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ABSTRACT

Tephritid fruit flies are among the most devastating pests to Australia’s multi-billion-dollar
horticulture industry. The Australian National Fruit Fly Strategy (2010) identified 46 native
and exotic species as ‘high priority pests’ of concern, the management of which are vital for
plant protection and biosecurity. While considerable research attention has been given to
several of these species, to date the potential for climate change to alter the distribution and
relative risks of these species has been largely overlooked. My thesis aims to bridge this gap.
In addition to the introduction and conclusion, my thesis consists of three data chapters and a
review chapter. The thesis is structured as a series of papers, one of which has been published
and with another accepted. Chapters two and three utilised the species distribution model
Maxent to map suitable habitat for Tephritidae pests under current and future climate scenarios
for 2030, 2050 and 2070. Maxent is a correlative SDM that has been widely used to assess the
distribution of suitable habitat for a broad range of pest and invasive species. Chapter two
focused on the most economically costly of the Tephritidae pests in Australia — the Queensland
fruit fly, Bactrocera tryoni (Froggatt) (Qfly), which attacks more than 100 native and
introduced host plant species. My model indicates that south-western Western Australia,
northern regions of the Northern Territory, eastern Queensland, and much of south-eastern
Australia, southern Victoria and eastern Tasmania are currently suitable for Qfly. It also
indicates that most areas that are currently suitable will remain so throughout much of this
century. My results provide guidance on the potential exposure of Australia’s horticultural
industry to Qfly as climate changes. In Chapter three, I extended my modelling approach to the
11 native, high priority, economically important tephritid pests that are present within
Australia. In this chapter I identified ‘hotspots’ (regions suitable to multiple pest species), to
guide Australia’s horticulture industries in developing effective monitoring and management
strategies. My results highlight that the Wet Tropics is likely to be vulnerable to all 11 species
until at least 2070. As the century progresses, the east coast of Australia, Cape York Peninsula
and Northern Territory are likely to remain vulnerable to multiple species, however,
extrapolation to novel climates in these areas decreases confidence in model projections. My
results also indicate that the vulnerability of major horticulture areas in eastern Queensland,
southern-central regions of New South Wales and southern Victoria to these pests may

increase. Chapter four represents a risk assessment of 19 non-native invasive species that are
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currently not present in Australia but that have been identified as having the potential to pose
considerable risks if they establish. I assessed their relative establishment likelihood under
current and future climates by combining maps of a) regions of Australia with a climate similar
to species’ known ranges, b) a key arrival pathway (i.e. the movement of people entering
Australia from host countries) and c¢) the distribution of horticultural lands. I found that
Bactrocera dorsalis has the highest establishment likelihood under all climate scenarios,
followed by Zeugodacus cucurbitae and B. latifrons. Chapter five presents a literature review
of the potential impacts of climate change on tephritid fruit flies, particularly those in Australia.
In doing so, I outline likely responses, key knowledge gaps, and implications for horticultural
industries. My thesis provides the horticultural industry in Australia with a greater
understanding of the relationship between fruit fly pests and climate change, and highlights the

importance of long-term vigilance to ensure the long-term security of this industry.
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CHAPTER ONE

Thesis Introduction

Introduction

Globally, climate is changing, primarily due to human-induced increases in the concentration
of greenhouse gases (GHG). Since the start of the Industrial Revolution (~1750), the
concentration of carbon dioxide (CO.) has risen from 280 ppm to 410 ppm (as at October 2019,
www.climate.nasa.gov), with the CO. equivalent of other GHGs reaching 500 ppm in 2017

(BoM and CSIRO 2018). As a consequence, global average temperature has increased by
approximately 1.1°C (WMO 2019), with the period 2015-2019 likely to have been the warmest
of any equivalent period on record globally (WMO 2019).

The velocity of future anthropogenic climate change will be influenced by the magnitude of
GHG emissions, which will be driven by technological changes, economic, lifestyle and policy
decisions (Moss et al. 2010). As such, projections of likely increases to global mean surface
temperature for 2081-2100, relative to 1986-2005, span 0.3—1.7°C to 2.6—4.8°C, under
Representative Concentration Pathways (RCP) 2.6 and 8.5, respectively (IPCC 2014a). As
temperatures increase, so too will the frequency and duration of extreme heat events (IPCC
2014a). Rainfall patterns will also shift, although with less spatial uniformity than projected
temperature increases (BoM and CSIRO 2018). Under RCP 8.5, high latitudes and equatorial
regions are likely to experience increased precipitation, whereas many mid-latitude and
subtropical dry regions may experience the opposite trend (IPCC 2014b). Extreme rainfall
events will also likely become more intense and frequent in most regions (BoM and CSIRO

2018).

Australia is one of the most climatically variable countries in the world (Manolas 2010, Stokes
and Howden 2010). Australia’s temperature has increased by more than 1°C since 1910, with
increases in extreme heat events and the severity of drought conditions (BoM and CSIRO
2018). The rise in temperature has been observed across Australia in all seasons, and to a

greater extent at night compared to daytime (BoM and CSIRO 2018).
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Australia’s rainfall is highly variable, however recent decades have experienced a drying trend
in the south of the continent (Alexander et al. 2007, Gallant et al. 2007). Since 1970, May—July
rainfall in the southwest has decreased by 20%, while since the 1990s, the southeast has
experienced declines of ~11% over April-October. In contrast, the opposite trend has occurred
in northern Australia with rainfall increasing since the 1990s (Jones et al. 2009, BoM and
CSIRO 2018). There has also been an increase in the number of high fire weather danger days
and a longer fire season for southern and eastern Australia (BoM and CSIRO 2018).

By 2030, mean annual temperature in Australia is projected to increase by 0.6—1.3 °C compared
to the period 19862005, under RCP 8.5 (CSIRO and Bureau of Meteorology 2015). By 2090,
this increase is projected to range from 0.6—1.7 °C (RCP 2.6) to 2.8-5.1 °C (RCP 8.5) (CSIRO
and Bureau of Meteorology 2015), with average warming likely to be higher in inland Australia
compared with coastal areas. The average number of days above 35 °C is projected to more
than double for all major metropolitan regions by 2090, with the number of frost days declining
to less than half (CSIRO and Bureau of Meteorology 2015). Projections of rainfall changes are
hampered by substantial variation across global climate models. There is little agreement in the
direction of change of annual precipitation across northern Australia, although there is
moderate agreement that winter and spring precipitation will decline. There is also moderate
agreement for a substantial decline in annual precipitation across eastern Australia, with this
predominantly occurring in winter and spring. There is, however, high agreement that
substantial declines in winter and spring precipitation will occur across the southern regions of

the continent (CSIRO and Bureau of Meteorology 2015).

Biological Responses to Climate Change—a Brief Overview

There is already clear evidence of biological and ecological responses to anthropogenic climate
change (Parmesan 2006, Scheffers et al. 2016). A meta-analysis of 94 ecological processes,
from multiple levels of biological organisation, found that 82% of processes demonstrated
evidence of responses to climate change (Scheffers et al. 2016). These included micro-
evolution, phenological adjustments, range shifts, and changes to meta-populations and

community composition.
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To date, the processes for which we have the greatest amount of data are range shifts and
phenological (typically related to spring) adjustments. For example, Chen et al.’s (2011) meta-
analysis of range shifts among 764 species across multiple continents found that shifts to higher
elevations have occurred at a median rate of 11.0 meters per decade, while poleward shifts have
occurred at a median rate of 16.9 km per decade. These values are faster than previous estimates
by two and three times, respectively. A comparison of the range shifts of British breeding birds
over the periods 1988—1991 and 2008-2011 documented an average shift northward of 13.5
km (Gillings et al 2015). Similar responses have been reported amongst insects. An early study
of the fingerprint of climate change found that of 35 non-migratory European butterfly species,
63% had extended their range northward by 35-240 km, over the last century, whereas only
3% extended to the south (Parmesan et al. 1999). A meta-analysis by Bebber et al. (2013) of
crop pests and pathogens found an average poleward range shift of 2.7 + 0.8 km per year, since
1960.

Across Europe, an analysis of observations of 561 plant and animal species from 1971-2000
found that spring events had advanced 2.5 days per decade (Menzel et al. 2006). A similar
meta-analysis of phenological events from southern hemisphere species found that those

associated with spring had advanced 4.2 days per decade since ~1960 (Chambers et al. 2013).

Tephritidae Fruit Flies as Pests

Fruit fly species belonging to the family Tephritidae are among the most devastating pests to
horticulture industries worldwide due to their large host breadth, short generation times, large
population sizes and wide climatic tolerances (Fletcher 1987, White and Elson-Harris 1992,
Plant Health Australia 2018). These species pose serious threats to fruit and vegetable crops
and cause a range of impacts including direct yield loss, loss of market access and increased
quarantine costs (White and Elson-Harris 1992, Vargas et al. 2015, Plant Health Australia
2018).

Within the Tephritidae, five genera (Anastrepha, Bactrocera, Ceratitis, Rhagoletis and
Zeugodacus) pose the greatest threat to horticulture. Many of these species are highly
polyphagous (White and Elson-Harris 1992, Godefroid et al. 2015) and are distributed
throughout temperate, tropical and subtropical regions. For instance, Bactrocera dorsalis

Hendel (Oriental fruit fly) infests more than 150 fruit and vegetable crops (Hui 2001). This
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species is native to Asia but has spread to more than 65 countries and is recognised as one of
the most destructive fruit flies (CABI 2019). Within the genus Ceratitis, C. capitata
Wiedemann (Mediterranean fruit fly [Medfly]) is also highly polyphagous, infesting over 300
cultivated and wild fruits (Lysandrou 2009). Its rapid generation time and ability to withstand
cooler climates than most other fruit flies have resulted in it spreading throughout Africa, the

Mediterranean, South America and Australia.

Environmental factors such as temperature and rainfall, and the availability of host plants are
the main factors determining the distribution and survival of fruit flies (Bateman 1972, Meats
1981, Yonow and Sutherst 1998, Rwomushana et al. 2008, Vayssiéres et al. 2009, Grout and
Stoltz 2014, Bota et al. 2018). The rate of reproduction of B. dorsalis is higher in tropical (5—
10 generations per year) compared to subtropical regions (< 4 generations per year) (Hui 2001,
Liu and Ye 2006). Vargas et al. (1997) reported that Zeugodacus cucurbitae Coquillett, B.
dorsalis, B. latifrons Hendel and C. capitata are well adapted to temperatures between 18—-29
°C, with the optimum temperature for reproduction being 24 °C. Similarly, the optimum
temperature range for the development and reproduction of B. dorsalis spans 15-34 °C (Chen
and Ye 2007, Ekesi et al. 2006, Rwomushana et al. 2008). Populations of the melon fruit fly
(Z. cucurbitae Coquillett, previously known as B. cucubitae) decline when temperature exceeds
32 °C (Dhillon et al. 2005) or rainfall is inadequate (Nishida 1963, Wazir et al. 2019). The
survival of immature stages of Anastrepha ludens Loew (Mexican fruit fly) decreases
considerably during periods of low rainfall, leading to population declines during the dry
season (Vayssiéres et al. 2009). Rainfall has also been reported to influence the emergence rate
of A. ludens (Baker 1944) and Rhagoletis pomonella Walsh (Oatman 1964).

Host plants are used by fruit flies for sheltering, feeding, mating and larval development
(Rwomushana et al. 2008, Vayssiéres et al. 2009). During oviposition, Tephritid females
deposit their eggs into the flesh of the ripening fruit of their plant host (White and Elson-Harris
1992, Sumrandee et al. 2011). In doing so, the flies can cause both direct and indirect damage
to the fruits. Direct damage occurs because the eggs hatch and the larvae feed on the fruits
(Bateman 1972, Clarke et al. 2011) thereby causing damage to the plants’ tissue (Hancock et
al. 2000, Clarke et al. 2005). Indirect damage can occur because pathogenic microorganisms

can penetrate the fruit via the hole left by the female’s ovipositor (Uchoa 2012).
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High Priority fruit flies in Australia and their Economic Costs

Numerous fruit fly species have been recorded in Australia, and the National Fruit Fly Strategy
has identified 46 species as ‘high priority pests’ that threaten the biosecurity of Australia’s
horticulture (Plant Health Australia 2008). These flies belong to five genera: Anastrepha,
Bactrocera, Ceratitis, Rhagoletis, and Zeugodacus. Nine of them are native to Australia. Of
the 37 exotic high priority pests, only two are currently found in Australia (C. capitata [Medfly]
and B. frauenfeldi Schin.) (Plant Health Australia 2008). Bactrocera dorsalis was detected in
1995 in northern Queensland, but it was quickly eradicated (Fay et al. 1997). However, the
remaining species have been reported to cause economic costs to horticulture elsewhere (Plant

Health Australia 2008).

One of the most polyphagous fruit flies is Medfly, which causes serious damage to fresh fruits
globally (Qin et al. 2015). Native to sub-Saharan Africa, this species is one of the most
damaging fruit pests globally. Medfly was first detected in California in 1975 (APHIS 1992),
and outbreaks in that state have cost nearly US$500 million over a 25-year period
(Szyniszewska and Tatem 2014). In Brazil, Medfly has been estimated to cause economic

losses of US $242 million per year (Qin et al. 2015).

The melon fruit fly (Z. cucurbitae) is native to Asia but has invaded a wide number of countries
in temperate, tropical and subtropical regions. Horticultural losses caused by this species range
from 30—-100% (Dhillon et al. 2005, Wazir et al. 2019). For instance, in India 50% of cucurbits
are partially or completely damaged by this pest each year (Wazir et al. 2019). A major pest of
olives is the Olive fruit fly (B. oleae Rossi), which has been estimated to cause losses of $800
million per year in the Mediterranean basin, requiring more than $100 million annually to
combat it (Bueno and Jones 2002). The solanum fruit fly (B. latifrons), native to south and
south-east Asia, has been found to damage 60-80% of red pepper crops in Malaysia
(Vijaysegaran 1997). The apple maggot fly (R. pomonella) is currently only distributed in North
America (CABI 2019), where it has a substantial impact on the apple industry in the western
United States (Zhao et al. 2007), causing 78—100% crop losses (Chen and Shen 2002)

However, of the 46 high priority pests, it is the Queensland Fruit Fly (B. tryoni Froggatt) that

currently causes the greatest economic cost to Australian horticulture.
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The Queensland Fruit Fly (Bactrocera tryoni)

The Queensland fruit fly (Qfly) is endemic to the rainforests of Australia’s east coast. As
rainforests were cleared and cultivation of exotic fruits increased, this species expanded its
geographic and host range (Bateman 1968). Qfly is now distributed throughout eastern
Queensland, as well as parts of NSW, and extends into coastal Victoria and the Northern
Territory (Meats 1981, Osborne et al. 1997, Dominiak and Daniels 2012). Tasmania and South
Australia are currently considered free of Qfly (FAO 2006).

Qfly is highly polyphagous, attacking more than 110 host species, many of which are
commercial crops such as citrus, nuts, stone and pome fruit, tomato, banana and coffee
(Hancock et al. 2000). Qfly likely has a broader host range than is currently recognised (Clarke
et al. 2011), and this requires further investigation along with a comparative analysis of the

relative susceptibility of its hosts and associated fruit traits.

Temperature and rainfall play an important role in determining the distribution and survival of
Qfly (Bateman 1972, Meats 1981, Yonow and Sutherst 1998). Qfly adults can breed throughout
the year in warm conditions, although breeding will cease in winter in temperate regions of
Australia (O'Loughlin et al. 1984, Muthuthantri et al. 2010). The optimum temperature range
for egg maturation, however, is 13—26 °C (Pritchard 1970, Fletcher 1975). There is also a strong
positive correlation between rainfall and the peak numbers of Qfly (Bateman 1972), with
fecundity reduced in drought conditions (Bateman 1972). Rainfall can also indirectly impact
Qfly via its impacts on host tree growth, distribution and fruiting. For example, shrivelled fruit

on trees may drop prematurely, resulting in significant egg loss (Bateman 1968).

Objectives and Structure of the Thesis

Climate change will impact insect development, abundance, and distributions, thereby altering
patterns of invasion (Hill et al. 2016). Increasing temperatures and changing precipitation
patterns will likely improve the suitability of a region for some species while decreasing it for
others (Yonow and Sutherst 1998, Stephens et al. 2007, Stephens et al. 2016). Many tephritid
pests have tropical and subtropical origins (Stephens et al. 2016), and as temperatures increase,
species’ ranges are likely to move to higher latitudes and altitudes (Stephens et al. 2007, Ni et

al. 2012, Fu et al. 2014). Warming in temperate regions may improve conditions for
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establishment through fewer frost days, a longer growing season and greater frequency of warm

nights (Papadopoulos et al. 2013).

Given the impact and economic cost of fruit flies to Australian horticulture, it is vital for
stakeholders to be informed about how climate change may alter the risks posed by fruit flies.

To this end, the overarching goals of my thesis were to assess:

1) how climate change may impact the distribution of suitable habitat for Qfly — the most
damaging of the fruit flies within Australia.

2) the distribution of hotspots — regions suitable for 11 of the most damaging fruit fly pests
currently within Australia —under current and future climates.

3) the relative risk, under current and future climate, of 19 exotic tephritid species absent

from Australia, but classified as “high priority pests”.

The thesis is structured as a series of papers, one of which has been published (Sultana et al.
2017) and another accepted (Sultana et al. PLoS One). In addition to the introduction (Chapter
One) and discussion (Chapter Six), my thesis consists of three data chapters (Chapters Two-

Four) and a literature review (Chapter Five). Below, I briefly outline each chapter:

Chapter Two: Potential impacts of climate change on habitat suitability for the Queensland
Sfruit fly (Sultana et al. 2017, Scientific Reports).

This chapter focuses on Queensland fruit fly (B. tryoni, Qfly) as it is the most economically
damaging insect pest of Australia’s horticulture industry. As such, its management is a key
priority for plant protection and biosecurity in Australia. Within this chapter, I used the species
distribution model, Maxent, to assess how climate change may impact the distribution of
suitable habitat for Qfy across a range of plausible climate scenarios. I then assessed the extent
to which the Fruit Fly Exclusion Zone (FFEZ) and other Australian horticultural areas may be
suitable for Qfly in 2030, 2050 and 2070. I found that south-western Australia, northern regions
of the Northern Territory, eastern Queensland, and much of south-eastern Australia are suitable
for Qfly under current and future climate scenarios. My results also provide an initial estimate
of the potential exposure of Australia’s horticulture industry to Qfly as climate changes,
highlighting the need for long-term vigilance across southern Australia to prevent further range

expansion of this species.
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Chapter Three: Impacts of climate change on high priority fruit fly species in Australia
(Sultana et al. 2020 PLoS ONE)

Using newly developed code to explore the best set of predictor variables for a given species,
I extended my Maxent modelling approach to the 11 native, high priority, economically
important tephritid pests (Bactrocera aquilonis, B. bryoni, B. cucumis, B. frauenfeldi, B.
halfordiae, B. jarvisi, B. neohumeralis, B. musae, B. tryoni, Ceratitis capitata, and Zeugodacus
cucumis) that are present within Australia. A number of these species are highly polyphagous
and pose threats to Australia’s horticulture industries, as well as to backyard growers. As such,
control of these fruit flies is very important for the viability of Australian horticulture,
monitoring to demonstrate pest freedom, and quarantine and trade restrictions. Based on
projections of current and future climatically suitable habitat, I identified ‘hotspot’ regions
suitable for multiple pest species, and highlighted areas at risk of pest range shifts, to guide
Australia’s horticulture industries in development of effective monitoring and management

strategies.

Chapter Four: Estimating the current and future risk of exotic fruit fly species establishing in

Australia (for submission to Scientific Reports)

In Chapter Four, I assessed the relative risk of 19 exotic tephritid species that are currently
absent from Australia. These species have been economically damaging to horticulture
industries elsewhere, and hence pose a threat should they gain entry to Australia. I assessed the
relative likelihoods of establishment of these 19 species, based on the proportion of the
continent with similar climate to each species’ known range, the distribution of commercial
host plants within Australia, and a key arrival pathway (i.e. the movement of people dispersing
from host countries). I then assessed how estimates of relative risk may change as a result of

climate change.

Chapter Five: The impact of climate change on tephritid pests

In this chapter, I discuss more broadly the issue of climate change and tephritid pests. I present

a literature review of these species, how they may respond to climate change (from range shifts
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to phenological changes and adaptation), key knowledge gaps, and consequences for

horticulture industries worldwide.

Chapter Six: Thesis Discussion
This chapter summarises my PhD, including key findings, limitations and future directions for

research.

As each chapter of this thesis is written for a specific scientific journal, there is some overlap
in the discussion of key concepts and, in places, the methods and datasets used. This is
inevitable and necessary for each chapter to function as a stand-alone paper. In addition, as
with most contemporary scientific research, my chapters were the result of collaborations that
I developed throughout my candidature. The contribution of co-authors is stated in the thesis

declaration.
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CHAPTERTWO

Potential impacts of climate change on habitat suitability
for the Queensland fruit fly

Published as: Sultana, S., Baumgartner, J.B., Dominiak, B.C., Royer, J.E. and Beaumont, L.J.
(2017) Potential impacts of climate change on habitat suitability for the Queensland fruit
fly. Scientific Reports 7, 13025. doi:10.1038/s41598-017-13307-1

Abstract

Anthropogenic climate change is a major factor driving shifts in the distributions of pests and
invasive species. The Queensland fruit fly, Bactrocera tryoni Froggatt (Qfly), is the most
economically damaging insect pest of Australia’s horticultural industry, and its management is
a key priority for plant protection and biosecurity. Identifying the extent to which climate
change may alter the distribution of suitable habitat for Qfly is important for the development
and continuation of effective monitoring programs, phytosanitary measures, and management
strategies. I used Maxent, a species distribution model, to map suitable habitat for Qfly under
current climate, and six climate scenarios for 2030, 2050 and 2070. My results highlight that
south-western Australia, northern regions of the Northern Territory, eastern Queensland, and
much of south-eastern Australia are currently suitable for Qfly. This includes southern Victoria
and eastern Tasmania, which are currently free of breeding populations. There is substantial
agreement across future climate scenarios that most areas currently suitable will remain so until
at least 2070. My projections provide an initial estimate of the potential exposure of Australia’s
horticultural industry to Qfly as climate changes, highlighting the need for long-term vigilance

across southern Australia to prevent further range expansion of this species.

Keywords: biosecurity, climate change, horticulture, pests, Queensland fruit fly, species

distribution models
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Introduction

The Queensland fruit fly (Qfly), Bactrocera tryoni Froggatt, is the most devastating pest of
Australia’s $9 billion p.a. horticulture industry. Endemic to north-eastern Australia, its range
expanded southwards following the planting of exotic horticultural crops (Birch 1961).
Populations now span eastern Australia from the Cape York Peninsula in far north-east
Queensland, through New South Wales (NSW) and into the southern state of Victoria where
its range has been reported to be restricted by low precipitation and temperature to the west
and south, respectively (O'Loughlin et al. 1984). Qfly has also achieved serious pest status in
the north of the Northern Territory (Meats 1981), although it is unclear whether these
populations consist of Qfly or a fertile hybrid with Bactrocera aquilonis (Yonow and Sutherst
1998). In the west, the climate of Perth and surrounds are suitable for Qfly (Horticultural Policy
Council 1991) with outbreaks occurring during 1989-1990 (Sproul et al. 1992). Although this
resulted in an extensive and successful eradication campaign, several incursions have occurred
since (Sproul et al. 2001). Within urban South Australia, Qfly outbreaks have occurred due to
the entry of infested fruits from other states (Maelzer 1990). Until recently, Tasmania was the
only state where Qfly outbreaks were not known (Holz et al. 2010). As such, it has long been
recognised for ‘area freedom’ from fruit flies. With area freedom, crop production costs are
lower as produce does not require costly disinfestation procedures before being exported
(Sutherst et al. 2000), and this adds considerably to the value of the state’s horticultural industry
(Holz et al. 2010). However, in early 2018, incursions of Qfly larvae were detected in two
regions of Tasmania: the Furneaux Group of islands, and the other at Spreyton in the north of
mainland Tasmania. Traced to infested imported fruit, these events led to a formal declaration

of outbreaks, followed by the largest biosecurity response in Tasmania’s history (Blake 2019).

Qfly attacks more than 100 native and introduced host plant species (Hancock et al. 2000),
including citrus, pome and stone fruits, berries and tropical fruits, and ‘fruiting vegetables’.
The economic costs of this pest are considerable. Abdalla et al. (2012) estimated the annual
cost of pre-harvest bait and cover spraying over the period 20062009 to be ~$48 million,
while post-harvest treatments (which may include chemical fumigants, temperature treatments,
or irradiation, Hallman 1999) necessary to transport produce interstate exceeded $22 million
p.a. Even with these treatments, production losses in fruit fly endemic regions range from 0.5—
3% (Abdalla et al. 2012). The above figures do not include costs to backyard growers (which

in the absence of eradication programs could result in 80% of the value of backyard fruit
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production being lost, van Velsen 1987), costs of restricted access to domestic or international
markets, and flow-on costs to related industries, such as food retailers and processors, or the

wine industry (Abdalla et al. 2012).

Given the costs of Qfly and other fruit flies to the horticultural industry, the Tri-state Fruit Fly
Exclusion Zone (FFEZ) was established in 1994, spanning the major fruit growing regions of
south-western New South Wales, north-western Victoria and south-eastern South Australia
(Dominiak and Daniels 2012). In an endeavour to keep the FFEZ free of fruit flies, and thereby
maintain high value markets, there were stringent legislative controls on the transport of fruit
and vegetables into this region. However, in 2010-2011, the FFEF was subjected to the wettest
two-year period on record, and outbreaks occurred in the NSW and Victorian parts of the FFEZ.
Control and eradication measures became technically unfeasible and economically
unsustainable. By August 2013, the legislation supporting the FFEZ was withdrawn in NSW
and Victoria, and the Zone ceased to be a trade zone (Dominiak and Mapson, 2017). The
Sunraysia Pest Free Area stills exists in the northwest corner of the FFEZ, although this zone

is currently suspended.

As with other insects, the distribution, abundance and development rate of Qfly are strongly
influenced by climate. In particular, there is a strong positive correlation between summer
rainfall and Qfly abundance (Bateman 1968, Bateman 1972, Yonow and Sutherst 1998), with
O’Loughlin (O'Loughlin 1964) noting that abundance increases significantly when summer
rainfall exceeds 170 mm per month. Without rainfall, the fecundity of adult females declines,
mortality of larvae and newly emerged adults increases, and there may be markedly diminished
emigration to nearby regions (Bateman 1972). Temperature also influences the distribution and
development of Qfly (Bateman 1972). The critical lower temperature, below which individuals
cannot move spontaneously, is ~2°C, and although adults may survive at temperatures of 38—
40°C (Bateman 1968, O'Loughlin et al. 1984), immature stages are more vulnerable to such

extremes (Meats 1984).

Given the dependence of Qfly distribution and abundance on climate variables, there is concern
that as climate change intensifies, warmer temperatures and changes to precipitation patterns
will facilitate the spread of populations southward and into Tasmania (FAO 2006). There is
also the potential for more frequent outbreaks to occur within the former FFEZ and in other

Australian horticultural regions.
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Previous studies using the semi-mechanistic species distribution model, CLIMEX, have
estimated the potential for Qfly to undergo increases in population sizes and range expansion
as a result of climate change (Yonow and Sutherst 1998, Sutherst et al. 2000, Holz et al. 2010).
In particular, warmer winters may increase the survival and development rates of Qfly,
resulting in greater population numbers in spring (Sutherst et al. 2000). While highly useful in
furthering our understanding of climate impacts on Qfly, these publications were either
restricted in geographic scope (e.g. to Tasmania, Holz et al. 2010) or are now somewhat dated,
as the development of climate models and greenhouse gas concentration pathways has
advanced considerably since their publication, as has the availability of data, the sophistication
of modelling tools, and spatial resolution of analyses. As such, here 1 employ the species
distribution model (SDM) Maxent to conduct a continent-wide assessment of the potential
impacts of climate change on Qfly. Maxent is a correlative SDM that has been used extensively
to assess the distribution of suitable habitat for a broad range of pest and invasive species
(Kumar et al. 2014a, Aguilar et al. 2015). Our goals are to assess how climate change may
impact the distribution of suitable habitat for Qfly, across a range of plausible climate
scenarios. Furthermore, I assess the extent to which the former FFEZ and other Australian
horticultural areas may be suitable for Qfly in 2030, 2050 and 2070. Our study provides
essential foundations for a broad understanding of the potential exposure of Australia's

horticultural industry to Qfly incursions in the future.

