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Abstract

A lens is a functor equipped with a suitable choice of lifts, generalising the notion of
a split opfibration. Lenses were first introduced in computer science to model bidi-
rectional transformations between systems, and this thesis contributes to an ongoing
initiative to understand lenses using category theory. Specifically, we study the mathe-
matical structure of lenses using double categories, and use this to generalise the theory
of lenses to new and useful settings.

Arguably the most fundamental characterisation of lenses, due to Ahman and
Uustalu, is as a compatible functor and cofunctor pair. We introduce the flat dou-
ble category of cofunctors — consisting of categories, functors, and cofunctors — and
examine several of its basic properties. Right-connected double categories were first
introduced in the study of algebraic weak factorisation systems, and we establish an
explicit construction which completes a double category under this property. The dou-
ble category of lenses is characterised as the right-connected completion of the double
category of cofunctors, and we demonstrate how many properties of lenses are inherited
from functors and cofunctors via this construction. In particular, the double category
of cofunctors is strongly span representable, and this leads to a diagrammatic calculus
for lenses using the right-connected completion.

The Grothendieck construction, which yields split opfibrations, is among the most
useful notions in category theory, and we introduce a generalised Grothendieck con-
struction for lenses. Given a double category equipped with a functorial choice of
companions, its left-connected completion is shown to admit a universal property with
respect to lax double functors. The double category of split multi-valued functions is
introduced as the left-connected completion of the double category of spans, and we
prove that lax double functors into this double category correspond to lenses using the
aforementioned universal property.

It is well known that functors between categories naturally arise as monad mor-
phisms in the double category of spans, providing the basis for useful generalisations
such as internal categories. We introduce the notion of monad retromorphism, and show
that in the double category of spans, monad retromorphisms are precisely cofunctors.
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Using the right-connected completion, lenses between monads are defined, and they are
used to develop the theory of lenses and split opfibrations in internal category theory.

It is natural to ask if any functor or cofunctor may be equipped with the structure
of a lens. We show that lenses arise as both algebras for a monad, and coalgebras
for a comonad. It follows that a lens is a functor with additional algebraic structure,
and also a cofunctor with additional coalgebraic structure. In particular, the monad
for lenses generates an algebraic weak factorisation system, for which every functor
factorises through its corresponding free lens. The link between lenses and algebraic
weak factorisations systems provides a new setting in which many of the properties of
lenses can be understood.

While lenses are a generalisation of the notion of split opfibration, the results in
this thesis also have implications for split opfibrations themselves, including new char-
acterisations using décalage, strict factorisation systems, and lax double functors.

Altogether, the thesis demonstrates that double categories provide a valuable uni-
fied framework for the theory of lenses.
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Chapter 1

Introduction

Thus, each lens must include not one but two functions,
one for extracting an abstract view from a concrete one and
another for putting an updated abstract view back into the
original concrete view to yield an updated concrete view.

Foster et al. [Fos+07]

Category theory is the study of morphisms, and this thesis is the study of a certain
kind of morphism called a lens. Lenses were originally defined in computer science as
morphisms between sets consisting of a pair of functions [Fos+07]. This thesis focuses
on a variant called a delta lens (or d-lens), which is a morphism between categories
consisting of a functor with certain additional structure [DXC11]. The aim of this
work is to demonstrate how double categories play a fundamental role in developing
the theory of delta lenses.

A

B

f ϕ

a ϕ(a, u)

fa bu

Figure 1.1: An illustration of a delta lens.
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Delta lenses are functors equipped with a suitable choice of lifts. Ahman and
Uustalu first recognised that such a choice of lifts is equivalent to a kind of morphism
between categories called a cofunctor [AU17]. Thus, a succinct characterisation of
a delta lens is as a compatible functor and cofunctor pair. The first main theme of
this work is interplay between functors and cofunctors as two kinds of morphisms in a
double category.

Cofunctors were introduced by Aguiar [Agu97] in the setting of internal category
theory, and were based upon the notion of comorphism between Lie groupoids due
to Higgins and Mackenzie [HM93]. Every cofunctor is equivalent to a span of func-
tors, whose left leg is bijective-on-objects and whose right leg is a discrete opfibration.
This leads to another simple characterisation of a delta lens as a certain commuta-
tive diagram of functors. The second main theme of this thesis is the development of
an abstract diagrammatic approach to delta lenses, by generalising cofunctors via a
restriction of the double category of spans in a category with pullbacks.

Fibrations and opfibrations are among the most important concepts in category the-
ory. Johnson and Rosebrugh proved that every split opfibration is a delta lens [JR13].
In particular, a split opfibration is a delta lens whose chosen lifts are opcartesian. Thus,
in a sense, the study of delta lenses is the study of the underlying structure of split opfi-
brations. The third main theme of this work is exploring the deep relationship between
delta lenses and split opfibrations, and, in particular, establishing a double-categorical
Grothendieck construction for delta lenses.

A detailed discussion of the content and motivation behind each of the main chap-
ters is presented in the following sections. As for the other chapters, Chapter 2 in-
troduces the background material on cofunctors, delta lenses, and split opfibrations.
Appendix A recalls standard definitions and results about double categories. Chapter 7
presents concluding remarks and outlines future work.

In the remainder of this thesis delta lenses are referred to simply as lenses.

The double category of lenses

Whenever there are two kinds of morphisms between objects, it is natural to ask if
they can be assembled into a double category. Chapter 3 begins with the definition
of the flat double category Cof, the double category of cofunctors, whose objects are
categories, whose horizontal morphisms are functors, and whose vertical morphisms
are cofunctors. A cell in Cof exists when the functors and cofunctors in its boundary
are suitably compatible with each other. The central question of Chapter 3 is:

Can lenses be universally constructed from the double category of cofunctors?

2



A

B

C

D

ha hϕ(a, u)

ha γ(ha, ku)

a ϕ(a, u)

fa u

kfa ku

gha

ku

ku

h

k

f ϕ g γ

Figure 1.2: A cell in the flat double category Cof, where a vertical morphism is a
cofunctor given by a lifting operation relative to a function on objects.

A double category is right-connected if its identity map is right adjoint to its
codomain map [BG16a]. A key contribution of this thesis is an explicit construction of
the right-connected completion of a double category. The right-connected completion
of Cof yields a double category whose vertical morphisms are exactly lenses, answering
the central question of Chapter 3. In other words, the flat double category Lens, the
double category of lenses, whose objects are categories, whose horizontal morphisms are
functors, and whose vertical morphisms are lenses, is the right-connected completion
of the double category of cofunctors.

The second main result of Chapter 3 is that the double category Cof is span repre-
sentable [GP17], thus reinterpreting the classical representation of cofunctors as spans
[HM93]. This amounts to showing that Cof has tabulators, and admits a faithful lax
double functor to Span(Cat), the double category of spans in Cat. Indeed, there is
actually a fully faithful pseudo double functor from Cof to Span(Cat), whose essential
image yields an equivalent double category to Cof. The key benefit is a diagrammatic
approach to cofunctors using bijective-on-objects functors and discrete opfibrations. A
simple, yet immensely important, corollary of this result is that every lens admits a
representation as a commutative diagram of functors.

The third and final main result of Chapter 3 is a new characterisation of split
opfibrations. The décalage construction is a copointed endofunctor on Cat, and the
class of lenses to which this extends is the split opfibrations. The proof is completely
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diagrammatic, and determines a canonical cell in Lens for every split opfibration.

Lenses as lax double functors

The classical Grothendieck construction, which yields an equivalence between Cat-
valued functors and split opfibrations, is one the most important tools in category
theory. Chapter 4 investigates a fibred approach to lenses as generalised split opfibra-
tions. The central question that Chapter 4 seeks to answer is:

Does there exist a generalised Grothendieck construction for lenses?

To develop an answer, it is worth reflecting upon the generalised Grothendieck
construction for ordinary functors. Given the double category of squares Sq(Cat), the
fibre over a small category B with respect to the codomain map cod: Sq(Cat)→ Cat of
Sq(Cat) is given by the slice category Cat/B. Moreover, for every category B there is
a double category V(B), whose objects and vertical morphisms are taken from B, and
whose horizontal morphisms and cells are identities. The final ingredient is to recall
the double category Span := Span(Set) of sets, functions, and spans of functions. The
generalised Grothendieck construction for functors is the right-to-left direction of an
equivalence of categories,

Cat/B ' [V(B),Span]lax

between functors into B, and lax double functors from V(B) into Span. Details of this
result may be found in the work of Paré [Par11]. Note that restricting along the fully
faithful double functor Sq(Set) → Span yields a modified statement of the classical
category of elements construction for discrete opfibrations, given by the equivalence:

DOpfB ' [V(B),Sq(Set)]

Lenses are functors with additional structure, therefore it is natural to wonder
whether modifying Span could yield a generalised Grothendieck construction for lenses.
Surprisingly, the answer lies in considering the left-connected completion of Span, given
by the double category SMult, the double category of split multi-valued functions. There
is a canonical horizontal transformation between strict double functors,

Sq(Set)

SMult Span

whose components are globular cells. Whiskering this transformation by a lax double
functor V(B)→ SMult yields a morphism in Cat/B which is precisely the diagrammatic
representation of a lens.
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The main result of Chapter 4 is an equivalence of categories,

LensB ' [V(B),SMult]lax

where LensB is the fibre over a small category B with respect to the codomain map
cod: Lens → Cat of the double category Lens of lenses. The right-to-left direction of
this equivalence is the generalised Grothendieck construction for lenses.

