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Abstract 

 

Aim: Recent unprecedented efforts to digitise and mobilise biodiversity data have resulted in the 

generation of “biodiversity big data”, enabling ecological research at scales previously not possible. 

Here, we evaluated the completeness of digitised tree records globally, and identified where future 

surveys should focus to maximise regional inventories. 

 

Location: Global. 

 

Methods: We analysed spatial patterns in tree records from the Global Biodiversity and 

Information Facility and assessed global tree inventory completeness at a 100 km resolution and the 

ecoregional scale. We also identified priority areas for future exploration by examining the spatial 

covariation of completeness and natural habitat and forest conditions. 

 

Results: Spatial patterns of sampling effort and tree inventory completeness are unevenly 

distributed around the world, with most well-known sites being concentrated in the Global North, 

whereas large areas in species-rich tropical regions remain poorly documented. Moreover, many 

sites with low inventory completeness coincided with areas of rapid natural habitat loss and low 

forest integrity.   

 

Main Conclusions: Digitised biodiversity data has great potential to help address ecology 

questions and inform conservation actions if their biases and uncertainties are understood. Here we 

illustrated how such data can be used to improve existing knowledge and identify priority areas for 

future surveys.  

Keywords                                                                                                                                                                   

Chao1 estimator, data bias, Global Biodiversity Information Facility, global tree inventories, 

inventory completeness, priority for survey and conservation, Wallacean shortfall. 
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Introduction 

 

One of the central objectives of ecology is to understand the diversity and composition of 

species assemblages over space and time by investigating the relationship between species and their 

environment (Devictor & Bensaude-Vincent, 2016). Thus, the recording of information about a 

species at a specific place and time is perhaps the most foundational practice in ecology. Since the 

19th century, when biological exploration began in earnest, billions of biological samples have been 

collected and stored in natural history museums and herbaria (hereafter, “museums”) across the 

world (Brummitt et al., 2020). Museums harbour a vast collection of biological specimens, ranging 

from frozen DNA and microbes to dried plants pressed, butterfly collections and whale skeletons. 

These institutions serve as invaluable resources for interdisciplinary scientific research and 

education (Bakker et al., 2020; Pyke & Ehrlich, 2010). However, natural history collections are 

largely located in developed parts of the world, making their access limited to only a small number 

of people (e.g., researchers, botanists and scientists) with the means to travel to the institution where 

the specimen is housed (Brummitt et al., 2020; Edwards, 2004; Edwards et al., 2000). 

In the last 20 years, unprecedented international efforts to digitise, store and mobilise 

biodiversity data, including natural history collections, on online databases have proliferated, 

resulting in the generation of “biodiversity big data” which has introduced new concepts of global 

biodiversity, such as biomes, ecoregions and hotspots of diversity, to science (Bisby, 2000; 

Devictor & Bensaude-Vincent, 2016). Many museums now store information from their specimen 

collections on electronic databases, such as the Natural History Museum in London 

(https://www.nhm.ac.uk/), the National Museum of Natural History of the Smithsonian Institution 

in Washington D.C. (https://naturalhistory.si.edu/research), and the Muséum National d'Histoire 

Naturelle in Paris (https://www.mnhn.fr/en). Online databases have facilitated access to large 

quantities of digitised biodiversity data, mainly in the form of occurrence records (i.e., an 

observation of a species at a particular place and time), enabling the study of biodiversity at 

taxonomic, spatial and temporal scales previously not possible (Heberling et al., 2021).  

The Global Biodiversity Information Facility (GBIF; https://www.gbif.org/) is the world’s 

largest biodiversity data portal. This intergovernmental research and data infrastructure provides 

anyone worldwide open access to biodiversity data via the Internet. Initially aimed at digitising 

natural history collections into a single portal (Edwards et al., 2000), GBIF now aggregates 

biodiversity information from various data sources (Devictor & Bensaude-Vincent, 2016; Heberling 

et al., 2021; Telenius, 2011) and provides more than 2.2 billion records from over 1,890 institutions 

(accessed on 4th September 2022). Potential applications of digitised biodiversity data in ecology 
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are manifold, ranging from estimates of species richness and patterns of diversity (Ballesteros-

Mejia et al., 2013; Brummitt et al., 2020; Pelayo-Villamil et al., 2018), to extrapolation of species’ 

potential geographic distributions (Cunze et al., 2020; Elith & Leathwick, 2009; Franklin & Miller, 

2009), bio-invasion studies (Beaumont et al., 2014; Cao et al., 2021; O'Donnell et al., 2012), and 

biodiversity assessments (Guisan et al., 2013; Salinas-Rodríguez et al., 2018).  

However, as more digitised biodiversity data become available, concerns remain over data 

quality because gaps, uncertainties, inaccuracies, and biases are known to exist (Maldonado et al., 

2015; Meyer et al., 2016; Soberón & Peterson, 2004). Thus, the question arises: are these data fit for 

purpose? For scientific research to be reliable and valid, gaps and biases in the underlying data must 

be understood and addressed.  

 

Gaps and Biases in Digitised Biodiversity Data and Their Impact on Scientific Studies 

Although the mobilisation of digitised biodiversity data has advanced research in ecology, 

and the availability of over two billion records (e.g., through GBIF) may improve understanding of 

global biodiversity, various geographical regions remain data deficient and many taxonomic groups 

are under-represented (Meyer et al., 2015; Yesson et al., 2007). Generally, errors and biases in 

digitised biodiversity data can be classified into three dimensions: temporal, spatial and taxonomic 

– a set of problems described as “biodiversity knowledge shortfalls” (Hortal et al., 2015; Meyer et 

al., 2016). Biases in data coverage (e.g., how extensive, continuous and well documented is the 

existing species in different assemblages?) and information uncertainties (e.g., how precise, 

accurate and reliable are the existing data?) across any or all three dimensions can lead to biased 

ecological inferences and inefficient conservation (Meyer et al., 2016).  

For instance, if species information is biased towards older records, it is uncertain whether 

species collected decades ago are still present at those locations (Girardello et al., 2019; Stropp et 

al., 2016). Spatial biases in the documentation of the species’ distribution range can result in some 

areas being under-sampled, while imprecise or incorrect recording of their locations can lead to 

incomplete knowledge about the species’ distribution and habitat (Rocchini et al., 2011). Spatio-

temporal uncertainties and biases towards areas of particular interest can result in incomplete 

knowledge about the species’ distribution, a phenomenon known as the “Wallacean shortfall”, 

which can cause many observed biodiversity maps to resemble maps of sampling effort (Hortal et 

al., 2015; Lomolino, 2004). Additionally, species misidentification or ambiguous scientific names 

can lead to uncertainties in their taxonomic identification (Meyer et al., 2016), while biases in 

taxonomic coverage (i.e., preference for the collection of particular taxa over another) can produce 
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an under or over-estimation of species diversity, which can result in the discrepancy between the 

number of described species and the actual species richness, a situation referred to as the “Linnean 

shortfall” (Lomolino, 2004). While data that is imperfect may be preferable to none at all, the value 

of information can be enhanced if the uncertainties associated with the data are understood. 

