.58e-02 -1.49e-02 Yes

Model 2[-] -1.00e-02 ± 2.25e-04 -1.05e-02 -9.60e-03 Yes

Model 3[+/-] -2.05e-02 ± 2.25e-04 -2.09e-02 -2.00e-02 Yes

Model 4[Null] -5.16e-04 ± 2.28e-04 -9.63e-04 -6.89e-05 Yes

Distance
Travelled

Exp. Data -5.759 ± 3.214 -12.06 0.541 No

Model 1[+] -10.211 ± 0.623 -11.43 -8.990 Yes

Model 2[-] -3.236 ± 0.635 -4.48 -1.992 Yes

Model 3[+/-] -9.691 ± 0.591 -10.85 -8.532 Yes

Model 4[Null] -0.693 ± 0.695 -2.06 0.668 No

Rewarded
Visits

Exp. Data 1.61e-03 ± 2.98e-03 -4.24e-03 7.46e-03 No

Model 1[+] -9.04e-05 ± 5.73e-04 -1.21e-03 1.03e-03 No

Model 2[-] -4.70e-05 ± 5.85e-04 -1.19e-03 1.10e-03 No

Model 3[+/-] -2.79e-04 ± 5.45e-04 -1.35e-03 7.89e-04 No

Model 4[Null] 8.16e-05 ± 6.41e-04 -1.17e-03 1.34e-03 No

168



While non-significant, bees tended to reduce the total distance travelled with

experience (Fig 7c, Table 1). Our models with learning rules (Model 1[+], Model 2[-] and

Model 3[+/-]) reduced significantly their total travelled distance with experience, while the null

model (Model 4[Null]) did not. Overall, the models’ predictions still appear to be quite faithful

to the experimental data, suggesting that bees could have learned and reinforced their visits

even at this small spatial scale. Nonetheless, it appears bees learn at a slower pace than our

models, a suggesting in accordance with earlier models on the ontogeny of traplines

(Reynolds et al., 2013).

Finally, neither the bees in our experiment or the models showed any variation in

number of rewarding flowers visited, indicating that the the bees kept foraging until their crop

was full during each foraging bout throughout the observation period, and that they did not

require any learning period to find the different rewarding flowers of the array (Fig 7d, Table

1). Bees used nearest-neighbour movements significantly more often than what would be

expected if they navigated randomly between flowers of the array (Fig 8a; NN: 73.29% of all

movements). All the models (here pooled together as they gave very similar results)

provided similar results (Model 1[+]: 69.67%; Model 2[-]: 61.29%; Model 3[+/-]: 63.14%;

Model 4[Null]: 68.06%), suggesting this behaviour would be independent from any learning

and more a consequence of the natural nearest-neighbour preference of bees that we

reproduced in our models through the distance probability matrix.
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Fig 7: Graphical representations of (a) the similarity index, (b) the number of visits to

unrewarded flowers, (c) the total distance travelled per bout (in cm) and (d) the number of

rewarded flowers visited, for the experimental data of the 1 bee experiment and the 4

models (GLMs of the appropriate families: (a) binomial, (b,d) poisson and (c) gaussian).
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Fig 8: Inter-flower travel frequencies for (a) the 1 Bee experiment and (b) the 5 Bees

experiment. Distributions for bees in our experiment (green; (a) n=4; (b) n=35), our models

(blue; pooled together; 100 simulations of each of the 4 models) and the distribution of

inter-flower distances between all 64 flowers of the artificial array (red).
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3.3 Controlled experiment: Five bees

In this experiment, we were interested to see how 5 honey bees, naive to a new

environment, would be able to improve their foraging efficiency throughout an observation

period of 3 hours. We also compared these experimental results to our updated model

predictions to see if simple learning mechanisms were able to explain the observed

behaviour. All the statistical results are condensed in Table 2.