This conceptual shift to this fibred approach to lenses is significant and offers a new
perspective on their relationship with split opfibrations. The second main contribution
of Chapter 4 is a characterisation of split opfibrations as lax functors V(B) → SMult
with a certain property. Chapter 4 concludes with an exploration of several classes of
lenses that arise through considering fully faithful double functors into SMult.

Lenses as monad morphisms

Many concepts in category theory can be better understood through generalising them
to the setting of internal or enriched categories. Chapter 5 seeks to answer the question:

What is the definition of a (delta) lens between internal categories?

The topic of internalising lenses is not a new one. For state-based lenses, originally
called very well-behaved lenses [Fos+07], an internalisation was developed both in a
category with finite products [JRW10] and in a cartesian closed category [GJ12]. Since
state-based lenses are equivalent to delta lenses between codiscrete categories [JR16],
the correct definition of lens between internal categories should specialise at least one of
these results. A straightforward answer is to simply use the seemingly ad hoc definition
of internal cofunctor [Agu97] to define internal lenses, however this is unsatisfying and
raises a more important question:

What is the natural setting in which cofunctors arise?

Ahman and Uustalu [AU16] characterised small categories as polynomial comonads
on Set, and found that the comonad morphisms correspond exactly to cofunctors.
It is possible to internalise their definition of cofunctor to any locally cartesian closed
category, however it not known how to define internal functors in this particular setting.
An open question arising from their work was whether lenses, like cofunctors, admitted
a concise characterisation as comonad morphisms.

The primary contribution of Chapter 5 comes from utilising the formal theory of
monads [Str72; LS02] to characterise cofunctors. Categories are equivalent to monads
in the bicategory of sets and spans, but the (lax) monad morphisms are not functors.
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Instead, they correspond to Mealy morphisms [Par12] or two-dimensional partial maps
[LS02]. However, restricting to the monad morphisms whose 1-cell component is a right
adjoint recovers functors between categories, while those whose 1-cell component is a
left adjoint are cofunctors. In this setting, the duality between functors and cofunctors
becomes clear.

While initially the contributions of this chapter were originally formulated in the
language of 2-categories, it makes sense to translate them to the language of double
categories where they fit more naturally in the scope of this thesis. The formal the-
ory of monads in 2-categories may be adapted to the double category setting [FGK11;
FGK12]. Monads in the double category Span are still categories, and the monad mor-
phisms are precisely functors. Paré introduced the notion of retrocell [Par19] in any
double category with companions, and these may be used to define monad retromor-
phisms, which in Span are precisely cofunctors.

For any double category D, there is a double category Mnd(D) of monads in D. If
D is equipped with a functorial choice of companions, there is a full double subcategory
Mndret(D) on the monad retromorphisms. When D = Span(E) for a category E with
pullbacks, this construction yields the span representable double category Cof(E) whose
objects are internal categories, whose horizontal morphisms are internal functors, and
whose vertical morphisms are internal cofunctors. The right-connected completion of
Mndret(D) constructs a double category Lens(D) whose vertical morphisms may be
interpreted as lenses between monads. Taking D = Span(E) produces the definition of
internal lens, thus providing a natural answer to the main question of Chapter 5.

The final contribution of Chapter 5 is two new characterisations of internal split
opfibrations. The first result characterises internal split opfibrations as internal lenses
which satisfy a certain pullback condition, and demonstrates an equivalence to a presen-
tation using unique structure. The second characterisation utilises strict factorisation
systems, and also admits a presentation using unique structure.

Lenses as algebras and coalgebras

Many structures in mathematics may be fruitfully studied as algebras for a monad
or as coalgebras for a comonad. Lenses are simultaneously functors with additional
structure and cofunctors with additional structure, and it is natural to wonder if this
structure comes from a monad or comonad. Chapter 6 addresses the question:

Are lenses algebras for a monad or coalgebras for a comonad?

Parallel to this question is the problem of finding the right level of generality for
lenses to reveal an answer. The starting point is recognising that an important aspect
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of cofunctors is their diagrammatic representation as spans, and using this to define
lenses between objects in any suitable category with pullbacks.

The double category Cof is replaced with a double category Span(C,W,M) of spans
in C with left leg in a class of morphisms W and right leg in a class of morphisms M.
The idea is that when C = Cat, W is the class of bijective-on-objects functors, and M is
the class of discrete opfibrations, then Span(C,W,M) is equivalent to the double cate-
gory of cofunctors. Taking the right-connected completion yields the double category
Lens(C,W,M) of generalised lenses, together with canonical double functors:

Span(C,W,M)←− Lens(C,W,M) −→ Sq(C)

Under simple conditions on the class W, it is proved that the forgetful functor be-
tween the corresponding categories of morphisms of Lens(C,W,M) and Span(C,W,M),

Lens(C,W,M) −→ Span(C,W,M)

is comonadic. The right adjoint utilises pullbacks and codiscrete objects in C. In
the case of C = Cat with bijective-on-objects functors and discrete opfibrations, this
establishes the first main result of the Chapter 6 which is that lenses are coalgebras
for a comonad on a category of cofunctors. A basic corollary is the construction of the
cofree lens on a cofunctor, previously introduced by Ahman and Uustalu [AU16].

Under further conditions on the triple (C,W,M), it is proved that the forgetful
functor between the categories of morphisms,

Lens(C,W,M) −→ Sq(C)

is monadic. The left adjoint utilises pushouts, discrete objects in C, and that M is the
right class in an orthogonal factorisation system. In the case of C = Cat with bijective-
on-objects functors and discrete opfibrations, this establishes the second main result
of the Chapter 6 which is that lenses are algebras for a monad on the arrow category
on Cat. A basic corollary is the construction of the free lens on a functor, a result which
would seem to be almost impossible to obtain without the diagrammatic approach to
lenses. These results are shown to share a close relationship with work of Johnson and
Rosebrugh [JR13] which characterised lenses as algebras for a semi-monad on the same
category.

The third main result of the Chapter 6 is that generalised lenses arise as the right
class of an algebraic weak factorisation system [BG16a; BG16b]. Indeed, every functor
factorises through the free lens via the unit of the monad for lenses on Sq(Cat).

Chapter 6 concludes with a notion of change of base for lenses through showing
that the codomain functor cod: Lens(C,W,M)→ C is a bifibration.

7



In summary, the contributions of this thesis provide new perspectives on the concept
of a lens using double categories. Among the many characterisations, lenses are shown
to be morphisms in the right-completion of the double category of cofunctors, lax
double functors into the double category of split multi-valued functions, compatible
morphisms between monads in a double category, algebras for a monad, and coalgebras
for a comonad. Individually, it is hoped that these characterisations of lenses provide
new tools for future applications, while collectively, they present a significant advance
towards understanding lenses in the setting of category theory.

Publication summary

The research conducted during my PhD studies has resulted in the publication of five
papers [Cla20a; Cla20b; Cla21a; Cho+21; Cla21b]. The contributions from four of
these papers to the results in this thesis are outlined below.

• My sole-authored paper Internal lenses as functors and cofunctors [Cla20a] con-
tains results found in Section 5.3 and Section 5.4, including the definition of
internal lens and their construction from internal functors and cofunctors.

• My sole-authored paper Internal split opfibrations and cofunctors [Cla20b] ex-
tends the results in [Cla20a] to include material on the characterisation of (inter-
nal) split opfibrations, and this is presented in Section 3.5 and Section 5.5.

• My sole-authored paper A diagrammatic approach to symmetric lenses [Cla21a]
defines morphisms of lenses over a fixed codomain, an idea which led directly to
the definition of cells in the double category of lenses and underlies the entire
thesis. However, the main results of this paper on symmetric lenses is not included
in this thesis.

• My sole-authored paper Delta lenses as coalgebras for a comonad [Cla21b] is
covered entirely in Section 6.2.
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Chapter 2

Background

This chapter introduces the background material on lenses. Several results are proven
from first principles, including the characterisation of lenses as compatible functors
and cofunctors. A diagrammatic formulation of lenses and cofunctors is presented, and
is shown to be equivalent to their axiomatic definition. The main examples of lenses
are also introduced, including discrete opfibrations, split opfibrations, and bijective-
on-objects functors with a chosen section.

2.1 Lenses

Definition 2.1. A (delta) lens (f, ϕ) : A→ B consists of a functor f : A→ B together
with a lifting operation,

(a ∈ A, u : fa→ b ∈ B) 7−→ ϕ(a, u) : a→ p(a, u)

where p(a, u) := cod(ϕ(a, u)), satisfying the following three axioms:

(L1) fϕ(a, u) = u,

(L2) ϕ(a, 1fa) = 1a,

(L3) ϕ(a, v ◦ u) = ϕ(p(a, u), v) ◦ ϕ(a, u).

The first axiom (L1) states that the morphisms ϕ(a, u) ∈ A are chosen lifts of the
morphisms u ∈ B with respect to the functor f : A→ B. This axiom may be depicted
as follows:

A a p(a, u)

B fa b

f ...

ϕ(a, u)

...
u

9



The second axiom (L2) states that the lifting operation respects identity morphisms,
and may be depicted as follows:

p(a, 1fa)

A a a

B fa fa

f ...

ϕ(a, 1fa)

1a

...
1fa

Finally, the third axiom (L3) states that the lifting operation respects composition
of morphisms, and may be depicted as follows:

p(a, v ◦ u)

A a p(a, u) p(p(a, u), v)

B fa b b′

f ...