The effectiveness of conservation actions will depend on our knowledge and understanding 

of diversity and distribution patterns, which are typically derived from taxonomic inventories (Mora 

et al., 2008). Biases and uncertainties in species occurrence information and incompleteness in 

taxonomic inventories will influence analytical outcomes, resulting in distorted views of true 

diversity patterns: this can create concerns over the reliability of ecological studies and the 

effectiveness of conservation strategies (Hughes et al., 2021). If biodiversity data for a certain 

taxonomic group is limited to only a few species and locations on Earth, it would be difficult to 

precisely map any of the taxa at large scales, much less for global biodiversity. Thus, quantifying 

biases and uncertainties in digitised biodiversity data is crucial for the validity of biodiversity 

studies and for prioritising future sampling efforts to improve our current knowledge. 

 

Global Tree Diversity 

Trees provide the basic structure for some of the most diverse ecosystems on land such as 

forests and woodlands, and play a crucial role in supporting a wealth of other species due to their 

position at the base of the trophic level (Rivers, 2017). They also regulate the ecosystem through 

many ecological processes including carbon sequestration, soil stabilisation, and nutrient cycling 

(Rivers, 2017). Tree species have been used to develop a model system to study patterns in the 

variation of species richness across broad geographical scales, and correlations between species and 

their environment, together with the effect of evolutionary history on community assembly (Qian et 

al., 2013).  

However, there is no consensus on how many tree species there are currently on Earth. 

Estimates have ranged from 45,000 to 100,000 species (Beech et al., 2017).  Qian et al. (2019) 

estimated there are ~61,000 tree species globally, while a more recent study estimated ~73,000 

(Gatti et al., 2022). Other reports have suggested that there are 21,000 species in temperate regions 

(Hunt, 1996)  and 40,000–53,000 in the tropics (Slik et al., 2015). In 2017, the world’s first list of 

global tree species and their country-level distribution called ‘GlobalTreeSearch’ (hereafter, 

“GTS”) was published (Beech et al., 2017). According to the Botanic Gardens Conservation 

International (BGCI, 2021b), globally 58,497 tree species are currently known to science and 
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published in the GTS database, 30% of which have been identified as threatened, with forest 

clearance and habitat loss being the greatest threats to tree species.  

Currently, forests cover about 30% (4.06 billion hectares) of the global land surface, though 

unevenly distributed across the world with more than 50% of this area occurring in the United 

States of America (USA), Canada, Brazil, China and the Russian Federation (FAO & UNEP, 2020). 

Between 1990 and 2020, there was a net loss of 178 million hectares of forest and the average rate 

of net forest loss has declined by roughly 40% between 1990–2000 and 2010–2022 (FAO & UNEP, 

2020). However, the rate of forest loss/gain is unevenly distributed. For example, for the period 

2000–2012, biodiversity-rich tropical forests had the highest ratio of loss to gain of any forested 

biome, with 32% of global forest cover loss occurring in tropical rainforests, nearly half of which 

occurred in South American rainforests (Hansen et al., 2013).  

Though the rate of net loss of the world’s forests has decreased, especially in the last decade, 

over 1,400 tree species have been assessed as critically endangered, 21% of the currently known 

tree species are either data deficient or have not been evaluated, while many more species may 

remain to be discovered (FAO & UNEP, 2020). Ongoing threats to tree species will adversely 

impact ecosystem functions and services as well as tree-dependent species. Thus, effective 

conservation actions are crucial for recovering endangered tree populations and maintaining their 

associated ecological process. Moreover, tree conservation has been recognised as a key action that 

will help address climate change (Poorter et al., 2015) and at the 2021 United Nations Climate 

Change Conference, COP 26, over 100 world leaders pledged to halt and reverse forest loss by 2030 

(UNCC, 2021). Additionally, the United Nations Environmental Programme, in partnership with 

the Food and Agriculture Organisation, have established this decade as the UN Decade on 

Ecosystem Restoration with the aim to halt and reverse the degradation of ecosystems globally 

(https://www.decadeonrestoration.org/). Area-based conservation measures targeting 30% of land 

and sea areas by 2030 and the “Nature Needs Half” approach to biodiversity protection have been 

proposed by the Convention on Biological Diversity and some conservationists (Dinerstein et al., 

2017; Wilson, 2016), and forest protection and restoration have also been recognised as one of the 

nature-based solutions that can help achieve these goals.  

While tree species are being threatened by habitat loss and land clearance, knowledge gaps 

in global tree diversity and distributions still exist. Bridging these gaps is crucial for effective 

conversation, and the availability of biodiversity big data enables us to assess the current state of 

knowledge of tree diversity and distribution at a global scale. One study has evaluated the quality 

and coverage of global tree species using five major online databases, including GBIF (Serra-Diaz 

et al., 2018). They found considerable spatial coverage of tree occurrence data in Australia, Europe 
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and North America, while many biodiverse regions such as southeast Asia, and the Amazon lacked 

open-access biodiversity data. However, to date, there has not been a comprehensive study on the 

completeness of global tree inventories which can help us identify knowledge gaps and possible 

biases in the current description of tree diversity that can be influenced by uneven sampling efforts 

and taxonomic biases (Sousa-Baena et al., 2014). This study aims to utilise tree inventory big data 

available through GBIF to (a) assess the quality of digitised tree data and its limitations, (b) 

estimate tree inventory completeness throughout the world and (c) identify priority areas for future 

botanical survey efforts to improve existing knowledge of tree diversity and to provide 

recommendations for conservation.    
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Methods 

 

Dataset 

We obtained a list of 58,496 tree species from GTS (BGCI, 2021a; accessed on 29 October 

2021), the world’s most comprehensive global checklist of tree species (Beech et al., 2017). GTS 

uses the tree definition agreed on by the IUCN’s Global Tree Specialist Group (GTSG): “a woody 

plant with usually a single stem growing to a height of at least two metres, or if multi-stemmed, 

then at least one vertical stem five centimetres in diameter at breast height”. The validity of tree 

species names was assessed and standardised using the Taxonomic Name Resolution Service online 

tool (Boyle et al., 2013). Then, using the ‘rgbif’ package version 3.6.0 (Chamberlain et al., 2022) in 

R (R Core Team, 2021), we downloaded tree occurrence records from the GBIF database 

(GBIF.org, 02 March 2022; DOI:10.15468/dl.aptyh5) that had geographic coordinates, contained no 

documented geospatial issues, had taxonomic status as either ‘accepted’ or ‘synonym’, and had the 

basis of record as ‘preserved_specimen’, ‘living_specimen’, ‘human_observation’, ‘observation’, 

‘machine_observation’ or ‘occurrence’. This resulted in 42,431,811 records for 52,065 species 

from 3,796 datasets.  

The downloaded records (hereafter, “raw data”) were then filtered using the following 

multi-step procedure: (i) we removed records with occurrence status as “absent”; (ii) used the 

clean_coordinates function in the ‘CoordinateCleaner’ package (Zizka et al., 2019) with default 

options to filter and remove potentially erroneous coordinates, which included those assigned to 

country centroids, GBIF headquarters or biodiversity institutions, had equal longitude and latitude, 

fell into the ocean or had coordinates containing only zeros; (iii) excluded records with no decimals 

in longitude or latitude; (iv) selected records that were identified to species level or lower and were 

not representing hybrid/cultivated species; (v) removed duplicated records (defined as two or more 

records with the same combination of species name, collection date and location).  