Methodology

Species data
I obtained occurrence data for Qfly from four main sources: the Atlas of Living Australia

(ALA; http://www.ala.org.au, accessed 22th December, 2016), the Australian Plant Pest

Database  (http://www.planthealthaustralia.com.au/resources/australian-plant-pest-database,

accessed 15" March, 2017), existing literature, and trap data. ALA is Australia’s largest digital
database of species occurrence records, containing information from a wide array of data
providers including Australia’s major museums and government departments. Before
downloading data from ALA, I applied filters to restrict records to those that were resolved to
species-level, dated after 1 January 1950, contained geographic coordinates, and were not

flagged by ALA as ‘environmental outliers’. APPD is a national, secure database of pest and
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plant pathogen specimens held within herbaria and insect collections across Australia. Records
from ALA and APPD primarily represent ad hoc collections, and so were supplemented with
records from specimens collected in fruit fly traps managed by various state government
departments (New South Wales Regional Pest Management, Biosecurity and Food Safety;
Biosecurity Queensland and the Queensland Department of Agriculture and Fisheries;
Department of Economic Development, Jobs, Transport and Resources, Victoria; and Primary
Industries and Regions South Australia (PIRSA)). Trap data from these sources were collected
at different periods from 1996 to 2017. To reduce environmental bias due to spatially
autocorrelated sampling, I reduced trap data such that pairs of points were separated by at least
10 km. I also obtained occurrence data from previous studies (May 1963, Drew et al. 1982,
Osborne et al. 1997, Royer and Hancock 2012) including state government databases. After

filtering/thinning, a total of 1057 unique localities (i.e. 1 x 1 km grid cells) remained.

Current habitat data

For current climatic conditions (1950-2000), I downloaded 19 ‘bioclimatic’ variables from the

WorldClim database (Hijmans et al. 2005) (http://www.worldclim.org/) at a spatial resolution

of 30 arc-seconds. I assessed pairwise correlations among these variables and generated three
sets of variables with Pearson correlation coefficients having absolute values <0.8. I
supplemented the climate variables with data on soil characteristics, available from the CSIRO

data access portal (https://data.csiro.au, accessed 28" February, 2017). These variables were

developed by Viscarra Rossel & Chen (2011) from a principal components analysis of visible
and near infrared soil spectra, and are referred to as PC1, PC2 and PC3. They describe,
respectively, the distribution of highly weathered soils, soils with large amounts of organic
matter, and low relief landscapes with soils containing abundant smectite (clay) minerals

(Viscarra Rossel and Chen 2011).

Finally, I developed multiple Maxent models based on different combinations of the climate
and soil variables, to identify the subset that resulted in models with the highest predictive
power (AUC, described below). Ultimately, I selected the following variables for final model:
mean annual temperature (MAT), minimum temperature of the coldest month (TminCM),
temperature annual range (TAR), precipitation of the driest month (PDM) and of the coldest
quarter (PCQ), and the soil variable, PC3. Hence, for the purposes of this study, I define

‘suitable habitat’ with respect to this combination of climate and soil variables. I note that the
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use of other variables may result in slightly different definitions and spatial extents of suitable

habitat.

Future habitat data

Given uncertainty in scenarios of future climate, impact assessments should incorporate data
from a range of climate models that are effective in simulating historical climate over the area
of interest. CSIRO compared the output of 40 global climate models (GCMs) and identified a
subset of eight that they recommend for use in climate impact assessments (CSIRO & BoM
2015). These eight are representative of the range of results from all 40 models, for the
Australian region, and are effective in reproducing historical conditions. Of the eight climate
models, six had data at a resolution of 30 arc seconds, for the Representative Concentration
Pathway 8.5 (RCPS8.5, Moss et al. 2010). These models, and descriptions of changes they
project for mean annual temperature (MAT) and annual precipitation (AP) for 2070, are as
follows. (1) CanESM2 (The Second Generation of Canadian Earth System Model) projects an
extremely hot, dry future, with warming > 4°C throughout central Australia, and > 5.5°C in
parts of Western Australia. AP is projected to decline throughout central and Western Australia,
and increase in north-east Queensland, with few changes in the south-east; (2) ACCESS1.0
(The Australian Community Climate and Earth System Simulator) projects a hot, dry future.
Warming exceeds 2.5°C across most of Australia, and > 3.5°C in central Australia. Drying is
projected over most areas, including the horticultural zone in south-eastern Australia, although
higher rainfall is likely in central Australia; (3) MIROCS (Model for Interdisciplinary Research
on Climate) projects moderate warming, not exceeding 3°C, and slight changes in AP with
declines in north-east Queensland and south-west Australia; (4) HaddGEM2 (Hadley Centre
Global Environmental Model Version 2) projects a hot future with warming typically > 2.5°C,
and > 3.5°C in central regions. AP is projected to increase in central Australia, and decline
elsewhere including the horticultural zone; (5) NorESM1 (The Norwegian Earth System
Model-Part-1) projects moderate warming, with most of the continent exceeding 2°C. Little
change in AP is projected, particularly in the south-east, although there is drying in south-west
WA; (6) GFDL-ESM2M (Global Coupled Climate Carbon Earth System Model Part-1)
projects a hot, very dry future, with warming in central regions exceeding 3.5°C. Drying is
projected across most of the continent, with AP forecast to decline more than 20% in many

arcas.
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I downloaded scenarios from these six models for the years 2030, 2050 and 2070 from the
CCAFS GCM Data Portal (http://www.ccafs-climate.org/data spatial downscaling/), at a

spatial resolution of 30 arc seconds. Climate data were reprojected to a spatial resolution of 1
km x 1 km (Australian Albers Equal Area, EPSG: 3577) with a bilinear interpolation, using the
gdalwarp function provided by the R package gdalUtils (Greenberg and Mattiuzzi 2015), in R
version 3.3.3 (R Core Team 2017) (https://www.R-project.org).

Species Distribution Model

Maxent (v3.3.3k, Phillips et al. 2006) is a machine learning algorithm frequently used to assess
habitat suitability for species under current and future climate scenarios, because it
accommodates presence-only data and has performed well in multi-model assessments (Elith
et al. 2006). Maxent produces a continuous probability surface, which can be interpreted as a
relative index of habitat suitability given the predictor variables included in model calibration.
Grid cells with a higher value are deemed as having greater suitability for the modelled species
(Phillips et al. 2006). For detailed descriptions of Maxent, see Elith et al. (2011) and Merow et
al. (2013).

Maxent requires background data, to which it can compare the environmental characteristics
of presence locations. Following Thlow et al. (2012), I generated a mask layer consisting of a
200 km buffer surrounding Qfly occurrence records, from which Maxent randomly selected
10,000 background records. Choice of background achieves a balance between fine-scale
discrimination of suitable and unsuitable sites along environmental gradients, and
generalisation of model predictions. In addition to comparing the predictive power of models
calibrated with different sets of variables, I optimized Maxent by assessing the effect of
different combinations of feature types and alternate magnitudes of regularisation on model
performance. I found that Maxent performed best when product, linear and quadratic features
were used, with a regularization multiplier of 1, and used this configuration to calibrate my
final model. 1T explored the contribution of environmental variables by a) assessing their
permutation importance (i.e. the change in classifier accuracy when cell values for the
respective variable are randomly permuted among presence and background cells) and b) with
jackknife tests, which indicate the change in model fit or performance when sequentially
withholding each predictor and refitting models, and when fitting univariate models (Elith et

al. 2011).
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I used a ten-fold cross-validation to reduce model errors that may occur from the random
splitting of data into test and training subsets. In this approach, occurrence data are split into
ten subsets of approximately equal size (i.e. folds): the model is fitted using data from nine of
the ten folds and tested using data from the remaining fold. This process is repeated until each
fold has been used once for testing. The performance of each model was evaluated using the
area under the receiver operating characteristic (ROC) curve (AUC), which describes the
consistency with which a model ranks presence sites as more suitable than background sites.
AUC ranges from 0 to 1 (Fielding and Bell 1997), where a value of 0.5 represents a model with
discrimination ability no better than random, while a model with AUC > 0.75 is considered fair

(Swets 1988).

Current and future habitat suitability

To assess current and future habitat suitability, I projected the final Maxent model onto spatial
data for each of the climate scenarios. Continuous suitability predictions were then converted
into binary layers indicating suitable and unsuitable habitat. The selection of a threshold for
this conversion depends on the goals of the study (Wilson et al. 2005) and the extent to which
false negative and false positive errors are tolerated when identifying suitable habitat (Fielding
and Bell 1997). Following previous studies of pest species (Khanum et al. 2013, Aguilar et al.
2015), I selected the threshold corresponding to the 10th percentile of suitability at model-
fitting presence localities. Data were then imported into ArcGIS (v 10.4, ESRI 2016). Binary
layers were stacked to produce a consensus map, identifying agreement in the suitability of a

grid cell across the six climate scenarios.

I obtained spatial data on the location of the former FFEZ from the Department of Primary
Industries, Victoria. I also downloaded data on the primary horticultural regions of Australia,

as mapped in the National Scale Land Use Version 5 (http://www.agriculture.gov.au/abares/

aclump/land-use/data-download, 1 km resolution) developed by ACLUMP (Australian
Collaborative Land Use and Management Program). ACLUMP contains spatial data on five
types of horticultural regions (perennial; seasonal; irrigated perennial; irrigated seasonal;
intensive horticultural), which span a total of 5,321 km?. I overlaid all Maxent projections for
current and future time periods onto the FFEZ and horticultural regions, to assess the extent to

which these areas are likely to contain suitable habitat for Qfly. Finally, for all scenarios
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calculated overall range change, the proportion of current suitable habitat projected to become
unsuitable (“loss”) and the proportion of future habitat projected to occur in previously

unsuitable areas (“‘gain”).

Suitability
High

Low

Figure 1. Current habitat suitability for Qfly modelled using Maxent (the hatched area represents regions
with suitability values above the 10th percentile at training presence sites). The location of the former Fruit Fly
Exclusion Zone (FFEZ) in south eastern Australia is shown as a polygon. The inset map shows the location of
occurrence records of Queensland fruit fly (Qfly) from across Australia, based on specimens from natural history
collections, literature and State Government-run trapping programs. Figure was created in R version 3.3.3 (R Core
Team 2017) (https://www.R-project.org).

Data Availability

The datasets generated or analysed during the current study are available from the
corresponding author on reasonable request. However, note that restrictions apply to data
obtained from the Australian Plant Pest Database and Australian State Government

Departments, which were used under license for the current study.
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Results

Across the ten cross-validation iterations, the average test AUC was 0.772 (SD 0.024). The
most important variable was TminCM (36.5%), followed by MAT (33.3%) and PDM (14.9%)).

The remaining variables contributed < 10% each to the model.

My model suggested that approximately 23% of Australia is currently suitable for Qfly. Highly
suitable habitat occurs along the east coast of Queensland and New South Wales, Victoria,
southeastern South Australia, and southwestern Western Australia. Coastal zones of northern
Western Australia, the Northern Territory and the eastern half of Tasmania have moderate
suitability, while the arid/semi-arid zones of Western Australia and the Northern Territory are
unsuitable (Figure 1). Presently, ~64% of the FFEZ, spanning 120,589 km? across the southeast
of the zone, is suitable for Qfly (Figure 1). Of the 5,321 km? of land throughout Australia
classified by ACLUMP as horticultural, ~97% is currently suitable for Qfly.

Projections of climate change-driven shifts in habitat suitability

The geographic extent of suitable habitat is projected to decline by 2030, by an average of
18.5% across the six scenarios (SD 10.0%), although as the century progresses, gains in new
habitat may exceed losses under some scenarios (e.g. see NorESM and MIROC in Figure 2).
By 2070, the extent of suitable habitat is projected to be slightly larger, on average, than at
present (mean 1.2%, SD 21.9%). However, there are considerable differences across climate
scenarios. For example, under the hot/very dry scenario simulated by GFDL, total range size
may decline ~35% by 2030, mostly due to contractions in the south and east, although limited
gains in habitat may occur in northern Australia. Similarly, under the MIROC scenario, ~26%
of current suitable habitat is projected to be lost by 2030, although by 2070, range expansions
are projected to exceed losses. In contrast, few changes in overall range size are projected under
NorESM (a moderate warming scenario with little precipitation change) by 2050, although by

2070, substantial westward range expansion is projected in eastern Australia.
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Figure 2. Projected changes in the area of suitable habitat for Queensland fruit fly, under six future climate
scenarios, relative to the current period. Loss refers to the proportion of currently suitable habitat projected to
become unsuitable in the future, while gain refers to the proportion of future suitable habitat that is in areas
currently unsuitable.

Agreement across climate scenarios

By 2030, ~25% of Australia (i.e. ~1,900,000 km?) is projected to be suitable for Qfly under at
least one of the climate scenarios (Table 1). Due to subsequent gains in suitable habitat, this
may increase to 31.7% (~2,400,000 km?) by 2070 (Table 1). Importantly, 12.7 to 14.2%
(~979,000 — 1,088,000 km2) of Australia is likely to be suitable for Qfly by 2030 and 2070,
under all six scenarios. This includes most of Victoria (with the exception of high-altitude
regions), much of eastern Tasmania, south-west Western Australia, eastern Queensland and the

northern reaches of Australia.
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Within the former FFEZ, only the south-east region is projected as suitable across five or more
scenarios for all time periods (Figure 3). As the time horizon increases, however, the central

and south-west regions of the exclusion zone become suitable under one to three scenarios

(Figure 3).

Approximately 60% of Australia’s current horticultural zones are projected to be suitable for
Qfly across all climate scenarios for each time period (Figure 4). An additional 11 to 21% is

projected to be suitable under 4 or 5 of the climate scenarios, for 2030 and 2070, respectively.

Table 1: Area (km?) and % of Australia projected to be suitable for Queensland fruit fly under six future
climate scenarios. That is, in the column ‘N. climate scenarios’, 0 refers to the area projected to be unsuitable
across all six scenarios; 1 refers to the area projected to be suitable by any one of the six scenarios...6 refers to
the area projected to be suitable under all six scenarios. The area of Australia is 7,687,258 km?2.

N. climate 2030 km? | 2030 (%) 2050 km? 2050 (%) 2070 km? 2070 (%)
scenarios

0 5,767,276 75.02 5,755,445 74.87 5,252,171 68.32

1 321,497 4.18 205,527 2.67 429,639 5.59

2 125,806 1.64 147,398 1.92 192,653 2,50

3 111,207 1.44 145,441 1.89 168,931 2,19

4 140,535 1.82 222,494 2.89 303,480 3.94

5 241,687 3.14 215,993 2.81 251,669 3.27

6 979,250 12.74 994,960 12.94 1,088,715 14.16
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Figure 3. Agreement in the suitability of habitat for Queensland fruit fly across six climate scenarios for
2030, 2050 and 2070. Suitability was modelled with Maxent, and thresholded using the 10th percentile training
presence. Colours indicate the number of climate scenarios under which habitat is predicted to be suitable. The
hatched area represents regions projected as suitable for the current period. Figure was created in R version 3.3.3
(R Core Team 2017) (https://www.R-project.org).
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Figure 4. The proportion of grid cells that are suitable for Queensland fruit fly, and in which the primary
land use is horticulture. Shown are six future climate scenarios for three time periods (2030, 2050, and 2070).

Discussion

My study revealed substantial consensus across climate scenarios that south-eastern and south-
western Australia will remain suitable for Qfly, until at least 2070. Similarly, eastern Tasmania,
an island state currently free of Qfly, was classified as containing substantial areas of suitable
habitat under both current climate and all future climate scenarios. Depending on which climate
scenario eventuates, there is also the potential for large swaths of inland Queensland to become
suitable by 2070. While the level of threat that Qfly may pose to the FFEZ varies with climate
scenarios, the south-eastern regions of the FFEZ are likely to remain suitable across all
scenarios, as are most of Australia’s current major horticultural regions. However, the

northwest FFEZ is projected to be unsuitable until at least 2070.

Climate is considered ultimately responsible for determining the geographic distribution of
Qfly (Yonow and Sutherst 1998). According to my model for this species, the minimum
temperature of the coldest month, mean annual temperature, and precipitation of the driest
month are the variables with the greatest influence on suitability. This reflects known drivers
of Qfly distribution. For instance, Muthuthantri et al. (2010) reported that many subtropical
sites in Queensland are marginal for Qfly breeding and general activity in winter. Similarly,
the southern extent of Qfly is limited by winter temperature (Meats 1981). In Melbourne, Qfly

pupae do not generally survive winter months (O'Loughlin et al. 1984). Hence, climate change
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driven increases in temperature of only 1-2°C may substantially elevate the threat that Qfly

poses to the horticultural industry in southern Australia (Sutherst et al. 2000).

As climate changes, increases in temperature will affect the costs of Qfly management and
losses incurred by growers. Sutherst et al. (2000) estimated that the cost to control Qfly within
the FFEZ would increase by 24%, 33% and 83% for a 0.5°C, 1.0°C and 2.0°C temperature
increase, respectively, while for growers from Qfly endemic regions in Queensland control
costs may increase by 42%, 47% and 82% under each of these scenarios. Among South
Australian growers, expenditure on insect control and disinfestation was projected to increase
34%, 63% and 114% for the three temperature scenarios, while the cost of management in
Victoria may increase by 65%, 92% or 247% (Sutherst et al. 2000). However, these figures
were based on costs associated with spraying and disinfestation of pests. In 2011, the Australian
Pesticides and Veterinary Medicines Authority substantially restricted the permitted usage
patterns of insecticides used to control Qfly and other fruit pests, due to concerns about toxicity
(Australian Pesticides and Veterinary Medicines Authority 2011). Pre-harvest use of
organophosphate compounds, such as dimethoate and fenthion, was suspended or greatly
reduced, while the post-harvest use of these chemicals was strictly restricted to a subset of
fruits (Australian Pesticides and Veterinary Medicines Authority 2012). Consequently, other
approaches to controlling Qfly outbreaks, such as sterile insect techniques, are now being
explored. Given that a large extent of Australia’s current horticultural production regions will
remain suitable for Qfly as climate changes, my results indicate a need for research and
development into monitoring, control, and eradication tools. I point out, however, that my
analysis does not consider geographic shifts in horticultural zones that may occur due to climate

change.

Comparisons with other studies

In general, my results are in agreement with those of Sutherst et al. (2000), who also predicted
that Qfly will continue to pose a serious threat to the horticultural industry, particularly in
southern Australia, as climate changes. As with CLIMEX (Yonow and Sutherst 1998), Maxent
projects northern regions of the Northern Territory, far north Queensland and eastern
Queensland, as well as south-west Western Australia and southern South Australia, to be
suitable for Qfly. Further, my model indicates that the southern region of the FFEZ is also
suitable for Qfly, although Yonow and Sutherst’s (1998) model suggests this to be of marginal
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suitability. The primary difference between my projections and those of Yonow and Sutherst
is that Maxent classifies much of Victoria and the eastern half of Tasmania as currently suitable
whereas these areas were projected unsuitable by CLIMEX. However, there have been major
outbreaks of Qfly in Victoria this century (Ha et al. 2010) and it is clear that Qfly populations
can now persist there, likely due to climate change-related warming and, potentially, increases

in the level of cold tolerance of adults (Kalang et al 2008, as reported in Holz et al. 2010).

More recent CLIMEX projections for Tasmania were undertaken by Holz et al. (2010). These
results also contrasted with my model. Again, CLIMEX projected that permanent Qfly
populations would not be able to establish in this state, although transient populations that may
last several generations could occur if the fly was introduced into certain areas. The authors
point out that because climate varies substantially across short distances in Tasmania, the
spatial scale of modelling studies can influence results. Analysis was conducted at a resolution
of 1 km, an order of magnitude finer than Holz et al. (2010), who used grid sizes of 0.1 and 0.5

degrees.

Both Holz et al. (2010) and Sutherst et al. (2000) projected that climate suitability for Qfly in
Tasmania and across southern Australia, respectively, will increase as climate change
intensifies. My models also indicate that these regions will be suitable until at least 2070,
irrespective of the climate scenario. In particular, my results concur with Holz et al.’s (2010)
projection of increased risks along the north and east coastlines of Tasmania. I note, however,
that Sutherst et al.’s (2000) models generally projected a far greater extent of mainland southern
Australia to be suitable under current and future conditions than my model. In some respects,
it is difficult to compare my results with those of Sutherst et al. (2000) who included irrigation
when formulating their model. It is possible that my model’s projections of future habitat
suitability for urban and horticultural areas may be altered should irrigation be incorporated.
These two studies also utilised different baseline climate data sets and spatial resolutions (50

km versus 1 km).

Finally, Maxent and CLIMEX offer two very different approaches to modelling habitat
suitability. As a correlative model, Maxent generates predictions based on statistical
relationships between occurrence patterns and environmental data. In contrast, CLIMEX, a
semi-mechanistic model, can be calibrated by setting parameter values that describe the

species’ response to temperature and moisture either based on physiological data or inferred
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from the species’ known distribution (Yonow and Sutherst 1998). A number of previous studies
have compared the output of Maxent and CLIMEX for both invasive and non-invasive species.
Most of these studies found the models to generate similar geographic extents of suitable
habitat (Lozier and Mills 2011, Kumar et al. 2014a, Kumar et al. 2015, Kumar et al. 2016). For
example, Kumar et al. (2015) used both models to project the global distribution of the codling
moth, Cydia pomonella, a major pest of pome and stone fruits. Both models’ projections
reflected the current known distribution of the moth, although Maxent projected marginally
suitable habitat to cover a greater geographic extent than CLIMEX projected. In contrast,
Kumar et al. (2014b) found that Maxent provided a more realistic model of the western cherry
fruit fly, Rhagoletis indifferens, compared to CLIMEX, and suggested that differences in the
suitability maps may have occurred due to different spatial resolutions (5 km, Maxent; 18 km,
CLIMEX) and predictor variables (WorldClim, Maxent; CliMond, CLIMEX). I suggest that it
would be very worthwhile to undertake a thorough comparison of projections for Qfly derived
from both Maxent and CLIMEX.

Model Limitations and Uncertainties

Errors and uncertainties in SDM output may occur for a variety of reasons, including
limitations in occurrence data (Veloz 2009, Syfert et al. 2013), selection of background points
(Phillips 2008, Phillips et al. 2009), spatial resolution, extent of the study area, and selection
of predictor variables (Guillén and Sanchez 2007). To minimise model errors, I (1) reduced the
number of variables by assessing collinearity, (2) examined spatial autocorrelation and
sampling bias before modelling, and (3) extracted background points from areas situated within
200 km of Qfly occurrences.

I converted continuous probability surfaces projected by Maxent to binary suitable/unsuitable
maps, since this facilitates effective portrayal of model consensus. However, two types of
errors occur in binary classification models. False negatives (or omission errors) occur when
suitable habitat is classified as unsuitable, whereas false positives (or commission errors) are
when unsuitable habitat is classified as suitable. Both can be costly when the output of models
is used to support management decisions (Guisan et al. 2013). For invasive species, false
negatives may translate into an underestimation of the geographic extent of suitable habitat,
and hence, invasion risk. This may be particularly problematic if it results in poor decision-

making (Hartley et al. 2006) such as allowing movement of goods (Pheloung et al. 1999) or
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the failure to establish appropriate surveillance or containment measures (Guisan et al. 2013).
In contrast, false positives may result in some locations being unnecessarily monitored (Hartley
et al. 2006). The relative, application-specific importance of these errors is critical when
selecting a threshold value at which to convert a continuous suitability map into a binary
suitable/unsuitable map. In the context of Qfly, a precautionary approach would seem
warranted: incorrectly labelling suitable habitat as unsuitable is particularly problematic, since
the costs associated with uncontrolled incursions are likely to outweigh the costs of
inadvertently monitoring an unsuitable site. Accordingly, I assumed that areas were ‘suitable’
if their predicted suitability was at least as high as the 10th percentile of suitability at presence
localities. This ensures that the majority of conditions currently encountered by Qfly
populations are considered suitable. However, it also accommodates some degree of positional
error in occurrence data and may exclude regions for which the occurrence records represent
anomalies (e.g. populations that represent rare outbreaks or presences associated with
transportation of goods, such as in central Australia and parts of the Northern Territory and
western Queensland). Using a lower threshold increases the geographic extent of suitable
habitat. For Qfly, this would result in suitability in Queensland and northern regions of the
Northern Territory more closely aligning with Yonow and Sutherst’s (1998) model. However,
it would also extend the distribution of suitable habitat in southern Australia, resulting in

greater differences with Yonow and Sutherst (1998) for this region.

The selection of environmental predictor variables to be used in an SDM should be driven by
the ecology and biology of the modelled species (Porfirio et al. 2014). I used a set of general
predictor variables related to soil and climate, yet other important environmental variables,
such as host availability and dispersal, can influence species’ distributions. To some extent, I
accounted for the influence of host availability by assessing changes in suitability within
mapped horticultural regions. However, our currently incomplete knowledge of these aspects
of species’ ecology means that including such variables remains a key challenge for modelling
studies (Heikkinen et al. 2007). Hence, here I limit my focus to assessing the effects of climate

change on climatic suitability.

Conclusions
My modelling projects that much of south-eastern and south-western Australia, eastern

Queensland and Tasmania, as well the northern regions of Northern Territory, will likely be
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climatically suitable for Qfly throughout much of this century. As such, Qfly will remain a very
real threat to Australia’s horticultural industry and backyard growers. For those markets that
depend on area freedom, climate change may also translate into uncertainty about the security
of market access (Sutherst et al. 2000). My projections provide guidance on the potential
exposure of Australia’s horticultural industry to Qfly as a result of climate changes and
highlight the need for long-term vigilance across southern Australia to prevent further range

expansion of this species.
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CHAPTER THREE

Impacts of climate change on high priority fruit fly
species in Australia

Published as: Sultana S, Baumgartner JB, Dominiak BC, Royer JE, Beaumont LJ (2020)
Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE 15(2):
€0213820. https://doi.org/10.1371/journal.pone.0213820 .

Abstract

Tephritid fruit flies are among the most destructive horticultural pests and pose risks to
Australia’s multi-billion-dollar horticulture industry. Currently, there are 11 pest fruit fly
species of economic concern present in various regions of Australia. Of these, nine are native
to this continent (Bactrocera aquilonis, B. bryoniae, B. halfordiae, B. jarvisi, B. kraussi, B.
musae, B. neohumeralis, B. tryoni and Zeugodacus cucumis), while B. frauenfeldi and Ceratitis
capitata are introduced. To varying degrees these species are costly to Australia’s horticulture
through in-farm management, monitoring to demonstrate pest freedom, quarantine and trade
restrictions, and crop losses. Here, I used a common species distribution modelling approach,
Maxent, to assess climate suitability for these 11 species under current and future climate
scenarios. These projections indicate that the Wet Tropics is likely to remain suitable to all 11
species until at least 2070, with the east coast of Australia also likely remain vulnerable to
multiple species. While the Cape York Peninsula and Northern Territory are projected to have
suitable climate for numerous species, extrapolation to novel climates in these areas decreases
confidence in model projections. The climate suitability of current major horticulture areas in
eastern Queensland, southern-central regions of New South Wales and southern Victoria to
these pests is projected to increase as climate changes. My study highlights areas at risk of pest
range expansion in the future, to guide Australia’s horticultural industry in developing effective

monitoring and management strategies.

Keywords: Tephritidae, fruit flies, species distribution modelling, climate suitability, climate

change
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Introduction

Tephritid fruit flies are one of the most destructive and economically significant pest insect
families, attacking a wide range of fruit and vegetables. While the family contains more than
4000 species, around 350 are recognized as economically important horticultural pests (Plant
Health Australia 2018) that have significant impacts on global horticultural production and
market access. In Australia, the average annual value of crops susceptible to fruit flies is multi-
billion (SAUD) (Plant Health Australia 2018), and the National Fruit Fly Strategy has identified
46 species as ‘high priority pests’ (Plant Health Australia 2008) of concern. The majority of
these species are exotic to Australia, primarily found in South-East Asia and the South Pacific
(Plant Health Australia 2008, 2018), and are yet to establish populations in Australia. Of the
11 species that are currently present in Australia (Hancock et al. 2000, Plant Health Australia
2008) (Table 1), seven are reported to cause significant economic losses (Bactrocera aquilonis,
B. jarvisi, B. neohumeralis, B. musae, B. tryoni, Ceratitis capitata, and Zeugodacus cucumis)
(Horticultural Policy Council 1991, Plant Health Australia 2011). Combined, these species
infest a wide variety of hosts, with some (e.g. B. frauenfeldi, B. jarvisi, B. neohumeralis, B.

tryoni and Ceratitis capitata) (Hancock et al. 2000) being highly polyphagous.