ϕ(a, v ◦u)

ϕ(a, u) ϕ(p(a, u), v)

... ...
u v

The identity lens on a category A consists of the identity functor 1A : A → A

together with the trivial lifting operation:

(a ∈ A, u : a→ a′ ∈ A) 7−→ u

The composite lens of a pair of lenses (f, ϕ) : A → B and (g, γ) : B → C, consists
of the composite functor gf : A→ C together with the lifting operation:

(a ∈ A, u : gfa→ c ∈ C) 7−→ ϕ(a, γ(fa, u))

The lifting operation of the composite lens may be depicted as follows:

A a a′

B fa b

C gfa c

f ...

ϕ(a, γ(fa, u))

...

g

γ(fa, u)

... ...
u

(2.1)

Composition of lenses is unital and associative, and there is a category whose objects
are (small) categories and whose morphisms are lenses. In Chapter 3, lenses are shown
to be the vertical morphisms in a double category which will be denoted Lens.
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2.2 Cofunctors

Closely related to lenses is the more basic notion of a cofunctor between categories,
which is defined as additional structure on a function rather than a functor. The
notation A0 is used for the underlying set of objects of a category A, and the notation
f0 : A0 → B0 is used for the underlying object assignment of a functor f : A→ B.

Definition 2.2. A cofunctor (f, ϕ) : A→ B consists of a function f : A0 → B0 together
with a lifting operation,

(a ∈ A, u : fa→ b ∈ B) 7−→ ϕ(a, u) : a→ p(a, u)

where p(a, u) := cod(ϕ(a, u)), satisfying the following three axioms:

(C1) fp(a, u) = cod(u),

(C2) ϕ(a, 1fa) = 1a,

(C3) ϕ(a, v ◦ u) = ϕ(p(a, u), v) ◦ ϕ(a, u).

Remark. The notation (f, ϕ) : A → B is used for both lenses and cofunctors; it will
always be clear form the context which kind of morphism is intended.

While it is immediate from the definition that each lens has an underlying functor,
each lens has an underlying cofunctor as well.

Lemma 2.3. Every lens (f, ϕ) : A→ B has an underlying cofunctor (f0, ϕ) : A→ B.

Proof. Axioms (L2) and (L3) for a lens are identical to the axioms (C2) and (C3) for a
cofunctor, after substituting the functor with its underlying object assignment. Axiom
(L1) for a lens implies that axiom (C1) holds for the corresponding cofunctor.

The following result due to Ahman and Uustalu [AU17] states that a compatible
functor and cofunctor pair completely capture the notion of a lens.

Proposition 2.4. A lens (f, ϕ) : A → B is equivalent to a functor f : A → B and a
cofunctor (f0, ϕ) : A→ B such that fϕ(a, u) = u for all pairs (a ∈ A, u : fa→ b ∈ B).

Proof. By Definition 2.1 and Lemma 2.3, every lens has an underlying functor and
cofunctor such that the underlying object assignments agree and axiom (L1) is satisfied.
Conversely, it is immediate by definition that a functor and cofunctor pair satisfying
the conditions is equivalent to a lens.

Composition of cofunctors is defined in the same way as the composition of lenses
(2.1), and there is a category whose objects are (small) categories and whose morphisms
are cofunctors. In Chapter 3, cofunctors are shown to be the vertical morphisms in a
double category Cof, from which the double category of lenses Lens will be constructed.
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2.3 The category of chosen lifts

The axioms on the lifting operation of a lens or a cofunctor (f, ϕ) : A→ B determine
corresponding properties on the codomain of the chosen lifts which may be stated,
using the notation p(a, u) := cod(ϕ(a, u)), as follows:

(P1) fp(a, u) = cod(u),

(P2) p(a, 1fa) = a,

(P3) p(a, v ◦ u) = p(p(a, u), v).

Note that property (P1) is identical to axiom (C1) for a cofunctor.

Remark 2.5. In the literature, the lifting operation of a lens is referred to as the Put.
The notation p(a, u) for the codomain of the lift ϕ(a, u) is chosen in recognition of this
terminology.

These properties may be used to show that every lens or cofunctor canonically
induces a category which captures its essential information. For clarity, the follow-
ing result is stated for cofunctors, but immediately applies for lenses as well via its
underlying cofunctor.

Proposition 2.6. Given a cofunctor (f, ϕ) : A→ B there is a category Λ(f, ϕ), whose
objects are the same as A, and whose morphisms are pairs (a ∈ A, u : fa → b ∈ B)
such that dom(a, u) = a and cod(a, u) = p(a, u) := cod(ϕ(a, u)).

Proof. Given morphisms (a, u) and (a′, v) in Λ(f, ϕ), where a′ = p(a, u), their com-
posite is the morphism (a, v ◦ u), which is well-defined by property (P3). The identity
morphism on an object a ∈ Λ(f, ϕ) is given by the pair (a, 1fa) which is well-defined by
property (P2). Composition is left unital by definition, right unital by property (P1),
and associative due to the associativity of composition in B.

In a sense, the category Λ(f, ϕ) is the image of the lifting operation of a cofunctor.
In Chapter 3, it is shown that this category is actually the tabulator of a vertical
morphism in Cof or Lens. When the category Λ(f, ϕ) occurs as a wide subcategory of
the domain of a lens or cofunctor, it will be called the category of chosen lifts. The
following result shows that this property holds for every lens.

Proposition 2.7. Given a lens (f, ϕ) : A → B there is a faithful identity-on-objects
functor ϕ : Λ(f, ϕ)→ A whose assignment on morphisms is given by (a, u) 7→ ϕ(a, u).

12



Proof. The assignment on morphisms respects identity morphisms due to axiom (L2)
and respects composition due to axiom (L3), therefore ϕ is a well-defined functor. To
show that the functor is faithful, consider a pair of morphisms (a, u) and (a′, u′) in
Λ(f, ϕ) such that ϕ(a, u) = ϕ(a′, u′). By definition of ϕ we have that a = a′, and by
axiom (L1) we have that u = fϕ(a, u) = fϕ(a′, u′) = u′. Therefore (a, u) = (a′, u′).

2.4 A diagrammatic approach

While lenses are defined as an axiomatic structure on a functor, there is also a very use-
ful diagrammatic approach to lenses. This approach is based on representing cofunctors
as certain spans of functors, an idea implicit in the original definition of comorphism
due Higgins and Mackenzie [HM93], and later made explicit in the work of Aguiar
[Agu97, Section 4.4]. First recall the following basic definitions.

Definition 2.8. A functor f : A→ B is bijective-on-objects if for all b ∈ B there exists
a unique object a ∈ A such that fa = b.

Definition 2.9. A functor f : A → B is a discrete opfibration if for all a ∈ A and
u : fa→ b ∈ B there exists a unique morphism w : a→ a′ ∈ A such that fw = u.

Each of the classes of bijective-on-objects functors and discrete opfibrations contain
the isomorphisms, is closed under composition, and is stable under pullback along
arbitrary functors. Discrete opfibrations, in particular, are a very important class of
functors as they have a unique lifting operation which satisfies the lens axioms; this
point will be revisited in the next section.

Proposition 2.10. For every cofunctor (f, ϕ) : A→ B, there is a span of functors,

A Λ(f, ϕ) B

a a fa

p(a, u) p(a, u) fp(a, u) = b

ϕ f

ϕ(a, u)

· · ·· · ·
(a, u) u

· · ·· · ·

where ϕ is identity-on-objects and f is a discrete opfibration.

Proof. By Proposition 2.6, the category Λ(f, ϕ) exists and is well-defined. The functors
ϕ and f are both well-defined by the axioms of a cofunctor.

To show that f is a discrete opfibration, consider an object a ∈ Λ(f, ϕ) and a
morphism u : fa → b ∈ B. Then, by construction, there exists a unique morphism
(a, u) : a→ p(a, u) in Λ(f, ϕ) such that f(a, u) = u.

13



A way of interpreting this result is that bijective-on-objects cofunctors (which are
exactly bijective-on-objects functors in the opposite direction) and discrete opfibra-
tions form an orthogonal factorisation system on the category of small categories and
cofunctors, although this perspective will not be emphasised. Proposition 2.10 together
with the following result provides the basis for a diagrammatic approach to cofunctors
and lenses.

Proposition 2.11. Given a span of functors whose left leg ψ is bijective-on-objects
and whose right leg g is a discrete opfibration,

X

A B

ψ g (2.2)

there is a cofunctor (f, ϕ) : A → B and an isomorphism j : Λ(f, ϕ) → X such that
ψj = ϕ and gj = f .

Proof. Since ψ is bijective-on-objects, let f : A0 → B0 be the composite gψ−1. Given
a pair (a ∈ A, u : fa → b ∈ B), consider the the pair (ψ−1a, u). Since g is a discrete
opfibration, there exists a unique morphism γ(ψ−1a, u) : ψ−1a → x ∈ X such that
gγ(ψ−1a, u) = u. Define the lifting operation ϕ by:

(a ∈ A, u : fa→ b ∈ B) 7−→ ψ(γ(ψ−1a, u))

It satisfies (C1) by construction. By uniqueness of lifts of g and functoriality of ψ,
this lifting operation also satisfies axioms (C2) and (C3), and thus defines a cofunctor
(f, ϕ) : A→ B. Finally, define an isomorphism j : Λ(f, ϕ) → X with assignment on
objects a 7→ ψ−1a and assignment on morphisms (a, u) 7→ γ(ψ−1a, u). By construction,
ψj = ϕ and gj = f .