The bees presented no sign of repeated stable routes, as the route similarity index

remained low throughout the whole observation period (Fig 9a), with no statistical difference

with the null model (Table 2). All models concurred with this result, suggesting bees did not

develop stable routes. The level of resource partitioning was constantly high in our

experiment, but also in our models (Fig 9b), and the experimental data showed a slight,

non-significant increase of this partitioning index during the observation period (Table 2). All

models converged in their predictions (including the null model without any reinforcement),

suggesting partitioning was not a consequence of the learning process but rather from how

easy it became to partition between resources as their number increased, for the simple

reason that even if bees navigated at random between flowers, the probability to encounter

another bee or a flower already emptied by another bee diminishes with the number of

flowers available.
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Table 2: Statistical output for the.experiments and model simulations in the five bee

experiment. Comparisons of (i) route similarity index, (ii) resource partitioning index, (iii)

number of unrewarded visits, (iv) distance travelled and (v) number of rewarded visits

through GLMMs using bee identity as a random effect. The results presented are the slope

estimate ± Standard Error of the Mean, along with a 95% confidence interval of the mean

(Mean ± 1.96*SEM) and the significance. The variable observed is counted as having a

significant variation from 0 if the 95% confidence interval of the mean slope does not

intersect the value of 0.

173



Variable Data Slope Est. ± SEM Low. 95% CI Upp. 95% CI Significance

Similarity
Index

Exp. Data -7.09e-02 ± 5.00e-02 -1.69e-01 2.71e-02 No

Model 1[+] 4.23e-02 ± 4.02e-02 -3.64e-02 1.21e-01 No

Model 2[-] 1.75e-01 ± 1.57e-01 -1.33e-01 4.83e-01 No

Model 3[+/-] 7.88e-02 ± 7.70e-02 -7.21e-02 2.30e-01 No

Model 4[Null] -1.49e01 ± 8.84e-02 -3.22e-01 2.42e-02 No

Partitioning
Index

Exp. Data 5.99e-02 ± 4.32e-02 -2.48e-02 1.45e-01 No

Model 1[+] -9.94e-04 ± 7.62e-03 -1.59e-02 1.39e-02 No

Model 2[-] -3.41e-03 ± 6.94e-03 -1.70e-02 1.02e-02 No

Model 3[+/-] -7.11e-03 ± 7.44e-03 -2.17e-02 7.46e-03 No

Model 4[Null] 1.12e-03 ± 7.66e-03 -1.39e-02 1.61e-02 No

Unrewarded
Visits

Exp. Data -1.06e-02 ± 1.29e-03 -1.31e-02 -8.07e-03 Yes

Model 1[+] 2.73e-04 ± 3.18e-04 -3.51e-04 8.97e-04 No

Model 2[-] 2.49e-04 ± 3.17e-04 -3.72e-04 8.70e-04 No

Model 3[+/-] 2.12e-04 ± 3.24e-04 -4.23e-04 8.46e-04 No

Model 4[Null] 2.76e-04 ± 3.17e-04 -3.46e-04 8.97e-04 No

Distance
Travelled

Exp. Data -1.406 ± 0.439 -2.267 -0.546 Yes

Model 1[+] 1.199 ± 0.125 0.953 1.445 Yes

Model 2[-] 1.286 ± 0.125 1.042 1.531 Yes

Model 3[+/-] 1.279 ± 0.128 1.029 1.529 Yes

Model 4[Null] 0.766 ± 0.125 0.521 1.011 Yes

Rewarded
Visits

Exp. Data -5.41e-03 ± 1.42e-03 -8.18e-03 -2.63e-03 Yes

Model 1[+] 9.08e-03 ± 2.51e-04 8.59e-03 9.57e-03 Yes

Model 2[-] 6.27e-03 ± 2.54e-04 5.77e-03 6.77e-03 Yes

Model 3[+/-] 8.02e-03 ± 2.59e-04 7.51e-03 8.53e-03 Yes

Model 4[Null] 5.04e-03 ± 2.56e-04 4.54e-03 5.55e-03 Yes
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Fig 9: Graphical representations of (a) the similarity index, (b) the partitioning index , (c)𝑄
𝑛𝑜𝑟𝑚

the number of visits to unrewarded flowers, (d) the total distance travelled per bout (in

centimetres) and (e) the number of rewarded flowers visited, for the experimental data and

the 4 models (GLMs of the appropriate family: (a,b) binomial, (c,e) poisson and (d)

gaussian). All points of experimental data are displayed.
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Similarly to the previous experiment with one bee, the five bees also significantly

reduced the number of visits to empty flowers with experience (Fig 9c, Table 2), while all

models presented a slight, non-significant increase. This interesting disparity between

experimental data and model predictions points out potential mechanisms that our model

could be missing. The convergence of all models indicates that learning is not responsible

for the trend observed.