The distributions of Australia’s pest fruit fly species are influenced by their climatic tolerances
and the distributions of their hosts. Bactrocera originated in tropical regions and have their
highest richness in rainforests (Drew 1989). However, over the last 100 years, as horticulture
has proliferated across Australia, some species have expanded their geographic range and host
breadth (Smith et al. 1988). Of the 11 high priority fruit fly species presently on the continent,
three are currently restricted to north-east Queensland (B. frauenfeldi, B. kraussi and B. musae)
(Royer and Hancock 2012). In contrast, the geographic range of B. neohumeralis (Lesser
Queensland fruit fly) extends along eastern Australia, from Queensland to central New South
Wales (NSW) (Hancock et al. 2000, Royer and Hancock 2012). Previous climatic analysis
indicates that this species also has the potential to establish elsewhere in northern Australia
(Horticultural Policy Council 1991). The remaining species have substantially wider climate
tolerances, and are found across broad regions of the continent. For instance, B. tryoni (Qfly)
ranges across much of eastern Australia, eastern Queensland and northern regions of the
Northern Territory. Bactrocera jarvisi (Jarvis’ fruit fly) extends from northwest Western
Australia, across the Northern Territory to northern Queensland and the Torres Strait Islands

(Horticultural Policy Council 1991, Dominiak and Worsley 2017), and, in favourable years,
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may spread down the east coast of Australia into northern coastal NSW (Horticultural Policy
Council 1991, Dominiak and Worsley 2017). Hence, B. jarvisi and B. tryoni have overlapping
geographic ranges and infest many of the same hosts (Horticultural Policy Council 1991).
Ceratitis capitata (Medfly) originated from the Afrotropical region (De Meyer et al. 2002), and
was introduced into the Perth area (Western Australia) in the late 1800s (Horticultural Policy
Council 1991). Before quarantine controls were developed, this species spread to NSW,
Victoria, and other parts of Australia (White and Elson-Harris 1992). However, for reasons that
remain unclear, Qfly is believed to have displaced Medfly throughout most of its former
Australian range (Permkam and Hancock 1994), and now Medfly is confined to Western

Australia, with occasional detections in South Australia (Dominiak and Mapson 2017).

Under current climate conditions, most of these 11 fruit fly species pose threats to Australia’s
horticulture industries, as well as to backyard growers. As such, controlling fruit flies is
imperative for the viability of Australian horticulture, necessitating in-farm management and
pest treatment, monitoring to demonstrate pest freedom, and quarantine and trade restrictions
(Plant Health Australia 2008, 2018). These controls, along with loss of market access, are
estimated to cost Australian growers $100 million per annum (Horticultural Policy Council
1991), in addition to losses of up to $159 million per annum due to infestation of fruit and

vegetable crops (Plant Health Australia 2016).

For those areas where fruit flies are found, the annual cost, as reported in 2012, of bait and
cover spray, as well as post-harvest treatments, amount to $269 ha' and $62.36 tonne™,
respectively (Abdalla et al. 2012), while maintaining fruit fly free areas is estimated to exceed
$28 million per annum based on data from 2009-2011 (PHA 2009). However, restrictions were
recently placed on the use of insecticides to control fruit flies due to concerns about toxicity
(Australian Pesticides and Veterinary Medicines Authority 2011), with dimethoate and
fenthion suspended or highly restricted for many horticultural crops (Australian Pesticides and
Veterinary Medicines Authority 2011, Clarke et al. 2011, Dominiak and Ekman 2013). Other
approaches, including Sterile Insect Techniques, are now being explored. Regardless, it has
been estimated that the annual likelihood of an incursion by an exotic fruit fly species is 21%
(Abdalla et al. 2012), and the annual cost of eradicating these incursions is ~$13 million (PHA
2009), with rapid responses to outbreaks being crucial for eradication success (Jessup et al.
1998). Even brief incursions can result in significant economic damage due to market access

restrictions that may be imposed. Climate change is likely to alter the distribution of suitable
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habitat for fruit fly species and areas vulnerable to outbreaks, and this could have serious

repercussions for Australian horticulture (Stephens et al. 2016).

Previous studies (Kriticos 2007, Hill et al. 2016, Stephens et al. 2016) have used the semi-
mechanistic species distribution model (SDM), CLIMEX, to estimate the potential geographic
distributions of several high priority fruit fly species, based on their performance along climatic
gradients. While highly useful in furthering my understanding of climate impacts on fruit flies,
these studies have either focused on other countries or have explored global patterns of the
distribution of suitable climate (Vera et al. 2002, Kriticos 2007, Aguilar et al. 2015, Hill et al.
2016, Stephens et al. 2016). Here I assess how climate change may result in shifts to the
distribution of climatically suitable habitat for the 11 high priority fruit fly species present in
Australia, using the correlative SDM, Maxent (Phillips et al. 2006). This SDM has been used
extensively to assess the distribution of suitable habitat for a broad range of pests and invasive
species (Kumar et al. 2014a,b, Aguilar et al. 2015, Kumar et al. 2015, Kumar et al. 2016). I
also highlight areas at risk of pest range shifts, to guide Australia’s horticulture industries in

development of effective monitoring and management strategies.

Table 1. Eleven economically-significant tephritid pest species present in Australia and their major
commercial hosts. This list includes nine natives (B. aquilonis, B. bryoniae, B. halfordiae, B. jarvisi, B. kraussi,
B. musae, B. neohumeralis, B. tryoni and Z. cucumis) and two introduced species (B. frauenfeldi and C.
capitata).

Australia from Cape York to
Sydney, NSW

Species Common name Geographical Range* Major Commercial Hosts
(2016/17)**
Bactrocera aquilonis | Northern Territory fruit fly Top End of the Northern Territory Bell pepper, tomato, lemon, mandarin,
(May) (NT), northern arcas of Western grapefruit, apple, mango, peach
Australia
Bactrocera bryoniae N/A Torres Strait Islands, mainland Chilli, tomato
(Tryon) Queensland, northern Western
Australia, NT, NSW as far south as
Sydney
Bactrocera Halfordia fruit fly North Queensland south to the Citrus
halfordiae (Tryon) Sydney region in NSW
Bactrocera jarvisi Jarvis' fruit fly North-western Western Australia, Mango, peach, banana, pear, apple,
(Tryon) NT, north-west Queensland, eastern | pawpaw, persimmon

Bactrocera kraussi

Krauss' fruit fly

Torres Strait Islands, northeast

Grapefruit, mandarin, orange, mango,
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(Hardy)

Queensland as far south as
Townsville

peach and banana

Torres Strait Islands and northem
Queensland as far south as
Townsville

Bactrocera musae Banana fruit fly Torres Strait Islands, northeast Banana
(Tryon) Queensland as far south as
Townsville
Bactrocera Lesser Queensland fruit fly Torres Strait Islands, eastern Mango, papaw, persimmon, avocado,
neohumeralis Queensland, northern NSW banana, passionfruit, apple, apricot,
(Tryon) plum, peach, citrus, capsicum, chilli,
tomato
Bactrocera tryoni Queensland fruit fly (Qfly) Central and Top End of NT, eastern | Mango, papaw, avocado, grapefruit,
(Froggatt) Australia, Victoria passionfruit, strawberry, peach, pear,
apple, banana, persimmon, chilli,
capsicum, tomato, eggplant
Zeugodacus cucumis | Cucumber fruit fly Eastern Queensland, north-eastern Cucumber, pumpkin, zucchini,
(French) (formerly NSW, NT squash, passionfruit, tomato, pawpaw
Bactrocera cucumis)
Bactrocera Mango fruit fly Native to Papua New Guinea and Mango, banana, passionfruit, citrus,
frauenfeldi (Schiner) surrounding islands, spread to chilli

Ceratitis capitata
(Wiedemann)

Mediterranean fruit fly (Medfly)

Native to Africa, spread to the
Mediterranean regions, Western
Australia, occasional detections in
South Australia and NT are
eradicated.

Mango, papaw, apple, peach, pear,
citrus

* Plant Health Australia 2018

** The Australian Horticulture Statistics Handbook 2017/18

Methodology

Species occurrence data

I collected occurrence data for the 11 species from five main sources: the Australian Plant Pest
(APPD;

accessed

http://www.planthealthaustralia.com.au/resources/australian-plant-pest-
15th March 2017), Atlas of Living Australia (ALA;
http://www.ala.org.au, 22nd December, 2016), the Global Biodiversity Information Facility

Database

database, the

(GBIF, https://www.gbif.org, June, 2017 [see Supplementary Information]), trap data, and
existing literature. APPD is a national digital database of plant pest and pathogen specimens
held within herbaria and insect collections across Australia. It is a powerful tool for market
access and emergency responses to pest incursion and supports associated research activities.

ALA is Australia’s largest digital database of species occurrence records, containing
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information from a wide array of data providers including Australia’s major museums and
government departments. GBIF provides similar data at a global scale. Before downloading
data from APPD, ALA and GBIF, I applied filters to restrict records to those that were resolved
to species-level, were dated no earlier than 1 January 1950, contained valid geographic

coordinates, and were not flagged by ALA as ‘environmental outliers’.

I also collected trap data from various state government departments (Biosecurity and Food
Safety, Department of Primary Industries, NSW; Biosecurity Queensland and the Queensland
Department of Agriculture and Fisheries; Department of Economic Development, Jobs,
Transport and Resources, Victoria; and Department of Primary Industries and Regions South
Australia (PIRSA)). Trap data from these sources were collected at different periods from 1996
to 2017. Finally, I also obtained occurrence data from the literature (May 1963, Smith et al.
1988, Horticultural Policy Council 1991, White and Elson-Harris 1992, Hancock et al. 2000,
Gillespie 2003, Plant Health Australia 2008, Dominiak 2011, Dominiak and Daniels 2012,
Royer and Hancock 2012, Royer et al. 2016, Plant Health Australia 2018).

Major commercial fruit and vegetable hosts

For each of the 11 fruit fly species, I compiled information on the major commercial hosts on
which infestation has been recorded. For this purpose, I defined major fruit and vegetable host
species according to the Australian Horticulture Statistics Handbook (HSHB;
www.horticulture.com.au) for the year 2016/2017 (2016/17). This document consolidates
horticulture statistics of interest to industry members and other stakeholders. The data
contained in HSHB were derived from the Australian Bureau of Statistics, projects funded by
Hort Innovation, international trade sources and horticulture industry representative bodies

where available.

Climate data

For current and future climate conditions I used the bioclimatic variables available within the
WorldClim database, at a spatial resolution of 30 arc-seconds (Hijmans et al. 2005)
(approximately 1 km; http://www.worldclim.org). These data, based on meteorological records
for the period 1960—-1990, comprise 19 climatic variables, 11 of which are temperature-based

while eight relate to precipitation. Combined, the data represent annual trends, seasonality, and
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limiting or extreme environmental conditions. Assuming that host plants are available,
temperature and moisture are the key factors influencing fruit fly reproduction and survival
(Bateman 1972, Clarke et al. 2011). Thus, these variables were chosen as predictor candidates
based on the fruit flies’ biology and ecological requirements, and similar habitat suitability
studies undertaken on other insects (De Meyer et al. 2010). For each species, I identified a set
of ecologically-relevant variables, with minimal collinearity, that resulted in high predictive

power for the model (Beaumont et al. 2016) (described below).

When projecting future suitability, I considered a range of climate scenarios to acknowledge
this important aspect of uncertainty. CSIRO recommends eight global climate models (GCMs)
as being useful for Australian climate impact assessments (CSIRO & BoM 2015). Data from
six of these models were available from the CCAFS GCM Data Portal (http://www.ccafs-

climate.org/data_spatial_downscaling/), at a spatial resolution of 30 arc seconds. These data

were developed from anomalies of the original GCM data that were statistically downscaled
using a thin plate spline spatial interpolation, and then applied to the WorldClim v1.4 baseline.
The GCMs included: CanESM2 (The Second Generation of Canadian Earth System Model);
ACCESS1.0 (The Australian Community Climate and Earth System Simulator); MIROCS
(Model for Interdisciplinary Research on Climate); HadGEM2-CC (Hadley Centre Global
Environmental Model Version 2 Carbon Cycle); NorESM1-M (The Norwegian Earth System
Model-Part-1); and GFDL-ESM2M (Global Coupled Climate Carbon Earth System Model
Part-1). The CanESM2 model projects a hot future with drying across central regions of
Australia and higher precipitation in the north-east. The ACCESS1.0 model projects a hot and
dry future across most areas of Australia, while MIROCS projects moderate warming, with
drying in the north-east and south-west but higher precipitation in central Australia. NorESM1-
M projects moderate warming. HadGEM2-CC and GFDL-ESM2M project a hot future with

greater warming typically in central regions.

I downloaded the 19 bioclimatic variables from these six models from CCAF, for 20-year
periods centred on 2030, 2050 and 2070, for the Representative Concentration Pathway 8.5
(RCP8.5) (Moss et al. 2010). With a radiative forcing exceeding 8.5 Wm™ by 2100, this is the
highest of the four RCPs presented in the Intergovernmental Panel on Climate Change’s Fifth
Assessment Report (Moss et al. 2010). It is also the RCP that emissions are currently tracking
most closely (Peters et al. 2012). After downloading, I reprojected these data to a spatial
resolution of 1 x 1 km (Australian Albers Equal Area, EPSG: 3577) via bilinear interpolation,
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using the gdalwarp function provided by the R package gdalUtils (Greenberg and Mattiuzzi
2015) in R version 3.1.2 (Team 2014).

Species Distribution Models

[ used the machine learning approach, Maxent (v3.3.3k (Phillips et al. 2006)), to assess climate
suitability for species under current and future climate scenarios. Maxent accommodates
presence-only data and has performed well in multimodel assessments (Elith et al. 2006). It
produces a continuous probability surface, which can be interpreted as an index of climatic
suitability given the predictor variables included in model calibration. Detailed descriptions of
Maxent are given elsewhere (Elith et al. 2011, Merow et al. 2013). I optimized models by
assessing the effects of different combinations of feature types, of competing predictor sets
deemed ecologically sensible a priori, and of the extent of regularization on model
performance. I found that Maxent performed best when product (first-order interactions), linear
and quadratic features were used, with a regularization multiplier of 1 (the default) and used

this configuration to calibrate my final models.

Maxent requires background data, to which it compares the environmental characteristics of
presence locations. There is flexibility for users to specify which points to use as background,
as well as the number of records and the spatial extent from which they are chosen (Merow et
al. 2013). Following Ihlow et al (Thlow et al. 2012), I generated background points by randomly
selecting 100,000 cells from terrestrial areas within 200 km of occurrence records of the target
species. Background records were extracted from fine-scale discrimination of suitable and

unsuitable sites along environmental gradients, and generalization of model predictions.

To assess model performance, I used five-fold cross-validation to reduce model errors that may
occur from the random splitting of data into test and training subsets. The performance of each
model was evaluated using the area under the receiver operating characteristic curve (AUC),
which describes the consistency with which a model ranks randomly chosen presence sites as
more suitable than randomly chosen background sites. AUC ranges from 0 to 1, with a value
of 0.50 indicating discrimination ability no better than random, while values greater than 0.75
indicates that the model has a discriminative ability that is better than “fair” (Swets 1988).
Cross-validated AUC scores were presumed to reflect the performance of a single final model

for each species, which used all available data.
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Following previous studies of pest species (Aguilar et al. 2015), continuous suitability scores
projected by Maxent models were converted to binary layers (0 =unsuitable, 1 = suitable) using
the 10th percentile training presence threshold (i.e. the value that corresponds to 10% training
omission). I note that the selection of a threshold value is subjective and may vary depending
upon the goals of the study (Wilson et al. 2005), thus I also provide continuous output for
current climate as supplemental data (S1-S11 Figs). For each species, the six binary suitability
grids (i.e., one for each GCM, with cells assigned 0 when unsuitable and 1 when suitable) for
each time period were summed to produce a consensus map, identifying agreement about the
suitability of grid cells across the six climate scenarios. Each species’ consensus map was then
converting to a binary map indicating whether cells were projected to be suitable under the
majority of GCMs (i.e., suitable in <4 GCMs = 0, suitable in 4 or more = 1). The resulting
binary maps were summed across species to identify hotspots - grid cells suitable for multiple

pest species. Finally, I compared the distribution of hotspots to that of major horticultural crops.

When projecting models, extrapolation to conditions beyond the range of the training data may
be unreliable. Following Elith et al. (Elith et al. 2010) I constructed MESS (multivariate
environmental similarity surface) maps to identify regions of extrapolation (Elith et al. 2010).
By revealing areas with novel environmental conditions, MESS maps can be used as a
projection mask, highlighting regions for which less confidence can be placed in projections,
or as a quantitative measure of prediction uncertainty (Elith et al. 2010). I then recalculated the

size of projected suitable climate with novel environments excluded.

All modelling and post-modelling analyses and calculation of statistics were performed in R
version 3.1.2 (Team 2014). I used the sp (Pebesma 2005) and raster (Hijmans 2015) packages
for preparation and manipulation of spatial data, the dismo (Hijmans et al. 2013) package to fit

Maxent models, and custom R code for rapid projection of fitted models.

Results

Model Performance

Model performance for all species was better than random, with average cross-validated AUC
ranging from 0.815 (SD = 0.05; B. frauenfeldi) to 0.907 (SD = 0.02; B. neohumeralis) (S1
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Table).

Bactrocera aquilonis: My model suggested that climatically suitable habitat for B. aquilonis
currently exists in the northern regions of the Northern Territory and Western Australia, as well
as northern Queensland where this fly has not been reported (S1A=1B Figs). The variables with
the highest permutation importance were precipitation of the wettest quarter (68.9%) and

annual mean temperature (28.9%) (S1 Table).

As the century progresses, the geographic extent of climatically suitable habitat for this species
is projected to increase and expand southwards under all six scenarios, with many areas
currently suitable projected to remain so until at least 2070 (S1C-1E Figs; S3 Table). This
includes northern Western Australia, much of the Northern Territory, and north-western
Queensland (S1C-1E Figs). I note, however, that climate scenarios beyond 2030 frequently
contain novel conditions across the northern regions of Australian, highlighting uncertainty in

Maxent projections within these areas (S12C-12E Figs; S23 Fig).

Key horticultural crops for B. aquilonis are Mangifera indica (mango), Citrus % paradisi
(grapefruit), Malus domestica (apple), Prunus persica (peach) and Citrus sp. (citrus) (S4
Table). The major regions where these crops are currently grown include the Northern
Territory and north-east Western Australia. These regions may remain suitable for B. aquilonis
until at least 2070. Similarly, fruit growing regions in the Wet Tropics (north-east Queensland)
are likely to increase in suitability in the future. Other major host-plant growing regions in the

south and east of the continent will likely remain unsuitable (S1 Fig).

Bactrocera bryoniae: Current suitable habitat for B. bryoniae is projected to occur along the
northern and eastern coastlines (S2A-2B Figs). Temperature annual range and precipitation of
the driest month contributed the most to the model for this species (42.2% and 27.4%,
respectively) (S1 Table).

By 2070, suitable habitat is projected to increase under all scenarios except GFDL-ESM2M
(which projects a hot, very dry future) (S2C-2E Figs; S2 Table), expanding to the southern
coastlines of Victoria and Western Australia. Under 1-3 scenarios, suitable habitat is projected
to shift inland in Queensland and NSW. However, the amount of habitat projected to be suitable

under all six scenarios remains relatively stable from 2030-2070 (S3 Table). Beyond 2030,
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novel conditions are primarily restricted to the north-western regions (S13C-13E Figs; S24
Fig).

The major horticultural host for B. bryoniae is Capsicum annuum (chilli) (S4 Table). Model
indicates that key growing regions for this crop in Queensland currently contain suitable habitat

for B. bryoniae, and this will continue to be the case until at least 2070 (S2 Fig).

Bactrocera frauenfeldi: Currently, climatically suitable habitat for this species is projected to
be mostly confined to Cape York Peninsula and the Wet Tropics, although there are also small
areas in northern Western Australia and the Northern Territory that are classified as suitable,
but from which the species has not been recorded (S3A=-3B Figs). The most important variable
in the model for B. frauenfeldi was precipitation of the wettest quarter (75.4%) (S1 Table).

As the century progresses, suitable habitat is projected to expand under all scenarios except
CanESM2 (S2 Table). This scenario projects a hot, very dry future, leading to loss of suitable
habitat in northern Queensland by 2050. However, the extent of suitable habitat for this species
is likely to remain small, relative to other species. In addition, the far north-east of Queensland
contains novel conditions, decreasing confidence that this area will be suitable as the century
progresses. As with other species, the Wet Tropics is projected to remain suitable and is not a

region in which the model is extrapolating.

The major crops for B. frauenfeldi are Mangifera indica (mango) and Carcica papaya
(pawpaw) (S4 Table). Major production regions in north-western Northern Territory may
remain suitable for this species until at least 2070, although there is substantial uncertainty
across the climate scenarios. In contrast, it is very likely that the Wet Tropics will remain

suitable until at least 2070, irrespective of the climate scenario (S3 Fig).

Bactrocera halfordiae: Climatically suitable habitat for B. halfordiae is currently found in the
Wet Tropics and subtropics from north Queensland to eastern New South Wales (S4A-4B
Figs). Precipitation of the driest month (66.8%) and annual mean temperature (32.3%)
contributed most to this model (S1 Table).

The geographic extent of suitable habitat is projected to vary considerably across the six

climate scenarios. As the century progresses, gains in new habitat may exceed losses under
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some scenarios (e.g. see ACCESS and MIROCS in S2 Table) while losses are projected under
the CanESM2 scenario (which projects a hot future, drying across central regions and higher
precipitation in the north-east), mostly due to contractions in the south and east. Across the
scenarios there is consensus that lower elevation regions in the south-east will be suitable.

Furthermore, MESS maps indicate little model extrapolation for this species (S15C-15E Figs).

Crops in the Wet Tropics may continue to be at risk from this species, until at least 2070.
However, only 1-2 scenarios project horticultural regions in southern Queensland to retain
suitable climate (S4C-4E Figs). Although horticultural regions along the NSW-Victorian
border are currently unsuitable for B. halfordiae, some models project these areas to become

suitable between 2050-2070 (S4 Fig).

Bactrocera jarvisi: Current suitable habitat for this species is projected to be mostly confined
to northern Western Australia, the Top End of the Northern Territory, and eastern Australia
from Cape York to NSW (S5A-5B Figs). Annual mean temperature (38.0%) and precipitation
of driest month (37.2%) had the highest contributions to the model for this species (S1 Table).
There is substantial consensus across the six scenarios that regions currently suitable for B.
Jjarvisi will remain so until at least 2070 (SSC-SE Figs; S2 Table). In addition, across some
models, gains are projected to occur in central Queensland, Western Australia, and the
Northern Territory, although model extrapolation occurs under several climate scenarios
(S16C-16E Figs; S27 Fig).

Comparing the distribution of suitable habitat for this fly with that of its major host crops
indicates that crops currently grown in the Top End of the Northern Territory, and in eastern
Australia from Cape York to New South Wales, may continue to be at risk until at least 2070.
Other major host-plant growing regions in the south and west of the continent will also remain

suitable for this species until 2070 (S5 Fig).

Bactrocera kraussi: Suitable habitat for B. kraussi is projected to occur across the northern tip
of Australia and northeast Queensland, as far south as Townsville (S6A-6B Figs). Precipitation
of the wettest quarter (75.19%) had the highest contribution to the model of B. kraussi (S1
Table).

There is consensus across the six scenarios that the geographic extent of climatically suitable

habitat may increase slightly (S6C-6E Figs; S2 Table), although this is still confined to the
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Wet Tropics and far north of the continent. In addition, little extrapolation to novel conditions
occurs (S28 Fig). Horticultural production regions in northeast Queensland may remain
suitable for this species by 2070, although production regions in the south are likely to remain

unsuitable (S6 Fig).

Bactrocera musae: Current suitable habitat for B. musae 1s predicted from the Torres Strait
Islands through to the Wet Tropics (S7A-7B Figs). The most important variable in the model
for B. musae was precipitation of the wettest quarter (78.7%) (S1 Table).

Suitable habitat for this species is projected to remain restricted to the Wet Tropics and
northern—most regions of the country under the climate scenarios. While there is consensus
across the six climate scenarios, less confidence can be placed in projections to the north-west

(S18C-18E Figs; S29 Fig).

Bactrocera musae mainly attacks Musa x paradisiaca (banana), the production areas for which
are located primarily in tropical and subtropical regions of the continent (S4 Table). The major
commercial growing region in the Wet Tropics is projected to remain climatically suitable for

this species until at least 2070 (S7 Fig).

Bactrocera neohumeralis: Current climatically suitable habitat for this species is projected to
be mostly confined to the Torres Strait Islands, eastern Queensland, and north eastern NSW
south to Wollongong (S8A-8B Figs). Precipitation of the wettest month (47.4%) contributed

most to the model for B. neohumeralis (S1 Table).

As the century progresses, considerable differences in suitable habitat are projected across the
six scenarios. For example, under the CanESM2 scenario, ~ one quarter of current suitable
habitat is projected to be lost by 2030, although by 2070, range expansions are projected to
exceed losses (S2 Table). Similarly, under the hot, very dry scenario simulated by GFDL-
ESM2M, total range size may decline by 2030, mostly due to contractions in the south and
cast, although limited gains in habitat may occur in northern Australia (S8C-8E Figs; S30 Fig;
S2 Table). There is consensus in projections of suitability across the north tips of the continent,
however the MESS maps indicate that there are areas where the values of predictor variable
are outside the training range, leading to model extrapolation. In contrast, greater confidence

can be placed in projections of consensus along the east coast (S19C-19E Figs; S30 Fig).
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Production regions in eastern Queensland and north-eastern NSW will likely remain suitable
for this species until at least 2070, although there is substantial uncertainty across the climate
scenarios. In contrast, regions along the NSW-Victorian border and further south are projected

to remain unsuitable for B. neohumeralis (S8 Fig).

Bactrocera tryoni: Highly suitable habitat for B. fryoni is projected to occur along south-
western Western Australia, south-eastern South Australia, Victoria, and eastern Australia from
Cape York to NSW (S9A-9B Figs). Coastal zones in northern Western Australia, the Northern
Territory and the eastern half of Tasmania have moderate suitability (S9A-9B Figs). Annual
mean temperature (33.06%) and mean temperature of the coldest month (32.42%) had the
highest contributions to the model for this species (S1 Table).

The geographic extent of suitable habitat varies across the six climate scenarios. As the century
progresses, gains in new habitat may exceed losses under some scenarios (e.g. see ACCESS1.0,
MIROCS and NorESM1-M; S2 Table), while substantial declines occur under others (e.g.
GFDL-ESM2M S2 Table), mostly due to contractions in the south and east. Areas of consensus
occur along the coastline, although less confidence can be placed in these projections for the
Northern Territory and northern Western Australia due to model extrapolation (S20C-20E
Figs; S31Fig).

Key regions for host crops in the Top End of Northern Territory, eastern Australia from Cape
York to NSW, Victoria, and some parts of Tasmania, may remain suitable for B. tryoni until at
least 2070. Major host-plant growing regions in South Australia may also remain suitable for

this species until 2070 (S9 Fig).

Ceratitis capitata: Model suggests that suitable habitat for C. capitata exists throughout
Western Australia, the Northern Territory, the east coast of Queensland to NSW and South
Australia (S10A-10B Figs). I note that scattered records within inland regions of Western
Australia are projected as having low suitability. Annual mean temperature (47.2%) and mean
temperature of the coldest month (46.2%) contributed most to the model for this species (S1
Table).

Under the future climate scenarios, the geographic extent of suitable habitat is projected to

increase and expand inland (S10C-10E Figs) with much of Victoria and Tasmania likely to be
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suitable. There is considerable consensus in the distribution of suitable habitat, although
consensus declines in New South Wales as the time horizon increases (S10C-10E Figs). As
with other species, MESS maps indicate extrapolation occurs under scenarios from 2050
onwards, across the northern regions (S21D-21E Figs; S32 Fig). However, my analysis
indicated high consensus in suitability across the major host plant regions in Queensland,

Victoria, and Western Australia.

Zeugodacus cucumis.: Suitable habitat for Z. cucumis is projected to occur along the northern
region of Western Australia and the Northern Territory, north-east Queensland, and south along
the east coast to NSW (S11A-11B Figs). Precipitation of the driest quarter (54.3%) and mean
temperature of the coldest quarter (36.2%) had the highest permutation importance in the model
for this species (S1 Table).

Under future climate scenarios, the geographic extent of suitable habitat is projected to
increase, expanding southward and inland, with most areas that are currently suitable projected
to remain so until at least 2070 (S11C-11E Figs). There is considerable variation among
projections for inland regions, likely due to differences in precipitation patterns, indicating
higher uncertainty about the future suitability of these regions. There is high consensus in
suitability along the east coast, and while consensus is also high in the north MESS maps
identify this as a region of extrapolation. There is little agreement on the suitability of inland

regions of New South Wales and Queensland (S22C-22E Figs; S33Fig).

Major commercial growing regions for host crops in Queensland and the Northern Territory
are projected to remain climatically suitable for this species until at least 2070 (S11 Fig). Other
major host-plant growing regions in the south and west of the continent will likely remain

unsuitable under the time periods considered in this study (S11F Fig).

Future hotspots of pest fruit flies

For each time period, I stacked climate suitability maps for all species, to identify regions most
likely to contain suitable climate conditions for multiple pest species (i.e. hotspots). As the
century progresses, the geographic extent of climatically suitable habitat for most of the 11
species is projected to expand and shift south regardless of whether novel environments are

included or excluded (Fig 1, Fig 2 and Table 2). When regions containing novel climate are
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included, 31.6% of Australia (i.e. ~2,400,800 km?) is projected to be currently suitable for at
least one of the 11 species, increasing to more than half of the continent by 2070 (Table 2).

However, only Queensland’s Wet Tropics is likely to be suitable for all 11 species.