Altogether, Proposition 2.10 and Proposition 2.11 imply that cofunctors and the
special spans (2.2) are essentially equivalent to each other; this idea will be explored
closely in Chapter 3. Using Proposition 2.4, these results for cofunctors enable a
approach to lenses as commutative diagrams of functors which is central for many
results in this thesis.

Proposition 2.12. For every lens (f, ϕ) : A→ B, there is a commutative diagram of
functors,

Λ(f, ϕ)

A B

ϕ fϕ

f

where ϕ is a faithful identity-on-objects functor and fϕ is a discrete opfibration.
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Proposition 2.13. Given a commutative diagram of functors,

X

A B

ψ fψ

f

(2.3)

where ψ is bijective-on-objects and fψ is a discrete opfibration, there exists a lens
(f, ϕ) : A→ B together with an isomorphism j : Λ(f, ϕ)→ X such that ψj = ϕ.

2.5 Basic examples

Arguably the most important class of examples of lenses in category theory are split
opfibrations: these are lenses with a certain property.

Example 2.14. A split opfibration is a lens (f, ϕ) : A → B such that each morphism
ϕ(a, u) is opcartesian. That is, for each morphism w : a→ a′ in A such that fw = v◦u,
there exists a unique morphism v̂ in A such that w = v̂ ◦ ϕ(a, u) and fv̂ = v.

A special case of split opfibrations is discrete opfibrations (Definition 2.9), which
are examples of functors with a unique lens structure. These can also be understood
as lenses with a certain property.

Example 2.15. A functor f : A→ B is a discrete opfibration if and only if there is a
lens (f, ϕ) : A→ B such that ϕ(a, fw) = w for all morphisms w : a→ a′ ∈ A. Discrete
opfibrations are equivalent to diagrams (2.3) of the form:

A

A B

f

f

Note that every isomorphism, in particular every identity functor, is a discrete
opfibration and thus has a unique lens structure. Every functor between discrete cate-
gories is also a discrete opfibration. While Example 2.15 exhibits the conventional way
in which discrete opfibrations are equivalent to certain lenses, discrete opfibrations may
also be considered as lenses via the bijective-on-objects, fully faithful factorisation.

Example 2.16. Every lens (f, ϕ) : A → B such that f is fully faithful is equivalent
to a discrete opfibration, namely, the discrete opfibration fϕ : Λ(f, ϕ)→ B defined in
Proposition 2.12.

Lenses between codiscrete categories have been of historical importance in computer
science [Fos+07].
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Example 2.17. A state-based lens consists of functions f : A→ B and p : A×B → A

satisfying the following three axioms:

(i) fp(a, b) = b,

(ii) p(a, fa) = a,

(iii) p(p(a, b), b′) = p(a, b′).

State-based lenses are equivalent to (delta) lenses between codiscrete categories [JR16].

Now consider some examples of lenses which are not split opfibrations.

Example 2.18. A monoid homomorphism with a chosen section is equivalent to a
lens between categories with a single object. The monoid homomorphism is a called
Schreier split epimorphism if and only if the corresponding lens is a split opfibration
[Bou21, Section 3.2].

The above example may be generalised further to give examples of lenses between
ordinary categories that are not (in general) split opfibrations.

Example 2.19. A bijective-on-objects functor has a lens structure if and only if it has
a chosen section. These correspond to commutative diagrams (2.3) of the form:

B

A B

ϕ

f

All of the examples considered so far are large classes of lenses. What is the smallest
example which is not in any of the above classes?

Example 2.20. Consider the categories A = {• ← • → •} and B = {• → •}. Then
there is a lens (f, ϕ) : A→ B given by,

•

A • •

B • •

f ... ...

where the red arrow is the non-trivial chosen lift.

Note that while this functor has two possible lens structures up to equality, it has
a unique lens structure up to isomorphism. Of course, while this is intuitively clear, a
precise definition of what it means to have a unique lens structure up to isomorphism
will be stated in the next chapter.

16



Chapter 3

The double category of lenses

This chapter forms the foundation for the thesis by introducing the double category
of lenses. Section 3.1 begins by defining the double category of cofunctors, and it is
observed that lenses appear as certain cells in this double category. Using this obser-
vation, Section 3.2 studies the right-connected completion of a double category and
several of its properties. Section 3.3 constructs the double category of lenses as the
right-connected completion of the double category of cofunctors, one of the central
results of this chapter. In Section 3.4, the double category of cofunctors is shown to
be strongly span representable, yielding a diagrammatic approach to cofunctors and
lenses. The chapter concludes with a diagrammatic characterisation of the double cat-
egory of split opfibrations using the décalage construction in Section 3.5. The relevant
background material on double categories and notational conventions for this chapter
may be found in Appendix A.

3.1 The double category of cofunctors

Functors and cofunctors are both useful kinds of morphisms between categories, and
together they can be assembled into a double category.

Definition 3.1. Let Cof be the double category of cofunctors, whose objects are (small)
categories, whose horizontal morphisms are functors, whose vertical morphisms are
cofunctors, and whose cells with boundary given by,

A C

B D

h

(f, ϕ) (g, γ)

k

(3.1)

are such that gh0 = k0f and hϕ(a, u) = γ(ha, ku) for all pairs (a ∈ A, u : fa→ b ∈ B).
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The first condition gh0 = k0f states that the underlying object assignments of the
functors and cofunctors commute, while the second condition hϕ(a, u) = γ(ha, ku)
states that the functors commute with the lifting operations on morphisms.

The double category Cof is a strict double category, as its horizontal composition (of
functors) and vertical composition (of cofunctors) are both unital and associative. It is
also a flat double category, as the cells in Cof are determined by their boundary. Let Cof
be the category whose objects are cofunctors and whose morphisms are cells (3.1). The
double category Cof corresponds to an internal category in CAT given by the diagram:

Cof ×Cat Cof Cof Catcomp dom

cod
id

There are a number of properties of cofunctors introduced in Chapter 2 which may
be understood in terms of the double category Cof. For example, the statement that
every bijective-on-objects functor or discrete opfibration induces a unique cofunctor
(Proposition 2.11) may be understood in terms of companions (Definition A.11) and
conjoints (Definition A.12).

Proposition 3.2. A functor has a vertical conjoint in Cof if and only if it is bijective-
on-objects.

Proof. Suppose that a functor f : A→ B has a vertical conjoint (g, γ) : B → A in Cof.
Then there are cells in Cof of the form:

A B

A A

f

1 (g, γ)

B B

A B

(g, γ) 1

f

These cells imply that f0g = 1B0 and gf0 = 1A0 , and thus f is bijective-on-objects.
Conversely, if f : A → B is bijective-on-objects, then there is a cofunctor con-

sisting of the function f−1
0 : B0 → A0 and the lifting operation which sends a pair

(b ∈ B, u : f−1
0 b→ a ∈ A) to the morphism fu ∈ B. It is straightforward to check that

this cofunctor is a conjoint of f .

Proposition 3.3. A functor has a vertical companion in Cof if and only if it is a
discrete opfibration.

Proof. Suppose that a functor f : A → B has a vertical companion (g, γ) : A → B in
Cof. Then there are cells in Cof of the form:

A B

B B

f

(g, γ) 1

A A

A B

1 (g, γ)

f
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These cells imply that f0 = g, as well as that fγ(a, u) = u and γ(a, fw) = w hold for
all pairs (a ∈ A, u : fa → b ∈ B) and morphisms w : a → a′ ∈ A. Since for all pairs
(a ∈ A, u : fa→ b ∈ B) there exists a unique morphism γ(a, u) such that fγ(a, u) = u,
the functor f is a discrete opfibration.

Conversely, if f : A → B is a discrete opfibration, then there is a cofunctor con-
sisting of the function f0 : A0 → B0 and the lifting operation which sends a pair
(a ∈ A, u : fa→ b ∈ B) to its corresponding unique lift. It is straightforward to check
that this cofunctor is a companion to f .

A double category is horizontally invariant if every invertible horizontal morphism
has a conjoint, or equivalently, a companion. The invertible horizontal morphisms in
Cof are precisely the isomorphisms of categories; these are simultaneously bijective-
on-objects functors and discrete opfibrations. Using either of the above propositions
gives the following statement.

Corollary 3.4. The double category Cof is horizontally invariant.

Another property of cofunctors explored in Chapter 2 was that every cofunctor
(f, ϕ) : A → B determines a category Λ(f, ϕ). This may now be understood in terms
of a certain double-categorical limit (Definition A.19).

Proposition 3.5. The double category Cof has tabulators.

Proof. Using Proposition 2.10, given a cofunctor (f, ϕ) : A → B there is a cell in Cof
given by:

Λ(f, ϕ) A

Λ(f, ϕ) B

ϕ

1 (f, ϕ)

f

To show that this cell has the universal property of the tabulator, consider a cell:

X A

X B

h

1 (f, ϕ)

k

Its existence implies that fh0 = k0 and hw = ϕ(hx, kw) for all w : x→ x′ ∈ X. Then
there exists a unique functor,

X Λ(f, ϕ)

x hx

x′ hx′

j

w

· · ·
(hx, kw)

· · ·
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such that ϕj = h and fj = k, so the required universal property holds.

The following straightforward result implies that Cof is unit-pure (Definition A.17).

Lemma 3.6. The tabulator of a vertical identity in Cof is a vertical identity cell.