In addition to the initial data cleaning, we interrogated checklists of native administrative 

boundary codes (three-letter code for “Botanical Country” Level 3 of the Biodiversity Information 

Standards, formerly known as the Taxonomic Databases Working Group (TDWG); 

www.tdwg.org/standards/wgsrpd/) for tree species from Kew Garden’s Plants of the World Online 

database (POWO, 2022) using the ‘taxize’ package version 0.9.98 (Chamberlain et al., 2020) in R 

(R Core Team, 2021). Then we validated the remaining occurrence records against the acquired 

checklists and eliminated species records which fell outside their native “Botanical Country” 

boundaries.  
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The above filtering processes yielded 26,423,277 records (hereafter, “cleaned data”), 

representing 50,290 species from 284 plant families. Out of the cleaned data, 4,405,806 (16.6%) 

records lacked a full collection date (day, month, year). For our study, all cleaned data were 

analysed.  

 

Data Analysis  

We calculated global tree inventory completeness at two scales: (i) 100 km x 100 km grid 

cells (18,115 sampling units; hereafter, “SUs”) and (ii) ecoregional level (Dinerstein et al., 2017). 

While many studies have analysed biodiversity inventory completeness at various grid cell 

resolutions (Ballesteros-Mejia et al., 2013; Haque et al., 2018; Meyer et al., 2016; Stropp et al., 

2016), we considered the ecoregional scale in our analysis as ecoregions are biogeographic units 

representing distinct assemblages of biodiversity in particular regions. They also provide a useful 

base map for conservation planning because they draw on natural boundaries, rather than political 

ones (Olson et al., 2001). We obtained the ecoregion shapefile from RESOLVE Ecoregions 2017 

which consisted of 846 terrestrial ecoregions, grouped into 14 biomes and 8 realms (Dinerstein et 

al., 2017). The occurrence records, SU and ecoregion shapefiles were projected from latitude and 

longitude (WGS 1984) to Mollweide (equal-area) projection. 

 

Distribution of Tree Occurrence Records 

 To determine the trend and spatial patterns in data collection, we calculated the number of 

records per species, spatially intersected the occurrence records with both the SUs and ecoregion 

layers and calculated the number of occurrence records in each SU/ecoregion. We analysed the 

temporal pattern of data accumulation by totalling the number of records sampled in each year. We 

also calculated sampling effort as the number of records per km2 and plotted maps to visualise the 

spatial distribution of records (see Appendix S1). We excluded Antarctic and the “rock and ice” 

ecoregion, leaving 845 ecoregions and 13,259 SUs for analysis.  

 

Inventory Completeness  

Inventory completeness, defined as the ratio of observed to the estimated number of species 

in a given area, is a useful way to determine how complete and representative sampling has been 
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(Soberón et al., 2007). We calculated the inventory completeness index (C) at the SU and 

ecoregional scales as follows:  

𝐶𝑖 =
𝑆𝑜𝑏𝑠(𝑖)

𝑆𝑒𝑠𝑡(𝑖)
⁄  

(equation 1) 

where Sobs(i) is the observed species richness and Sest(i) is the estimated species richness for 

SU/ecoregion i, with the value for C ranging from zero to one. High C values suggest high degrees 

of completeness, while low C suggests low inventories. This information can be used to describe 

the state of current knowledge about species richness in a particular region and identify areas where 

floristic knowledge is lacking (Soberón et al., 2007; Sousa-Baena et al., 2014).  

We used the Chao1 non-parametric estimator to calculate expected species richness, Sest(i)  . 

Chao1 estimates the true species richness likely to be present in a region based upon the number of 

rare species observed in a sample. It can be calculated as:  

𝑆𝑒𝑠𝑡(𝑖) = 𝑆𝑜𝑏𝑠(𝑖) +  
𝑓1

2

2𝑓2
 (equation 2) 

where f1 and   f2  refer to rare species represented only once (singleton) and twice (doubleton) in a 

sample, respectively. The Chao1 estimator is based on the proposition that additional species are 

less likely to be found when all the species in the samples are represented by at least two individuals 

(Gotelli & Colwell, 2011). Species richness was estimated using the ChaoRichness function in the 

‘iNext’ package (Hsieh et al., 2016). The output yielded observed and estimated species richness, 

estimated standard error and the 95% confidence interval for each SU and ecoregion. Inventory 

completeness was calculated using equation 1, and the number of unrecorded species was calculated 

as the difference between estimated and observed richness. Moreover, for inventory completeness at 

the ecoregional scale, we calculated the mean C value for 14 terrestrial biomes. In SUs and 

ecoregions where the number of records is low, the estimates may be unstable and yield 

false/artifactual C values which are unreliable (Sousa-Baena et al., 2014). Thus, for both spatial 

scales, we used a minimum C value and the sample size distribution as criteria to define “well-

known” sites (see Appendix S2). 

 

Priority Areas  

To identify priority areas for future sampling efforts, we examined the spatial covariation of 

C and the remaining natural habitat and protected area (for ecoregions) and forest integrity (for 

SUs). For ecoregions, we mapped completeness against four Nature Needs Half (NNH) categories. 

The NNH framework explores ecoregional options to protect 50% of land to achieve 
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comprehensive biodiversity conservation and maintain ecosystem functions for human benefits 

(Dinerstein et al., 2017). To achieve this, Dinerstein et al. (2017) estimated how much of the natural 

habitat had remained and how much land is protected in each ecoregion. Based on the concept of 

NNH, they sorted ecoregions into four categories, which include: (1) “Half Protected” (more than 

50% of the ecoregion area is protected), (2) “Nature Could Reach Half” (although the amount of 

protected area is less than 50%, the total amount of protected land and unprotected natural habitat 

remaining is more than 50%), (3) “Nature Could Recover” (the total area of remaining natural 

habitat and protected land is less than 50% but more than 20%) and (4) “Nature Imperiled” (the 

total area of remaining natural habitat and protected land is less than 20%). Thus, we overlaid a map 

of tree inventory completeness onto NNH data for 462 ecoregions located in forested biomes (see 

Appendix S3 for names of forested biomes).  

At the SU scale, we mapped completeness against the Forest Landscape Integrity Index 

(FLII) (Grantham et al., 2020) which describes the degree of forest modification by anthropogenic 

activities for 2019. FLII was calculated based on observed and inferred human pressures, and loss 

of forest connectivity, producing an index ranging from zero to ten, with ten representing the 

highest forest integrity (least impacted by human activities), and zero the lowest integrity (see 

detailed method in Grantham et al. (2020)). Using the original classifications of FLII, we calculated 

the proportion of forests having medium to low integrity in each SU (i.e., FLII <9.6, Grantham et 

al., 2020). We excluded SUs where the amount of forest area present within the grid cell is less than 

10%, leaving 7,168 SUs for analysis. SUs and ecoregions with decreasing sampling opportunities 

have low C and high losses of natural habitat, while areas of future sampling opportunities have low 

C but still retain much of the native vegetation and forest integrity.  
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Results 

 

Trends in Data Collection 

Our data filtering led to the removal of 16,008,534 (37.7%) records from the raw data and 

1,775 (3.4 %) species from the initial taxon names retrieved from GBIF. The initial data cleaning 

process (as described in the multi-step procedure) excluded 11,088,234 (26.1%) records, most of 

which were either duplicates or records with erroneous coordinates. The removal of non-native 

species occurrences led to an additional exclusion of 4,920,300 (11.6%) records.  