Figure 1. Hotspot maps of habitat suitability for the 11 fruit fly species under climate change, when novel
environments are included. Hotspot maps of current and future habitat suitability for 11 fruit flies. Suitability
was modelled with Maxent, and thresholded using the 10th percentile of suitability at training presence localities.
These maps include projections under novel environments (see S1-S11 for individual species maps with novel
environments included). Colours indicate the number of species for which habitat is projected to be suitable
under the majority (> 4) future climate scenarios. Figure was created in R version 3.3.3 (R Core Team 2017)
(https://www.R-project.org/).
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Figure 2. Hotspot maps of habitat suitability for the 11 fruit fly species under climate change, when novel
environments are excluded. Hotspot maps of current and future habitat suitability for 11 fruit flies. Suitability
was modelled with Maxent, and thresholded using the 10th percentile at training presence localities. These maps
exclude regions containing novel environments (see S12-S22 for individual species maps with novel
environments excluded). Colours indicate the number of species for which habitat is projected to be suitable
under the majority (> 4) future climate scenarios. Figure was created in R version 3.3.3 (R Core Team 2017)
(https://www.R-project.org/).
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Table 2. Percentage (%) of Australia projected to be suitable for the 11 fruit fly species considered in this
study, under current and future climates. This is a summary of the ‘consensus’ maps for each species. Values
in brackets represent results when novel environments have been excluded. Each row of the table indicates the
percentage of Australia projected to be suitable now, in 2030, 2050, and 2070, for » species, where 7 is given in
the “Count” column. Thus, the first row (with Count = 0) gives the area projected to be unsuitable for all 11
species under four or more of the climate scenarios, the row with Count = 1 gives the area projected to be suitable
for any one of the 11 species in at least four of the climate scenarios, and the row with Count = 11 gives the area
projected to be suitable for all 11 species in at least four of the climate scenarios. Note that the number of 1 km?
grid cells spanning Australia is 7,667,790.

Suitable area (% of Australia)

Count Current (Novel masked) 2030 2050 2070
0 68.4% (68.5%) 67.5% (70.2%) 59.5% (73.6%) 47.0% (72.0%)
1 11.0% (11.1%) 9.6% (9.4%) 11.6% (9.6%) 14.6% (10.0%)
2 11.1% (11.0%) 10.5% (9.7%) 14.8% (8.8%) 17.5% (10.3%)
3 2.3% (2.3%) 3.4% (4.1%) 2.9% (3.0%) 6.5% (3.4%)
4 1.2% (1.2%) 1.9% (2.2%) 3.2% (1.6%) 4.8% (1.2%)
5 1.6% (1.8%) 2.6% (2.8%) 2.9% (1.9%) 3.9% (1.6%)
6 1.2% (1.5%) 1.9% (0.9%) 1.8% (0.6%) 2.3% (0.7%)
7 1.3% (1.3%) 0.6% (0.4%) 1.0% (0.4%) 1.2% (0.5%)
8 0.4% (0.7%) 0.4% (0.2%) 0.5% (0.2%) 0.6% (0.1%)
9 0.8% (0.3%) 1.3% (0.2%) 1.4% (0.1%) 1.4% (0.1%)

10 0.6% (0.4%) 0.3% (0.1%) 0.1% (0.1%) 0.1% (0.1%)
11 0.0% (1.3E-05%) 0.1% (0.0%) 0.1% (0.0%) 0.1% (0.0%)

When novel environments are excluded from maps, less than 30% of Australia is projected to
be suitable for at least one of the species by 2070 (Table 2). Hence, exclusion of novel
environments substantially impacts the size of suitable habitat (i.e., projections of suitable
habitat frequently occur in areas with novel climatic conditions). However, extrapolation
primarily occurs in northern regions of Western Australia, Northern Territory and the Cape
York Peninsula, decreasing confidence in projections across these regions. From the Wet
Tropics and southward, little extrapolation occurs. As such, the Wet Tropics bioregion is
projected to remain suitable for 10-11 species, indicating that the major commercial host plants
within this bioregion may continue to be at risk of invasion by most or all of these high priority

species.

Major commercial host plant regions along the coastal strip of south-east Queensland and
north-east NSW are likely to have areas that are suitable under all future scenarios for B.
bryoniae, B. jarvisi, C. capitata and Z. cucumis (S2, S5, S10 and S11 Figs). Under some
scenarios, these regions may also be suitable for B. halfordiae, B. neohumeralis and B. tryoni

(S4, S8 and S9 Figs). Some major commercial host plant regions in southern NSW and
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Victoria are also projected to be suitable for B. jarvisi, B. tryoni and C. capitata under all
scenarios (S5, S9 and S10 Figs) and for B. halfordiae, B. neohumeralis and Z. cucumis under
a limited number of scenarios (S4, S8 and S11 Figs). Horticultural regions in Tasmania are

projected as suitable for B. jarvisi, B. tryoni and C. capitata (S5, S9 and S10 Figs).

In south-west Western Australia, major horticulture regions are likely to remain suitable for B.
Jjarvisi, B. tryoni and C. capitata, although the latter species is currently not found in this region
(S5, S9 and S10 Figs). Commercial horticulture regions in northern region of the Northern
Territory are also likely to be suitable for B. jarvisi, B. kraussi, B. musae, B. tryoni and Z.

cucumis under all scenarios, and B. frauenfeldi under some climate scenarios.

Discussion

My study suggests that the Wet Tropics bioregion has climatically suitable habitat for the
largest number of high priority tephritid pest species both now and as a result of climate
changes projected to occur through to 2070. Cape York Peninsula and the Northern Territory
are also likely to be vulnerable, although novel climates are projected to occur in these regions,
and the extrapolation of SDMs to these conditions may be unreliable. The east coast of
Australia is also likely to remain suitable for multiple species until at least 2070. As such, major
horticulture regions in north-western Australia, the Northern Territory, southern-central
regions of NSW, southern Victoria and north Tasmania may become increasingly suitable to
high priority fruit flies. Two species, B. tryoni (Qfly) and C. capitata (Medfly), are projected
to have suitable conditions in all states and territories of Australia, under all considered climate

change scenarios, until at least 2070.

Over the past 30 years, numerous studies have modelled suitable habitat for both Qfly and
Medfly using CLIMEX and Maxent, at various spatial resolutions (Holz et al. 2010, De Meyer
et al. 2008, De Meyer et al. 2010, Sultana et al. 2017) and extents. While generally giving
similar projections, a key difference is that my model projects Tasmania to be currently suitable
for Qfly whereas fine scale modelling using CLIMEX indicates that it is unlikely to become
suitable prior to mid-century (Holz et al. 2010).

My models for both Qfly and Medfly were driven primarily by temperature parameters, rather

than precipitation. Previous studies have identified climatic constraints on the distribution of
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Qfly. For example, it has been reported that Qfly pupae do not survive in the winter months in
Melbourne and near Sydney (O'Loughlin et al. 1984), and adults fail to emerge later than mid-
April (Muthuthantri et al. 2010). Further, many subtropical sites in Queensland are marginal in
winter for Qfly breeding and general activity (Muthuthantri et al. 2010). As such, slight
temperature increases associated with climate change are projected to substantially elevate the
threat that this species poses to horticultural industries (Sutherst et al. 2000). For instance, using
data from the late 1990s, it was estimated that annual control costs for apple growers around
Adelaide may increase by between $346,000 and $1.3 million with a 0.5-2°C increase in
temperature (Sutherst et al. 2000).

With the exception of Western Australia, all Australian states and territories are currently free
from Medfly, with market access protocols inhibiting movement into other states (Jessup et al.
1998), and incursions met with immediate eradication programs (Dominiak and Mapson 2017).
My model of current habitat indicates suitable conditions for Medfly around most of Australia’s
coastal regions. In addition to identifying suitability in the subtropical coastal fringe of
Queensland, my model suggested that much of the low-altitude regions in the south-east,
including parts of Tasmania, are also suitable. This is consistent with previous work using
CLIMEX to estimate the potential distribution of Medfly (Vera et al. 2002) and Principle
Components Analysis, (De Meyer et al. 2008) although projections by GARP covered a far
greater spatial extent (De Meyer et al. 2008). Competition with Qfly may be responsible for
exclusion of Medfly from much of Queensland (Vera et al. 2002), and similar biotic
interactions may suppress the species elsewhere (Dominiak and Mapson 2017). However,
Medfly may be more tolerant to low temperatures and dry summers than Qfly (Horticultural
Policy Council 1991), rendering Medfly the stronger competitor in areas with these conditions.
Medfly was recorded in Tasmania in the 1920s but reportedly failed to survive an unseasonably
hot and dry summer (Horticultural Policy Council 1991). Due to their age, these records were
not used to calibrate my model, yet my projections indicate that Tasmania continues to have

conditions suitable for this species.

Bactrocera jarvisi is recognized as a pest in north-western Australia, infesting mango, guava
and pomegranates (Allwood and Angeles (1979) as reported in Cameron 2006). Dominiak and
Worsley (2017) concluded that the current south-eastern range limit lies north of the
Queensland-NSW border (~25.5° south), while the south-western limit lies at approximately

18° south. However, previous analysis suggested that this species’ current climatic range could
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extend into the cooler temperate areas of southern NSW, and eastern and northern Victoria
(Horticultural Policy Council 1991). My models partly agree, indicating that suitable
conditions currently occur along the east coast of Victoria. This species can also withstand very
warm conditions, with eggs known to be more heat tolerant than those of the sympatric Qfly,
surviving temperatures of 48.2°C (Cameron 2006). Given that these species infest many of the
same hosts, competition is likely, hence eradication of Qfly may result in the competitive
release of B. jarvisi, increasing the threat it poses to horticulture (Horticultural Policy Council
1991, Cameron 2006). Further, as the cultivation of B. jarvisi host plants expands
geographically, this species may increase in abundance and extend its range, potentially
becoming a major pest in north-western Australia (May 1963, Smith et al. 1988). However,
across north-western Australia, and to a lesser extent the far north-east, models for most species
were projected onto novel conditions, decreasing confidence in suitability estimates for these
regions. In contrast, MESS maps demonstrated that extrapolation rarely occurred across eastern
and southern regions, although novel interactions between climate variables cannot be ruled

out.

While widespread throughout Queensland, Z. cucumis currently has a restricted distribution in
the Northern Territory, although there is a disputed single record from northern Western
Australia (Dominiak and Worsley 2018). Both Fitt (1980) and the Horticultural Policy Council
(Horticultural Policy Council 1991) reported that if the cucurbit industry expands in the
Northern Territory, the pest status of Z. cucumis may increase. However, while the species has
been trapped frequently in the Northern Territory, it has not been found on cucurbits growing
in this region (Smith et al. 1988). In NSW, Z. cucumis appears to be currently limited to regions
close to the Queensland border, with rare detection as far south as Sydney (Dominiak and
Worsley 2018). It has not been detected in the (former) Fruit Fly Exclusion Zone in southern
NSW (Gillespie 2003). My model also estimates the southern limit of suitable climate for this
species to be around Sydney. However, with climate change this may extend further southward,
with parts of Victoria projected to become increasingly suitable over time, depending on the

climate change scenario.

Bactrocera neohumeralis presently occurs from the western Cape York Peninsula, Queensland,
south to Sydney, NSW (Hancock et al. 2000, Gillespie 2003, Royer and Hancock 2012). My
model suggests that as climate changes, the range of this species may extend southward and,

under some scenarios, into parts of Victoria. Previous climatic analysis also suggested that this
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species is well adapted to conditions on the east coast of Queensland, with large populations
occurring in areas north of Townsville (Horticultural Policy Council 1991). Similar ecological
characteristics are shared by B. neohumeralis and Qfly (Gibbs 1967), yet while Qfly is
prevalent in sub-tropical and temperate areas of Queensland and NSW, B. neohumeralis is
more prevalent in northern wet tropical areas (Drew 1989, Horticultural Policy Council 1991,
Wang et al. 2003). The reason for this difference between the geographical ranges of these
species is unclear, as both are polyphagous and use similar host fruits for their larval
development (Gibbs 1967, Wang et al. 2003).

My model for B. aquilonis indicates that suitable conditions for this species are currently found
in northern Queensland, although it is presently only known from north-western Australia
(Drew 1989). The hosts of this species now include 40 commercial crops (Smith et al. 1988).
Expansion of the range of this species, or the growth of host plant industries in north-western
Australia may necessitate the development of new monitoring, control and disinfestation
procedures (Cameron 2006). In addition, it has been argued that if B. aquilonis hybridises with
Qfly, and the resulting strain may have greater potential for spread than B. aquilonis
(Horticultural Policy Council 1991). This, in turn, would require that disinfestation procedures
be developed for the hybrids (Cameron 2006).

The distribution of B. bryoniae ranges from the Torres Strait Islands, across northern Australia,
and along the east coast to north of Sydney, NSW. My results indicate that suitable climate
may exist in Victoria, i.e. south of the species’ known range. However, previous studies have
demonstrated that populations in northern NSW experience a marked decline in abundance
through November—January (Gillespie 2003). This may be explained by a decline in the fruiting
and flowering of native host trees, or seasonal climatic constraints that are not reflected in my

model (Gillespie 2003), which may also explain their absence in Victoria.

Northern Queensland has the highest diversity of fruit flies in Australia, and some species with
significant economic impacts are found only in this region (Royer and Hancock 2012). The
distribution of B. kraussi, B. musae and B. frauenfeldi is limited to north Queensland (Drew et
al. 1978, Hancock et al. 2000), with recent trap data suggesting that these species do not occur
south of Townsville (Royer and Hancock 2012). Royer et al. (Royer et al. 2016) predicted that
B. frauenfeldi also has suitable habitat in the Northern Territory and northern Western

Australia, which is also suggested by my model. This species has expanded its range in northern
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Queensland due to continued planting of hosts, such as mango and guava (Royer et al. 2016).
Further increases within these horticulture industries in northern Queensland may increase the

pest status of this fly (Drew et al. 1978).

Model Errors and Uncertainties

SDMs are useful for developing a broad understanding of how the distribution of suitable
habitat may be influenced by climate change. However, the output of SDMs is known to be
influenced by characteristics of the occurrence sample, including its size (Wisz et al. 2008),
sampling bias (Syfert et al. 2013), and spatial autocorrelation (Veloz 2009), as well as the extent
of the study area, selection of predictor variables (Guillén and Sdnchez 2007), and selection of
background points (Phillips 2008). I addressed these issues by: (1) exploring alternate settings
in Maxent to optimise models and reduce overfitting that may generate unreliable estimates
(Merow et al. 2013); (2) reducing the number of predictor variables by assessing collinearity;

and (3) critically examining response curves.

In addition, I acknowledge that the selection of a threshold for converting Maxent’s continuous
output into binary data (typically defined as distinguishing between “suitable” and “unsuitable”
conditions) can be subjective. A region classified as unsuitable may not be free of the pest;
rather, these areas are considered less likely to support a population compared with regions
above the threshold. In reality, the choice of threshold is based upon a comparison of the
importance of false positives and false negatives (Franklin 2010). For invasive species, the
latter may be more serious because it can result in an underestimate of the geographic extent
of suitable conditions, and hence, invasion risk (Pheloung et al. 1999). This, in turn, can lead
to poor decision-making and failure to establish appropriate surveillance or containment
measures. As such, in this context a precautionary approach to defining a threshold, as
undertaken in the present study, is warranted. However, since overprediction of suitable habitat
can also prove problematic (potentially leading to ineffective allocation of monitoring
resources), | provide maps of continuous (unthresholded) current suitability (S1-11 Figs),

permitting stakeholders to modify this threshold according to their objectives.

Sampling bias is another challenge faced when fitting correlative SDMs, particularly when
incorporating data from sources of incidental observations such as museums and natural history

collections (Newbold et al. 2010). As such, it is difficult to determine whether a species is
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observed in a particular environment because of habitat preferences or because that region has
received the largest search effort (Phillips 2008, Newbold et al. 2010). For presence-
background approaches to habitat modelling, a target-group background sampling strategy
goes some way to handling biased occurrence samples (Elith 2013). However, while imposing
environmental bias on the background counteracts similar bias in the occurrence sample, this
strategy may increase the extent of novel environments to which the model must be

extrapolated.

While SDMs consider exposure to climate change, species responses may also include
microevolution (Salamin et al. 2010) or plasticity (Charmantier et al. 2008). As accessibility to
genomic data increases, and experiments on plasticity are conducted, SDM output can be
refined (Bush et al. 2016). In addition, as mean conditions change, so too will the distribution
and magnitude of extremes. Presently, there has been little work undertaken to assess how
different fruit fly pest species tolerate extreme weather events such as heatwaves and moisture

stress.

The current analysis does not take into consideration the potential necessity for horticultural
industries to shift geographically to adapt to climate change. Analysing shifts in climatic
suitability for horticultural crops is complicated by my capacity to modify the environment

(e.g. through irrigation), and thus was beyond the scope of this study.

To conclude, surveillance activities, pre- and post-harvest treatment, and control activities for
fruit flies present a substantial cost to Australia’s horticultural industries (Horticultural Policy
Council 1991, Plant Health Australia 2008, 2016). My analysis highlights that the major
horticultural production regions are likely to remain suitable for multiple economically
important fruit fly species as climate changes. Furthermore, given that knowledge of species
current distributions remains the basis for market access decisions, the potential for range shifts
to occur is of critical interest to horticultural industries. Outputs from this study provide
guidance to pest managers, such that they can assess pest risks and design appropriate ongoing
surveillance strategies. The results of this chapter emphasize the importance of vigilance and
preparedness across Australia, to prevent further range expansion of these 11 species, and
underscore the need for ongoing research and development into monitoring, control, and

eradication tools.
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Appendix 3 Supplementary Information

S1-11 Figs. Climatic habitat suitability for 11 tephritid fruit flies under various future climate scenarios,
when novel environments are included. (1) Bactrocera aquilonis, (2) Bactrocera bryoniae, (3) Bactrocera
frauenfeldi, (4) Bactrocera halfordiae, (5) Bactrocera jarvisi, (6) Bactrocera kraussi, (7) Bactrocera musae, (8)
Bactrocera neohumeralis, (9) Bactrocera tryoni, (10) Ceratitis capitata, (11) Zeugodacus cucumis. (A) current
habitat suitability modelled using Maxent — values close to zero represent areas with low climatic suitability while
values closer to one indicate higher climatic suitability; (B) areas considered “suitable” (i.e., with habitat
suitability values above the 10th percentile at training presence sites, shown in red); (C, D, E) agreement about
the suitability of habitat for the species across six climate scenarios for 2030, 2050 and 2070, respectively; (F) the
location of Australian occurrence records of the species, which were used to calibrate models, based on specimens
from natural history collections, literature and State Government trapping programs, and major commercial
horticultural hosts, according to the Australian Horticulture Statistics Handbook (HSHB;

www.horticulture.com.au).
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(8) Bactrocera neohumeralis
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(11) Zeugodacus cucumis
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S12-22 Figs. Climatic habitat suitability for 11 tephritid fruit flies under various future climate scenarios,
when novel environments are excluded. (12) Bactrocera aquilonis, (13) Bactrocera bryoniae, (14) Bactrocera
frauenfeldi, (15) Bactrocera halfordiae, (16) Bactrocera jarvisi, (17) Bactrocera kraussi, (18) Bactrocera musae,
(19) Bactrocera neohumeralis, (20) Bactrocera tryoni, (21) Ceratitis capitata, (22) Zeugodacus cucumis. (A)
current habitat suitability modelled using Maxent — values close to zero represent areas with low climatic
suitability while values closer to one indicate higher climatic suitability; (B) areas considered “suitable” (i.e., with
habitat suitability values above the 10th percentile at training presence sites, shown in red); (C, D, E) agreement
about the suitability of habitat for the species across six climate scenarios for 2030, 2050 and 2070, respectively;
(F) the location of Australian occurrence records of the species, which were used to calibrate models, based on
specimens from natural history collections, literature and State Government trapping programs, and major
commercial horticultural hosts, according to the Australian Horticulture Statistics Handbook (HSHB;
www.horticulture.com.au).
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(21) Ceratitis capitata
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(22) Zeugodacus cucumis
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S23-33 Figs. Projected changes of suitable habitat for all 11 fruit fly species, under six future climate
scenarios, relative to the current period. (23) Bactrocera aquilonis, (24) Bactrocera bryoniae, (25) Bactrocera
frauenfeldi, (26) Bactrocera halfordiae, (27) Bactrocera jarvisi, (28) Bactrocera kraussi, (29) Bactrocera musae,
(30) Bactrocera neohumeralis, (31) Bactrocera tryoni, (32) Ceratitis capitata, (33) Zeugodacus cucumis. Colours
indicate projected changes of suitable habitat of species under future climate scenarios, where blue colour
indicates suitability with novel environments, red colour indicates suitability without novel environments and gray
colour indicates unsuitability.
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(33) Zeugodacus cucumis




S1 Table. Model performance and bioclimatic variables used to investigate the suitability of habitat for

tephritid fruit fly species.

AUC value indicates the area under the receiver operating characteristic curve

(average of 5 cross-validated replicates), which was used to evaluate model performance; SD (standard deviation);
and HPI (highest permutation importance, %) of bioclimatic variables contributing to the model where BIOO1:
annual mean temperature, BIO02: mean diurnal range; BIO03: isothermality; BIO06: minimum temperature of
the coldest month; BIO07: temperature annual range; BIO11: mean temperature of the coldest quarter; BIO13:
precipitation of the wettest month; BIO14: precipitation of the driest month; BIO16: precipitation of the wettest
quarter; BIO17: precipitation of the driest quarter and BIO19: precipitation of the coldest quarter.

Species AUC | SD HPI (Highest Permutation Importance, %)

Bactrocera aquilonis 0.896 | 0.02 | BIOI16: 68.9, BIOO1: 28.9, BIO11: 2.5

Bactrocera bryoniae 0.853 | 0.03 | BIOO1: 24.3, BIO06: 6.1, BIO07: 42.2, BIO14: 27.4
Bactrocera frauenfeldi 0.815 | 0.05 | BIOO1:21.7, BIO13: 3.2, BIO16: 75.4

Bactrocera halfordiae 0.846 | 0.03 | BIOOI1: 32.3, BIO03: 0.9, BIO14: 66.8

Bactrocera jarvisi 0.817 0.04 | BIOO1: 37.9, BIO07: 24.7, BIO14: 37.2

Bactrocera kraussi 0.904 | 0.05 | BIO02:24.7, BIO13: 0.1, BIO16: 75.2

Bactrocera musae 0.861 0.02 BIOO1: 2.5, BIO13: 4.4, BIO14: 14.4, BIO16:78.7

Bactrocera neohumeralis 0.907 | 0.02 | BIOOI1:21.9, BIO03: 1.3, BIO13: 47.4, BIO14: 29.3
Bactrocera tryoni 0.841 | 0.01 [ BIOOI: 33.1, BIO06:32.4, BIO07: 3.93, BIO14: 26.7, BIO19: 3.9
Ceratitis capitata 0.885 | 0.02 [ BIOO1:47.1, BIO06: 46.1, BIO07: 2.6, BIO14: 3.9, BIO17: 0.2
Zeugodacus cucumis 0.886 | 0.03 [ BIO02: 2.4, BIO11: 36.2, BIO14: 7.1, BIO17: 54.3
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S2 Table. Projected changes in the area of suitable habitat for all 11 fruit fly species, under six future
climate scenarios, relative to the current period. (1) Bactrocera aquilonis (2) Bactrocera bryoniae (3)
Bactrocera frauenfeldi (4) Bactrocera halfordiae (5) Bactrocera jarvisi (6) Bactrocera kraussi (7) Bactrocera
musae (8) Bactrocera neohumeralis (9) Bactrocera tryoni (10) Ceratitis capitata (11) Zeugodacus cucumis. For
each species, the first column indicates the GCM (Global Climate Model) for three time periods 2030, 2050 and
2070. Other columns: % Lost refers to the percentage of currently suitable habitat projected to become unsuitable
in the future; % Gained refers to the percentage of future suitable habitat that is in areas currently unsuitable;
Range Changed refers to the change (%) between the size of current and future suitable habitat (positive numbers
indicate an increase in range size, negative numbers indicate a decrease).

(1) Bactrocera aquilonis

GCM_Time period % Lost % Gained % Range Changed
CanESM_30 0 80.13 T 403.32 ]
CanESM _50 0 85.45 587.39
CanESM _70 0 89.37 840.48
ACCESS_30 0 68.39 216.34
ACCESS=50 0 81.25 433.38
ACCESS_70 0 86.08 618.19
GFDL_30 0 78.01 354.69
GFDL_50 0 82.61 47493
GFDL_70 0 86.05 616.86
MIROC_30 0 67.55 208.18
MIROC=50 0 78.99 375.94
MIROC_70 0 83.03 489.30
HadGEM2_30 0 78.18 358.34
HadGEM2_50 0 84.06 527.50
HadGEM2_70 0 87.71 714.05
NorEsm=30 0 53.92 117.01
NorEsm=50 0 71.97 256.81
NorEsm=70 0 79.62 390.06

(2) Bactorcera bryoniae

GCM_Time period % Lost % Gained % Range Changed
CanESM_30 12.95 14.19 01.43
CanESM 50 18.76 15.16 -04.23
CanESM_70 26.79 29.71 04.15
ACCESS 30 12.12 14.83 03.18
ACCESS 50 10.13 19.41 11.51
ACCESS 70 15.94 30.64 21.19
GFDL 30 14.37 15.87 01.79
GFDL_50 19.09 10.07 -10.03
GFDL 70 23.45 10.06 -14.88
MIROC 30 17.29 12.12 -05.88
MIROC 50 14.99 17.60 03.17
MIROC 70 03.59 39.19 58.52
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HadGEM2_30 07.35 19.49 15.07
HadGEM2_50 06.12 20.96 18.78
HadGEM2_70 12.99 30.05 24.39
NorEsm 30 01.55 23.09 28.00
NorEsm 50 00.62 29.37 40.69
NorEsm_70 00.84 45.36 81.49
(3) Bactrocera frauenfeldi
GCM Time period % Lost % Gained % Range Changed
CanESM_30 21.92 10.81 -12.46
CanESM_50 30.60 18.78 -14.56
CanESM_70 24.29 36.68 19.55
ACCESS_30 00.09 43.62 77.19
ACCESS_50 02.94 29.48 37.64
ACCESS_70 09.09 3247 34.60
GFDL_30 02.41 14.56 14.22
GFDL_50 02.67 21.66 24.23
GFDL_70 00.00 39.45 65.13
MIROC_30 01.89 40.14 63.88
MIROC_50 09.87 34.67 37.95
MIROC_70 21.08 21.52 00.56
HadGEM_30 13.81 20.99 09.09
HadGEM_50 27.66 30.31 03.80
HadGEM_70 16.27 30.25 20.04
NorEsm_30 10.50 18.47 09.77
NorEsm_50 01.36 33.74 48.87
NorEsm_70 00.00 51.98 108.25
(4) Bactrocera halfordiae
GCM Time period % Lost % Gained % Range Changed
CanESM_30 65.13 35.11 -46.27
CanESM_50 73.22 56.79 -38.03
CanESM_70 81.39 73.69 -29.26
ACCESS 30 70.09 45.93 -44.69
ACCESS 50 66.38 56.48 -22.76
ACCESS 70 52.41 58.67 15.14
GFDL_30 86.21 35.98 -78.47
GFDL_50 89.27 44.40 -80.69
GFDL_70 89.66 51.29 -78.76
MIROC 30 79.19 07.92 =77.41
MIROC 50 53.56 38.73 -24.20

Page | 119




MIROC 70 15.09 56.39 94.68
HadGEM2_30 51.42 28.35 -32.19
HadGEM2 50 48.04 51.83 07.85
HadGEM2 70 47.19 65.21 51.75
NorEsm_30 05.57 40.84 59.61
NorEsm 50 39.38 43.86 07.99
NorEsm_70 39.27 62.21 60.74
(5) Bactrocera jarvisi
GCM Time period % Lost % Gained % Range Changed
CanESM_30 08.96 45.53 67.14
CanESM_50 10.62 45.53 82.82
CanESM_70 10.31 58.77 117.54
ACCESS_30 11.35 35.79 38.08
ACCESS_50 05.02 49.72 88.88
ACCESS_70 07.19 62.46 147.19
GFDL_30 11.09 44,18 59.26
GFDL_50 12.64 49.32 72.39
GFDL_70 10.72 55.06 98.68
MIROC_30 13.79 41.39 47.08
MIROC_50 09.70 54.00 96.32
MIROC_70 00.55 66.26 194.74
HadGEM_30 04.87 46.93 79.26
HadGEM_50 02.40 55.42 118.91
HadGEM_70 00.69 65.52 188.06
NorEsm_30 00.12 31.01 44.78
NorEsm_50 1.63E-05 44.55 80.34
NorEsm 70 00.01 64.58 182.29
(7) Bactrocera kraussi
GCM Time period % Lost % Gained % Range Changed
CanESM_30 14.86 01.48 -13.58
CanESM_50 13.59 02.95 -10.96
CanESM_70 09.37 16.42 08.43
ACCESS_30 00.79 21.96 27.11
ACCESS_50 01.17 14.20 15.18
ACCESS_70 02.41 16.87 17.39
GFDL_3(; 04.95 05.22 00.29
GFDL:SO 02.91 08.59 06.22
GFDL_70 02.27 18.89 20.51
MIROC_30 00.90 16.79 19.09
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MIROC_50 04.43 13.08 09.96
MIROC_70 00.28 15.35 17.79
HadGEM2_30 07.03 11.66 05.23
HadGEM2_50 04.45 22.59 23.43
HadGEM2_70 01.65 22.25 26.50
NorEsm_30 06.52 07.89 01.49
NorEsm_50 02.43 17.23 17.88
NorEsm_70 01.41 29.61 40.06
(8) Bactrocera musae