While there are several interesting properties of the double category of cofunctors,
many of these will be easier to prove in later chapters once more robust tools have
been developed. A final result which will be useful for this section relates conjoints,
companions, and tabulators through the property of strong tabulators (Definition A.23).

Proposition 3.7. The double category Cof has strong tabulators.

Proof. To show Cof has strong tabulators, it is required that for every cofunctor
(f, ϕ) : A→ B, the following cell is horizontally invertible,

A A

Λ(f, ϕ) A

Λ(f, ϕ) B

B B

ϕ∗ 1
ϕ

1 (f, ϕ)

f∗

f

1

(3.2)

where ϕ∗ and f ∗ are the conjoint and companion of ϕ and f , respectively. Using
the construction of the conjoint and companion of a functor in Proposition 3.2 and
Proposition 3.3, it is straightforward to prove that the vertical composite of ϕ∗ followed
by f ∗ is equal to (f, ϕ). Since Cof is a flat double category, the cell (3.2) must be a
horizontal identity cell, and is therefore horizontally invertible.

The primary consequence of this result is that every cofunctor has a canonical
factorisation, up to isomorphism, into a conjoint (a bijective-on-objects cofunctor)
followed by a companion (a discrete opfibration). In Section 3.4, this will be used to
construct a double category equivalent to Cof whose vertical morphisms are certain
spans of functors.

Recall that the goal of introducing the double category of cofunctors was that it
could be used to construct the double category of lenses. This task will be undertaken
in the next two sections, and is based on the following important observation.
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Lemma 3.8. A pair consisting of a functor f : A→ B and a cofunctor (f0, ϕ) : A→ B

is a lens if and only if there is a cell in Cof of the form:

A B

B B

(f0, ϕ)

f

1

3.2 The right-connected completion

The goal of this section is to study a certain property of double categories called right-
connectedness, which was first introduced by Bourke and Garner [BG16a].

Definition 3.9. A double category D is called right-connected if its identity map
id: D0 → D1 is right adjoint to its codomain map cod: D1 → D0.

Dually, a double category D is called left-connected if its identity map id: D0 → D1

is left adjoint to its domain map dom: D1 → D0.

Every right-connected double category has cotabulators, (Definition A.20) and ev-
ery left-connected double category has tabulators (Definition A.19).

In more detail, a double category is right-connected if for every vertical morphism
f : A •−→B there is a specified cell,

A B

B B

f̂

f ρf 1

such that for every cell α below, there is a unique factorisation:

A X

B X

h

f α 1

k

=
A B X

B B X

f̂

f ρf

k

1k 1

k

(3.3)

Each right-connected double category shares a close relationship with the double
category of squares of its underlying category of objects.

Proposition 3.10. Given a right-connected double category D, there is a canonical
strict double functor D→ Sq(D0) with action on cells given by:

A C

B D

h

f α g

k

7−→
A C

B D

h

f̂ ĝ

k
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Proof. An abstract proof is outlined in [BG16a, Section 3.2]. An explicit proof follows
from direct application of the universal property (3.3).

Let RcDBL be the category of right-connected double categories and unitary double
functors, that is to say, double functors which strictly preserve vertical identities. Let
(−)0 : RcDBL→ Cat be the functor sending each double category D to its category of
objects D0, and let Sq : Cat → RcDBL be the functor sending each category C to its
(right-connected) double category of squares Sq(C).

Proposition 3.11. The functor (−)0 : RcDBL→ Cat is left adjoint left inverse to the
functor Sq : Cat→ RcDBL.

Proof. It is immediate that the composite (−)0◦Sq is the identity functor on Cat, while
the components of the unit of the adjunction are described by Proposition 3.10. It is
straightforward to show these components form a natural transformation, and that the
triangle identities of an adjunction hold.

Given any double category, it is natural to wonder if it can be completed to a double
category with a specified property. This question will now be answered for the property
of right-connectedness.

Definition 3.12. The right-connected completion of a double category D is a double
category Γ(D) whose objects and horizontal arrows are those of D, whose vertical arrows
are triples (f, α, f ′) given by cells in D of the form,

A B

B B

f ′

f α 1

and whose cells are given by those cells θ in D which satisfy the following condition:

A C D

B D D

h

f θ

g′

g β 1

k

=
A B D

B B D

f ′

f α

k

1 1k 1

k

The identity vertical morphism on an object A in Γ(D) is the cell in D given by,

A A

A A

1 1A 1
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while composition of vertical arrows in Γ(D) is the composite cell in D given by:

A B C

B B C

C C C

f ′

f α

g′

1 1

g g

g′

β 1

Horizontal composition and identities correspond to those in D.

The following result is evident from the construction of Γ(D).

Lemma 3.13. The right-connected completion of a double category is right-connected.

There is a close relationship between a double category D and its right-connected
completion Γ(D) given by a faithful double functor.

Lemma 3.14. Given a double category D, there is a canonical strict double functor
Γ(D)→ D with action on cells given by:

A C

B D

h

(f, α, f ′) θ (g, β, g′)

k

7−→
A C

B D

h

f θ g

k

Let Dblunit be the category of double categories and unitary double functors. There
is a fully faithful functor RcDBL→ Dblunit which includes the right-connected double
categories. The following result justifies Γ(D) as the right-connected completion of D.

Theorem 3.15. The fully faithful functor RcDBL→ Dblunit has a right adjoint given
by the right-connected completion Γ.

Proof. It is required to show that given a unitary double functor F : C→ D, where C
is right-connected, and the canonical double functor Γ(D)→ D defined in Lemma 3.14,

Γ(D)

C D

F

F

(3.4)

there exists a unique unitary double functor F such that the diagram commutes.
For the diagram (3.4) to commute, the functor F must agree with F on objects

and arrows. Since C is right-connected and F is unitary, given a vertical morphism
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f : A •−→B in C there is an assignment on cells,

A B

B B

f̂

f ρf 1 7−→
FA FB

FB FB

F f̂

Ff Fρf 1

that determines F (f) = (Ff, Fρf , Ff ′) on vertical morphisms. On cells F (θ) = F (θ)
which is well-defined since C is right-connected. It is straightforward to show that
the assignment F extends to a unitary double functor which makes the diagram (3.4)
commute.

The above theorem establishes the universal property of Γ(D) as the right-connected
completion of a double category D. If D is already right-connected, then Γ(D) ∼= D.

There are a number of convenient properties that Γ(D) inherits from D which are
collected below. Given their straightforward and elementary nature, the proofs are
omitted.

Lemma 3.16. If D is a flat double category, then Γ(D) is a flat double category.

Lemma 3.17. A morphism has a vertical companion in Γ(D) if and only it has a
vertical companion in D.

Lemma 3.18. Let D be a horizontally invariant double category. A morphism has a
vertical conjoint in Γ(D) if and only if it is horizontally invertible. Moreover, Γ(D) is
horizontally invariant.

Lemma 3.19. If D is a unit-pure double category with tabulators, then Γ(D) is a
unit-pure double category with tabulators.

While this section has focused on right-connected double categories, all of the results
hold similarly for left-connected double categories. In Chapter 4, the left-connected
completion of the double category Span(Set) will play an important role.

3.3 The double category of lenses

It is now time to introduce the main mathematical structure of the thesis.

Definition 3.20. Let Lens be the double category of lenses whose objects are (small)
categories, whose horizontal morphisms are functors, whose vertical morphisms are
lenses, and whose cells,

A C

B D

h

(f, ϕ) (g, γ)

k

(3.5)
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are such that gh = kf and hϕ(a, u) = γ(ha, ku) for all pairs (a ∈ A, u : fa→ b ∈ B).

The double category Lens is a strict double category, as its horizontal composition
(of functors) and vertical composition (of lenses) are both unital and associative. Let
Lens be the category whose objects are lenses and whose morphisms are cells (3.5).
The double category Lens corresponds to an internal category in CAT given by the
diagram:

Lens×Cat Lens Lens Catcomp dom

cod
id

The following statement is the main result of the chapter, and is the basis on which
generalisations of lenses in future chapters depends.

Theorem 3.21. The double category of lenses Lens is the right-connected completion
of the double category of cofunctors Cof.

Proof. Using Definition 3.12, the right-connected completion Γ(Cof) has categories as
objects and functors as horizontal morphisms. The vertical morphisms in Γ(Cof) are
cells in Cof, ensuring by definition that fϕ(a, u) = u.

A B

B B

(f0, ϕ)

f

1

Thus by Proposition 2.4, the vertical morphisms are precisely lenses. Furthermore, the
cells in Γ(Cof) given by,

A C

B D

h

(f, ϕ) (g, γ)

k

are given by cells in Cof,
A C

B D

h

(f0, ϕ) (g0, γ)

k

between their underlying cofunctors such that kf = gh. Finally, the composition and
identities clearly correspond, therefore Γ(Cof) ∼= Lens.

Conceptually, this theorem not only reaffirms that lenses consist of two parts, func-
tors and cofunctors, but it also demonstrates that lenses are constructed from these
parts in a universal way via the right-connected completion. Indeed, there are forgetful
double functors:

Cof ←− Lens −→ Sq(Cat)
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Moreover, Theorem 3.21 shows that many properties of the double category Lens are
inherited from the double category Cof, or arise as properties which hold for any right-
connected completion. This perspective will be utilised in future chapters where Cof
is replaced by a more general, yet similar, double category D, and the theory of Γ(D)
is studied.