This decrease in visits to empty flowers correlated with a decrease in the total

distance travelled by bees in our experiment with each successive foraging bout (Fig 9d,

Table 2), which makes sense as the total distance travelled is directly linked to the total

number of flowers visited. The models, which visited more empty flowers with each foraging

bout, increased their total distance travelled, showing the same correlation between visits to

empty flowers and distance travelled.

Bees reduced the number of rewarded flowers visited with experience (Fig 9e, Table

2), while all models slightly increased theirs. Although significant, all effect strengths were

low, suggesting the variation in number of rewards acquired was minimal.

Finally, bees used nearest-neighbour movements much more often than expected if

they were navigating between any 2 flowers of the array (Fig 8b), in both the experiment

(NN: 72.00% of all movements) and all the models (Model 1[+]: 70.28%; Model 2[-]: 65.82%;

Model 3[+/-]: 67.81%; Model 4[Null]: 68.34%).

4 - Discussion

One of the major components of foraging time for bees is time spent visiting flowers in a

patch. In Chapter II, we argued that the foraging behaviour of bees was more likely to not

include cognitively intensive mechanisms, and that foraging optimisation could be better
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explained by simple behavioural rules and constraints of the environment and of the bees’

biology. In these experiments, we set out to observe bees foraging on artificial and natural

arrays of flowers, and to quantify their foraging behaviour to see if and how they would

optimise their foraging efficiency. We compared part of our experimental results to our

behavioural model’s predictions to see if simple positive and negative reinforcement rules

would be sufficient to explain their foraging optimisation.

4.1 - An absence of traplines

In our experimental setups, bees did not show any sign of traplining in any of our

experiments; a result in accordance with other experiments in similar setups (bumblebees:

Burns & Thomson, 2006; Saleh & Chittka, 2007; honey bees: Buatois & Lihoreau, 2016).

Our models shared this prediction, which suggests that even if bees were to try to memorise

the rewarding flowers they visited (which we showed leads to the establishment of traplines

in many situations; Chapter III), no trapline would emerge. The lack of traplining here can be

explained by the large number of spatially close flowers. Memorising a spatial location likely

is a high cognitive load for the bee, and in the case of patches of flowers, bees can visit

dozens of flowers before leaving for another patch. In this situation, the cognitive load of

remembering a large number of flowers is likely to be inefficient, as the gain from finding the

shortest path here would only save a negligible distance compared to what bees usually

travel. It also becomes more difficult for bees, who may rely on storing views of locations

with distinctive landmarks to navigate spatially (Dyer et al., 2008; Menzel et al., 2019), to

discriminate flowers that are spatially aggregated.

Bees in our experiment mostly resorted to short movements, but not necessarily the

nearest-neighbour movements. In the patch of borage, bees did not seem to bother using

the nearest flower, and travelled approximately 10 times the nearest-neighbour distance

between each flower. However, nearest-neighbour movements were the majority of
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movements in both our controlled experiments, as well as the predictions of the models in

these environments. A potential reason for this difference is in the interaction between how

bees navigate and how the flowers were distributed in both types of environments. On a

borage plant, flowers are distributed in 3 dimensions and can be partially hidden behind

leaves of branches, making it much harder to gather information compared to our 2

dimensions array, where bees could easily see many if not all flowers by doing left/right

movements. For the same reasons the shortest path appeared to be too cognitively intensive

to find at the scale of a patch, so could be the “true” nearest-neighbour path. Instead, we

should assume that bees would visit flowers opportunistically, based on which flower is first

seen as the bee departs its current flower. This could also converge with records of bees

retaining their flight direction between successive visits (Levin et al., 1971; Pyke & Cartar,

1992; Cresswell et al., 1995), as most often the first flower they would notice would be

ahead of their current flower, in their line of sight. In addition, rewards per flower on the

borage plant were minimal (<0.1μL), which could have led bees towards more exploratory

behaviour and not as much exploitation of resources.