GCM Time period % Lost % Gained % Range Changed
CanESM_30 22.26 00.32 -22.01
CanESM_50 22.01 03.89 -18.85
CanESM 70 15.03 22.59 09.77
ACCESS 30 01.83 32.98 46.49
ACCESS 50 03.35 14.55 13.11
ACCESS 70 07.00 16.46 11.32
GFDL 30 11.73 07.68 -04.38
GFDL_50 03.41 11.99 09.75
GFDL 70 01.46 29.76 40.30
MIROC 30 01.37 31.25 43.47
MIROC 50 05.11 21.77 21.29
MIROC 70 04.39 15.73 13.45
HadGEM_30 20.89 17.25 -04.41
HadGEM_50 11.81 24.58 16.93
HadGEM 70 11.46 24.61 17.45
NorEsm_30 13.95 13.75 -00.23
NorEsm_50 03.26 26.72 32.01
NorEsm 70 00.16 43.55 76.87
(9) Bactrocera neohumeralis:

GCM Time period % Lost % Gained % Range Changed |
CanESM_30 24.16 03.68 -12.14
CanESM_50 24.12 19.95 -05.21
CanESM_70 25.39 39.59 23.50
ACCESS_30 25.19 31.29 08.88
ACCESS_50 22.88 27.91 06.98
ACCESS_70 22.27 41.41 32.66
GFDL_30 32.49 08.34 -26.34
GFDL_50 27.87 21.08 -08.60
GFDL_70 26.68 34.80 12.45
MIROC_30 23.26 32.47 13.64
MIROC_50 16.50 37.67 33.95
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MIROC_70 02.51 63.15 164.59
HadGEM_30 14.33 17.85 04.28
HadGEM_50 06.11 42.29 62.69
HadGEM_70 03.43 47.89 85.33
NorEsm_30 04.71 36.27 49.52
NorEsm_50 02.44 35.39 50.99
NorEsm_70 02.84 55.22 116.97
(10) Bactrocera tryoni:
GCM Time period % Lost % Gained % Range Changed |
CanESM_30 30.18 17.38 -15.49
CanESM_50 37.32 23.10 -18.49
CanESM_70 33.68 31.54 -03.13
ACCESS_30 26.09 11.10 -16.87
ACCESS 50 20.25 16.71 -04.25
ACCESS_70 17.18 26.14 12.13
GFDL_30 47.89 15.71 -38.18
GFDL_50 52.52 20.29 -40.43
GFDL_70 51.22 24.18 -35.67
MIROC_30 36.04 16.22 -23.66
MIROC_50 27.59 19.56 -09.98
MIROC_70 09.15 36.86 43.89
HadGEM_30 36.71 16.73 =23.99
HadGEM_50 29.87 21.65 -10.50
HadGEM_70 14.39 27.37 17.87
NorEsm_30 16.01 16.44 00.51
NorEsm_50 15.13 20.22 06.38
NorEsm_70 06.13 40.12 56.76
(11) Ceratitis capitata:
GCM Time period % Lost % Gained % Range Changed |
CanESM_30 16.51 15.76 -00.89
CanESM_50 17.52 23.16 07.34
CanESM_70 17.58 40.29 38.02
ACCESS_30 10.29 17.26 08.41
ACCESS_50 15.95 35.04 29.39
ACCESS_70 17.54 52.96 75.29
GFDL_30 20.85 07.78 -14.17
GFDL_50 22.37 11.52 -12.26
GFDL_70 17.76 24.83 09.41
MIROC_30 09.37 20.46 13.95
MIROC_50 11.91 32.26 30.05
MIROC 70 17.75 53.61 77.30
HadGEM_30 19.64 09.69 -11.02
HadGEM_50 20.14 15.62 -05.35
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HadGEM_70 18.41 43.79 45.18
NorEsm_30 09.71 17.67 09.67
NorEsm_50 10.73 25.38 19.64
NorEsm_70 15.19 55.48 90.52
(3) Zeugodacus cucumis:

GCM Time period % Lost % Gained % Range Changed
CanESM_30 04.47 52.09 99.41
CanESM 50 03.43 58.08 130.34
CanESM 70 01.72 67.63 203.59
ACCESS 30 00.00 43.33 76.45
ACCESS 50 00.00 68.73 219.79
ACCESS 70 00.06 68.22 214.43
GFDL _30 08.26 44.66 65.77
GFDL 50 09.75 52.92 91.71
GFDL_70 10.32 57.65 111.77
MIROC 30 04.20 51.81 98.80
MIROC 50 00.02 57.86 137.23
MIROC 70 00.01 78.26 359.92
HadGEM2 30 05.42 51.22 93.88
HadGEM2 50 01.67 58.42 136.46
HadGEM2_70 00.00 76.09 318.29
NorEsm 30 00.97 47.51 88.66
NorEsm 50 00.60 62.77 166.97
NorEsm_70 00.08 80.39 409.58
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S3 Table. Area (km?) and percentage of Australia projected to be suitable for 11 fruit flies under six future
climate scenarios. In the column ‘Climate scenarios’, 0 refers to the area projected to be unsuitable across all six
scenarios; 1 refers to the arca projected to be suitable under any one of the six scenarios...6 refers to the arca
projected to be suitable under all six scenarios.

Species Clim:jlte 2030 | 2030 2050 [ 2050 2070 2070
scenarios 1000 km? (%) 1000 km? (%) 1000 km? (%)

Bactrocera aquilonis 0 6,027 78.5 5,433 70.8 4,606 60
1 106 14 189 2.5 419 5.5

2 109 1.4 178 2.3 281 3.7

3 350 4.6 142 1.9 58 0.8

4 129 1.7 179 2.3 387 5

5 248 3.2 393 5.1 331 4.3

6 704 9.2 1,159 15.1 1,592 20.7

Bactrocera bryoniae 0 6,635 86.5 6,596 86 6,093 79.4
1 220 2.9 205 2.7 523 6.8

2 83 1.1 104 1.4 180 24

3 58 0.8 75 1 156 2

4 50 0.7 77 1 101 1.3

5 82 1.1 87 1.1 120 1.6

6 546 7.1 529 6.9 498 6.5

Bactrocera frauenfeldi 0 7,423 96.7 7,434 96.9 7,366 96
1 43 0.6 41 0.5 80 1

2 31 0.4 27 0.3 37 0.5

3 32 0.4 26 0.3 42 0.5

4 16 0.2 26 0.3 23 0.3

5 46 0.6 32 0.4 24 0.3

6 83 1.1 87 1.1 102 1.3

Bactrocera halfordiae 0 7,146 93.1 7,191 93.7 6,917 90.1
1 277 3.6 165 2.2 213 2.8

2 92 1.2 89 1.2 147 1.9

3 53 0.7 68 0.9 163 2.1

4 45 0.6 60 0.8 101 1.3

5 34 0.4 53 0.7 80 1

6 26 0.3 46 0.6 52 0.7

Bactrocera jarvisi 0 5,688 74.1 5,374 70 4274 55.7
1 323 4.2 270 3.5 677 8.8

2 172 2.2 196 2.6 314 4.1

3 171 2.2 170 2.2 288 3.7

4 129 1.7 186 2.4 280 3.7

5 242 3.1 308 4 292 3.8

6 948 12.4 1,169 15.2 1,549 20.2

Bactrocera kraussi 0 7,432 96.9 7,416 96.7 7,386 96.3
1 20 0.3 29 0.4 38 0.5

2 18 0.2 18 0.2 21 0.3

3 16 0.2 21 0.3 19 0.3

4 17 0.2 16 0.2 16 0.2

5 30 0.4 28 0.4 31 0.4

6 140 1.8 145 1.9 162 2.1

Bactrocera musae 0 7,406 96.5 7,418 96.7 7,347 95.8
1 46 0.6 33 0.4 74 1

2 36 0.5 27 0.4 36 0.5

3 22 0.3 23 0.3 36 0.5

4 22 0.3 25 0.3 25 0.3

5 45 0.6 39 0.5 25 0.3

6 97 1.3 109 14 130 1.7
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Bactrocera neohumeralis 0 7,140 93 7,031 91.6 6,598 86
1 158 2.1 193 2.5 440 5.7
2 74 1 112 1.5 159 2.1
3 44 0.6 41 0.5 136 1.8
4 38 0.5 53 0.7 61 0.8
5 50 0.7 51 0.7 70 0.9
6 170 2.2 192 2.5 210 2.7
Bactrocera tryoni 0 5,673 73.9 5,567 72.5 4,638 60.4
1 471 6.1 399 52 772 10.1
2 175 2.3 189 2.5 291 3.8
3 144 1.9 207 2.7 292 3.8
4 174 2.3 245 3.2 350 4.6
5 305 4 256 33 336 4.4
6 731 9.5 810 10.6 994 13
Ceratitis capitata 0 5,501 71.7 5,104 66.5 4,056 52.9
1 336 4.4 475 6.2 554 7.2
2 180 2.3 321 4.2 406 5.3
3 159 2.1 194 2.5 402 5.2
4 206 2.7 205 2.7 474 6.2
5 220 2.9 250 3.3 447 5.8
6 1,070 13.9 1,123 14.6 1,334 17.4
Zeugodacus cucumis 0 6,536 85.2 6,117 79.7 4958 64.6
1 218 2.8 249 3.3 779 10.2
2 123 1.6 276 3.6 424 5.5
3 109 1.4 157 2 268 3.5
4 76 1 99 1.3 252 33
5 107 1.4 172 2.2 202 2.6
6 504 6.6 602 7.9 790 10.3
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Creation Date: Thursday, June 29, 2017 4:43:53 AM CEST
Filter used: TaxonKey: Bactrocera jarvisi (Tryon, 1927)

DOI: http://doi.org/10.15468/dl.vvaofg

Creation Date: Tuesday, July 4, 2017 3:07:55 AM CEST
Filter used: TaxonKey: Bactrocera halfordiae (Tryon, 1927)

DOI: http://doi.org/10.15468/dl.igifxg
Creation Date: Tuesday, July 4, 2017 3:23:43 AM CEST
Filter used: TaxonKey: Bactrocera musae (Tryon, 1927)

DOI: http://doi.org/10.15468/dl.drcalh
Creation Date: Tuesday, July 4, 2017 3:33:43 AM CEST

Filter used: TaxonKey: Bactrocera neohumeralis (Hardy, 1951)

10.

DOI: http://doi.org/10.15468/dl.cuhilk
Creation Date: Friday, July 14, 2017 6:45:42 AM CEST
Filter used: TaxonKey: Ceratitis capitata (Wiedemann, 1824)
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CHAPTER FOUR

Estimating the current and future risk of exotic fruit fly

species establishing in Australia

Abstract

Of the 46 native and non-native tephritid fruit fly pests that have been identified as presenting
an economic threat to the Australian horticultural industry, 19 are currently absent from this
continent. However, their geographic proximity to Australia and/or their status elsewhere as
pests of horticultural industries that are also present in Australia, have led to their identification
as ‘high priority pests’. To date, the likelihood of these species establishing in Australia under
future climate change has not be explored. The goal of this chapter is to undertake climate
matching for these 19 species and to assess how their relative establishment likelihoods (EL)
may change due to shifts in climate. To do so, I combined maps of regions of Australia with a
climate similar to species’ known ranges, under current and future climates, with a key arrival
pathway (i.e. the movement of people entering Australia from host countries) and the
distribution of host plants, to estimate species relative ELs. I found that Bactrocera dorsalis
has the highest EL under all climate scenarios, followed by Zeugodacus cucurbitae and B.
latifrons, while B. occipitalis and Rhagoletis indifferens consistently have the lowest EL. As
the century progresses, the ranking of the species generally remains stable. However, the EL
of Anastrepha ludens, B. carambolae and Toxotrypana curvicauda increases considerably. In
contrast, EL of all three Rhagoletis species is projected to decline. My findings are valuable
for the horticultural industry as well as pest managers, as it enables appropriate ongoing

surveillance and management strategies to be planned and initiated.

Keywords: climate change, ExDet, horticulture, non-native fruit fly, relative establishment

likelihood, risk assessment
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Introduction

The introduction and spread of invasive species is one of the most critical threats to natural
systems, agriculture, and forestry globally (Mack et al. 2000, Pimentel et al. 2000). These
species can cause significant economic impacts. In the United States, invasive species have
been estimated to cause US$137 billion dollars in damage and losses to crops and forests
annually (Pimentel et al. 2001), and collectively more than $314 billion per annum in the USA,
United Kingdom, Australia, South Africa, India and Brazil (Colautti et al. 2006). Within
Europe, the cost of invasive species has been estimated at €12.5-20 billion annually (Kettunen

et al. 2008, Roques et al. 2009).

Invasive species are likely to be impacted both directly and indirectly as a result of climate
change (Mooney and Hobbs 2000). As climate zones shift, so too will the suitability of a region
for a given species. Thus, climate change may alter the movement, introduction, establishment
and spread of invasive species (Plant Health Australia 2008, Gallardo et al. 2019). As a result,
the effectiveness of existing monitoring and control strategies may be impacted (Hellmann et
al. 2008). It is therefore necessary for risk assessments to incorporate potential responses of

species to climate change.

Tephritidae fruit flies as pests

Tephritid fruit flies are among the world’s most devastating horticultural pests, with prominent
examples including Bactrocera dorsalis (Oriental fruit fly), B. latifrons (Solanum fruit fly),
Ceratitis capitata (Mediterranean fruit fly) Anastrepha Iludens (Mexican fruit fly) and
Zeugodacus cucurbitae (Melon fly) (Bateman 1972, White and Elson-Harris 1992, Clarke et
al. 2005, Aluja and Mangan 2008, Papadopoulos et al. 2013, Karsten et al. 2015). Tephritids
cause severe damage to fruits and vegetables, resulting in losses in the quality and quantity of
produce (Duyck et al. 2004, De Meyer et al. 2008). The transport of produce within and
between countries has facilitated the invasion of many tephritid species (Hill et al. 2016)
despite major efforts to control their movement (Duyck et al. 2004, Papadopoulos et al. 2013).
For example, the movement of fruit via baggage of air passengers has been shown as a major
invasion pathway (Liebhold et al. 2006, Ma et al. 2012), with ~170 interceptions of C. capitata
at Los Angeles and Miami International Airports from 1984 to 2000 (Liebhold et al. 2006). In

Florida, 69% of organisms seized were on flights from South and Central America, and ~62%
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of the total were associated with passenger baggage (Szyniszewska et al. 2016). Similarly, from
2003 to 2008, Chinese quarantine authorities intercepted B. latifrons 2156 times, most of which

were transported by air passengers carrying fruits (Ma et al. 2012).

Horticulture is Australia’s third largest agricultural industry, with a total production value of
$9.8 billion over the year 2015-2016 (Plant Health Australia 2015). To date, 46 species of fruit
fly, both native and non-native, have been identified as presenting an economic threat to the
Australian horticulture industry (Plant Health Australia 2017). Of these, 19 species (Table 1)
are currently absent from Australia, but could significantly impact production and trade should
populations be established (Plant Health Australia 2017). Several studies have demonstrated
that climatically suitable habitat for some of these species exists in Australia, with climate
change likely to alter habitat suitability (Stephens et al. 2007, Hill et al. 2016, Stephens et al.
2016). However, to date there has not been an assessment of the relative likelihood of
establishment of these 19 species within Australia under current and potential future climates.
As such, here I assess relative likelihoods given the climatic similarity of Australia to species’
known ranges, and the spatial congruence with regions of Australia that are likely to a) be
within reach of international air passengers arriving from countries with known populations of
these species and b) contain commercial host plant species. I then assess how establishment

likelihoods may change as a result of climate change.

Table 1. Nineteen non-native invasive tephritid fruit fly species considered “High Priority Pests” for
Australia (Plant Health Australia 2017).

Species Common name Current distribution* Commercial hosts** Industry for which species
is a high priority pest***

Anastrepha ludens Mexican fruit fly Texas, United States, south Citrus, mango, peach Citrus
(Loew, 1873) through Mexico to Costa

Rica
Bactrocera carambolae Carambola fruit fly | Southern Thailand, Carambola, guava and mango. | Avocado, tomato, citrus,
(Drew and Hancock, Peninsular Malaysia, mango, papaya,
1994) East Malaysia, Kalimantan passionfruit, viticulture

(Bomeo), Singapore,

Indonesian

islands east to Sumbawa,

Andaman Islands, Surinam,

French Guyana, Guyana
Bactrocera dorsalis Oriental fruit fly India, Sri Lanka, Nepal, Bell pepper, pawpaw, Apple, pear, avocado,
(Hendel, 1912) (NB. B. Bhutan, Myanmar, southern mandarin, persimmon, apple, tomato, citrus, lychee,
invadens, B. papaya, B. China, Taiwan, Hong Kong, mango, banana, apricot, plum, | papaya, passionfruit,
philippinensis are northern and central peach, guava summerfruit, viticulture,
synonyms) Thailand, Vietham, melon, mango

Cambodia, Laos, Hawaii,

Mariana Islands, Tahiti
Bactrocera facialis Tropical fruit fly Known from the Tongatapu Avocado, bell pepper, citrus, Avocado, tomato,
(Coquillett, 1909) I. and the Ha’apai Group, guava, tomato and others passionfruit

Tonga
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(Froggatt, 1911)

Pacific Islands: Western
Samoa, American Samoa,
Tonga, Niue and Tahiti

guava, peach, pear,
persimmon and others

Bactrocera kandiensis - Confined to Sri Lanka Mango, carambola, guava, Avocado, citrus,
(Drew & Hancock, 1994) papaya passionfruit
Bactrocera kirki - Widespread in the South Mango, apricot, banana, Avocado, passionfruit

Bactrocera latifrons
(Hendel, 1915)

Solanum fruit fly

Sri Lanka, India, Pakistan
through to Southern China,
Japan, Taiwan, Thailand,
Laos, Vietnam,

Peninsular Malaysia,
Indonesia, Hawaii, Tanzania

Chilli, tomato and melon

Melon

Bactrocera melanotus
(Coquillett, 1909)

Restricted to Cook Island

Mango, guava, avocado,
passionfruit, citrus

Avocado, passionfruit

(Coquillett (1899)

subcontinent, Southeast Asia
and southern China. In
Africa, it occurs in Senegal,
Gambia, Guinea — Bissau,
Guinea, Sierra Leone,
Liberia, Ivory Coast, Mali,
Burkina Faso, Ghana, Togo,
Benin, Nigeria, Cameroon,
Democratic Republic of the
Congo, Malawi, Tanzania,
Burundi, Kenya, Uganda,
Ethiopia and Sudan. It is also
distributed in Christmas
Island, Papua New Guinea,
Mariana Islands, Solomon
Islands, Nauru, Kiribati,
Guam, Hawaii.

Bactrocera occipitalis - Philippines and Borneo (East | Mango, guava Citrus
(Bezzi, 1919) Malaysian Sabah), Brunei,
Indonesian Kalimantan)
Bactrocera oleae Olive fruit fly South and Central Africa, Olives Olives
(Rossi, 1790) Pakistan, Mediterranean
Europe and the Middle
East and it has been
introduced recently to
California, USA, and Mexico
Bactrocera passiflorae Fijian fruit fly Fiji Islands, Niue, Wallis and | Mango, papaya, guava, coffee, | Papaya, avocado,
(Froggatt, 1911) Futuna citrus, star apple and chilli passionfruit
Bactrocera psidii South sea guava Restricted to New Caledonia | Citrus, mango, guava Passionfruit
(Froggatt, 1899) fruit fly
Bactrocera trivialis New Guinea fruit Mainland Papua New Chilli, grapefruit, peach, Citrus
(Drew, 1971) fly Guinea, Indonesia (Papua, guava
West Papua)
Bactrocera xanthodes Pacific fruit fly Fiji Islands, Tonga, Niuc, Bell pepper, citrus, guava, Avocado, passionfruit
(Broun, 1904) Vanuatu, Samoa, American papaya, tomato, pawpaw
Samoa, Southern group of
Cook Islands, Wallis and
Futuna, French Polynesia
Rhagoletis pomonella Apple maggot Canada, United States and Apple Apple, pear, cherry
(Walsh, 1867) Mexico
Rhagoletis fausta Black cherry fruit Widespread occurrence in Cherry Cherry
(Osten Sacken, 1877) fly western and eastern North
America (United States and
Canada)
Rhagoletis indifferens Western cherry Western North American Cherry Cherry
(Curran, 1932) fruit fly species (Canada and United
States), Switzerland
Toxotrypana curvicauda Papaya fruit fly Caribbean, Belize, Costa Pawpaw, mango Pawpaw
(Gerstaecker, 1860) Rica, Guatemala, Honduras,
Mexico, Panama, Columbia,
Venezuela, USA
Zeugodacus cucurbitae Melon fruit fly Middle East, Indian Melon, giant pumpkin Melon, avocado, tomato,

papaya, summerfruit,
passionfruit vegetable

* Le Roux and Mukerji 1963, Plant Health Australia 2011, 2018
** The Australian Horticulture Statistics Handbook 2017/18
*** High priority pests are those assessed to pose a particular threat to a particular plant industry during biosecurity plan in Australia.
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Materials and Methods

In calculating relative likelihoods of establishment for the study species, I modified a
framework developed by Camac et al. (2019), which combines information on climate
suitability, host plant distribution, and air passenger movement. It was not possible to
calculate absolute likelihoods of establishment, since pest interception data that describe
rates of leakage through the biosecurity system were unavailable. Relative rates are reported

instead, permitting ranking of the species.

Species occurrence data

I collected occurrence records for the 19 species from online databases, literature, and trap data.
The databases included the Global Biodiversity Information Facility (GBIF,
https://www.gbif.org, accessed 7" February, 2019), CABI Invasive Species Compendium

(CABI 2019, www.cabi.org/isc.), the European and Mediterrancan Plant Protection
Organization (EPPO), the Australian Plant Pest Database (APPD;

http://www.planthealthaustralia.com.au/resources/australian-plant-pest-database, accessed 8™

March, 2019) and the Atlas of Living Australia (ALA; http:/www.ala.org.au, accessed 8"

March, 2019). After downloading data from these five sources, I undertook several steps to
clean records: for records from ALA and GBIF, I applied filters to restrict records to those that
were resolved to species level, were dated no earlier than 1 January 1950, contained valid

geographic coordinates, and were not duplicates.

I also gathered occurrence records from published articles, reports and books, including (Le
Roux and Mukerji 1963, Drew and Bateman 1982, Chao and Ming 1986, Aluja et al. 1987,
White and Elson-Harris 1992, Liquido et al. 1994, Aluja et al. 1996, Allwood 1997, Allwood
and Leblanc 1997, Amice and Sales 1997, Armstrong and Jang 1997, Drew and Romig 1997,
Hamacek 1997, Heimoana et al. 1997, Hollingsworth et al. 1997, Leblanc and Allwood 1997,
Leweniqila et al. 1997a, Leweniqila et al. 1997b, Purea et al. 1997, Tenakanai 1997,
Vijaysegaran 1997, Vueti et al. 1997, Hancock et al. 2000, Clarke et al. 2001, Stephens et al.
2007, Satarkar et al. 2009, Mwatawala et al. 2010, Plant Health Australia 2011, Yee et al. 2011,
Dowell and Penrose 2012, Ma et al. 2012, Wan et al. 2012, Malheiro et al. 2015, Vargas et al.
2015, Yee et al. 2015, Marchioro 2016, Royer et al. 2016, Royer et al. 2018, Zeng et al. 2019).

Some records from CABI and EPPO, as well as from many of the published sources listed
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above, included locality descriptions but not coordinates. For these, I used Google Maps
(http://maps.google.com/) to georeference records at the region/locality level. Records that

lacked geographic data were omitted from our study.

Recently, three Bactrocera species (B. invadens, B. papaya and B. phillipinensis) were declared
as synonyms of B. dorsalis (Drew and Romig 2013, Schutze et al. 2015). Therefore, I combined

occurrences recorded against these taxon names with those of B. dorsalis.

Current climate data

For baseline (‘current’) climatic conditions (1960-1990) I downloaded 19 bioclimatic variables
from the WorldClim database (Hijmans et al. 2005) (http://www.worldclim.org/) on a 30 arc-
second resolution grid. These variables represent monthly, seasonal and annual conditions.
From the 19 variables, I selected six that are reflective of average and extreme hydrothermal
conditions: annual mean temperature, maximum temperature of the warmest month, minimum
temperature of the coldest month, annual precipitation, precipitation of the wettest quarter and
precipitation of the driest quarter. I chose these variables as predictors based on the fruit flies’
biology and ecological requirements, and similar habitat suitability studies undertaken on other

fruit fly species (De Meyer et al. 2008, Hill et al. 2016).

Future climate data

Multiple climate scenarios should be used for impacts assessments to appropriately reflect the
breadth of variability across alternate scenarios (Beaumont et al. 2008, Khanum et al. 2013).
Eight global climate models (GCMs) have been identified as useful for Australian climate
impact assessments (CSIRO & BoM 2015). Data representing statistically downscaled
anomalies applied to the WorldClim 1.4 baseline were available for six of these GCMs from
the CCAFS GCM Data Portal (http://www.ccafs-climate.org/data_spatial downscaling/), at a
spatial resolution of 30 arc seconds. The GCMs included: CanESM2, ACCESS1.0, MIROCS,
HadGEM2-CC, NorESM1-M and GFDL-ESM2M. I downloaded the data for each of these
models for 2030, 2050 and 2070, under the Representative Concentration Pathway 8.5
(RCP8.5; radiative forcing exceeding 8.5 Wm™ by 2100) (Moss et al. 2010). I elected to use

this RCP, as it is the pathway that emissions are currently most closely tracking (Peters et al.
2012). After downloading, all climate data were reprojected to a spatial resolution of 1 x 1 km

(Australian Albers Equal Area, EPSG: 3577) using bilinear interpolation. This step was
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undertaken in R version 3.1.2 (R Core Team 2017) using the gdalwarp function in the gdalUtils
package (Greenberg and Mattiuzzi 2015).

Similar and novel climate evaluation by ExDet

Novel climate space can occur when the values of individual climate variables within the
projection region (here, Australia) lie beyond the values within the reference region (here,
the model-fitting environmental conditions, i.e., the environments at the occurrence and
background locations), or when the correlation between variables differs across these two
regions. I used the ExDet tool (Extrapolation Detection, Mesgaran et al. 2014) to measure
environmental similarity and novelty, based on the Mahalanobis distance (Mahalanobis
1936). ExDet also identifies and maps the environmental variables that most strongly

influence novelty (Mesgaran et al. 2014).

ExDet quantifies two types of novelty, defined as Type 1 and Type 2 novelty. Type 1 novelty
occurs in areas that are outside the range of individual covariates, whereas Type 2 exists
where individual covariates are within the univariate range but where there are novel
combinations of covariates (Mesgaran et al. 2014). While the more widely known
alternative, MESS (multivariate environmental similarity surfaces; Elith et al. 2010),
identifies Type 1 novelty, ExDet’s detection of novel covariate correlations represents a key
advance. ExDet calculates a similarity score for each location (i.e. grid cell) of interest, with
negative values assigned to areas with Type 1 novelty, and values greater than 1 assigned to
areas with Type 2 novelty. More extreme values represent greater dissimilarity to the
reference climate, while values between 0 and 1 are considered similar to the reference
climate (Mesgaran et al. 2014). Novelty was calculated under current climate and under the
six future climate scenarios for each of the three periods. For each of these, binary similarity
maps were then developed, where grid cells containing novel conditions were given the
value of 0 and those with climate similar to the species’ known range were given the value

of 1.

Major commercial fruit and vegetable hosts
For each of the 19 non-native fruit fly species, I obtained information on the major

commercial fruit and vegetable hosts on which infestation has been recorded. For this
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purpose, major host species were defined as those reported in the following sources:
Australian Horticulture Statistics Handbook 2017/2018, Le Roux and Mukerji 1963, White
and Elson-Harris 1992, Vijaysegaran 1997, Allwood et al. 1999, Hancock et al. 2000,
Vargas et al. 2015, Plant Health Australia 2018, and the Australian Horticulture Statistics
Handbook 2017/2018 (HSHB, 2018; www.horticulture.com.au). To determine the area of
Australia within which host plants are likely grown, the Australian Land Use and
Management (ALUM) Classification Version 8 was downloaded

(http://www.agriculture.gov.au/abares/aclump/land-use/alum-classification, ABARES

2016). This resource maps land use across Australia at a spatial resolution of 50 m x 50 m,
with tertiary-level data providing information on commodities. For each fruit fly species,
tertiary classes representative of their commercial host plants were identified (S4 Table),
then the ALUM data were aggregated to 1 km x 1 km. In doing so, the data were binarised
following Camac et al. 2019, giving grid cells a value of 1 if they contained at least one 50
m x 50 m cell with a tertiary class applicable for that species, and a value of 0 to all other

cells.