Some of the immediate properties of Lens include:

• Lens is a flat double category (Lemma 3.16);

• A functor has a companion in Lens if and only if it is a discrete opfibration
(Lemma 3.17);

• A functor has a conjoint in Lens if and only if it is an isomorphism (Lemma 3.18);

• Lens is a horizontally invariant double category (Lemma 3.18);

• Lens is a unit-pure double category with tabulators (Lemma 3.19).

Further properties of Lens will established in the following chapters.

3.4 Span representability

A double category D is span representable if it has tabulators, its category of objects
D0 has pullbacks, and the canonical lax double functor D→ Span(D0), which sends a
vertical morphism to the span constructed by its tabulator, is faithful [GP17].

Proposition 3.22. The double category Cof is span representable.

Proof. By Proposition 3.5, Cof has tabulators, and its category of objects is given by
Cat which has pullbacks. Finally, since Cof is a flat double category, the lax double
functor Cof → Span(Cat) is faithful.

The goal of this section is to show that Cof satisfies a particularly strong version
of span representability, defined as follows.

Definition 3.23. A double category D is strongly span representable if it has tabu-
lators, its category of objects D0 has pullbacks, and the canonical lax double functor
D→ Span(D0) is strong and fully faithful.

Previous work of Niefield [Nie12] has shown that if a span representable double
category has all companions and conjoints, then the lax double functor D→ Span(D0)
has a unitary oplax left adjoint. The thesis of Aleiferi [Ale18] studies further conditions
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on D for this adjunction to form an equivalence of double categories. The idea behind
strongly span representable double categories D is that they are equivalent to full
double subcategories of Span(D0), simply by restricting to the essential image of the
canonical double functor D→ Span(D0).

Theorem 3.24. The double category Cof is strongly span representable.

Proof. Consider the canonical double functor Cof → Span(Cat) whose assignment on
cells is constructed using tabulators:

A C

B D

h

(f, ϕ) (g, γ)

k

7−→

A C

Λ(f, ϕ) Λ(g, γ)

B D

h

ϕ

f

Λh,k

γ

g

k

(3.6)

Given the identity cofunctor (1A0 , π) on a category A, the category Λ(1A0 , π) is
canonically isomorphic to A via the assignment-on-morphisms π(a, w : a → a′) = w.
Thus there is a horizontally invertible cell:

A A

Λ(1A0 , π) A

A A

π

1A0

π

1A

1A

Let (h, ψ) : A→ C denote the composite of (f, ϕ) : A→ B and (g, γ) : B → C, and
consider the category X := Λ(f, ϕ)×B Λ(g, γ) given by the pullback,

X

Λ(f, ϕ) Λ(g, γ)

A B C

yπ1 π2

ϕ f γ g

whose objects may be taken to be those of A and whose morphisms are pairs of pairs
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((a, γ(fa, u)), (fa, u)) with respect to the following illustration:

A a a′

B fa b

C gfa c

(f,ϕ) ...

ϕ(a, γ(fa, u))

...

(g,γ)

γ(fa, u)

... ...
u

On the other hand, the category Λ(h, ψ) has the same objects as A and morphisms
given by pairs (a, u : gfa → c). There is a canonical isomorphism X ∼= Λ(h, ψ) with
assignment-on-morphisms ((a, γ(fa, u)), (fa, u)) 7→ (a, u). Thus there is a horizontally
invertible cell:

A A

X Λ(h, ψ)

C C

ϕπ1

gπ2

∼=

ψ

h

This shows that the canonical lax double functor Cof → Span(Cat) is a pseudo double
functor.

The double functor Cof → Span(Cat) is full if for every commutative diagram,

A C

Λ(f, ϕ) Λ(g, γ)

B D

h

ϕ

f

j

γ

g

k

(3.7)

there is a cell in Cof of the form:

A C

B D

h

(f, ϕ) (g, γ)

k

Commutativity of (3.7) determines the functor j, since necessarily j0 = h0 and j(a, u) =
(ha, ku) for each morphism (a, u) ∈ Λ(f, ϕ). Furthermore, since γj = hϕ, it follows
that γ(ha, ku) = hϕ(a, u). Therefore (3.7) determines a corresponding cell in Cof.

What is the essential image of the fully faithful double functor Cof → Span(Cat)?
Suppose W and M are classes of functors which contain the isomorphisms, are closed
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under composition, and stable under pullback. Let Span(Cat,W,M) be the full double
subcategory of Span(Cat) determined by spans whose left leg is in W and whose right
leg is in M.

Proposition 3.25. There is an equivalence of double categories,

Cof ' Span(Cat,W,M)

where W is the class of bijective-on-objects functors, and M is the class of discrete
opfibrations.

Proof. There is a pseudo double functor Cof → Span(Cat,W,M) defined by (3.6), and
it is fully faithful by Theorem 3.24. Moreover, it is essentially surjective on vertical
morphisms by Proposition 2.11. Therefore, Cof ' Span(Cat,W,M) as required.

The central benefit of this result is that it facilitates an entirely diagrammatic ap-
proach to cofunctors and the double category Cof, utilising basic properties of bijective-
on-objects functors and discrete opfibrations. It is worth noting that although Cof is a
strict double category, Span(Cat,W,M) is only a pseudo double category. The equiv-
alence in Proposition 3.25 may be made an isomorphism of double categories through
taking isomorphism classes of spans in Span(Cat,W,M), however this overly-strict
approach will not be used in this thesis.

What does Proposition 3.25 reveal about the double category of lenses? Con-
sider the right-connected completion Γ(Span(Cat,W,M)) whose vertical morphisms
are commutative triangles of functors,

X

A B

ϕ fϕ

f

where ϕ is a bijective-on-objects functor and fϕ is a discrete opfibration, and whose
cells are commutative diagrams of the form:

A C

X Y

B D

h

f g
ϕ

fϕ

γ

gγ

k

(3.8)

Theorem 3.26. There is an equivalence of double categories,

Lens ' Γ(Span(Cat,W,M))
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where W is the class of bijective-on-objects functors, and M is the class of discrete
opfibrations.

Proof. Follows immediately from Theorem 3.21 and Proposition 3.25.

This theorem is the cornerstone for almost every major result in this thesis, and is
the basis for a generalised diagrammatic approach to lenses in Chapter 6. Given the
ubiquity of these results, the equivalences in Proposition 3.25 and Theorem 3.26 will
often be used without remark and treated like identities.

3.5 Split opfibrations via décalage

Split opfibrations are perhaps the most important example of lenses, and it is interesting
to find new ways of characterising when a lens is a split opfibration. The standard
definition of split opfibrations uses opcartesian morphisms. The goal of this section is
to characterise split opfibrations as lenses satisfying a certain diagrammatic property
with respect to the décalage construction.

Definition 3.27. The décalage construction is an endofunctor D : Cat → Cat which
assigns each category A to the coproduct of its slice categories:

DA =
∑
a∈A

A/a

In detail, given a category A the décalage DA is a category whose objects are
morphisms in A, and whose morphisms u : w → v are commutative triangles:

x y

a

u

w v
(3.9)

There is a canonical natural transformation which makes the décalage construction
into a copointed endofunctor:

Cat Cat
D

1

ε

The component functors εA : DA→ A assign each object in DA, given by a morphism
in A, to its domain. A morphism (3.9) in DA is sent by εA to the morphism u ∈ A.

Given a functor f : A→ B which has the structure of a lens, under what conditions
does the functor Df : DA→ DB have the structure of a lens? Consider the following
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commutative diagram of functors,

X ×A DA DA DB

X A B

π1

π2

y
εA

Df

εB

ϕ f

(3.10)

where ϕ is bijective-on-objects and fϕ is a discrete opfibration, therefore yielding a lens
(f, ϕ) : A→ B. Note that since bijective-on-objects functors are stable under pullback,
the functor π2 is bijective-on-objects. By Proposition 2.13, the only obstruction to Df
being a lens is that the composite functor Df ◦ π2 may not be a discrete opfibration.
Surprisingly, this is the same obstruction to the lens (f, ϕ) being a split opfibration.

Theorem 3.28. A lens (f, ϕ) : A→ B is a split opfibration if and only if the functor
Df ◦ π2 : X ×A DA→ DB in (3.10) is a discrete opfibration.

Proof. Without loss of generality, assume that ϕ is identity-on-objects. Up to isomor-
phism, the category X ×A DA has the same objects as DA given by morphisms in A.
The morphisms in X ×A DA are given by commutative diagrams (3.9) such that u is
a chosen lift of the lens (f, ϕ).

The functor Df ◦ π2 is a discrete opfibration if and only if given a morphism
w : a → a′′ in A (an object of X ×A DA) and a pair of morphisms u : fa → b and
v : b→ fa′′ in B such that fw = v ◦ u (a morphism of DB with domain (Df ◦ π2)(w))
as shown below,

a p(a, u)

a′′

fa b

fa′′

ϕ(a,u)

w
v̂

u

fw v

there is a unique morphism v̂ : p(a, u) → a′′ such that v̂ ◦ ϕ(a, u) = w and fv̂ = v (a
unique lift). However, this condition holds if and only if each ϕ(a, u) is an opcartesian
morphism. Since a lens (f, ϕ) is a split opfibration if and only if each chosen lifting
ϕ(a, u) is opcartesian, this completes the proof.