4.2 - Bees improved their foraging efficiency

Even without any displays of traplines, the honey bees in our experiments seemingly

improved their foraging efficiency throughout the observation period. They displayed a high

level of resource partitioning, an increased accuracy in avoiding empty flowers, and a

lowered total distance travelled with each successive foraging bout, suggesting the bees did

get more selective of the flowers they visited.

These results highlight how social interactions affected the development of foraging

strategies of bees at the scale of a patch. Our natural experiment demonstrated that bees

used nearest-neighbour movements preferentially, but that no partitioning between bees was

possible, likely because of too low rewards. This specific result is difficult to interpret as no
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control was exerted on the bees or the environment. Through the other two experiments, we

designed an experiment addressing the lack of control of rewards we encountered in natural

conditions, while trying to apply minimal control (bees coming at will) over the bees. In these

new experiments, bees were able to improve their foraging efficiency. Yet our results suggest

that the improvement in efficiency observed in single bees and groups of bees relied on

different mechanisms.

Single bees presented initially much higher levels of visits to empty flowers and of

distance travelled compared to the groups of bees, suggesting that being in a competitive

environment greatly improved the bees’ ability to forage efficiently. The models give potential

insights as to why this difference was observed. While both the single bees and groups of

bees reduced their visits to empty flowers and distance travelled (non-significant for single

bees), the models only predicted correctly the behaviour of the single bee. For the 5 bees,

the models predicted an increase of both these criterias. This difference would suggest that

the 5 bees likely did not rely on reinforcement rules to improve their foraging efficiency.

Instead we propose they used social cues like scent-marks (Giurfa & Nunez, 1992; Giurfa,

1993) or direct avoidance of competitors.

While scent-marks seem to be a passive deposit and not an active pheromone signal

(Wilms & Eltz, 2008), bees have learned to use them to their advantage, meaning that naive

foragers have seemingly no hard-wired response to their presence (Leadbeater & Chittka,

2011). Bees will usually learn to associate the presence of scent-marks with empty flowers

(Giurfa & Nunez, 1992; Goulson et al., 2001) and appear to be able to discriminate between

their own scent-marks and that of conspecifics or other species (Pearce et al., 2017). At the

scale of a single patch of flowers, we do not expect bees to be able to gauge the presence of

scent-marks on each single flower before it reaches the flower. The effect of scent-marks in

this situation is mostly to deter the bee from landing and probing a flower (Williams, 1998),

which in itself saves a substantial amount of time, as bees visit hundreds of flowers per
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foraging bout. This could explain why our models, which did not include these behaviours,

did not predict correctly.

This discrepancy in our models’ predictions leads us to question how the algorithm

could be improved through the addition of the social cues. The direct avoidance of

competitors could be implemented through the adjustment of the transition probability matrix

by artificially decreasing the probability of executing a movement towards a competitor (or

increasing this probability in case of social learning). Scent-marks could also be

implemented as a cue reducing the necessary time for a bee to gauge whether to land on a

flower, ultimately allowing it to visit more flowers in the same amount of time.

Through these experiments, we learned that nearest neighbour movements, just like

traplines, likely are specific outcomes of a simple foraging behaviour. We suggest that bees

navigate within a patch by choosing the next flower to visit based on their perception and

other olfactive and social cues, which will most of the time lead to the nearest flower as they

theoretically represent the most striking visual stimulus. Groups of bees seem to forage

more efficiently than single individuals, suggesting they are able to use social cues to their

advantage. In general, bees are able to improve their foraging efficiency within a patch by

reducing their number of visits to empty flowers, but, as expected, showed no sign of

traplining.
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1 - Summary of results

Here we studied the foraging strategies of honey bees, and argued that bees likely only

relied on very simple behaviours to form complex spatial foraging patterns. Throughout our

modelling and experimental approaches, we suggested how bees manage to improve their

foraging efficiency through simple positive and negative reinforcement rules applied to an

environment with heavy constraints on resource distribution, both at the scale of a patch of

flowers (intra-patch foraging) and between patches of flowers (inter-patch foraging).