Most of the cleaned data (78.9%, N = 20,841,932) were obtained from human observations, 

with only 18% (N = 4,701,716) being preserved specimens. The number of records averaged 525 

per species (± 10,946 SD). Generally, most species have a low number of records (Fig. 1). About 

half (53.2%) of the tree species had ≥ 20 records, and 35.1% had ≥ 50 records. Above this threshold 

(50 records), the number of species declines sharply with the increasing number of records (Fig. 1). 

Moreover, only 1,860 (3.7%) species had ≥ 1,000 records, yet these species contributed 85.7% of 

the records to the dataset.  

 

Figure 1 Frequency histogram of the number of occurrence records per species (the x-axis is log 

transformed). 
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The cleaned data were collected between 1600 and early 2022, with < 1% collected before 

1900 (Fig. 2). Globally, the number of records increased exponentially from the late 1900s to the 

21st century, and intensive data collection took place between the 1960s and 2005 (Fig. 2). The 

highest amount of data collected in a single year occurred in 2019 (1,359,037 records). Noteworthy, 

half of our cleaned data were collected from 2000 onwards, coinciding with the intensive data 

digitisation and mobilisation period (Devictor & Bensaude-Vincent, 2016). 

 

 

Figure 2 Trend in the number of digitised tree records collected per year from 1900 to 2021. Note 

that 0.7% (152,923) of records within our cleaned dataset were collected prior to 1900, and only 

0.2% (39,587) were collected in early 2022.  

At both spatial scales analysed, sampling effort (number of records/km2) is unevenly 

distributed across the world (Fig. 3), with 95% (801) of ecoregions and 84% (11,095) of SUs 

having samples within our cleaned dataset and 83% (702) of ecoregions and 40% (5,316) of SUs 

contained at least 100 occurrence records. The mean density of records is 0.42 (± 1.33) and 0.21 (± 

1.30) records/km2 per ecoregion and SU, respectively. Sampling effort is more scattered at the SU 

scale, but generally, the highest sampling effort is concentrated in Europe, Japan, Central America, 

south-eastern Australia and New Zealand, and parts of east and west North America. In contrast, 

very few regions in Africa and Asia have high sampling effort, with major parts of central Asia, 

northwest of China, the Middle East and North Africa coinciding with deserts or mountainous 

regions lacking tree occurrence records. 
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Figure 3 Spatial distribution of sampling effort for tree inventories across (a) 801 terrestrial 

ecoregions and (b) 11,095 SUs. Sampling effort values are stretched on a natural logarithm scale. 

Grey regions either contained no records or were not considered in the analysis. 
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The ecoregions with the highest sampling effort were the southwest Iberian Mediterranean 

sclerophyllous and mixed forests (16.64 records/km2), Azores temperate mixed forests (14.90 

records/km2) and English lowlands beech forests (11.81 records/km2), all located within Europe. In 

contrast, 47% (398) of ecoregions and 62% (8,249) of SUs have record density lower than 0.050 

records/km2 (see Appendix S4). Across the biomes, the mean sampling effort was highest in the 

Mediterranean forests, woodlands and scrub (1.51 ± 3.19 records/km2), temperate broadleaf and 

mixed forests (1.40 ± 2.72 records/km2) and tropical and subtropical coniferous forests (0.38 ± 0.33 

records/km2) (see Appendix S3). 

 

Inventory Completeness 

As would be expected, tree inventory completeness is unevenly distributed across the world 

at both spatial scales analysed (Fig. 4). At the ecoregional scale, the mean C value is 0.76 (± 0.18 

SD) (see Appendix S5). At the SU scale, C values become more scattered, with the mean C 

reducing to 0.69 (± 0.24).  Generally, sites with C values ≥ 0.80 are regarded as having more 

complete inventories or being “well-known” (at least 80% of the species have been sampled) 

(Haque et al., 2017; Mora et al., 2008; Soberón et al., 2007). However, estimates based on a small 

number of records may result in artifactual and unreliable C values. Therefore, we used a 

combination of the C value and the median of the sample size distribution as criteria to define well-

known sites. At the ecoregional scale, the median number of records is 2,000 (rounded to the 

nearest thousand), and at the SU scale, it is 100 records (rounded to the nearest hundred) (see 

Appendix S2). Hence, we restrict well-known sites to ecoregions and SUs with C ≥ 0.80, and ≥ 

2,000 records and ≥ 100 records, respectively.  

There are 5,316 SUs with ≥ 100 records and 417 ecoregions with ≥ 2,000 records (Appendix 

S5). As such, 37% (293) of ecoregions and 25% (2,754) of SUs analysed can be considered well-

known (Fig. 4). At the ecoregional scale, well-known sites are concentrated around Europe, the 

USA, parts of Brazil, western Africa, Australia and New Zealand. Notwithstanding, most 

ecoregions remain under-inventoried, including those located in most parts of Africa, the Middle 

East, and Asia. At the SU scale, tree inventories are more complete in eastern Europe, eastern and 

western USA, Australasia (except New Guinea), Japan and New Zealand. In contrast, most sites in 

Asia and Africa have low inventory completeness.  

Across forested biomes, tree inventory completeness is highest in boreal forests/taiga (mean 

C = 0.90 ± 0.10), followed by temperate broadleaf and mixed forests (0.88 ± 0.13) and temperate 

conifer forests (0.83 ± 0.13), and lowest in mangroves (0.60 ± 0.17) (see Appendix S3). For non-
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forested biomes, inventory completeness is highest in Mediterranean forests, woodlands and scrubs 

(0.87 ± 0.12), and tundra (0.86 ± 0.14), and lowest in flooded grasslands and savannas (0.56 ± 

0.23).  

Generally, the spatial pattern of observed versus estimated tree species richness is similar at 

both scales (Fig. 5a,b,d,e). Highest observed and estimated species richness is concentrated in the 

tropics, particularly South America, southeast Asia, and eastern China. The spatial distribution of 

unrecorded species revealed that most are located in the tropics, particularly Borneo (Fig 5. c,f).   

 

  

Figure 4 Spatial distribution of tree inventory completeness (a) at the ecoregional scale and (b) at a 

100 x 100 km SU scale. Ecoregions and SUs outlined in grey represent sites we considered to be 

well-known, i.e., C ≥ 0.80, and ≥ 2000 records and ≥ 100 records, respectively.  



16 
 

 

 

Figure 5 Spatial distribution of observed, estimated and unrecorded number of species at (a-c) ecoregional and (d-f) SU scales.



17 
 

 

Sampling Effort and Inventory Completeness 

At both ecoregional and SU scales, inventory completeness is weakly predicted by sampling 

effort (correlation of determination [r2] = 0.14 and 0.026, respectively; Fig. 6). This means that 

completeness is partially influenced by sampling effort and higher sampling efforts tend to result in 

higher C (Fig. 6). However, there are exceptions with some sites having relatively low sampling 

effort but higher C (e.g., most ecoregions in the boreal forests/taiga and tundra biomes). 

 

Figure 6 Plot of the relationship between inventory completeness and sampling effort (number of 

records/km2). Red crosses represent ecoregions and black squares represent SUs. The solid and 

dashed lines of linear regressions are added to assist in visualising trends for ecoregions (adjusted r2 

= 0.14; p < 0.001) and SUs (adjusted r2 = 0.026; p <0.001), respectively. Note that the x-axis has 

been stretched on a natural logarithm scale. 