This characterisation of split opfibrations is completely diagrammatic, in the sense
that it utilises closure properties of certain classes of functors in Cat. The following
result answers the question of when the décalage of a functor is a lens.
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Corollary 3.29. If (f, ϕ) : A→ B is a split opfibration, then Df : DA→ DB has the
structure of a lens, and there is a cell in Lens given by:

DA A

DB B

εA

(Df, π2) (f, ϕ)

εB

(3.11)

Using the characterisation in Theorem 3.28, it may be shown that split opfibra-
tions compose by just using basic properties of discrete opfibrations. Let SOpf denote
the full double subcategory of Lens on the vertical morphisms which are split op-
fibrations, and let SOpf be its category of morphisms. The décalage construction
D : Cat→ Cat extends to a functor D : SOpf → Lens with a natural transformation to
the inclusion SOpf ↪→ Lens whose components are the cells (3.11). Chapter 4 further
studies the relationship between lenses and split opfibrations from the perspective of
the Grothendieck construction.
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Chapter 4

Lenses as lax double functors

The aim of this chapter is to establish an equivalence between lenses into a category B,
and lax double functors out of a double category V(B). More formally, there is an
equivalence of categories whose objects are lenses and lax double functors, respectively.

Let LensB be the fibre over B of the codomain map cod: Lens → Cat of the
double category of lenses. Let [C,D]lax be the category of lax double functors from C
to D and horizontal transformations. Let V(B) be the vertical double category of B
(Example A.10). The main theorem of this chapter (Theorem 4.14) establishes an
equivalence of categories,

LensB ' [V(B),SMult]lax

between the category LensB and the category of lax double functors from V(B) into
the double category SMult of split multi-valued functions.

The proof of the main result first involves introducing the double category SMult,
and understanding its universal property as the left-connected completion of the double
category of spans. Section 4.1 begins the chapter with a review of the left-connected
completion as the formal dual to the right-connected completion (first introduced in
Section 3.2). For a double category equipped with a functorial choice of companions,
the left-connected completion is shown to have both a new 1-dimensional universal
property (Theorem 4.4) and a new 2-dimensional universal property (Theorem 4.6)
with respect to globular transformations. In Section 4.2, the left-connected completion
is applied to the double category Span, which has a functorial choice of companions, to
yield the double category of split multi-valued functions. Using the universal property
of SMult, the proof of the main result (Theorem 4.14) is completed in Section 4.3.

The chapter concludes with an application of the main result to understanding
several kinds of lenses. Section 4.4 focuses on a new characterisation of split opfibrations
as lax double functors with a simple property, while Section 4.5 investigates various
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classes of lenses which arise naturally from a fibred perspective.

4.1 Companions and the left-connected completion

The goal of this section is to study the left-connected completion of a double category
equipped with a functorial choice of companions.

Companions (Definition A.11) are one of the most useful concepts in double category
theory, and many double categories enjoy the property that every horizontal morphism
has a vertical companion. A double category D equipped with a functorial choice of
companions expresses this property via structure, and induces a strict double functor
Sq(D0)→ D as shown in Lemma 4.1. In comparison, left-connectness is a property of
a double category (Definition 3.9) which induces a strict double functor D → Sq(D0)
without any additional choices (Proposition 3.10). Perhaps surprisingly, these two
properties of a double category are closely related (Proposition 4.2) via an adjunction:

Sq(D0) D> (4.1)

The left-connected completion (Definition 4.3) completes a double category D to a
double category Γ′(D) under the property of left-connectedness. As a formal dual to
right-connected completion which was first introduced in Section 3.2, the left-connected
completion enjoys an analogous universal property (Theorem 3.15) and comes equipped
with a strict double functor Γ′(D) → D (Lemma 3.14). In the case that D has a
functorial choice of companions, whiskering the counit of the adjunction (4.1) with the
double functor Γ′(D)→ D yields a globular transformation of double functors:

Γ′(D)

Sq(D0) D

The main result of this section is to show that the above transformation, constructed
from the left-connected completion of a double category equipped with a functorial
choice of companions, enjoys both a 1-dimensional universal property (Theorem 4.4)
and a 2-dimensional universal property (Theorem 4.6). These universal properties are
stronger than the standard universal property of the left-connected completion which
does not assume a functorial choice of companions (Proposition 4.5), and are essential
for proving the main result of the chapter in Section 4.3.

Without further ado, recall (Definition A.11) that a double category is equipped
with a functorial choice of companions if every horizontal morphism f : A → B has a
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chosen vertical companion f∗ : A •−→B, and the equations (1A)∗ = 1A and (gf) = g∗f∗

hold.

Lemma 4.1. If D is a double category equipped with a functorial choice of companions,
then there is a strict double functor (−)∗ : Sq(D0) → D with an assignment on cells
given by:

A C

B D

h

f g

k

7−→

A A C

A C D

A B D

B B D

h

1 1h 1 ♦ g∗

11
h g

1

f∗

f

♥

k

1 1k 1

k

(4.2)

Proof. Follows from routine application of the pasting conditions for companions.

Recall that a double category D is left-connected (Definition 3.9) if its identity map
id: D0 → D1 is left adjoint to its domain map dom: D1 → D0. In elementary terms, a
double category is left-connected if for every vertical morphism f : A •−→B there exists
a cell,

A A

A B

1 λf f

f̂

such that for every cell α there is a unique factorisation:

X A

X B

h

1 α f

k

=
X A A

X A B

h

1 1h 1 λf f

h f̂

(4.3)

By the dual of Proposition 3.10, every left-connected double category admits a strict
double functor (−̂) : D→ Sq(D0) with an assignment on cells given by:

A C

B D

h

f α g

k

7−→
A C

B D

h

f̂ ĝ

k

There is an interesting similarity between double categories with companions, and
left-connected double categories. Both involve cells ♦ or λ, linking a vertical morphism
with a horizontal morphism, which satisfy a universal property (A.1) or (4.3). The
following result explains the relationship between these properties of double categories.
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Proposition 4.2. Given a left-connected double category D with a functorial choice of
companions, there is an adjunction of double categories:

Sq(D0) D
(−)∗

>
(−̂)

Proof. Given a horizontal morphism f : A→ B with a vertical companion f∗ : A •−→B,
one may observe from the universal property of left-connectedness (4.3) applied to the
cell ♦ that:

A A

A B

1 λf∗ f∗

f̂∗

=
A A

A B

1 ♦ f∗

f

Therefore, the composite of (−)∗ followed by (−̂) is the identity functor on Sq(D0),
and the unit of the adjunction is taken to be the identity transformation.

Given a vertical morphism g : A •−→ B, the universal property of the companion
(A.1) applied to the cell λg determines the component of the counit ε:

A A

A B

1 λg g

ĝ

=
A A A

A B B

1 ♦ ĝ∗ εg g

ĝ

It is straightforward to show that this defines an adjunction of double categories.

Note that the counit ε is a globular transformation of double functors, since its
components are globular cells. This is important for characterising the left-connected
completion of a double category with companions in Theorem 4.4.

Definition 4.3. The left-connected completion of a double category D is the double
category Γ′(D) whose objects and horizontal morphisms are those of D, whose vertical
morphisms (f, α, f ′) : A •−→B are cells in D of the form,

A A

A B

1 α f

f ′

and whose cells θ are those of D which satisfy the following condition:

A A C

A B D

1 α f

h

θ g

f ′ k

=
A C C

A C D

h

1 1h 1 β g

h g′

The vertical identities and composition are analogous to those in Definition 3.12.
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The left-connected completion of a double category D is equipped with a canonical
strict double functor R : Γ′(D) → D by duality with the right-connected completion
(Lemma 3.14). It is also easy to see that if D is equipped with a functorial choice
of companions, then Γ′(D) is also equipped with a functorial choice of companions.
Whiskering with the counit ε of the adjunction in Proposition 4.2 with the double
functor R yields a globular transformation φ := εR of strict double functors:

Γ′(D)

Sq(D0) D

L R

(−)∗

φ (4.4)

The following theorem shows that the cell (4.4), constructed from the left-connected
completion of any double category equipped with a functorial choice of companions,
enjoys a 1-dimensional universal property with respect to globular transformations
between lax double functors.

Theorem 4.4. Let D be a double category with a functorial choice of companions.
Given a globular transformation between lax double functors,

C

Sq(D0) D

F1 F2

(−)∗

ψ (4.5)

there exists a unique lax double functor F : C → Γ′(D) such that φF = ψ, LF = F1

and RF = F2.

Proof. Since ψ is a globular transformation and (−)∗ is the identity on objects and
horizontal morphisms, the lax double functors F1 and F2 agree on objects and horizontal
morphisms; denote this common assignment by F . For a vertical morphism f : A •−→B

in C, define vertical morphism in Γ′(D) by the cell:

FA FA FA

FA FB FB

1 ♦ (F1f)∗ ψf F2f

F1f

Given a cell α in C, naturality of ψ yields the equation:

FA FA FC

FB FB FD

ψf(F1f)∗ F2α

Fh

F2f F2g

Fk

=
FA FC FC

FB FD FD

(F1α)∗

Fh

(F1f)∗ (F1g)∗ ψg F2g

Fk
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Pasting the cell ♦ for the companion of F1f on both sides of the equation above, and
simplifying by noting that (F1α)∗ is of the form (4.2), yields the following equation:

FA FA FA FC

FA FB FB FD

1 ♦ (F1f)∗ ψf

Fh

F2αF2f F2g

F1f Fk

=
FA FC FC FC

FA FC FD FD

1

Fh

1Fh 1 ♦ (F1g)∗ ψg F2g

Fh F1g

This shows that there is a well-defined assignment on cells defined by sending a cell α
in C to the cell F2α in Γ′(D).