No traplines were observed at the scale of a single patch (Chapters IV and V). At this

spatial scale, bees were observed using nearest-neighbour movements, i.e. visiting flowers

by moving from one flower to the next closest unvisited flower. This was in accordance with

previous observations in the field and in the lab (Burns & Thomson, 2006; Saleh & Chittka,

2007). While we found this behaviour in our controlled experiments (when foraging on

artificial flowers), bees nearly never used this strategy in natural conditions (when foraging

on real flowers; Chapter V). We argued that if bees rely on their vision to find flowers within a

patch, we should indeed not expect the next flower visited to always be the

nearest-neighbour, but rather be chosen opportunistically. It is also possible that in this case

as the flowers offered very low amounts of nectar (<0.1uL), bees might have adopted a

near-far search pattern (Burns & Thomson, 2006) leading them towards longer distances

travelled.

At a small spatial scale, bees were nevertheless able to show various degrees of

partitioning, depending on the number of flowers available and their distribution (Chapters IV

and V). Bees did not increase or decrease their degree of partitioning throughout the

observation periods, suggesting the degree of partitioning was not affected by their

experience in the patch and their history of rewards.
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Where we could quantify their foraging efficiency (controlled experiments; Chapter

V), bees displayed an improvement in their foraging efficiency. Groups of 5 bees were

consistently more efficient than single bees in comparable setups. Both single and groups of

bees showed a reduced number of visits to empty flowers, which was often linked to a

decrease in total distance travelled. As our models failed to predict the improvements

observed in groups of bees, we argued that they could originate from mechanisms unrelated

to any positive or negative reinforcements, such as social cues (scent-marks, visual cues of

competitors). Bees might have considered the positions of competitors currently on the array

when choosing their next visit to a flower, thus avoiding areas of the array that were already

exploited.

2 - Traplines as “paths of least resistance”

In Chapter II we introduced the idea that in some cases, natural selection would favour

animals displaying more efficient foraging strategies, as they affect the fitness of these

individuals. This theory was coined the Optimal Foraging Theory (hereafter “OFT”, Emlen,

1966; MacArthur & Pianka, 1966), and has since received a lot of attention, including in bees

(Pyke, 1978; Waddington & Holden, 1979; Zimmerman, 1979;1982). Models of OFT have

received substantial criticism regarding their underlying hypotheses (Pierce & Ollason,

1987), mostly because it is impossible to do anything but speculate on the currency of the

optimisation, and whether this currency is applicable to any observation of bees during the

foraging activity. However, the usefulness of the OFT is that it allows us to speculate on

“null” optimal models of behaviour, under the assumption of a given currency being

optimised. Yet, the different studies on the foraging behaviour of bees show that they are

perhaps not optimising a single currency, but rather multiple currencies (e.g. nutrient intake

rate, Lihoreau et al., 2011; distance travelled, Lihoreau et al., 2012a;2012b; nutrient balance,

Kraus et al., 2019; risk avoidance, Ings & Chittka, 2008). These different currencies can also

interact. Such interactions will lead to complex behaviours that are not optimal anymore for
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any single given individual currency, but likely could reflect the best compromise or best

estimate between the different currencies being considered. Presently we do not have a

good theoretical framework for modelling optimality when multiple currencies are being

considered.

This concept is relevant to the case of traplines at large spatial scales when bees

forage on distance patches of flowers. The “perfect” traplines, as seen in controlled

experiments (Ohashi et al., 2007; Lihoreau et al., 2012a; Lihoreau et al., 2012b), can be the

result of the optimisation of a single currency (e.g. distance travelled, energy return) as all

the other potential currencies are easily optimised in this narrowed context (e.g. no other

flowers to explore, no variations in reward, no predation risk, limited competition, stable hive

conditions). Meanwhile, the more complex behaviours observed in other situations

(bumblebee: Saleh & Chittka, 2007; Woodgate et al., 2017; honey bees: Williams, 1997;

Chapters IV & V) might reflect a compromise between these same currencies. How bees in

this context compromise between the different currencies of foraging being considered will

be very strongly influenced by the behavioural and environmental constraints we discussed

in Chapter II.