 

 Global Priority Areas for Sampling Tree Diversity 

We plotted bivariate maps of estimates of C against NNH (for ecoregions) and FLII (for 

SUs) to visualise the spatial distribution of priority areas for future sampling (Fig. 7). At the 

ecoregional scale, we found sites having low inventory completeness and retaining < 50% of their 

natural habitat (NNH 3–4) concentrated in Asia, including most ecoregions in India (e.g., the east 

Deccan moist deciduous forests, lower Gangetic plains moist deciduous forests, and Narmada 

Valley dry deciduous forests), northeast and south China (e.g., the northeast China plain deciduous 

forests and Yunnan Plateau subtropical evergreen forests) and southeast Asia (e.g., the Irrawaddy 
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moist deciduous forests and dry forests, Tonle Sap-Mekong peat swamp forests, Chao Phraya 

freshwater swamp forests and Sumatran freshwater swamp forests). When natural habitats within 

these ecoregions are highly degraded and tree inventory completeness is low, sampling 

opportunities and the likelihood of obtaining a complete tree inventory is considerably diminished.  

Ecoregions that still retain ≥ 50% of their natural habitat (NNH 1–2) but have incomplete 

inventories include the Juruá-Purus moist forests and Xingu-Tocantins-Araguaia moist forests in 

Brazil, the southern New Guinea freshwater swamp forests and southern New Guinea lowland rain 

forests in Papua New Guinea, the Mizoram-Manipur-Kachin rain forests located between 

Bangladesh and Myanmar, the central Congolian lowland forests in central Africa and the eastern 

Canadian Forest-Boreal transition in North America. These sites correspond to areas of 

opportunities where additional sampling effort can most likely yield species previously unrecorded 

for these areas.  

Ecoregions that retain < 50% of their natural habitat (NNH 3–4) but contain high inventory 

completeness are predominately located in the global North, including Europe (e.g., the western 

European broadleaf forests, Scandinavian and Russian taiga and Celtic broadleaf forests), east coast 

of Australia (e.g., the southeast Australia temperate forests and eastern Australian temperate 

forests), New Zealand (e.g., the northland temperate kauri forests and New Zealand north island 

temperate forests), and east and west USA (e.g., the New England-Acadian forests and Ozark 

mountain forests). The western Guinean lowland forests and eastern Guinean forests in West 

Africa, the central Korean deciduous forests in Korea, the Caatinga and Araucaria moist forests in 

South America also fall within category. Most of the forested ecoregions in Russia (e.g., the east 

Siberian taiga and Okhotsk-Manchurian taiga), Canada (e.g., the northern and eastern Canadian 

Shield taigas), central Africa (e.g., the northeast and northwest Congolian lowland forests), and 

central and north Brazil (e.g., the Guianan lowland moist forests and Purus-Madeira moist forests) 

contain ≥ 50% of their natural habitat and have relatively high inventory completeness at the 

ecoregional scale.  

At the SU scale, sites with low inventory completeness and low forest integrity were 

concentrated in Asia and scattered across several sites in east Brazil and west Africa. These 

represent areas of reduced sampling opportunities due to high anthropogenic impacts. Sites with 

low inventory completeness and high forest integrity were predominately located in central Brazil, 

central Africa, Papua New Guinea and scattered in Canada and Russia, corresponding to high 

sampling opportunities. Sites with high inventory completeness and low forest integrity were 

mostly located in the global North, particularly, west and east of the USA, Europe, Australia and 
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New Zealand. Lastly, sites with both high inventory completeness and forest integrity were 

scattered in northern North America, central Brazil and Russia.  

 

 

Figure 7 Bivariate maps of tree inventory completeness (a) versus Nature Needs Half (NNH) 

categories for 462 forested ecoregions and (b) versus Forest Landscape Integrity Index (FLII). The 

NNH categories are numbered 1 to 4, representing ecoregions that are described by Dinerstein et al. 

(2017) as (1) “Half Protected”, (2) “Nature Could Reach Half”, (3) “Nature Could Recover”, and 

(4) “Nature Imperiled”, respectively. The Forest Landscape Integrity Index (FLII) ranges from zero 

to ten with ten representing the highest forest integrity (Grantham et al., 2020). 
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Discussion 

 

Our knowledge and understanding of species diversity and distribution patterns is typically 

derived from biodiversity taxonomic inventories, and to date countless studies have utilised species 

occurrence data to explore these patterns (Brummitt et al., 2020; Kier et al., 2005; Kreft & Jetz, 

2007; Lovett et al., 2000). However, biases and uncertainties in species occurrence data can result 

in distorted patterns of diversity and distribution. Thus, it is essential to determine the likely 

completeness of species inventories in order to evaluate the level of confidence in our estimations 

and predictions of richness (Sousa-Baena et al., 2014). In this study, we analysed digitised records 

of the world’s tree species and explored the trend in tree data collection across species, locations, 

and time. We then characterised spatial patterns in sampling effort and tree inventory completeness 

across the world at ecoregional and 100 x 100 km SU scales. We illustrated how sampling effort 

and the completeness of tree inventories are unevenly distributed, with these two variables being 

positively, albeit weakly, correlated. We extended our research to identify knowledge gaps (i.e., 

regions with low levels of completeness) and highlight areas of lost and future sampling 

opportunities to help prioritise and maximise the efficiency of future botanical surveys.  

 

Trends in Data Collection 

Since the mid-1900s, there has been an increase in the annual accumulation of tree records, 

highlighting a growing interest in tree inventories, and improved technology for accessing and 

sampling biodiversity, among others. The intensity in data collection, especially in the last 30 years 

(Fig. 2), corresponds to the period of strenuous efforts to digitise and mobilise biodiversity data 

(Heberling et al., 2021). Exponential growth in digitised records over recent years has also been 

observed in global studies for other taxonomic groups, including butterflies and freshwater fish 

(Girardello et al., 2019; Mora et al., 2008). Although our study did not analyse the temporal trend in 

tree data accumulation per country/ecoregion, it is highly likely that trends in data accumulation 

over the last century differ throughout the world, as observed by Girardello et al.’s (2019) global 

analysis of butterfly inventory completeness.  

Despite the increasing number of digitised tree records available in the GBIF repository, 

taxonomic and spatial biases exist. At both spatial scales included in this study, high sampling 

efforts are clearly concentrated in the USA, Europe and Australia, a pattern also identified for birds, 

mammals, amphibians and vascular plants (Meyer et al., 2015; Meyer et al., 2016). Although our 

global sample coverage is relatively high for both ecoregional (95%) and SUs (84%) scales, it is 
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noteworthy that sampling efforts within many of those sites remain very sparse and this will be 

evident at finer resolutions.  

There is notable taxonomic bias in digitised tree records. That over 85% of tree occurrence 

records included in our study came from less than 4% of tree species is unsurprising. Tobler, 

Honorio, Janovec, and Reynel’s (2007) study of biodiversity knowledge in Peru revealed that most 

species were represented by only a small number of specimens collected from a few sites, while a 

few broadly distributed species tend to dominate collections. Previous assessment of tree 

occurrence data from five major online databases also found a similar trend in taxonomic bias, with 

only 26% of ~ 49,000 tree species having at least 20 records of high quality (Serra-Diaz et al., 

2018). In addition, a recent global analysis of over 370,000 species across terrestrial and marine 

realms revealed that more than 50% of those species’ records account for < 2% of the studied 

species, with birds being largely overrepresented (Hughes et al., 2021). Thus, efforts must continue 

to collect, digitise and mobilise biodiversity data strategically in order to address the Wallacean 

shortfall and achieve a better understanding of tree diversity and distribution.  