Arrival of air passengers from host countries
Annual data on air passengers arriving in Australia is available from International Airline
Activity (Department of Infrastructure, Transport, Cities and Regional Development-

BITRE, https://www.bitre.gov.au/about/index.aspx), and includes information on the

monthly maximum number of passenger seats flown for each route to Australia. For each
species, the annual volume of passenger seats flown to Australia from countries in which
the fruit fly species is known to occur was extracted and averaged over the period 2016 to

2018.

Subsequently, the likely dispersal of these passengers across the country at a 1 km x 1 km
resolution was mapped. To do so, it was assumed that the volume of passengers is
proportional to the number of seats flown from those countries. Passenger volume was split
into tourists and returning residents, as these two groups likely disperse differently upon
arrival. Based on data from the Australian Burecau of Statistics (ABS)
(https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3401.0Jul%202019, accessed
2™ QOctober, 2019) averaged over 2016-2018, a ratio of 46% tourists to 54% residents was

used and was assumed to be constant across source countries. Following Camac et al. 2019,
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tourist volume was then distributed across Australia based on distance from international
airports (with a negative exponential distance-decay function ensuring ~50% of tourists
remained within 200 km of these airports) and density of tourist accommodation. Returning
resident volume was distributed in proportion to population density with no distance penalty.
Spatial datasets describing tourist rooms (derived from Tourist Accommodation, 2015-16,

produced by ABS; www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/8635.02015-16,

accessed 2" October 2019) population density (derived from the 2016 Australian Census of
Population and Housing produced by ABS;
www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/2074.02016, accessed 2"¢ October

2019) and distance to major international airports were provided by J. Camac (see
Acknowledgements), with additional details regarding their derivation given in Camac et al.
2019. Finally, the distribution of total relative passenger volume was calculated by summing
the volumes of tourists and returning residents, but giving tourists twice the weight of
residents to reflect an assumption that tourists are less concerned about Australian

biosecurity (Camac et al. 2019).

Relative likelihoods of establishment (EL) for each species
Assuming that the proportion of passengers transporting each species and the proportion of
quarantine interceptions are constant, the likelihood of establishment (EL) for a given

species in each grid cell under current or future climate was quantified as:

EL = climate similarity (0/1) x host presence (0/1) x relative passenger volume (continuous)
Finally, EL was summed across all Australian cells to calculate total relative establishment
likelihood. In calculating these relative likelihoods, I rescaled EL for each species such that

the species with the highest EL under current climate was given a value of 1 and all others

were scaled accordingly.

Results

Climate Matching

Page | 150



For two species (Bactrocera facialis and B. psidii) insufficient occurrence records were
available to undertake climate matching (i.e. <5 records). For six of the remaining 17 species
B. kandiensis, B. kirki, B. melanotus, B. passiflorae, B. trivialis, B. xanthodes), no areas within
Australia had climate matching that of their known ranges (native and invasive). However,

most of these species have < 20 occurrence records, while B. trivialis has <30 (S1 table).

For three species, much of the continent has similar climatic conditions to their known ranges
(B. dorsalis [83%], B. oleae [92%), and Zeugodacus cucurbitae [99%]), while for eight species
(Anastrepha ludens, B. carambolae, B. latifrons, Rhagoletis fausta, R. indifferens, R.
pomonella. T. curvicauda and Zeugodacus cucurbitae) < 25% (and as low as < 1%) of the
continent has similar climate (S1 Table). Univariate novelty (Type 1 novelty) is driven by total
precipitation of the wettest month and maximum temperature of the warmest month, whereas
annual mean temperature, minimum temperature of coldest month and maximum temperature

of warmest month contributed to Type 2 novelty (novel combinations of variables).

Future climate

Australia is likely to continue to lack similar climate space for the six species for which there
is currently no climate similarity between their known ranges and this continent. Of the
remaining 11 species, the proportion of the continent with matching climate is likely to decline
for six species (S1 Table). However, an increase in the area experiencing matching climates is
projected for B. dorsalis, B. latifrons, B. occipitalis, T, curvicauda and Z. cucurbitae under at
least one of the six climate scenarios (S1 Table). For B. dorsalis, this represents a potential
increase from 83% of the continent under current conditions to 91% by 2050, although
declining again to 85% by 2070. Maximum temperature of the warmest month, minimum
temperature of the coldest month and precipitation of the wettest month contributed the most
to Type 1 novelty, whereas annual mean temperature, minimum temperature of coldest month
and maximum temperature of warmest month contributed to Type 2 novelty (novel

combinations of variables).

Host plants, passengers and host countries

Page | 151



The area of Australia in which host plants are likely to be growing (S3 Table and S4 Table)
ranged from 0.03% (B. oleae) to 1.77% (B. dorsalis) (S5 Table). Host plants for all Rhagoletis
species combined covered only 0.25% of the country (S5 Table).

The BITRE data contains information on flights from 24 countries in which at least one of the
19 fly species occur (S6 Table). The number of passengers per year, averaged over 2016-2018,
ranged from 364 (Foelkel et al. 2017) to > 3,600,000 (Singapore) (S6 Table). The two countries
with the highest richness of these species are Indonesia (B. carambolae, B. dorsalis, B.
latifrons, B. occipitalis, B. trivialis and Z. cucurbitae) and USA (4. ludens, B. oleae, R. fausta,
R. indifferens, R. pomonella and T. curvicauda), with six species each. More than 1,870,000

passengers arrive in Australia from each of these countries annually (S6 Table).

Establishment likelihood under current and future climates

I estimated establishment likelihood (EL) for the 11 species for which parts of Australia had
matching climates (now or in the future) to the species’ known ranges. Of these, EL was highest
for B. dorsalis, followed by Z. cucurbitae (77.5% as likely as B. dorsalis) and B. latifrons
(54.7% as likely). Bactrocera occipitalis and R. indifferens had the lowest EL under all climate
scenarios (Table 2). As the century progresses, the ranking of species remains stable. However,
the EL of all three Rhagoletis species is projected to decline substantially (Table 3). In contrast,

EL of A. ludens, T. curvicauda, and B. carambolae increases considerably (Table 3).

Table 2. Relative establishment likelihood of 11 non-native fruit fly species across Australia, relative to
Bactrocera dorsalis, which was estimated as having the highest establishment likelihood. Data are based on
climate matching for current conditions and three future time periods, the distribution of land uses compatible
with host plant horticulture, and arrival and dispersal of passengers travelling from other countries where the
species is either endemic or non-native.

Species Current 2030 2050 2070
Bactrocera dorsalis 100.0 100.0 100.0 100.0
Zeugodacus cucurbitae 77.5 78.0 78.0 77.7
Bactrocera latifrons 54.7 55.6 56.1 56.6
Anastrepha ludens 6.9 9.7 10.9 12.0
Toxotrypana curvicauda 1.5 2.0 2.3 2.8
Bactrocera carambolae 1.0 1.4 1.5 2.7
Rhagoletis fausta 0.5 0.2 0.1 0.0
Rhagoletis pomonella 0.4 0.3 0.3 0.2
Bactrocera oleae 0.2 0.2 0.2 0.2
Rhagoletis indifferens <0.1 <0.1 <0.1 <0.1
Bactrocera occipitalis <0.1 <0.1 <0.1 <0.1
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Table 3. Relative establishment likelihood (EL) of 11 non-native fruit fly species across Australia under
current conditions, and the percent change in EL in the future, averaged over six climate scenarios for each time
period. Data are based on climate matching for current conditions and three future time periods, the distribution
of land uses compatible with host plant horticulture, and arrival and dispersal of passengers travelling from other
countries where the species is either endemic or non-native.

Percent change in EL
Species Current EL 2030 2050 2070
Bactrocera dorsalis 2589746 -0.6 -1.0 -1.3
Zeugodacus cucurbitae 2007628 0.0 -0.4 -1.0
Bactrocera latifrons 1417258 1.0 1.4 22
Anastrepha ludens 177593 41.1 57.1 72.3
Toxotrypana curvicauda 39044 34.0 53.6 834
Bactrocera carambolae 27064 28.8 38.3 153.1
Rhagoletis fausta 12292 -64.0 -82.0 -92.1
Rhagoletis pomonella 10153 -20.0 -30.9 -54.2
Bactrocera oleae 4289 0.2 0.4 0.3
Rhagoletis indifferens 679 -89.1 -96.8 =100.0
Bactrocera occipitalis <1 0 0 0

Discussion

I undertook climate matching for 17 of the 19 non-native fruit fly species currently absent from
Australia but that have been recognised a posing a substantial threat to this continent (National
Plant Biosecurity Status Report 2017). For the 11 species for which there is a match between
climate in Australia and the species known range, I quantified the relative establishment
likelihood under current and future climate by considering a key arrival pathway (i.e. the
movement of people entering Australia from host countries) and the likely distribution of host
plants. As such, this work builds upon previous studies that have assessed the risk posed by
fruit flies based primarily on the output of habitat suitability models (Yonow and Sutherst 1998,
Sutherst et al. 2000, Kriticos 2007, Stephens et al. 2007, Ma et al. 2011, Ni et al. 2012, Fu et
al. 2014, Qin et al. 2015, Kumar et al. 2016, Stephens et al. 2016, Zeng et al. 2019). It also
complements the approach of Hill et al. (2016) who undertook a global assessment of the
invasion potential of 12 tephritid pests (six of which were included in this chapter), based upon

climate suitability, fruit production and trade indices.

Of the 11 species for which I estimated relative establishment likelihood, Bactrocera dorsalis,
Zeugodacus cucurbitae and, to a lesser extent, B. latifrons, are likely to pose the greatest threat
to horticulture in Australia. Tolerating climates from tropical to warm temperate, all three

species are broad ranging throughout Africa, Asia and Oceania, and have been reported in other
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continents (CABI 2019). B. dorsalis has been found in 75 countries (Zeng et al. 2019). In
contrast, most of the remaining eight species are primarily found in south-east Asia and

Oceania.

In this study, I used the ExDet algorithm (Mesgaran et al. 2014) to detect areas with climatic
conditions that match those in the tephritids’ established ranges. A strength of this approach is
that it identifies areas with univariate similarity (i.e. where each of a set of key climate variables
fall within the range of values found in areas where the species is established), while also
considering novel combinations of these variables (i.e. their correlations). This is a critical but
frequently overlooked aspect of model development, providing an indication of the reliability

of model transfer to conditions beyond the model training area.

Any correlative climate matching approach or species distribution model will be dependent
upon the existence of a minimum number of occurrence records and the assumption that these
records accurately capture the climate niche of the species. In the current study, I was unable
to undertake climate matching for B. facialis and B. psidii due to insufficient occurrence
records. Both of these species are currently only found in Pacific Islands. Similarly, the six
species for which there was no climate match between Australia and their known ranges (i.e.
B. kandiensis, B. kirki, B. melanotus, B. passiflorae, B. trivialis, B. xanthodes) are also currently
confined to islands. Whether their current distribution is limited by geography rather than
climate is unknown. However, these species could occur in broader climates than their native
ranges. For example, a number of studies have highlighted that the climate of species’ native
ranges are not necessarily useful proxies of the climate breath of invasive populations
(Beaumont et al. 2009, Bradley 2009, Gallagher et al. 2010). As such, caution must be applied
to the results of my study, as the proportion of Australia that has suitable conditions for these

species may be greater than what my analysis indicates.

A key pathway via which many exotic species enter a non-native country is the arrival of
passengers from the countries in which these species are already present. Fruit flies, in
particular, are frequently transported by air passengers (Putulan et al. 2004, Leibhold et al
2006). From the perspective of exotic fruit flies entering Australia, the greatest risk may lie in
passengers from Indonesia and the USA, as six of the 11 species are present in both of these
countries and more than 1,870,000 passengers arrive from these countries annually. Similarly,

the risk posed by the ~ 2,000,000 passengers disembarking from flights from China, where B.
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dorsalis, B. latifrons and Z. cucurbitae are present, is high even though Australia has a rigorous
quarantine and biosecurity detection program (Leibhold et al. 2006). While I focus on the air
passenger pathway, other pathways exist by which fruit flies might arrive at, and potentially
intrude beyond, Australia’s borders. For example, thousands of tonnes of horticultural products
are imported via sea and air, and for some species (e.g., B. dorsalis, B. zonata and Z.
cucurbitae) all life stages can be transported via this pathway (CABI, 2019). Mail (particularly
fruit) can also carry fruit flies (CABI, 2019). While analysis of these pathways is outside the

scope of the present analysis, it is worthy of future attention.

There are considerable limitations to the air passenger data used in this study. Data on exact
passenger numbers is lacking, hence I assumed that the maximum number of available seats
on different routes is reflective of the relative number of passengers flying those routes. Data
were also lacking regarding the carriage of passengers on indirect international flights. In
addition, the relative proportion of passengers from different countries was kept constant under
future scenarios, although it is possible that this will shift. Similarly, I assumed that the
proportion of passengers that are tourists, and the dispersal of passengers upon arrival, will

remain constant.

Moreover, I note that the analysis does not consider the potential necessity for horticultural
industries to shift geographically to adapt to climate change. Analysing shifts in climatic
suitability for horticultural crops is further complicated by our capacity to modify the

environment (e.g. through irrigation), and thus was beyond the scope of this study.

Ideally, to estimate current and future establishment likelihood information would be available
on the current distribution of host crops and simulations of which geographic regions are likely
to contain suitable conditions for these crops in the future. Unfortunately, such information is
either unavailable (in the case of detailed information on host species’ current distributions) or
requires additional simulations beyond the scope of this study (for future distributions). The
primary accessible data for host crops consisted of either major regions for commercial crops
(e.g. from industry reports) or ALUM data. A limitation of the former is that only general place
names of key regions are included in industry reports. While the ALUM data are recorded at a
spatial resolution of 50 m, the attribute classes are relatively coarse, clumping perennial and

seasonal horticulture into nine and four classes respectively, rather than listing individual crop
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species. Hence, a key limitation of this study is that I applied the same layer of the distribution

of horticultural regions for all 11 species.

Here, I have assessed the relative likelihood of 11 of 19 non-native invasive tephritid species
entering Australia. This study could be extended to combine its outputs with data describing
the costs incurred upon incursion and establishment, thereby providing a more detailed risk
assessment. Clearly, such information is highly valuable for the horticultural industry as well
as pest managers, as it enables appropriate ongoing surveillance and management strategies to

be planned and initiated.
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Appendix 4 Supplementary Information

S1 Table. Projected changes in the area of similar habitat for 19 fruit fly species, under six future climate
scenarios, relative to the current period. (1) Anastrepha ludens (2) Bactrocera carambolae (3) Bactrocera
dorsalis (4) Bactrocera facialis (5) Bactrocera kandiensis (6) Bactrocera kirki (7) Bactrocera latifrons (8)
Bactrocera melanotus (9) Bactrocera occipitalis (10) Bactrocera oleae (11) Bactrocera passiflorae (12)
Bactrocera psidii (13) Bactrocera trivialis (14) Bactrocera xanthodes (15) Rhagoletis fausta (16) Rhagolets
indifferens (17) Rhagoletis pomonella (18) Toxotrypana curvicauda and (19) Zeugodacus cucurbitae. For each
species, the first column indicates the species name and the second column indicates the GCM (Global Climate
Model) for three time periods: 2030, 2050 and 2070. Other columns: Total area in 100 km? refers to the total area
of similar habitat for 19 species under current and future scenarios; % Similarity refers to the percentage of similar
habitat for all 19 species under current and future conditions (the total area of Australia is 7,673,080 km?). For
two species Bactrocera facialis and Bactrocera psidii, NA value refers unable to undertake climate matching by
Exdet tool.

(1) Anastrepha ludens

Species GCM_Time period Total Area in 100 km? Similarity %
Anastrepha ludens Current 13630 18
Anastrepha ludens CanESM 30 7743 10
Anastrepha ludens CanESM 50 7285 9
Anastrepha ludens CanESM 70 7268 9
Anastrepha ludens ACCESS 30 11540 15
Anastrepha ludens ACCESS 50 8079 11
Anastrepha ludens ACCESS 70 6670 9
Anastrepha ludens GFDL 30 7385 10
Anastrepha ludens GFDL 50 6673

Anastrepha ludens GFDL 70 6498

Anastrepha ludens MIROC 30 11076 14
Anastrepha ludens MIROC 50 10486 14
Anastrepha ludens MIROC 70 8838 12
Anastrepha ludens HadGEM2 30 9712 13
Anastrepha ludens HadGEM2 50 9582 12
Anastrepha ludens HadGEM2 70 7334 10
Anastrepha ludens NorEsm 30 12128 16
Anastrepha ludens NorEsm 50 11184 15
Anastrepha ludens NorEsm 70 11198 15

(2) Bactrocera carambolae

Species GCM _Time period Total Area in 100 km? Similarity %
Bactrocera carambolae Current 797 1
Bactrocera carambolae CanESM _30 648 1
Bactrocera carambolae CanESM _50 667 0
Bactrocera carambolae CanESM _70 761 0
Bactrocera carambolae ACCESS 30 435 1
Bactrocera carambolae ACCESS 50 352 1
Bactrocera carambolae ACCESS 70 262 0
Bactrocera carambolae GFDL_30 721 1
Bactrocera carambolae GFDL _50 506 0
Bactrocera carambolae GFDL_70 359 0
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Bactrocera carambolae MIROC 30 469 1

Bactrocera carambolae MIROC_50 363 1

Bactrocera carambolae MIROC_70 286 0

Bactrocera carambolae HadGEM2_30 575 1

Bactrocera carambolae HadGEM2_50 388 0

Bactrocera carambolae HadGEM2 70 336 0

Bactrocera carambolae NorEsm_30 405 1

Bactrocera carambolae NorEsm_50 337 1

Bactrocera carambolae NorEsm_70 290 1

(3) Bactrocera dorsalis

Species GCM _Time period Total Area in 100 km? Similarity %
Bactrocera dorsalis Current 63410 83
Bactrocera dorsalis CanESM_ 30 54861 71
Bactrocera dorsalis CanESM 50 37941 49
Bactrocera dorsalis CanESM 70 33616 44
Bactrocera dorsalis ACCESS 30 65078 85
Bactrocera dorsalis ACCESS 50 46693 61
Bactrocera dorsalis ACCESS 70 35534 46
Bactrocera dorsalis GFDL _30 43387 57
Bactrocera dorsalis GFDL_50 33768 44
Bactrocera dorsalis GFDL_70 26546 35
Bactrocera dorsalis MIROC 30 65459 85
Bactrocera dorsalis MIROC_50 58661 76
Bactrocera dorsalis MIROC 70 58457 76
Bactrocera dorsalis HadGEM2 30 52133 68
Bactrocera dorsalis HadGEM2 50 39733 52
Bactrocera dorsalis HadGEM2 70 34198 45
Bactrocera dorsalis NorEsm 30 68515 89
Bactrocera dorsalis NorEsm 50 69583 91
Bactrocera dorsalis NorEsm 70 65451 85
(4) Bactrocera facialis

Species GCM_Time period Total Area in 100 km? Similarity %
Bactrocera facialis Current NA NA
Bactrocera facialis CanESM _30 NA NA
Bactrocera facialis CanESM _50 NA NA
Bactrocera facialis CanESM _70 NA NA
Bactrocera facialis ACCESS_30 NA NA
Bactrocera facialis ACCESS_50 NA NA
Bactrocera facialis ACCESS_70 NA NA
Bactrocera facialis GFDL_30 NA NA
Bactrocera facialis GFDL_50 NA NA
Bactrocera facialis GFDL_70 NA NA
Bactrocera facialis MIROC_30 NA NA
Bactrocera facialis MIROC_50 NA NA
Bactrocera facialis MIROC_70 NA NA
Bactrocera facialis HadGEM2_30 NA NA
Bactrocera facialis HadGEM2_50 NA NA
Bactrocera facialis HadGEM2_70 NA NA
Bactrocera facialis NorEsm_30 NA NA
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Bactrocera facialis NorEsm_50 NA NA
Bactrocera facialis NorEsm_70 NA NA
(5) Bactrocera kandiensis
Species GCM Time period Total Area in 100 km? Similarity %
Bactrocera kandiensis Current 0 0
Bactrocera kandiensis CanESM _30 0 0
Bactrocera kandiensis CanESM 50 0 0
Bactrocera kandiensis CanESM 70 0 0
Bactrocera kandiensis ACCESS 30 0 0
Bactrocera kandiensis ACCESS 50 0 0
Bactrocera kandiensis ACCESS 70 0 0
Bactrocera kandiensis GFDL 30 0 0
Bactrocera kandiensis GFDL 50 0 0
Bactrocera kandiensis GFDL 70 0 0
Bactrocera kandiensis MIROC 30 0 0
Bactrocera kandiensis MIROC 50 0 0
Bactrocera kandiensis MIROC 70 0 0
Bactrocera kandiensis HadGEM2 30 0 0
Bactrocera kandiensis HadGEM2 50 0 0
Bactrocera kandiensis HadGEM2 70 0 0
Bactrocera kandiensis NorEsm_30 0 0
Bactrocera kandiensis NorEsm_50 0 0
Bactrocera kandiensis NorEsm_70 0 0
(6) Bactrocera kirki
Species GCM Time period Total Area in 100 km? Similarity %
Bactrocera kirki Current 0 0
Bactrocera kirki CanESM 30 0 0
Bactrocera kirki CanESM _50 0 0
Bactrocera kirki CanESM _70 0 0
Bactrocera kirki ACCESS 30 0 0
Bactrocera kirki ACCESS 50 0 0
Bactrocera kirki ACCESS 70 0 0
Bactrocera kirki GFDL_30 0 0
Bactrocera kirki GFDL_50 0 0
Bactrocera kirki GFDL _70 0 0
Bactrocera kirki MIROC 30 0 0
Bactrocera kirki MIROC 50 0 0
Bactrocera kirki MIROC 70 0 0
Bactrocera kirki HadGEM2 30 0 0
Bactrocera kirki HadGEM2 50 0 0
Bactrocera kirki HadGEM2 70 0 0
Bactrocera kirki NorEsm 30 0 0
Bactrocera kirki NorEsm 50 0 0
Bactrocera kirki NorEsm_ 70 0 0
(7) Bactrocera latifrons
Species GCM_Time period Total Area in 100 km? Similarity %
Bactrocera latifrons Current 19006 25
Bactrocera latifrons CanESM 30 10373 14
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Bactrocera latifrons CanESM 50 8154 11
Bactrocera latifrons CanESM 70 8500 11
Bactrocera latifrons ACCESS 30 17157 22
Bactrocera latifrons ACCESS 50 11595 15
Bactrocera latifrons ACCESS 70 9015 12
Bactrocera latifrons GFDL 30 10307 13
Bactrocera latifrons GFDL 50 7158 9
Bactrocera latifrons GFDL 70 5928 8
Bactrocera latifrons MIROC 30 16523 22
Bactrocera latifrons MIROC 50 15088 20
Bactrocera latifrons MIROC 70 14410 19
Bactrocera latifrons HadGEM2 30 11892 15
Bactrocera latifrons HadGEM2 50 9918 13
Bactrocera latifrons HadGEM2 70 9917 13
Bactrocera latifrons NorEsm 30 21626 28
Bactrocera latifrons NorEsm 50 21005 27
Bactrocera latifrons NorEsm_70 22291 29
(8) Bactrocera melanotus
Species GCM_ Time period Total Area in 100 km? Similarity %
Bactrocera melanotus Current 0 0
Bactrocera melanotus CanESM 30 0 0
Bactrocera melanotus CanESM _50 0 0
Bactrocera melanotus CanESM _70 0 0
Bactrocera melanotus ACCESS 30 0 0
Bactrocera melanotus ACCESS 50 0 0
Bactrocera melanotus ACCESS 70 0 0
Bactrocera melanotus GFDL _30 0 0
Bactrocera melanotus GFDL_50 0 0
Bactrocera melanotus GFDL _70 0 0
Bactrocera melanotus MIROC 30 0 0
Bactrocera melanotus MIROC 50 0 0
Bactrocera melanotus MIROC 70 0 0
Bactrocera melanotus HadGEM2 30 0 0
Bactrocera melanotus HadGEM2 50 0 0
Bactrocera melanotus HadGEM2 70 0 0
Bactrocera melanotus NorEsm 30 0 0
Bactrocera melanotus NorEsm 50 0 0
Bactrocera melanotus NorEsm 70 0 0
(9) Bactrocera occipitalis
Species GCM Time period Total Area in 100 km? Similarity %
Bactrocera occipitalis Current 18 0
Bactrocera occipitalis CanESM 30 18 0
Bactrocera occipitalis CanESM 50 6 0
Bactrocera occipitalis CanESM 70 0 0
Bactrocera occipitalis ACCESS 30 29 0
Bactrocera occipitalis ACCESS 50 19 0
Bactrocera occipitalis ACCESS 70 3 0
Bactrocera occipitalis GFDL 30 9 0
Bactrocera occipitalis GFDL 50 10 0
Bactrocera occipitalis GFDL 70 1 0
Bactrocera occipitalis MIROC 30 40 0
Bactrocera occipitalis MIROC 50 39 0
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Bactrocera occipitalis MIROC 70 8 0
Bactrocera occipitalis HadGEM2 30 6 0
Bactrocera occipitalis HadGEM2 50 1 0
Bactrocera occipitalis HadGEM2_70 0 0
Bactrocera occipitalis NorEsm 30 33 0
Bactrocera occipitalis NorEsm 50 65 0
Bactrocera occipitalis NorEsm 70 33 0

(10) Bactrocera oleae

Species GCM_Time period Total Area in 100 km? Similarity %
Bactrocera oleae Current 70608 92
Bactrocera oleae CanESM _30 61839 81
Bactrocera oleae CanESM_ 50 44845 58
Bactrocera oleae CanESM _70 34957 46
Bactrocera oleae ACCESS 30 65270 85
Bactrocera oleae ACCESS 50 54342 71
Bactrocera oleae ACCESS 70 43549 57
Bactrocera oleae GFDL_30 58206 76
Bactrocera oleae GFDL_50 46301 60
Bactrocera oleae GFDL 70 40312 53
Bactrocera oleae MIROC 30 67237 88
Bactrocera oleae MIROC 50 64115 84
Bactrocera oleae MIROC_70 59552 78
Bactrocera oleae HadGEM2 30 64588 84
Bactrocera oleae HadGEM2_50 51942 68
Bactrocera oleae HadGEM2_70 40388 53
Bactrocera oleae NorEsm_30 66165 86
Bactrocera oleae NorEsm 50 64198 84
Bactrocera oleae NorEsm 70 60957 79
(11) Bactrocera passiflorae
Species GCM_Time period Total Area in 100 km? Similarity %
Bactrocera passiflorae Current 0 0
Bactrocera passiflorae CanESM 30 0 0
Bactrocera passiflorae CanESM 50 0 0
Bactrocera passiflorae CanESM 70 0 0
Bactrocera passiflorae ACCESS 30 0 0
Bactrocera passiflorae ACCESS 50 0 0
Bactrocera passiflorae ACCESS 70 0 0
Bactrocera passiflorae GFDL 30 0 0
Bactrocera passiflorae GFDL_50 0 0
Bactrocera passiflorae GFDL 70 0 0
Bactrocera passiflorae MIROC 30 0 0
Bactrocera passiflorae MIROC 50 0 0
Bactrocera passiflorae MIROC 70 0 0
Bactrocera passiflorae HadGEM2 30 0 0
Bactrocera passiflorae HadGEM2 50 0 0
Bactrocera passiflorae HadGEM2 70 0 0
Bactrocera passiflorae NorEsm_30 0 0
Bactrocera passiflorae NorEsm 50 0 0
Bactrocera passiflorae NorEsm_70 0 0
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(12) Bactrocera psidii