Pierce & Ollason (Pierce & Ollason 1987) have argued that evolved strategies were

not designed to solve problems; that independent of their function, their execution was

neither premeditated or purposeful. In this thesis, we argued that traplines and the true

nearest-neighbour movements were good examples of this concept. As such, we could

benefit from revising our approach to these strategies to see them for what they are: paths of

least resistance to the constraints of the foraging environment, only as much formed through

a process of elimination of other options as a process of selection of certain options, but in

no way through complex calculations and planning.

187



3 - Principle of parsimony and cognitive load

For any given currency that bees would want to optimise, it is important to consider that how

they optimise this currency will also be limited by what is cognitively feasible for the animal.

While there are many mechanisms that could be responsible for the emergence of strategies

such as traplines (e.g. cognitive map: Menzel et al., 2005; multi-leg routes comparison:

Reynolds et al., 2013; view-based navigation: Collett & Collett, 2002; Cruse & Wehner, 2011;

Ardin et al., 2016), they seem to rely on processes that are more or less cognitively

intensive. The idea that bees use a cognitive map, for example, is still debated (Cruse &

Wehner, 2011) as it implies the existence of concepts that may not exist in bees (see

Cheeseman et al., 2014 and ensuing debate from Cheung et al., 2014). When multiple

explanations could explain the same behaviour, choosing the more parsimonious

explanation has been suggested the best approach.

Principles of parsimony have for a long time been the norm in academic fields where

multiple theories can explain the same phenomenon, such as Ockham’s Razor (Sober,

2015). For the psychological and behavioural sciences Lloyd Morgan adapted the principle

of parsimony in what has become known as Morgan’s Canon (Morgan, 1903). This theory

presented the idea that if “lower psychical faculties” could explain an action, it should be

favoured against “higher psychical faculties” (Morgan, 1903), assuming a “psychological

scale” to discriminate these notions of lower and higher. An enduring problem with this

proposition has been that Morgan did not elucidate his psychological scale. More recent

studies attempted to correct and improve it (Fitzpatrick, 2008), suggesting this scale was one

of “sophistication” of cognitive processes. In our study, we made use of the concept of

cognitive load to represent how computationally intensive different mechanisms are

expected to be. An example of a cognitive load could be the requirement for visual learning

relative to the estimated limit of the storage capacity of the mushroom bodies for visual

memories, as has been assessed in ants in Ardin et al., (Ardin et al., 2016). They estimated
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the number of visual snapshots an ant could store to around 375 before any new snapshot

would be too likely to interfere with previously stored ones. Under the assumption that the

computational capacity of bees is similarly limited, it becomes possible to assess through

computational models what the cognitive load of a process might be.

In the new model we presented (Chapter III, and update in Chapter V), most of the

path is established by behavioural and environmental constraints, which could translate into

a low cognitive load for the bees, as the only information required for the bee would be the

association between vectors and their estimated rewards. Such requirements appear low

when compared to those used in the model of Reynolds et al. (Reynolds et al., 2013) which

requires comparisons of 2 routes composed of multiple vectors each, which have to be

summed and then compared, with the underlying assumption that both have equal rewards.

The reliance of the model on these well-established constraints supports its ecological and

cognitive feasibility, as well as a good complement to existing navigation models. Our

approach to the traplining phenomenon also generates predictions on whether we should or

should not see traplining appear for specific environmental conditions, and to what degree

traplines would be expected to form. This suggests how we might further test our hypothesis.

It would be possible to design semi-natural and controlled experiments in which we would

and would not expect traplines and in which we would expect imperfect traplines. Examining

behaviour of bees in these conditions would allow us to understand in greater details how

these behavioural and environmental constraints affect the establishment of traplines.

4 - Models, a tool to answer “What If…” questions

Models are built using relevant knowledge of a system translated into a mathematical

language as tools to explore the unknowns in the same system,. As such, they are not

intended to prove or disprove hypotheses, as they only explore virtual simulations of what

we think a phenomenon is, and not the phenomenon itself. Yet what appears to be their

189



weakness is actually their strength. Models allow to explore hypotheses based on who we

might expect a system to operate. Models give us a tool to test any mechanism or specific

scenario of interest without any of the logistic problems caused by experiments. They allow

us to generate formal predictions based on an assumption of how the system operates that

we can then compare to data collected from the real world. In the case of conflicting

hypotheses to explain a same phenomenon, models can direct future experiments by

suggesting an efficient way to discriminate the two hypotheses through an experiment.