 

How Complete are Global Tree Inventories? 

Inventory completeness provides a useful index for accessing the degree of species 

inventory completeness and the state of biodiversity knowledge about a region (Soberón et al., 

2007). Different parametric and non-parametric models have been developed to estimate species 

richness and the results of such models usually vary considerably depending on the attributes of the 

data, thus yielding different degrees of biases, precisions, and efficiencies (Colwell & Coddington, 

1994; Gotelli & Colwell, 2011). Although different studies may recommend alternative models, the 

Chao1 estimator is perhaps one of the most common non-parametric methods used to estimate 

species richness because it is easy to calculate and has been shown to perform well in landscapes 

with different bioclimatic conditions (Haque et al., 2017; Sousa-Baena et al., 2014; Stropp et al., 

2016). While this method is conservative and estimates the lower bound of species richness, Chao 

(1984) found that it performed well on test data sets and it has since been widely used in many 

studies estimating richness using presence-only records (Ballesteros-Mejia et al., 2013).  

To address the concern over unreliable estimates of inventory completeness (C) due to the 

small sample size, we restricted well-known sites to ecoregions and SUs with C ≥ 0.80, and ≥ 2,000 

records and ≥ 100 records, respectively. According to this threshold, our global tree inventory 

assessment revealed that 37% of ecoregions and 25% of SUs are well-known. This finding indicates 

that taxonomic inventories are highly scale-dependent, and inventory completeness is lower at finer 
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spatial scales. We note that our criteria for well-known sites, especially at the ecoregional scale, are 

stricter than several other studies (Sousa-Baena et al., 2014; Stropp et al., 2016), but this gives us 

more confidence in our estimates and helps to identify sites where biodiversity knowledge is truly 

reliable versus those where information is incomplete or clustered in a few well-sampled regions.  

Ecoregions with high tree inventory completeness are concentrated in Europe, the USA and 

Central America, parts of South America and eastern Africa, Australasia and a few countries in east 

Asia. A similar pattern was observed for inventory completeness of freshwater fish species at a 

country level (Pelayo-Villamil et al., 2018) and butterfly inventories at a coarse spatial resolution of 

880 km (Girardello et al., 2019). A similar pattern was also observed at the SU scale: SUs having 

high inventory completeness are restricted to Europe, the USA, Australasia (except New Guinea), 

Japan and Korea, while low inventory completeness was largely concentrated in the tropics, 

especially in southeast Asia, central Africa and South America, and scattered throughout Canada 

and east Asia. This pattern is also common in other taxa including butterflies, vertebrates and 

vascular plants (Girardello et al., 2019; Meyer et al., 2015; Meyer et al., 2016).  

We found that mean species inventory completeness also varies greatly among the world’s 

biomes, with the Mediterranean forests, woodlands and scrub, and the temperate forests having 

higher completeness, while tropical and subtropical forests have lower completeness. However, 

while we also found tree inventories in tundra and boreal forests to have high average completeness, 

this contrasts to vertebrates (Meyer et al., 2015) and butterflies (Shirey et al., 2021), which were 

found to be vastly under-inventoried in this biome. This highlights a strong geographic difference in 

completeness among different taxa. Consequently, a single-taxon inventory completeness pattern 

may be a poor predictor for un-assessed taxa, and taxon-specific information maps should be 

independently identified (Meyer et al., 2015). 

Within our study, sampling effort partially explained inventory completeness at both spatial 

scales analysed. Generally, well-known regions across Europe, North America and Australia have 

the highest number of records per unit area (Fig. 3 & Fig. 4). However, at the SU scale, this is less 

the case for the species-rich regions in South America, and the boreal forests. It should also be 

noted that incompleteness may result from a sampling strategy in which sites with high number of 

poorly planned sampling points can yield biased estimates of true richness, and thus coherent and 

systematic surveys are required to capture true richness (Haque et al., 2017; Soberón et al., 2007). 
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Drivers of Inventory Completeness  

Generally, sampling effort and inventory completeness are positively correlated, although 

the relationship changes with resolution (Fig. 6). Sampling effort can partially explain spatial biases 

in inventory completeness, and it can be driven by several variables, including geographic and 

socio-economic factors (Hughes et al., 2021; Meyer et al., 2015; Yang et al., 2014). Firstly, the 

observed high tree inventory completeness in the Global North (Europe, North America, and 

Australia) is likely to be positively correlated to the country’s gross domestic product (GDP)/capita 

(Hughes et al., 2021) as has been shown elsewhere (e.g., Meyer et al., 2015). While research, 

financial and institutional resources are available in developed countries, research funding and 

infrastructure are limited in countries with lower GDP, thus high sampling effort and coverage is 

almost exclusive to the Global North (Hughes et al., 2021). Meyer et al. (2015) also found that a 

country’s commitment to GBIF data sharing emerged as a strong factor determining completeness 

of digitised biodiversity data. However, it should be noted that even within a country inventory 

completeness may be unevenly distributed and regions with herbaria and research infrastructure 

may have higher sampling effort (Pelayo-Villamil et al., 2018; Yang et al., 2014). Also, socio-

political conflicts within the country will negatively influence botanical interest, and war-torn 

regions are less likely to have high biodiversity inventory completeness because collectors and 

researchers will restrict sampling to areas that are more politically stable, lacking armed conflicts 

(Meyer et al., 2015).  

Moreover, human population density has shown to be positively correlated with inventory 

completeness, and species inventories in densely populated areas are likely to be more complete 

(Yang et al., 2014). Accessibility has also been reported to have a strong effect on sampling effort 

and the resulting completeness (Ballesteros-Mejia et al., 2013; Tobler et al., 2007; Stropp et al., 

2016). Collectors and researchers usually choose areas that are close to roads, airports, and 

infrastructure which are easy to access, and these locations are often associated with urbanised areas 

and major cities (Hughes et al., 2021; Meyer et al., 2015). Citizen science observations are also 

closely linked to accessibility, which might limit our knowledge of species distributions to 

populated areas (Hughes et al., 2021). Inventory completeness can be influenced by certain appeal, 

such as endemism, biodiversity hotspots, protected areas or species ‘charisma’ (Girardello et al., 

2019; Meyer et al., 2015). Studies have found that certain taxa have higher inventory completeness 

in mountainous areas (Girardello et al., 2019; Meyer et al., 2015; Yang et al., 2014). Collectors can 

also appear to show preference for reserves or for a particular species or taxa. Thus, citizen science 

or human observation may contribute to biases in inventory completeness (Hughes et al., 2021). 

The spatial biases in sampling effort and inventory completeness observed in this study could also 
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be attributed to the fact that nearly 80% of our cleaned data came from human observations. 

Although citizen science has greatly improved digitised biodiversity knowledge, efforts should be 

put into acquiring comparable data from less-accessible areas where community science 

observations are insufficient (Heberling et al., 2021). Additionally, botanical interest and the 

availability of research and data mobilisation programmes can result in high sampling coverage 

(Meyer et al., 2016). For instance, the Missouri Botanical Garden has long focused on the botanical 

exploration in Madagascar due to the country’s high plant diversity and endemism, and it was one 

of the first institutions to engaged in data mobilisation for Madagascan records (Meyer et al., 2016).  