Species GCM_Time period Total Area in 100 km? Similarity %
Bactrocera psidii Current NA NA
Bactrocera psidii CanESM _30 NA NA
Bactrocera psidii CanESM _50 NA NA
Bactrocera psidii CanESM _70 NA NA
Bactrocera psidii ACCESS_30 NA NA
Bactrocera psidii ACCESS_50 NA NA
Bactrocera psidii ACCESS_70 NA NA
Bactrocera psidii GFDL_30 NA NA
Bactrocera psidii GFDL_50 NA NA
Bactrocera psidii GFDL_70 NA NA
Bactrocera psidii MIROC_30 NA NA
Bactrocera psidii MIROC_50 NA NA
Bactrocera psidii MIROC_70 NA NA
Bactrocera psidii HadGEM2_30 NA NA
Bactrocera psidii HadGEM2_50 NA NA
Bactrocera psidii HadGEM2_70 NA NA
Bactrocera psidii NorEsm_30 NA NA
Bactrocera psidii NorEsm_50 NA NA
Bactrocera psidii NorEsm_70 NA NA
(13) Bactrocera trivialis
Species GCM_Time period Total Area in 100 km? Similarity %
Bactrocera trivialis Current 0 0
Bactrocera trivialis CanESM _30 0 0
Bactrocera trivialis CanESM _50 0 0
Bactrocera trivialis CanESM _70 0 0
Bactrocera trivialis ACCESS 30 0 0
Bactrocera trivialis ACCESS 50 0 0
Bactrocera trivialis ACCESS 70 0 0
Bactrocera trivialis GFDL 30 0 0
Bactrocera trivialis GFDL 50 0 0
Bactrocera trivialis GFDL _70 0 0
Bactrocera trivialis MIROC 30 0 0
Bactrocera trivialis MIROC 50 0 0
Bactrocera trivialis MIROC_70 0 0
Bactrocera trivialis HadGEM2 30 0 0
Bactrocera trivialis HadGEM2 50 0 0
Bactrocera trivialis HadGEM2 70 0 0
Bactrocera trivialis NorEsm 30 0 0
Bactrocera trivialis NorEsm 50 0 0
Bactrocera trivialis NorEsm 70 0 0
(14) Bactrocera xanthodes
Species GCM_Time period Total Area in 100 km? Similarity %
Bactrocera xanthodes Current 0 0
Bactrocera xanthodes CanESM _30 0 0
Bactrocera xanthodes CanESM _50 0 0
Bactrocera xanthodes CanESM 70 0 0
Bactrocera xanthodes ACCESS 30 0 0
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Bactrocera xanthodes ACCESS 50 0 0
Bactrocera xanthodes ACCESS 70 0 0
Bactrocera xanthodes GFDL 30 0 0
Bactrocera xanthodes GFDL_50 0 0
Bactrocera xanthodes GFDL_70 0 0
Bactrocera xanthodes MIROC 30 0 0
Bactrocera xanthodes MIROC 50 0 0
Bactrocera xanthodes MIROC 70 0 0
Bactrocera xanthodes HadGEM2 30 0 0
Bactrocera xanthodes HadGEM2_50 0 0
Bactrocera xanthodes HadGEM2_70 0 0
Bactrocera xanthodes NorEsm_30 0 0
Bactrocera xanthodes NorEsm_50 0 0
Bactrocera xanthodes NorEsm_70 0 0
(15) Rhagoletis fausta

Species GCM_Time period Total Area in 100 km? Similarity %
Rhagoletis fausta Current 6234 8
Rhagoletis fausta CanESM 30 2512 3
Rhagoletis fausta CanESM 50 1341 2
Rhagoletis fausta CanESM 70 654 1
Rhagoletis fausta ACCESS 30 2333 3
Rhagoletis fausta ACCESS 50 1566 2
Rhagoletis fausta ACCESS 70 900 1
Rhagoletis fausta GFDL_30 3131 4
Rhagoletis fausta GFDL 50 2021 3
Rhagoletis fausta GFDL 70 1274 2
Rhagoletis fausta MIROC 30 2652 4
Rhagoletis fausta MIROC 50 1700 2
Rhagoletis fausta MIROC 70 1367 2
Rhagoletis fausta HadGEM2 30 2569 3
Rhagoletis fausta HadGEM2 50 1454 2
Rhagoletis fausta HadGEM2 70 873 1
Rhagoletis fausta NorEsm 30 3264 4
Rhagoletis fausta NorEsm 50 2234 3
Rhagoletis fausta NorEsm 70 1384 2
(16) Rhagolets indifferens

Species GCM_Time period Total Area in 100 km? Similarity %
Rhagoletis indifferens Current 1413 2
Rhagoletis indifferens CanESM _30 85 0
Rhagoletis indifferens CanESM _50 12 0
Rhagoletis indifferens CanESM _70 0 0
Rhagoletis indifferens ACCESS_30 92 0
Rhagoletis indifferens ACCESS_50 38 0
Rhagoletis indifferens ACCESS_70 6 0
Rhagoletis indifferens GFDL_30 27 0
Rhagoletis indifferens GFDL_50 88 0
Rhagoletis indifferens GFDL_70 13 0
Rhagoletis indifferens MIROC_30 279 0
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Rhagoletis indifferens MIROC_50 77 0
Rhagoletis indifferens MIROC_70 41 0
Rhagoletis indifferens HadGEM2_30 145 0
Rhagoletis indifferens HadGEM2_50 28 0
Rhagoletis indifferens HadGEM2_70 5 0
Rhagoletis indifferens NorEsm_30 230 0
Rhagoletis indifferens NorEsm_50 54 0
Rhagoletis indifferens NorEsm_70 4 0

(17) Rhagoletis pomonella

Species GCM_Time period Total Area in 100 km? Similarity %
Rhagoletis pomonella Current 10194 13
Rhagoletis pomonella CanESM _30 5333 7
Rhagoletis pomonella CanESM _50 4257 6
Rhagoletis pomonella CanESM _70 2629 3
Rhagoletis pomonella ACCESS_30 6397 8
Rhagoletis pomonella ACCESS_50 4569 6
Rhagoletis pomonella ACCESS_70 2625 3
Rhagoletis pomonella GFDL_30 5088 7
Rhagoletis pomonella GFDL_50 4172 5
Rhagoletis pomonella GFDL_70 3465 5
Rhagoletis pomonella MIROC_30 6825 9
Rhagoletis pomonella MIROC_50 5647 7
Rhagoletis pomonella MIROC_70 4798 6
Rhagoletis pomonella HadGEM2_30 5312 7
Rhagoletis pomonella HadGEM2_50 4520 6
Rhagoletis pomonella HadGEM2_70 3274 4
Rhagoletis pomonella NorEsm_30 6760 9
Rhagoletis pomonella NorEsm_50 5993 8
Rhagoletis pomonella NorEsm_70 4806 6
(18) Toxotrypana curvicauda
Species GCM_Time period Total number of grid cells Similarity %
Toxotrypana curvicauda Current 973.82 1
Toxotrypana curvicauda CanESM _30 885.6 1
Toxotrypana curvicauda CanESM _50 935.83 1
Toxotrypana curvicauda CanESM _70 767.45 1
Toxotrypana curvicauda ACCESS_30 1071.83 1
Toxotrypana curvicauda ACCESS_50 1230.68 2
Toxotrypana curvicauda ACCESS_70 1202.13 2
Toxotrypana curvicauda GFDL_30 751.51 1
Toxotrypana curvicauda GFDL_50 727.65 1
Toxotrypana curvicauda GFDL_70 667.53 1
Toxotrypana curvicauda MIROC_30 1007.91 1
Toxotrypana curvicauda MIROC_50 1206.41 2
Toxotrypana curvicauda MIROC_70 1677.11 2
Toxotrypana curvicauda HadGEM2_30 851.68 1
Toxotrypana curvicauda HadGEM2 50 680.28 1
Toxotrypana curvicauda HadGEM2_70 928.16 1
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Toxotrypana curvicauda NorEsm_30 1580.56

Toxotrypana curvicauda NorEsm_50 2108.83

Toxotrypana curvicauda NorEsm_70 4067.11

(19) Zeugodacus cucurbitae

Species GCM_Time period Total number of grid cells Similarity %
Zeugodacus cucurbitae Current 76035 99
Zeugodacus cucurbitae CanESM _30 73956 96
Zeugodacus cucurbitae CanESM _50 60517 79
Zeugodacus cucurbitae CanESM _70 45606 59
Zeugodacus cucurbitae ACCESS_30 75422 98
Zeugodacus cucurbitae ACCESS_50 67177 88
Zeugodacus cucurbitae ACCESS_70 56392 73
Zeugodacus cucurbitae GFDL_30 72579 95
Zeugodacus cucurbitae GFDL_50 64769 84
Zeugodacus cucurbitae GFDL_70 55871 73
Zeugodacus cucurbitae MIROC_30 76040 99
Zeugodacus cucurbitae MIROC_50 74836 98
Zeugodacus cucurbitae MIROC_70 69364 90
Zeugodacus cucurbitae HadGEM2_30 74967 98
Zeugodacus cucurbitae HadGEM2_50 65112 85
Zeugodacus cucurbitae HadGEM2_70 50329 66
Zeugodacus cucurbitae NorEsm_30 76215 99
Zeugodacus cucurbitae NorEsm_50 75815 99
Zeugodacus cucurbitae NorEsm_70 74224 97
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S2 Table. Area (100 km?) and their percentage of Australia projected to be similar for 19 exotic fruit flies
under six future climate scenarios. In the column ‘Climate scenarios’, 0 refers to the area projected to be no
similar across all six scenarios; 1 refers to the area projected to be similar under any one of the six scenarios...6
refers to the area projected to be similar under all six scenarios. For two species Bactrocera facialis and Bactrocera
psidii, NA value refers unable to undertake climate matching by Exdet tool.

Similarity
Climate 2030 2030 2050 2050 2070 2070
Species scenarios (100 km?) % (100 km?) % (100 km?) %
Anastrepha ludens 0 62961 82 63118 82 64084 84
1 1858 2 2862 4 2731 4
2 1098 1 1813 2 2117 3
3 1685 2 1060 1 1031 1
4 1579 2 949 1 809 1
5 1141 1 1743 2 1239 2
6 6409 8 5185 7 4720 6
Bactrocera carambolae 0 75926 99 76011 99 75935 99
1 172 0 193 0 367 0
2 56 0 100 0 71 0
3 56 0 50 0 47 0
4 111 0 67 0 89 0
5 101 0 51 0 42 0
6 308 0 257 0 180 0
Bactrocera dorsalis 0 3537 7 5362 7 9648 13
1 3391 4 10626 14 8760 11
2 6270 8 11533 15 17175 22
3 8131 11 7351 10 5023
4 8056 10 6224 8 6911
5 7185 9 8069 11 7305 10
6 40160 52 27565 36 21909 29
Bactrocera facialis 0 NA NA NA NA NA NA
1 NA NA NA NA NA NA
2 NA NA NA NA NA NA
3 NA NA NA NA NA NA
4 NA NA NA NA NA NA
5 NA NA NA NA NA NA
6 NA NA NA NA NA NA
Bactrocera kandiensis 0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
Bactrocera kirki 0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
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4 0 0 0
5 0 0 0 0
6 0 0 0 0
Bactrocera latifrons 0 54323 71 54603 71 53429 70
1 4169 5 7413 10 9340 12
2 2499 3 3873 5 3197 4
3 2893 4 2719 4 1484 2
4 2605 3 333 0 1630 2
5 1841 2 1908 2 2548 3
6 8401 11 5882 8 5102 7
Bactrocera melanotus 0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
Bactrocera occipitalis 0 76669 100 76650 100 76697 100
1 26 0 42 0 24 0
2 16 0 26 0 8 0
3 10 0 9 0 2 0
<4 5 0 3 0 0 0
5 4 0 1 0 0 0
6 1 0 0 0 0 0
Bactrocera oleae 0 7357 10 10525 14 13695 18
1 1261 2 2406 3 4630 6
2 1791 2 7264 13525 18
3 2386 3 4635 2538 3
4 2986 4 3503 5 3765 5
5 6812 9 9897 13 6416 8
6 54137 71 38500 50 32161 42
Bactrocera passiflorae 0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
Bactrocera psidii 0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
Bactrocera trivialis 0 0 0 0 0 0 0
1 0 0 0 0 0 0
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2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
Bactrocera xanthodes 0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
Rhagoletis fausta 0 73002 95 74107 97 75003 98
1 437 1 342 0 226 0
2 286 0 407 1 271 0
3 387 1 343 0 348 0
4 515 1 373 0 201 0
5 394 1 311 0 252 0
6 1710 2 847 1 429 1
Rhagoletis indifferens 0 76250 99 76608 100 76679 100
1 247 0 52 0 41 0
2 72 0 28 0 B 0
3 62 0 9 0 6 0
4 29 0 18 0 0 0
5 14 0 5 0 0 0
6 56 0 11 0 0 0
Rhagoletis pomonella 0 68865 90 70299 92 71427 93
1 1065 1 647 1 607 1
2 503 1 757 1 1000 1
3 909 1 555 1 551 1
4 428 1 353 0 431 1
5 561 1 803 1 674 1
6 4399 6 3318 4 2040 3
Toxotrypana curvicauda 0 74873 98 74152 97 72358 94
1 607 1 1240 2 2570 3
2 308 0 304 0 607 1
3 116 0 162 0 252 0
4 130 0 213 0 266 0
5 125 0 256 0 359 0
6 572 1 404 1 318 0
Zeogodacus cucurbitae 0 365 0 703 1 2330 3
1 222 0 1056 1 4904 6
2 462 1 5662 7 10508 14
3 503 1 2237 3 3324 4
4 1109 1 4078 5 5810
5 2333 3 5139 7 6475 8
6 71737 93 57854 75 43379 57
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S5 Table. Total area and percentage of Australia containing landuse associated with the host plant species for
19 exotic fruit fly species. Data are based on ALUM (see S4 Table).

Landuse area 1 km? (total number of
Species grid cells) Landuse area 1 km?* (%)
Anastrepha ludens 1311 1.71
Bcatrocera carambolae 1315 1.71
Bactrocera dorsalis 1357 1.77
Bactrocera facialis 1312 1.71
Bactrocera kandiensis 1302 1.70
Bactrocera kirki 1312 1.71
Bactrocera latifrons 1299 1.69
Bactrocera melanotus 1298 1.69
Bactrocera occipitalis 1206 1.57
Bactrocera oleae 25 0.03
Bactrocera passiflorae 1303 1.70
Bactrocera psidii 1302 1.70
Bactrocera trivialis 1297 1.69
Bactrocera xanthodes 1297 1.69
Rhagoletis fausta 193 0.25
Rhagoletis indifferens 193 0.25
Rhagoletis pomonella 193 0.25
Toxotrypana curvicauda 1294 1.69
Zeugodacus cucurbitae 1347 1.76
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S6 Table. Total volume of passengers arriving from infested countries. Column Average pax pa refers the
average (over 2016-2018) maximum number of air passenger seats on flights from known infested countries
(source-BITRE).

Species Country | Average pax pa
Anastrepha ludens USA 1,894,115
Bactrocera carambolae Brazil 364
Brunei 92,753

India 96,853

India 96,853

Indonesia 1,874,526

Malaysia 1,718,524

Singapore 3,649,587

Thailand 1,079,566

Vietnam 288,443

Bactrocera dorsalis China 1,955,488
India 96,853

Indonesia 1,874,526

Malaysia 1,718,524

Papua New Guinea 273,252

Philippines 416,970

Singapore 3,649,587

Sri Lanka 58,357

Taiwan 288,608

Thailand 1,079,566

Vietnam 288,443

Tonga 18,243

Bactrocera kandiensis Sri Lanka 58,357
Bactrocera kirki Fiji 545,581
Tonga 18,243

Western Samoa 35,248

Bactrocera latifrons Brunei 92,753
China 1,955,488

Hong Kong SAR 1,642,432

India 96,853

Indonesia 1,874,526

Japan 833,894

Malaysia 1,718,524

Sri Lanka 58,357

Taiwan 288,608

Thailand 1,079,566

Bactrocera melanotus Cook Islands 14,178
Bactrocera occipitalis Brunei 92,753
Indonesia 1,874,526

Malaysia 1,718,524

Philippines 416,970

Bactrocera oleae USA 1,894,115
Bactrocera passiflorae Fiji 545,581
Bactrocera psidii New Caledonia 116,008
Bactrocera trivialis Indonesia 1,874,526
Papua New Guinea 273,252

Bactrocera xanthodes Cook Islands 14,178
Fiji 545,581

Nauru 21,802

Tonga 18,243

Rhagoletis fausta Canada 214,380
Canada 214,380

USA 1,894,115
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Rhagoletis indifferens Canada 214,380
USA 1,894,115

Rhagoletis pomonella Canada 214,380
USA 1,894,115

Toxotrypana curvicauda USA 1,894,115
Zeugodacus cucurbitae Brunei 92,753
China 1,955,488

Hong Kong SAR 1,642,432

India 96,853

Indonesia 1,874,526

Malaysia 1,718,524

Papua New Guinea 273,252

Philippines 416,970

Sri Lanka 58,357

Thailand 1,079,566
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CHAPTERS

Potential impacts of climate change on tephritid pest
species

Abstract

Understanding the responses of pest species to climate change is imperative if monitoring
programs and management strategies are to be effective in the future. Climate change will affect
many insect species including those in the Tephritidae family, which include some of the world’s
most economically damaging horticultural pests. The goal of this review is to highlight how
tephritid pests may respond to climate change. In doing so, I discuss the evidence for direct
responses — range shifts, responses to extreme events, changes to species’ phenology, and adaptive
capacity — and indirect responses, such as via host plants or natural enemies. I found that few
studies, beyond those using species distribution models to assess future range shifts, have been
undertaken to explore the responses of tephritids to climate change. As such, the breadth of
responses must be inferred from studies on related taxa. I highlight priority areas for future
research, and the development of recent tools that could advance our understanding of the

responses of tephritid species to climate change.

Keywords: adaptive capacity, climate change, elevated CO;, natural enemies, phenological

changes, tephritid pests.
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Introduction

There is a clear fingerprint of anthropogenic climate change on a broad range of biological and
ecological processes at multiple levels of biological organisation (Parmesan 2006, Scheffers et al.
2016). Species’ ranges are shifting, phenological adjustments are occurring, and changes to meta-
populations and community composition are taking place (Scheffers et al. 2016, Hoffmann et al.
2019). These changes have occurred in response to an increase in global mean annual temperature
of ~1°C since 1910 (IPCC 2014). By the end of the 21st century, however, temperatures may be
2.6-4.8°C higher than present (IPCC 2014). As such, climate change will undoubtedly have

consequences for the horticulture industry and the pests that threaten it.

Members of the insect family Tephritidae include some of the world’s most economically
damaging horticultural pests. This phytophagous family is amongst the largest in the insect order
Diptera, with approximately 4,000 species across 500 genera (White and Elson-Harris 1992). Most
of these species are found within temperate, tropical and subtropical regions of the world. Around
1,400 tephritid species probably develop in fleshy fruits (Norrbom et al. 1999), hence members of
the family are commonly referred to as “true fruit flies”. More than 350 species are of economic
importance and occur in almost all fruit-growing regions of the world (White and Elson-Harris
1992, Plant Health Australia 2018) where they can cause serious damage to fruit, sometimes

resulting in almost total crop failure (Qin et al. 2015).

Tephritids already cause significant economic damage to Australia’s multi-billion-dollar
horticulture industry (Plant Health Australia 2018). Other members of the family that are currently
absent from Australia are likely to pose a substantial threat should they gain entry, and establish
and spread. It is vital, therefore, that the mechanisms by which climate change could alter the
threats these species pose, and consequences for species management, are understood. The goal of
this review is to summarise knowledge of the potential responses of tephritids to climate change.
I begin the review by introducing the four major economically significant genera of tephritid pests.
I then discuss the key ways in which these species may directly respond to climate change,
including via shifts in distribution, phenological changes and adaptation, as well as indirect
responses, such as via the effects of elevated CO. on host plants, or the responses of natural
enemies. Finally, I summarise the implications of climate change for the management of risks

associated with tephritid pests.
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Fruit fly species as pests

Within the Tephritidae, key pests of fruit production belong to four main genera: Anastrepha
Schiner, Bactrocera Macquart, Ceratitis MacLeay and Rhagoletis Loew (White and Elson-Harris
1992, Malacrida et al. 2007), although some economically significant species also occur in other
genera, such as Dacus, Zeugodacus, and Toxotrypana. Anastrepha is native to tropical and
subtropical regions of the New World, Bactrocera is native to tropical Asia, the South Pacific and
Australia regions, Ceratitis is an Afrotropical genus, and Rhagoletis is found in North and Central
America, Europe and temperate Asia (Bateman 1972, Fletcher 1987, Headrick and Goeden 1998,
Carey 2011). Below, I provide a brief overview of these four genera, then discuss the impacts of

climate change on fruit fly pests in general.

Anastrepha

With more than 250 species endemic to the American tropics and subtropics, the genus Anastrepha
is one of the largest in the Tephritidae family (Foote 1994, Norrbom 2004, Norrbom et al. 2012).
At least seven species are major economic pests: A. fraterculus (Wiedemann); A. obliqua
(Macquart); 4. ludens (Loew); A. grandis (Macquart); A. serpentina (Wiedemann); A. striata
(Schiner); and 4. suspensa (Loew) (Hernandez-Ortiz et al. 2004, Selivon et al. 2004, Selivon et
al. 2005, Vera et al. 2006, Caceres et al. 2009, Hernandez-Ortiz et al. 2012). In Brazil, Anastrepha
species have been reported to cause an annual loss of US $120-200 million to the horticulture
industry (Zucchi et al 2004). Infestations of the highly polyphagous A. fraterculus in apple
orchards in southern Brazil can cause economic losses estimated at US $110 million, while 40%

of the total production of peaches may also be lost (Dias and Lucky 2017).

Anastrepha obliqua is also polyphagous, and ranges across Brazil (Uchda and Nicécio 2010),
Argentina (Guillén and Sanchez 2007), Bolivia (Ovruski et al 2009), Colombia (Canal 2010) and
Venezuela (Katiyar et al 2000). It has been recorded on citrus, carambola, mango, guava, cashew,
and pacific almonds (CABI Invasive Species Compendium 2012). The Mexican fruit fly, A4.

ludens, occurs in North America (Mexico and Florida) and Central America (Belize, Costa Rica,
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El Salvador, Guatemala, Honduras and Nicaragua), and frequently attacks fruits and vegetables

sold at markets.

Bactrocera

Members of the genus Bactrocera present a substantial threat to horticultural crops due to their
wide host ranges (Clarke et al. 2005). At least 440 species exist within this genus, which is
distributed primarily across tropical Asia, the South Pacific, and Australia (White and Elson-Harris
1992). Relatively few species exist in Africa, with some having been introduced relatively recently
(e.g., B. dorsalis, B. latifrons and B. zonata) (Lux et al. 2003, Drew et al. 2005, Mwatawala et al.
2009, De Meyer et al. 2012).

A number of Bactrocera species have been introduced to most fruit-producing regions of the
world, often with major economic consequences. For instance, B. carambolae is native to the Indo-
Australian region. It attacks at least 26 species worldwide, most of which have commercial interest
(e.g., star fruit, mango, sapodilla, cherry, guava, jabuticaba, rose apple, jackfruit, breadfruit,
orange, tangerine, tomato). This species was introduced to Southern America, probably via
airplane flights from Indonesia (Oliveira et al. 2006). It is now found in the northern Brazilian
states of Oiapoque and Amapa, where eradication programs have been established, as well as in
neighboring French Guiana and Suriname (Oliveira et al. 2006). Its presence in Suriname led to
drastic export reductions in the region, and threatened the export of fruits from Guyana to
neighboring Caribbean countries (USDA/APHIS 2000).

The oriental fruit fly, B. dorsalis (Hendel) (Diptera: Tephritidae), originated in tropical and
subtropical regions of Asia, and has become invasive worldwide (White and Elson-Harris
1992, Khamis et al. 2009, Clarke et al. 2019) due to its broad host range, large dispersal capacity
and relatively wide climatic tolerance (Fletcher 1989, Duyck et al. 2004, Liu et al. 2011). Highly
polyphagous, this species attacks more than 250 fruits and vegetables (Clarke et al. 2005, Drew et
al. 2008). As such, B. dorsalis is regarded as a high-risk pest and has been listed as a quarantine

species by many countries (Khamis et al. 2009).
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Recently, three Bactrocera species (B. philippinensis Drew and Hancock, B. papayae Drew and
Hancock, and B. invadens) were declared junior synonyms of B. dorsalis (Drew & Romig 2013,
Schutze et al. 2015). Combined, these synonymous species have greatly increased the geographic
range of this pest, altering invasion patterns around the world (Vargaset al. 2015). This species
threatens the commercial fruit industry in east and south-east Asia through higher costs of
production and control, and new quarantine restrictions (Aketarawong et al 2014). It has caused
losses of horticultural crops throughout Africa since it was first reported in 2003 (Lux et al. 2003).
As a result of its presence, the USA banned importation of several fruits and vegetables from
African countries (USDA-APHIS, 2008). Research from West Africa (Vayssiéres et al. 2005) and
East Africa (Mwatawala et al. 2004, Ekesi et al. 2006, Rwomushana et al. 2008) has demonstrated
that this species can become dominant in mango monocultures. In Benin, infestations of mango
can lead to losses of more than 60% of fruits (Vayssicres et al. 2007). As such, the direct damage
caused by B. dorsalis, and other tephritid pests, seriously threatens the income, food security and
livelihood of millions of families that produce and sell fresh fruit and vegetables across Africa (De

Meyer et al. 2010).

Bactrocera zonata, the peach fruit fly, is ranked as one of the most economically significant
species due to its high invasiveness and ability to cause serious economic damage to horticulture
(Iwahashi & Routhier 2001, Ni et al. 2012). Bactrocera zonata originated in south and south-east
Asia (Agarwal et al. 1999, Draz et al. 2016), but is now widely distributed from Asia to the Middle
East and Africa. It causes an estimated €190 million of damage in Egypt per year (EPPO 2005),
and poses a serious threat to the entire Mediterranean region (Duyck et al. 2004). This species
attacks more than 50 fruits and vegetables (White and Elson-Harris 1992, Ni et al. 2012) as well
as wild host plants from a range of families (Kapoor et al. 1983). It has also been suggested that
under climate change B. zonata may expand is range poleward, including into Mediterranean

regions (Ni et al 2012).

Ceratitis

The genus Ceratitis contains 89 species worldwide, including several species of agricultural

importance (Virgilio et al. 2008). Chief among these is Medfly, C. capitata (Wiedemann), which
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is found in a broad range of climates across the world (Papadopoulos et al. 1996, Papadopoulos et
al. 2001) and is considered one of the world’s most destructive pests (Szyniszewska 2013). It
originated in Africa (White and Elson-Harris 1992), invaded the Mediterranean region during the
early 19th century, and from there spread to the rest of world (Headrick and Goeden 1996). It now
occurs in most tropical and temperate regions, though some countries have successfully eradicated
newly introduced (Penrose 1996) as well as established populations (Hendrichs et al. 1983, Fisher
et al. 1985).

In warmer climates, Medfly can find various hosts throughout the year, and within several
generations can build up very large populations in summer and autumn (Mavrikakis et al. 2000).
It is highly polyphagous, feeding on around 300 host species (Papadopoulos et al. 2001,
Papadopoulos et al. 2002). As such, eradication of Medfly outbreaks can be extremely costly. For
instance, the cost of eradicating this species from Florida’s Tampa Bay in 1997 cost US $25 million

(Szyniszewska and Tatem 2014).

Rhagoletis

The genus Rhagoletis includes more than 65 species distributed throughout temperate, mesic
environments (Yee et al. 2014). Several species are considered economically significant pests,
including R. pomonella, R. cingulata, R. indifferens, R. fausta, R. ribicola, R. zephyria, and R.
mendax. The apple maggot fly, R. pomonella (Walsh) (Diptera: Tephritidae), is a major pest of
apples in western USA (Kumar et al. 2016). As such, both Canada and Mexico have required that
apple imports from the USA undergo costly cold treatment to prevent the introduction of this pest
(Krissoff et al. 1997). The eastern cherry fruit fly, R. cingulata, native to eastern North America
(Bush 1966), is a key pest of cherries, rendering them unsuitable for consumption and processing,
while the blueberry maggot fly, R. mendax, attacks blueberries in many parts of the eastern USA
and Canada (Prokopy and Coli 1978, Neilson and Wood 1985). There is zero tolerance for these
pest species in most of their host plant production areas: if not controlled these species seriously
impact crop industries by reducing grower access to export markets as well as directly impacting

the marketability of commercial crops (Zhao et al. 2007).
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Direct effects of climate change on tephritid pests

Climate change will directly affect the behaviour, distribution, development, survival and
abundance of many species, including insects (Bale et al. 2002, Altermatt 2010, Forrest 2016). To
date there have been a number of studies modelling potential shifts to the distribution of suitable
climate for tephritid species (e.g. Sutherst et al. 2000, Kriticos 2007, Stephen et al. 2007, Ni et al.
2012, Fu et al. 2014, Hill et al. 2016, Stephens et al. 2016, Sultana et al. 2017). Such responses
may then alter the threat that tephritid pests pose to horticulture, meaning that programs currently
in place to monitor and manage these species will need to preempt and adapt to such changes

(Suckling et al. 2008).

Range shifts

Climate change may be a zero-sum game for invasive species (Hellmann et al. 2008), as it
improves the suitability of a region for some species, while reducing it for others. As climate
changes, many species including insects are predicted to shift their geographical ranges (Hughes
2000). However, it has been suggested that invasive species may respond to climate change
differently to, and perhaps faster than, native species (Hellmann et al. 2008), potentially because
invasive species have traits that allow them to capitalise on the various elements of climate change
(Dukes and Mooney 1999). For instance, invasive species may be able to tolerate and track
changing climates better than native species, as they tend to have greater dispersal capabilities
(Hulme 2012) and/or broader climatic tolerances (Hellmann et al. 2008). In addition, as climate
change is expected to shift native (or established exotic) species out of the conditions to which
they are adapted, competitive resistance from established species may lessen in some places

(Hellmann et al. 2008), possibly favouring establishment of new exotic species.

Many tephritid pests have tropical origins, with geographic ranges that are likely restricted by
climate (see Merkel et al. 2019). These species may extend their ranges poleward in response to
climate change, as indicated by projections from species distribution models (e.g. Stephens et al.