Mathematical and computational modelling have diversified over the years, with the

expansion of our knowledge and of computational power of computers. Many types of model

are used to study different aspects of the biology and cognition of animals, such as

differential equation models for the study of population dynamics (Khoury et al., 2013; Perry

et al., 2015), machine learning and neural networks models allowing us to tackle complex

problems by training a model to recognise and discriminate patterns (Valletta et al., 2017),

and agent-based models relying on the high computation power of computers to simulate a

large number of possible outcomes to a problem (Railsback, 2001; DeAngelis & Mooij,

2005). These models have in common their relation between the number of parameters and

the specificity of their predictions. The more parameters there are in a model, the harder it is

to find an analytical solution, forcing us to rely on numerical approaches. The fields of

ethology and neuroscience are particularly fit for numerical approaches because of the high

variability in behaviours between individuals, and the complexity of the systems being

considered (Klein et al., 2017). In these cases, agent-based models offer a very interesting

approach, as they provide a large distribution of potential outcomes of independent

computer simulations, thus covering the potential diversity of behaviours naturally occurring

(DeAngelis & Mooij, 2005).

In the case of our model, the technological challenge of tracking multiple bees in a

large space brought forward the need to articulate more specific hypotheses as to what were
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the mechanisms responsible for the emergence of traplining. We could then design

experiments to test for the existence of these mechanisms in ways that used technology

currently available. Through this model (Chapter III), we learned that traplines and resource

partitioning could emerge from much simpler mechanisms than what was suggested in

previous models (Reynolds et al., 2013). While there is still no clear answer for which

mechanisms are responsible for these foraging strategies, our model has allowed us to take

a step forward and suggest an alternative hypothesis (Chapters III, V). Hopefully in the future

this will lead to more specific tests between competing hypotheses.

While future steps could be, as suggested from our results (Chapter V), to add new

consideration for other mechanisms such as social cues to our models, it is important to

keep in mind the necessary balance of models between precisely replicating the observed

system by adding more features that are believed to impact the general outcome of the focal

phenomenon, and the ability of a model to be generalised to a broader context. Indeed, a

model with too much information might generate predictions so specific that their range may

not affect any other conspecific for which the parameters would have varied. Moreover, with

every added concept and parameter to the model comes underlying assumptions about how

they affect the rest of the system and how that parameter should be quantified and

mathematically expressed. There is a risk that as every more parameters are added to a

model, the model drifts further and further from the real world. Thus, we must be exercising

caution in adding new concepts to a model. On the other hand, a model with too few

parameters might not be able to predict correctly the behaviour of the animals, because it is

too simple to capture a complex reality. Because traplines are seemingly widespread

throughout many taxa (Berger-Tal & Bar-David, 2015), it is more likely that they are the result

of an evolutionary convergence, and as such could potentially be explained through

mechanisms that are not specific to one species, or that at least have functional equivalence

in other species.
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5 - Conclusion

We have proposed a new way to look at the emergence of trapline foraging strategies of

bees, one that is not bound to cognitively intensive mechanisms, but rather simple rules of

foraging behaviour and constraints of the environment. We present phenomena such as

traplines, or resource partitioning as consequences of environmental and behavioural

constraints, a path of least resistance to the foraging activity of bees. We expect this new

approach will bring forward more works on these simpler behaviours to identify traplines in a

bottom-up approach by observing how all these constraints drive bees towards these

strategies, rather than the current top-down approach of trying to define traplines in the only

currently available conditions we have to observe them (i.e. controlled environments), which

has potentially led us into thinking about them as this extraordinary ability of bees to solve

this complex mathematical problem of the Traveling Salesman Problem. Realising that most

of the complexity in the formation of traplines is resolved by the environmental and

behavioural constraints will allow us to reframe the role of cognition in traplining.
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