 

Priorities for Sampling Tree Diversity  

Digitised biodiversity data has significantly transformed science and research, enabling us to 

study biodiversity at scales previously not possible (Heberling et al., 2021). However, for many 

taxa, these data either do not exist or remain unrepresentative of the spatial distribution of the 

species. In sum, much remains to be discovered. However, additional information must be collected 

strategically if current gaps and biases are to be addressed. We identified regions where digitised 

knowledge of tree diversity is lacking (low inventory completeness) at both ecoregional and SU 

scales and where the greatest gains in inventory completeness could be made given current natural 

habitat and forest conditions. We also provide recommendation for future sampling and 

conservation efforts (Box 1).  

Ecoregions for which the area occupied by both natural habitat and protected land spans less 

than 50% (NNH 3–4), and which have low tree inventory completeness, have rapidly diminishing 

opportunities for completing their tree inventories, because of high anthropogenic impact and low 

vegetation intactness. It is possible that many unrecorded species may, or have, become extinct 

even before they are discovered. Immediate action is required to manage and reduce present threats. 

More broadly, restoration efforts will be required to maintain ecological processes of existing tree 

populations and botanical surveys will be needed to document what is remaining (Box 1).  

Ecoregions with low tree inventory completeness but that also have ≥ 50% of their area 

containing natural habitat or protected land (NNH 1–2) are regions of exploration opportunities 

where new biodiversity knowledge can be acquired. Threats in these ecoregions should be limited 

and establishing new protected areas will be beneficial for achieving comprehensive biodiversity 

conservation. For those ecoregions where coverage of natural habitat and protected land spans less 

than 50% of their area (NNH 3–4), but that have high inventory completeness (as is the case for 

many developed countries), management of present threats and restoration efforts will be required 
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to ensure ecological functioning of the existing tree populations. Botanical surveys should be 

carried out periodically to confirm whether species collected previously are still representative of 

those found on the ground. Lastly, ecoregions with high inventory completeness and ≥ 50% of their 

natural habitat and protected land remaining (NNH 1–2) should continue to be monitored and 

managed (establish new protected areas to achieve representativeness). As climate change 

intensifies, these ecoregions may experience increasing species turnover, hence systematic botanical 

surveys should be carried out to capture community-level changes.  

We highlight some examples where biodiversity conservation goals have been followed by 

practical and strategic actions (Box 1). Although local conservation actions typically occur at a 

much smaller spatial scale (Meyer et al., 2015), in this study we provide recommendations for 

botanical survey and conservation efforts at the ecoregional scale. Ecoregions provide a useful 

starting point for regional conservation planning and is often used as a biogeographic framework to 

highlight distinct areas of the world with high representation values (Dinerstein et al., 2017; Olson 

et al., 2001). The concept of ecoregions is becoming increasingly important as scientists realise that 

species-specific conservation methods do not allow for the conservation of ecological communities 

and ecosystems (Shreeve & Dennis, 2011). In fact, many countries have adopted ecoregion 

strategies for biodiversity management which have included indigenous communities to manage 

large areas of land and these strategies have proven success even in countries with low GDP 

(Dinerstein et al., 2017).  

 

Improving biodiversity data 

Since digitised biodiversity data are known to suffer from uncertainties and biases, one of 

the easy way to fix issues related to data quality is to add or correct geographical coordinates, full 

collection date and standardised scientific names for the record (Sousa-Baena et al., 2014), or 

improve data digitisation processes to make it easier for citizen science. Systematic approaches to 

data cleaning and quality assessment will also increase the reliability of digitised biodiversity data, 

although there is no one-size-fits-all solution to data cleaning (Zizka et al., 2020). Other sources of 

valuable biodiversity data, many of which are housed in natural history collections waiting to be 

identified, should be made available in digital format and this effort should be supported 

sufficiently (Sousa-Baena et al., 2014). Also, a commitment to data sharing and mobilisation should 

be encouraged and supported at the national level (Meyer et al., 2015). Lastly, strategic sampling 

and digitisation in under-inventoried regions will help to improve representativeness, reduce biases 

and increase our knowledge of tree diversity (Sousa-Baena et al., 2014).   
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Box 1. Recommendation for increasing biodiversity knowledge and conserving ecoregions based on the degree of tree inventory completeness and the 

amount of remaining natural habitat and protected land (NNH; Dinerstein et al., 2017). 

 

Degree of tree inventory completeness, 

and remaining natural habitat and 

protected land 

Recommendation for appropriate ecoregional 

level management and sampling effort 

Example of effective implementation guided by key principles of 

biodiversity conservation  

Ecoregions having low degrees of tree 

inventory completeness, and < 50% of 

natural habitat and protected land remaining 

(orange-red in Fig. 7) 

Immediate action is required to manage present 

threats to prevent further loss of natural habitat and 

forest integrity. Botanical surveys are required to 

document what remains in order to better prepare 

for habitat restoration to link connectivity and 

increase tree population size. 

Ecoregion conservation strategies in Nepal involve local communities in 

managing forested areas. Small but abundant community-managed forest 

parcels facilitated population recovery of many endangered large 

mammals including a 61% increase in tigers and a 31% increase in rhinos 

between 2008 and 2013. In return, communities receive half of the revenue 

generated by wildlife parks (Wikramanayake et al., 2010). 

Ecoregions having low degrees of tree 

inventory completeness, and ≥ 50% of 

natural habitat and protected land remaining 

(dark green in Fig. 7) 

Identify and limit present threats to ensure 

vegetation is intact and forest integrity remains 

high. Redistribute resources into sampling these 

ecoregions to increase biodiversity knowledge and 

explore opportunities for biodiversity conservation 

measures such as expanding protected areas.    

Expansion of protected areas in the Brazilian Amazon between 1997 and 

2008 led to a 37% reduction in deforestation rates between 2004 and 2006 

in the Brazilian Amazon (Soares-Filho et al., 2010). 

Ecoregions having high degrees of tree 

inventory completeness, and < 50% of 

natural habitat and protected land remaining 

(yellow in Fig. 7) 

Manage and reduce present threats to maintain 

functional populations of extant species and ensure 

forest integrity does not decline further. Habitat 

restoration is required to link connectivity, increase 

tree population size and allow tree species to cope 

with rapid land-use changes. Monitor and survey 

extant species periodically against present threats.     

The north Atlantic coast ecoregions are critically endangered with 40% of 

their natural habitat lost to urban development and agriculture. 

Conservation in this region is a collection of efforts from public agencies 

and private organisations, and about 5% of land secured for conservation is 

attributed to the Nature Conservancy (The Nature Conservancy, 2006).  

Ecoregions having high degrees of tree 

inventory completeness, and ≥ 50% of 

natural habitat and protected land remaining 

(light grey and pale yellow in Fig. 7) 

Identify and limit present threats to ensure 

vegetation is intact and forest integrity remains 

high. Conserve existing biodiversity by expanding 

protected areas. Periodically carry out botanical 

surveys to capture species turnover. 

The Yukon Arctic ecoregions in Alaska have been assessed by the Nature 

Conservancy (a non-profit conservation organisation) using a predictive 

ecosystem model to identify areas that are representative of the ecoregion's 

biodiversity for future conservation (The Nature Conservancy, 2005).  
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Limitation of Study 

At coarser spatial resolutions, caution must be taken when interpreting completeness 

because high C may result from sampling artefacts where C may be overestimated from a few well-

surveyed sites. Although analysis at finer resolutions reduces sampling artefacts because beta-

diversity is reduced and sampling is more representative of the full site diversity, it may not always 

be achievable, especially for large-scale analysis, because of the existing gaps in sampling efforts.  