2007, N1 et al. 2012, Fu et al. 2014).
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Using the semi-mechanistic model CLIMEX (Sutherst & Maywald 1985, Sutherst et al. 2007),
both Hill et al. (2016) and Stephens et al. (2007) projected that under climate scenarios for 2070
and 2080, respectively, suitable conditions for B. dorsalis may expand northward in southern
Europe, south-eastern regions of the USA, and southern China, but decline in Africa and South
America. On the contrary, projections from a correlative model, Maxent, suggest that this species
will pose an increasing risk to Africa and South America (Qin et al. 2019). However, direct
comparisons of these studies must be viewed with caution, since they have very different

calibration approaches, and use different datasets to describe climate conditions.

Models have also been used to assess potential geographic shifts in suitable conditions for other
tephritid pests. Using CLIMEX, a comparison of climate suitability for the 2020s, compared to a
1961-1990 baseline, suggested that Anastrepha obliqua may expand its range polewards in areas
too cold during the baseline, whereas suitability in tropical regions may decline (Fu et al. 2014).
Additional analyses with CLIMEX by Hill et al. (2016) suggested that by 2070 contractions may
continue to occur in some tropical regions (such as Brazil and sub-Saharan Africa), although
expansions may occur in Mediterranean regions, south-eastern USA and temperate regions of

Australia.

Europe is projected to become increasingly more suitable for B. zonata (Ni et al. 2012). In parts
of Africa, B. invadens and Dacus ciliatus may also experience range increases, although suitable
habitat for Z. cucurbitae and some Ceratitis species may decline (Masembe et al 2015). Similarly,
in south-west India, warming by 2070 may result in moderate suitability of areas that are currently

at little risk of B. correcta establishment (Choudhary et al 2019).

Hill et al. (2016) undertook a global analysis of the potential impact of climate change on 12
tephritid pests. For several species, tropical regions in South America and sub-Saharan Africa may
become less suitable under scenarios for 2070 (e.g. Anastrepha ludens, A. obliqua, Ceratitis
capitata, C. rosa, B. dorsalis, B. latifrons), although range margins for many species may extend
poleward. However, for 11 of the 12 species, the primary direction of range shifts is projected to
be eastward, likely due to complex interactions between temperature and precipitation. I also found
that the potential Australian distributions of 11 tephritid pests of economic concern may shift
southward (Chapter Three). In addition, both CLIMEX (Hill et al. 2016) and Maxent models from
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Chapter Two and Three of this thesis predict that suitability of south-eastern Australia will increase

for B. tryoni and C. capitata.

Phenological Changes

Over the past few decades, the phenology of a broad variety of taxa — including insects — has
responded to global warming, particularly with respect to advancements in the timing of spring
events (Parmesan & Yohe, 2003, Chambers et al. 2013, Beaumont et al. 2015, Hoffmann et al.
2019). As poikilotherms, the length and timing of phenological phases of insects, as well as the
number of generations (voltinism) per year, is highly sensitive to external temperature changes
(Hu et al. 2015, Rao et al. 2015). This has repercussions for over-wintering, diapause and

aestivation.

Longer and warmer growing seasons may enable insect populations to complete additional
generations each year (Forrest 2016), as has been recorded for some insects, including species of
economic significance (Altermatt 2010, Bentz et al. 2010, Fand et al. 2014, Jonsson et al. 2009,
Mitton and Ferrenberg 2012, Poyry et al. 2011). For example, Altermatt (2010) reported that since
1980, 263 butterfly and moth species in Central Europe have shifted from being univoltine (a

single generation per year) to bi- or even multi-voltine.

Comparisons of the voltinism of populations across a species’ range can be used to inform its
likely response to climate change. For example, populations of B. tryoni in tropical and subtropical
regions may have 9-15 generations per year, whereas only 3—4 generations occur among
populations in temperate regions (Meats 1981, Sutherst and Yonow 1998, Yonow et al. 2004).
This suggests that as climate changes, the voltinism of species in temperate regions may increase.
Since multi-voltinism has been linked to insect outbreaks, an increase in the abundance of pest
species may occur in some regions. Model estimates for populations of B. dorsalis, B. correcta
and B. zonata in India suggest a 15-24% reduction in generation time under future climate
scenarios, resulting in ~5% higher infestation of mango fruits by 2050 (Choudhury et al. 2019).
However, disruption of the developmental synchrony associated with multi-voltinism and host

plant phenology may also reduce fitness (Choudhury et al. 2019). In some regions, high
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temperatures already limit the number of generations per year. For instance, within the
Mediterranean Basin, B. oleae undergoes 4—6 generations per year with a break during the summer
period when high temperatures and/or lack of fruit prevent breeding (Kapatos and Fletcher 1984).
Further increases to temperature may result in longer summer periods with lower population

numbers, although such temperature rises are also likely to negatively impact horticulture.

Higher temperatures during winter may decrease mortality rates of overwintering individuals,
enabling populations to quickly regenerate in spring. For instance, all life-stages of C. capitata can
survive mild winters (Papadopoulos et al. 1996, Rahman and Broughton 2019). Hence, both the
previous year’s adult population and newly emerged adults are likely to contribute to outbreaks in

spring (Rahman and Broughton 2019).

Global warming may also alter the timing of diapause induction. Species of Rhagoletis are
generally univoltine and undergo diapause (Rull 2009). Although metabolism is suppressed during
diapause, warmer temperatures may result in higher oxygen consumption thereby increasing the
rate at which nutrient reserves are consumed (see Dambroski and Feder 2007), which could

negatively impact survivability.

Responses to extreme events

As climate changes, so too will the magnitude and frequency of extreme events such as heatwaves,
cold spells, and extremes of precipitation. The tolerance of tephritids to high temperatures varies
across species’ life cycles. The highest temperatures tolerated by immature stages of B. tryoni
typically do not exceed 38—40°C (Meats, 1984, Yonow et al 2004), while the survival rate of adults
is negatively affected during winter (Fletcher, 1979, O’ Loughlin et al 1984) when temperature
falls below the torpor threshold of 2°C (Meats, 1976b, 1981). Short-term high temperature
exposure can also decrease the reproductive capacity and survival rate of C. capitata (Zhang et al.
2019), although adults can survive 43°C (Nyamukondiwa & Terblanche 2009). Members of this
species can also successfully overwinter in temperate climates (Mavrikakis et al. 2000,

Papadopoulos et al. 2000): larvae have been found to survive at temperatures below 0°C in Central
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Greece (Zervas et al. 1995, Papadopoulos et al. 1996), while all life stages can survive southern

European winters (Fimiani 1989, Mavrikakis et al. 1997).

Zeugodacus cucurbitae adults can tolerate temperature as high as 51°C. Indeed, when exposed to
45°C individuals of this species produced 693 eggs per day compared with 666 eggs per day when
exposed to 25°C (Zhou et al. 2019). Similarly, B. dorsalis was found to lay more eggs over two
hours at temperatures of 40°C compared to at ambient temperatures of 25°C (Ren et al. 2010, as
reported in Zhou et al. 2019). However, long term exposure to high temperatures inhibits the

reproductive capacity and survival rate of this species (Jiang, 2006).

Extremes in rainfall can also influence survival and reproduction of fruit flies. For example, the
abundance of B. dorsalis in China was found to decline when rainfall was below 50 mm monthly
or above 250 mm monthly (Ye and Liu 2007). Similarly, immature stages of B. tryoni are highly
vulnerable to both extreme dry or wet situations (Dominiak et al. 2000, Dominiak et al. 2003).
During extreme dry conditions the fecundity of B. tryoni declined to ~32 eggs per week, whereas
during sufficient rainfall ~190 eggs per week were produced (Bateman 1968). In temperate regions
populations of B. tryoni may suffer from high mortality due to extreme dry conditions (Sonleitner
1973). Populations of C. capitata are generally inactive during heavy rainfall (Christenson and
Foote 1960, Appiah et al. 2009), and adult mortality increases in extreme rainfall (Pefiarrubia-

Maria et al. 2012).

Hoffman et al. (2013) compiled a database of thermal tolerance estimates for multiple insect
species, including their critical thermal maxima (CTmax). From this, Terblanche et al. (2015)
quantified the warming tolerance (the difference between current habitat temperature and CTmax,
compared to estimates of future temperatures) of 15 pest species including a number of tephritids.
Under future projections, the warming tolerance of each species was reduced, particularly in the
egg and larval life stages. This indicates that the vulnerability of earlier developmental stages to

warming may limit the on-going persistence of these species (Terblanche et al. 2015).

Adaptation
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Adaptation and tolerance to stressful environments are among the most important factors in
defining invasion success. Populations that originate from variable environments are generally
more tolerant of stressors and are more likely to become invasive compared with those from
environments with more stable conditions (Lee & Gelembiuk 2008, Piiroinen et al. 2013). This is
because high tolerance may enable organisms to persist under the new environmental conditions
and allow sufficient time for adaptation to occur (Hoffmann & Sgro 2011, Hoffmann 2017). Insect
pest populations are typically characterised by their short generation times and large populations,
resulting in high levels of genetic variability that facilitate higher rates of adaptation (Hoffmann
2017). These characteristics may allow pests to rapidly evolve tolerance to stresses associated with
changing climatic conditions, for instance by adjusting their behaviour and physiology (Wong &
Candolin 2015, Kelly 2019). Furthermore, should the speed at which populations are able to
complete their life cycle and the number of generations per year increase, so too will the speed at
which adaptation can occur (Terblanche et al. 2015). This, in turn, can increase the likelithood that
a population can continue to exist in situ or expand into new geographic regions (Terblanche et al.

2015).

Evolutionary adaptation also plays a significant role in enabling insect species to tolerate climate
change (Hoffmann & Sgro 2011). Such changes are evidenced by rapidly changing allele
frequencies in insects exploiting new conditions associated with a changing climate (Kanarek &
Webb 2010, Merild 2012, Kellermann & van Heerwaarden, 2019). Species’ geographical ranges
may also be modified due to evolutionary responses. For example, species have been shown to
evolve a photoperiod response to climate change, enabling them to invade new areas and expand

their geographic range (Urbanski et al. 2012, Sanchez-Guillén et al. 2016).

Insect crop pests may modify physiological responses with thermal stress through adaptive
plasticity, i.e. plasticity of phenotypic traits that protect organisms in stressed environments and
increase fitness under some circumstances (Buckley et al. 2017). Plasticity in response to variable
climates generally involves diapause, but can also entail life-history changes such as reproductive
suppression, and prolonged survival through winter (Sgro et al. 2016, Regan et al. 2019, Tougeron
et al. 2019). To date, there has been little research on adaptive responses of tephritids to climate
change, yet this field of research is likely to be of substantial importance for proactively managing

the threats these species pose in a warming world.
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Indirect effects

Responses of host plants to climate change

Climate change is likely to alter the distributions, phenology and yield of wild host plants, as well
as the suitability of regions for commercial crops. Hence, responses of tephritid pests to climate
change will be partly driven by the responses of their host plants, as well as to changes in
horticultural practices (e.g., selecting crops that are more resilient to climatic stress). For example,
in Australia, warming and lower soil water content since the mid-20" century have resulted in
carlier ripening of wine grapes (Webb et al. 2012). Consequently, harvesting in warmer
temperatures (Webb et al. 2008), may potentially leading to increased exposure to fruit fly damage.
In Mexico, as the availability of fruit declines, so too do population sizes of 4. ludens, and the low
abundance of adults during periods with cold temperatures is likely to be driven by scarcity of host
fruits (Vanoye-Eligio et al. 2017). As such, if climate change increases the yield of their host
plants, the abundance of these pests may also increase. Conversely, idiosyncratic responses of host
plants and pests to climate change may result in phenological mismatches occurring, where the
developing of pests no longer co-incide with the timing of fruit ripening of the host plants.

However, to date, there have been few studies assessing mismatches.

Elevated CO. can indirectly affect insects via changes to the biochemistry of host plants (Jactel et
al. 2019). Under higher concentrations of CO.,, the carbon-nitrogen ratio of leaves can increase,
which can have negative consequences for the development of insect herbivores (Fajer et al. 1989,
Jactel et al. 2019, Lincoln et al. 1993). However, this relationship between plant and insect
responses remains unclear, and there is recent evidence that in response to higher CO., host plants
alter their chemical defences via hormonal regulation to protect against insect herbivores (see
Zavala et al. 2017). Meta-analyses also indicate that the relative consumption rates and
development time of herbivorous insects increase due to CO.-induced changes to host plants
(Stiling and Cornelissen 2007, Robinson et al. 2012), while abundance significantly declines
(Stiling and Cornelissen 2007). Similarly, changes to the nutritional quality and yield of fruits
produced under higher CO. concentrations are likely to impact frugivorous insects (Clarke et al.
2011) such as tephritids, which spend their larval phase developing in fruit. To date, few studies

on the consequences of climate change for insect—plant interactions have assessed this feeding
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guild of insects, although generally, changes to the quality of host plants are likely to have negative
impacts on insect pests (Trebicki et al. 2017).

An additional consideration is the extent to which pests are likely to utilise alternate host plants
should current hosts become unavailable due to phenological mismatches or changes in
horticultural practices. Many fruit flies are highly polyphagous, increasing the likelihood of
finding alternate hosts. Research continues to find new host species. For example, cucurbits were
not recognised as hosts of B. #yroni (O’Loughlin, 1975), until recent laboratory experiments
(Clarke et al. 2011). Grapes were previously listed as a poor host for B. tyroni (Jessup et al. 1998),
however outbreaks in the Hunter Valley of New South Wales during 2007/2008 season saw high
levels of damage to wine grapes (Loch, 2008).

Natural enemies

Natural enemies (parasitoids, predators and pathogens) are widely used to suppress fruit fly
numbers, and are considered safe and relatively economical approaches to the control of these
pests (Badii et al. 2015, Sarwar 2015). Natural enemies may feed on internally or externally on
flies, ultimately leading to the death of the fly (Sarwar 2015). However, climate change may affect
these natural enemies (Thomson et al. 2010, Helms et al. 2019), and changes to the phenology and
geographic ranges of either the enemy or host can alter their chances of interactions (Thomson et

al. 2010).

Thomson et al. (2010) outline five ways in which climate change can impact the enemies of insect
pests: (1) changes to the pest’s host plants, such as phenological shifts or changes to the nutritional
quality of plants; (2) shifts in the distribution of the host plant or host insect; (3) changes in the
response of the host insect or enemy to temperature or humidity; (4) a phenological mismatch
between host insect and enemy; and (5) management of the crop and host insect. While there is
little information on how climate change may alter interactions between tephritid pests and their

natural enemies, studies of other taxa may be helpful for predicting general patterns to responses.

Differences in the thermal performance curves of parasitoids and their host insects have

implications for the respective resilience of these species to climate change, and also for the
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potential for phenological cycles to decouple (Chidawanyika et al. 2019). The optimum
temperatures for various parasitoids have frequently been found to be lower than those of their
hosts (Furlong and Zalucki, 2017), indicating that parasitoids may be more vulnerable to climate
warming than their hosts. In such cases, warmer temperatures may be detrimental to the success

of parasitoids as biological controls in agro-ecosystems (Romo & Tylianakis, 2013).

A meta-analysis of studies assessing caterpillar—parasitoid interactions found lower levels of
parasitism associated with increasing precipitation variability. Such changes in precipitation may
be expected in the context of climate change, suggesting that the frequency and intensity of

herbivore outbreaks may increase due to declines in their parasites (Stireman et al. 2005).

As climate variability increases, there may be a disconnection between parasitoids and their hosts
if one of the interacting species develops faster in response to warming, or undergoes obligate
diapause (Chidawanyika et al. 2019). For instance, if parasitoids emerge from the plant earlier than
their herbivore host, a relatively large population of parasitoids might rapidly diminish the host
population upon emergence of the latter, potentially leading to an absence of insects hosts and,
ultimately, extirpation of the parasitoid population (Thomson et al. 2010). However, if the
parasitoids emerge substantially earlier than their hosts, many may perish before the hosts appear,

thereby advantaging the insect host (Thomson et al. 2010).

Opiine wasps (Hymenoptera: Braconidae), which are parasitoids, are frequently used in biocontrol
programmes against tephritids (da Silva Gongalves et al. 2017). Two species of tropical opiine
parasitoids of fruit flies, Diachasmimorpha kraussi and D. tyroni, are endemic to Australia and
have been used for biocontrol in other countries (Spinner et al. 2011). The presence of D. kraussii
in fruit during heatwaves indicates that it is tolerant of high temperatures, unlike D. tyroni (Spinner
et al. 2011), suggesting that it may continue to be a useful biocontrol agent as climate changes.
However, although there are a number of studies developing protocols for culturing parasitoids or
assessing their presence/absence amongst various fruits in the field, there appears to be little

research into the comparative thermal requirements of fruit flies and their opiine parasitoids.

Pathogenic microorganisms (bacteria, viruses, fungi, protozoa and nematodes) are additional
forms of biocontrol agents used to suppress tephritid populations (Badii et al. 2015).

Entomopathogenic nematodes (e.g. Steinernematidae and Heterorhabditidae) have been used for
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control of the larvae and pupae of A. ludens, B. tryoni and C. capitata (Lezama-Gutiérrez et al.
2006, Malan and Manrakhan 2009, Langford et al. 2014), with mortality rates ranging between
14-96% (Dias et al. 2018). Laboratory studies of the effect of Steinernema feltiae, S. carpocapsae
and Heterorhabditis bacteriophora on mortality of B. tryoni larvae at different temperatures found
that all three nematodes caused significantly higher mortality at 25°C compared to 30°C (Langford
et al. 2014). This may indicate limited effectiveness as biocontrol agents in warmer regions.
However, the resilience of nematodes in natural environments to drier soils and higher
temperatures, or to a lack of oxygen when soils are flooded, is unclear. This makes it difficult to
determine how climate change and associated increases in extreme events may impact the

effectiveness of these natural enemies for controlling fruit fly populations.

Climate change challenges the management of fruit flies

Climate change presents substantial challenges to the monitoring and management of tephritid
pests. Climate matching or correlative species distribution models (SDM) are frequently used to
predict the potential distribution of pest species, by comparing climatic conditions in regions of
biosecurity concern with those in a pest’s native range. These models, combined with knowledge
of species’ physiologies, suggest that within temperate regions species’ ranges are likely to expand
poleward as new areas become sufficiently warm to sustain populations. In the tropics, species
already close to their critical thermal maxima may be vulnerable to heat stress, which could reduce
population numbers and lead to extirpation. However, a key limitation of correlative SDMs is that
they do not account for behavioural or physiological mechanisms that may enable organisms to
tolerate climate change, such as by occupying micro-refugia (within backyard crops, agricultural
regions or native vegetation), or via phenotypic plasticity or undergoing micro-evolution. In
addition, the extent to which irrigation can buffer against climate change by altering microclimate
is likely to be highly important (e.g. see Sutherst et al. 2000). Including this variable into SDMs is
likely to be very difficult as there is little data on irrigation patterns. In addition, irrigation patterns
will change on a short temporal cycle, making it difficult to include in SDMs which utilise long-
term climate data. The impact of irrigation patterns are likely to be better explored using
mechanistic models, or SDMs fitted with weather data. The economic costs of insect pests, such as

tephritids, has led to comparatively more studies investigating their temperature and moisture
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requirements than for other species. Such information will be highly valuable for determining
phenotypic plasticity and physiological limits. Ecological and physiological data can be useful
proxies for understanding the potential for range shifts, and when information on responses to
stresses or thermal tolerance limits, and overwintering abilities, are available this can be used to

train more complex mechanistic distribution models (Terblanche et al. 2015), such as CLIMEX.

For most species, the capacity to adapt to climate change is unclear. However, several
characteristics of pests and invasive species are considered to facilitate their adaptive capacity,
such as rapid generation time, large population sizes, and an ability to tolerate a broad range of
conditions. Recent advances have been made to couple SDMs with estimates of physiological
limits, phenotypic plasticity, evolutionary adaptation and dispersal (Bush et al. 2016). This
approach offers considerable potential to advance our understanding of the responses of pest

species to climate change.

The geographic ranges and patterns of tephritid infestations will also impact the direct and indirect
responses of their host plants to climate change. While elevated CO. is known to affect the
biochemistry of host plants, such as by increasing the carbon-nitrogen ratio in leaves, it is less
clear how this may impact the nutritional quantity and quality of fruits. A review of the crop
ecophysiology literature to understand elevated CO.-induced changes to vegetative and non-
vegetative biomass, fruit yield and nutritional quality, and flow-on impacts to pest insects such as

tephritids would be very valuable.

Management of fruit flies is challenging as various life-stages are protected from insecticides —
eggs and larvae are in fruit, while third-instar larvae pupate in the soil — and countries are
increasingly banning the use of broad-spectrum insecticides (see Dias et al. 2018, and references
therein). Dias et al.’s (2018) global review of 533 publications on management tactics found that
biocontrol was the most commonly studied tactic to suppress pest populations (29%), yet there
may be declines in the efficacy of biocontrol agents due to lower thermal performance curves of
some parasitoids. However, our ability to predict responses to climate change is constrained by the
complexity of tri-trophic relationships (i.e. host plant-host insect-natural enemy) (see Thomson et

al. 2010).
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CHAPTER SIX

Thesis Discussion and Conclusion

Tephritid fruit flies (Diptera: Tephritidae) are among the world’s most economically damaging
pests due partly to their wide climatic tolerance and broad host plant ranges, causing significant
damage to horticultural industries globally (Bateman 1972, Fletcher 1987, Duyck et al. 2004, Qin
et al. 2015, Hill et al. 2016, Stephen et al. 2016). In Australia, 46 tephritid species have been
classified as “high priority pests” that present a significant risk to the nation’s biosecurity (Plant
Health Australia 2008). Eleven of these are currently found within Australia, of which nine are
native (Hancock et al. 2000, Plant Health Australia 2018). Most of the high priority pest species
infest multiple hosts and some of them are highly polyphagous (White and Elson-Harris 1992,
Hancock et al. 2000, Clarke et al. 2005, Drew et al. 2008, Leblanc et al. 2012, Ni et al. 2012).

Around the world, horticultural industries have focused considerable effort researching and
developing a broad array of techniques to manage these species, ranging from biological, chemical,
and behaviour control to quarantine treatments (Dias et al. 2018). However, little consideration
has been given as to how these pest species may respond to climate change, and the implications
of this for pest control and management in the future. For example, in 2018, 246 “research,
development and extension” projects were undertaken in Australia with a focus on pests and
diseases of horticultural crops (National Plant Biosecurity Status Report 2018). Of these studies,
only two (including Chapter Two of this thesis) included the term “climate change” in the title. It
1s also worth noting that the 2017 report (National Plant Biosecurity Status Report 2017) contained
just a single mention of “climate change” in the main text. This was in the context that climate
change will increase the “risk of an exotic forest pest incursion” (page 188). Reports from previous
years did not mention climate change at all, with the exception of reporting that this PhD was being
undertaken. It was not until the 2018 report that climate change was listed as a threat to plant
health. This suggests that Australian horticultural industries are unlikely to be adequately informed
about how climate change can alter risks posed by pests. My dissertation addresses this knowledge
gap in the context of high priority fruit fly species. The key findings from my thesis are summarised

below.
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As climate changes, the distribution of suitable climatic conditions for some important tephritids
in Australia will expand and move southward. This includes Bactrocera tryoni (Qfly), the most
economically significant of Australia’s tephritids (Chapter Two). The former Fruit Fly Exclusion
Zone (FFEZ) in south-eastern Australia, as well as south-western regions of the country, are
projected to face increased risk as climate changes (Chapter Two). The majority of other tephritid
species that are currently present in the continent are likely to follow a similar pattern of range
shifts (B. bryoni, B. jarvisi, B. neuhumeralis, Ceratitis capitata, Zeugodacus cucurbitae) (Chapter
Three). As a result, commercially grown host plants in these regions face an increasing risk of

infestation by these fruit fly species.

I also found that climate change may substantially increase the likelihood of establishment of
several exotic tephritid pests that are currently absent from Australia (Chapter Four), such as B.
carambolae, B. dorsalis, B. latifrons, B. zonata, Anastrepha ludens and Toxotrypana curvicauda.
This is cause for considerable concern for Australian horticultural industries, and the increasing
threat that these species pose should be factored into pre-border biosecurity activities, as well as
into pest surveillance strategies. It is important to note that interactions with native species may
moderate (or promote) establishment of exotic species. For example, B. tryoni is a relatively strong
competitor, as evidenced by its competitive displacement of C. capitata when these species co-
occur (Dominiak and Mapson 2017). This competitive advantage may preclude establishment
success of cxotic species regardless of climatic suitability (Duyck et al. 2004, Dominiak and
Mapson 2017). Future research into the importance of such competitive exclusion in the context

of exotic species establishment is warranted.

However, there are several major caveats that attention needs to be drawn to with respect to these
three chapters. These include limitations of SDMs, responses of host plants to climate change, and
changes to international and interstate movement of people who are one of the key ways in which

plant pests spread.

Correlative species distribution models (SDMs) identify statistical relationships between species’
occurrence data and environmental conditions, and are commonly used in risk assessments for
invasive species (Hill and Thomson 2015). Because occurrence datasets reflect biotic constraints

as well as non-climatic abiotic constraints (e.g. dispersal barriers, land use) on species’

Page | 255



distributions, correlative SDMs describe the species’ realized niche rather than its fundamental or
potential niche (Jiménez-Valverde et al. 2011). This is problematic when biotic constraints vary
between the native and invasive range (Beaumont et al. 2009), as it can lead to an underestimation

of the tolerance of a species to climate.

Furthermore, SDMs and climate matching typically rely on a minimum number of occurrences,
and therefore these techniques could not be applied to several species included in Chapter Four
that are currently confined to small islands. These species are known to cause damage to crops that
are cultivated in Australia, hence they pose a risk to Australian horticulture if an incursion takes
place. Additional research involving laboratory-based experiments investigating critical thermal
limits and desiccation rates of these species would be very useful for developing mechanistic
models to identify which regions of Australia, if any, these species could survive in, and for

informing about responses to climate change.

An important limitation of SDMs, in the context of climate change, is that these tools do not
account for the plasticity or adaptive capacity of species, as they lack relevant information on
fitness traits and their heritability (Huey et al. 2012). However, fruit flies are likely to have
considerable adaptive capacity because of their short generation times and multi-voltinism. In
Chapter Five, I briefly describe a recent development (AdaptR, Bush et al. 2016) which may help
to advance the utility of SDMs for identifying regions at risk from pest invasions. This R package
was developed to couple SDM outputs with information about species’ physiological limits,
phenotypic plasticity, ecology and adaptive capacity to predict range shifts that permit adaptation
under climate change (Bush et al. 2016). However, until this approach has been undertaken for
Australia’s high priority pests, the limitations I have mentioned mean that we must be aware that
areas projected by SDMs to have low or no suitability for a given pest species may actually be

within the tolerance range of that species.

Presently, there is little information on how the distribution of horticultural industries may shift as
a result of climate change. Clearly, the availability of host plants is of vital importance for the
abundance and range of associated pest species. Throughout this thesis, I have assumed that
regions in which horticulture is the dominant land use will remain as such in the future, although

the type of crops grown may be changed.

Page | 256



Additional knowledge gaps associated with host plants that were highlighted in Chapter Five,
include changes to biochemistry due to elevated CO2, and how other characteristics such as yield
and phenology, may shift with changes in temperature and precipitation patterns. Synthesis of the
existing literature (particularly focusing on tephritids and their hosts) may help to bridge these

knowledge gaps.

The risk that a pest species poses to a region will be influenced not only by climate and host plants,
but also by the movement of goods and people. For example, although numerous strategies are
used to control fruit flies in the former FFEZ, incursions still occurred. Dominiak et al. (2003)
state that fruit flies are likely to have considerable difficulties moving between the towns of New
South Wales and neighboring areas, due to the lack of host plants throughout the surrounding
landscape matrix (Dominiak et al. 2003). However, it is unclear whether incursions are a result of
individual flies flying in unaided, or whether they were introduced via infested fruit brought in by

trade or the movement of people (Dominiak et al. 2000, Dominiak et al. 2003).

Within Chapter Four, I included information on the maximum number of air passengers coming
into Australia, and their potential dispersal across the continent. However, the use of these data
required several assumptions about the proportion of travellers that are tourists or returning
residents, and how they disperse after arriving in Australia. In the absence of other data, I also
assumed that proportions used in those analyses would remain stable into the future. Expanding
this work to include the movement of fresh fruit products around the country and from international
sources, with information on interception rates from goods and passengers, would aid with refining

my approach.

Conclusion

This dissertation provides an analysis of high priority fruit fly species that pose substantial threats
to Australian horticulture. While considerable research attention has been given to several of these
species, the potential for climate change to alter their distributions and relative risks has been
largely overlooked. My dissertation bridges this gap and provides explicit results based on data

describing climate, soil, commercial plant hosts, and arrival and subsequent movement of air
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passengers from infested countries. My thesis illustrates the relationship between fruit fly pests
and climate change, and the potential consequences for Australian horticulture, thereby providing
value to the industry and to pest management. My findings also highlight the importance of

vigilance to ensure the long-term security of these industries.
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