It is important to note that the results reported here are analysed from digitised tree records 

aggregated in GBIF, which may not be complete. We acknowledge that in many regions of the 

world, inventory data may be available but not yet digitised and/or mobilised, or specimens have 

been collected but remain to be identified due to the lack of resources (Girardello et al., 2019; 

Serra-Diaz et al., 2018). We also considered that tree data may be stored in other major online 

biodiversity databases such as the Botanical Information and Ecological Network (BIEN; 

https://bien.nceas.ucsb.edu/bien/) and the Global Forest Biodiversity Initiative (GFBI; 

https://www.gfbinitiative.org/), and region-specific electronic databases such as the Latin American 

Seasonally Dry Tropical Forest Floristic Network (DRYFLOR; http://www.dryflor.info/), and the 

Sub-Saharan tropical Africa database RAINBO (http://rainbio.cesab.org/).  

Although beyond the scope of this study, it is also important to examine when a site has 

achieved high inventory completeness because temporal biases in completeness can result in a 

distorted view of biodiversity trends over time (Haque et al., 2018). If most of the records collected 

were from historical periods, in view of species turnover and increasing land-use changes coupled 

with climate variability, it is unclear whether the sets of species found several decades ago are still 

representative of what is observed in those regions today (Stropp et al., 2016). This points to the 

risk of out-of-date knowledge in assuming that a site is well-known, while in reality some species 

might have been extirpated from that area (Stropp et al., 2016). Thus, ongoing and systematic 

botanical surveys are crucial to update inventories periodically, even in sites where current 

knowledge is regarded as complete.  

It should also be considered that the Chao1 estimator is scale-dependent and estimating 

richness at low resolutions may lead to inflation in C values, which may make it difficult to draw 

meaningful conclusions or adequately answer questions in ecological studies (Meyer et al., 2015; 

Soberón et al., 2007; Sousa-Baena et al., 2014). However, as previously pointed out, we 

characterised inventory completeness at the ecoregional scale because ecoregions represent distinct 

assemblages of biodiversity in particular regions and provide a useful base map for conservation 

planning as they draw on natural boundaries, rather than political ones (Dinerstein et al., 2017). To 



28 
 

 

account for the sensitivity of our estimator, we analysed completeness at the SU scale and observed 

a relatively consistent pattern, although C values were more scattered at a finer scale. Even at this 

resolution, many sites lacked sample coverage and if we were to define well-known sites with 

stricter criteria, most of the world would be regarded as under-inventoried.  

Additionally, because C is a ratio, informing us of how well a site has been surveyed, it does 

not necessarily indicate that knowledge of biodiversity in a site with a high C value is also high. For 

example, an ecoregion in Brazil with 10,000 tree species might have obtained a C of 0.8, but this 

also means that ~ 2000 species are yet to be recorded. In contrast, one ecoregion in the Australian 

dessert may have 10 species and a C of 0.8, meaning that there are only two species unrecorded. 

 

Conclusion 

Biodiversity data are increasingly being added to online databases and their potential 

applications are manifold provided data quality is accounted for. Our result showed that tree 

inventory completeness is not uniform across the world and sampling effort is highly biased 

towards the Global North, while much of the species-rich tropics remain under-inventoried. We also 

found taxonomic bias whereby over 85% of digitised tree records within our dataset came from just 

4% of the species. Due to biases and uncertainties existing in biodiversity data, simply sampling 

more does not necessarily lead to knowledge increase. Hence, we illustrated how gaps in existing 

biodiversity data can help guide botanical surveys and highlighted areas representing future 

botanical exploration opportunities as well as areas of diminishing opportunities. We also provided 

some recommendations for conservation and botanical survey efforts. With ongoing anthropogenic 

impacts and escalating rates of biodiversity loss, limited resources should be allocated to 

systematically survey locations likely to yield new knowledge. Additionally, data digitisation and 

mobilisation should be supported and sufficiently funded to improve the quality and coverage of 

digitised biodiversity information. 
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Supporting Information 

 

Appendix S1 

 

Figure S1.1 Spatial distribution of tree occurrence records. 
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Appendix S2 

 

 

Figure S2.2 Scatter plots of the number of records versus inventory completeness for (a) ecoregions 

and (b) SUs. Red dashed lines represent the median sample size for ecoregions (rounded to the 

nearest thousand) and SUs (rounded to the nearest hundred).  
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Appendix S3 

Table S2.1 Summary of sampling effort and inventory completeness at a biome level. SD = Standard deviation, C = inventory completeness. 

Biome name and number 
No. of 

ecoregions 

No. of 

SUs 

Total 

records 

Mean 

sampling 

effort 

Sampling 

effort SD 

Mean 

richness 

Richness 

SD 

Mean 

estimated 

richness 

Estimated 

richness 

SD 

Mean 

C 

value 

C value 

SD 

Mean 

unobserved 

species 

Unobserved 

species SD 

Forested biomes 

             

1. Tropical & subtropical moist broadleaf 
forests 

230 1945 2,603,713 0.36 0.74 939 881 1175 1003 0.74 0.18 236 175 

2. Tropical & subtropical dry broadleaf forests 56 410 449,305 0.33 0.53 566 502 749 595 0.71 0.15 183 129 

3. Tropical & subtropical coniferous forests 15 73 208,563 0.38 0.33 635 609 783 674 0.72 0.19 148 88 

4. Temperate broadleaf & mixed forests 83 1257 13,526,937 1.40 2.72 176 197 206 241 0.88 0.13 29 53 

5. Temperate conifer forests 47 392 976,222 0.35 0.75 146 215 176 263 0.83 0.13 31 52 

6. Boreal forests/taiga 26 1553 970,755 0.02 0.08 40 19 45 24 0.90 0.10 6 8 

14. Mangroves 19 34 58,579 0.22 0.30 530 469 802 616 0.60 0.17 273 221 

Non-forested biomes              

7. Tropical & subtropical grasslands, savannas 
& shrublands 

58 2139 1,270,955 0.11 0.18 662 760 819 994 0.79 0.14 156 262 

8. Temperate grasslands, savannas & 
shrublands 

48 1058 484,732 0.14 0.33 101 97 128 126 0.78 0.16 27 39 

9. Flooded grasslands & savannas 25 110 29,907 0.06 0.14 123 158 213 215 0.59 0.23 90 98 

10. Montane grasslands & shrublands 46 475 161,310 0.34 1.29 176 262 257 375 0.67 0.16 80 120 

11. Tundra 51 836 126,107 0.02 0.08 16 11 19 13 0.86 0.14 3 4 

12. Mediterranean forests, woodlands & scrub 40 332 4,956,429 1.51 3.19 144 99 166 114 0.87 0.12 22 22 

13. Deserts & xeric shrublands 102 2645 412,422 0.07 0.16 138 171 196 230 0.69 0.18 58 71 
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Appendix S4 

 

 

Figure S4.3 Frequency histogram of sampling effort for (a) ecoregions and (b) SUs (x-axis is 

stretched on a natural log scale). 
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Appendix S5 

 

 

 

Figure S5.4 Frequency histogram of tree inventory completeness (C) for (a) ecoregions (mean C is 

0.76 ± 0.18) and (b) 100 x 100 km SUs (mean C is 0.69 ± 0.24). N is the number of occurrence 

records.  
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