Altogether, the data above define a lax double functor F : C→ Γ′(D), whose laxity
comparison cells are inherited from F2. While it is tricky to prove concisely in the
our chosen notation, the universal property of companions can be used to show that
φF = ψ, while LF = F1 and RF = F2 by the construction of F .

The universal property of (4.4) presented in Theorem 4.4 completely characterises
the left-connected completion among double categories with companions. The following
is the analogous statement to Proposition 3.15 for this setting.

Proposition 4.5. Let C and D be double categories with a functorial choice of com-
panions. If C is left-connected, then for every unitary double functor F : C→ D there
exists a unique unitary double functor F : C→ Γ′(D) such that RF = F .

Proof. There is a commutative square of unitary double functors given by:

Sq(C0) C

Sq(D0) D

(−)∗

Sq(F0) F

(−)∗

Globular transformations are closed under whiskering with unitary double functors,
and pasting the above square with the counit ε of the adjunction in Proposition 4.2
applied to C yields a globular transformation:

C

Sq(D0) D

F

(−)∗

Fε (4.6)

Finally, applying Theorem 4.4 yields the desired result.
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In addition to the 1-dimensional universal property presented in Theorem 4.4, the
globular transformation (4.4) also has a 2-dimensional universal property with respect
to horizontal transformations between lax double functors. The proof is very similar
to Theorem 4.4 and is omitted.

Theorem 4.6. Let D be a double category equipped with a functorial choice of com-
panions. Given lax double functors F and G, and horizontal transformations α and β
such that,

C

Γ′(D) Γ′(D)

Sq(D0) D

F G

α

L

L R

(−)∗

φ

=

C

Γ′(D) Γ′(D)

Sq(D0) D

F G

β

L R

R

(−)∗

φ

(4.7)

there is a unique horizontal transformation δ : F ⇒ G such that Lδ = α and Rδ = β.

4.2 Split multi-valued functions

The goal of this section is to introduce the double category of split multi-valued func-
tions (Definition 4.8), and show that it is isomorphic to the the left-connected com-
pletion of the double category of spans (Proposition 4.9). Although only the universal
property of the induced globular transformation (Corollary 4.10) is required for the
main result in Section 4.3, the section begins with a detailed examination of split
multi-valued functions as they are used for applications in Section 4.4 and Section 4.5.

Definition 4.7. A split multi-valued function is span of functions whose left leg has a
chosen section (or right inverse):

A X B (4.8)

A multi-valued function is a span of functions whose left leg is an epimorphism.

Remark. There are two important ways in which the definition of (split) multi-valued
function is more general than one might expect. First, it is not required that the
underlying span be jointly monic, so not every multi-valued function is a relation.
Second, isomorphism classes of spans are not used, so composition of multi-valued
functions is not strictly associative.
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The identity split multi-valued function on a set A is given by the diagram:

A A A
1A

1A

1A

Given a composable pair of split multi-valued functions A 9 B and B 9 C, their
composite is given by pullback:

X ×B Y

X Y

A B C

〈1, γt〉

πX

πYy

ϕ

s

t γ

p

q

Composition is well-defined since split epimorphisms are closed under composition and
stable under pullback.

Let Span denote the double category of sets, functions, and spans (Example A.4).
A split multi-valued function (4.8) is the same as a particular cell in Span of the form:

A A

A X

A B

(4.9)

Definition 4.8. Let SMult be the double category of split multi-valued functions whose
objects are sets, horizontal morphisms are functions, vertical morphisms are split multi-
valued functions (4.8) and cells are commutative diagrams of functions,

A C

X Y

B D

h

ϕ γs

t

j

p

q

k

(4.10)

where sϕ = 1A, pγ = 1C , pj = hs, qj = kt, and γh = jϕ. Horizontal identities and
composition are given by pasting these commutative diagrams, while vertical identities
and composition are defined as above.

The following result shows that the double category of split multi-valued functions
is the left-connected completion of the double category of spans.
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Proposition 4.9. There is an isomorphism of double categories SMult ∼= Γ′(Span).

Proof. The objects and horizontal morphisms of both double categories are the same,
and from (4.9) a split multi-valued function is the same as a vertical morphism in
Γ′(Span). By Definition 4.3, a cell in the left-connected completion Γ′(Span) is given
by a cell in Span satisfying the equation,

A A C

A X Y

A B D

h

ϕ

s

t

j

p

q

tϕ k

=

A C C

A C Y

A C D

h

h γ

p

q

h qγ

(4.11)

which is the same as a cell (4.10). This demonstrates that the SMult and Γ′(Span)
have the same objects, horizontal morphisms, vertical morphisms, and cells. It is
straight-forward to show that the identities and composition also coincide.

The double category of spans is equipped with a functorial choice of companions
(Example A.13), and therefore its left-connected completion induces a globular cell
(4.4) whose universal properties will be used in the proof of main result of this chapter.

Corollary 4.10. There is a globular transformation of strict double functors,

SMult

Sq(Set) Span

L R

(−)∗

φ (4.12)

whose component at a split multi-valued function is given by the cell:

A A

A X

B B

1A

tϕ

ϕ

s

t

(4.13)

4.3 The Grothendieck construction for lenses

The goal of this section to the prove an equivalence of categories,

LensB ' [V(B),SMult]lax
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between the category LensB and the category of lax double functors from V(B) into
the double category SMult of split multi-valued functions (Theorem 4.14). The right-
to-left functor is called the Grothendieck construction for lenses, as it generalises the
classical Grothendieck construction for split opfibrations.

The proof utilises both the 1-dimensional and 2-dimensional universal properties
of SMult as the left-connected completion of the double category Span, together
with two classical variations of the Grothendieck construction for discrete opfibrations
(Lemma 4.11) and ordinary functors (Lemma 4.12). The final piece of the proof is the
observation that globular transformations between lax double functors from V(B) into
Span correspond to identity-on-objects functors (Lemma 4.13), and linking this to the
representation of lenses as commutative diagrams of functors (Proposition 2.12).

To prepare for the proof of the main result, recall that the category LensB is defined
as the fibre over B of the codomain functor cod: Lens → Cat of the double category
of lenses. Therefore, the objects in LensB are lenses with codomain B, and morphisms
are commutative diagrams (3.8) of the form:

A C

X Y

B B

h

f g
ϕ

fϕ

γ

gγ

Also recall from Example A.10 that given a category B, there is a double category
V(B) whose objects and vertical morphisms are those of B, and whose horizontal
morphisms and cells are identities.

There are two variants of the Grothendieck construction involving double categories
which are required for the main proof.

The first is known classically as the category of elements construction, which demon-
strates an equivalence between discrete opfibrations and Set-valued functors. Let the
category DOpfB be the fibre over B of the codomain functor cod: DOpf → Cat of
the double category DOpf of discrete opfibrations. More plainly, DOpfB is the full
subcategory of Cat/B determined by the discrete opfibrations. The following lemma is
a simple restatement of the category of elements construction using double categories.

Lemma 4.11. For each small category B, there is an equivalence of categories,

DOpfB ' [V(B),Sq(Set)]

between the category of discrete opfibrations over B, and the category of strict double
functors from V(B) into the double category of squares Sq(Set).
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The second variant involves an equivalence between ordinary functors and Span-
valued lax double functors. While the result is certainly classical, it is difficult to
ascertain exactly where it was first proved. It is likely that the version for bicategories
was known to Jean Bénabou; some details of the double-categorical version are present
in the paper by Paré [Par11].

Lemma 4.12. For each small category B, there is an equivalence of categories,

Cat/B ' [V(B),Span]lax

between the slice category of functors over B, and the category of lax double functors
from V(B) into the double category of spans Span. Let

∫
: [V(B), Span]lax → Cat/B

denote the right-to-left direction of this equivalence.

Given a lax double functor F : V(B) → Span, the functor
∫
F → B is a discrete

opfibration if and only if F factors through the inclusion (−)∗ : Sq(Set) → Span as
depicted below.

V(B)

Sq(Set) Span
F

(−)∗

(4.14)

There is a final lemma which is required before proving the main result.

Lemma 4.13. Globular transformations between lax double functors,

VB Span
F

G

ϕ

are equivalent to commutative diagrams in Cat,

∫
F

∫
G

B

∫
ϕ

such that
∫
ϕ is an identity-on-objects functor.

Proof. Follows directly from restricting Lemma 4.12 to globular transformations.

Theorem 4.14. For each small category B, there is an equivalence of categories,

LensB ' [V(B),SMult]lax

between the category of lenses over B, and the category of lax double functors from
V(B) into the double category of split multi-valued functions SMult.
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Proof. By the 1-dimensional universal property (Theorem 4.4) of the globular trans-
formation (4.12) induced by SMult as the left-connected completion of Span, there is
an equivalence between lax double functors F : V(B) → SMult and globular transfor-
mations of the form:

V(B)

Sq(Set) Span

LF RF

(−)∗

φF (4.15)

By Lemma 4.11, the lax double functor LF : V(B) → Sq(Set), is equivalent to a
discrete opfibration over B. Post-composing LF by (−)∗ is likewise equivalent to a
discrete opfibration by (4.14). Therefore, by Lemma 4.13, the transformation φF is
equivalent to a commutative diagram of functors,

∫
LF

∫
RF

B

∫
φF

π1 π2
(4.16)

where
∫
φF is identity-on-objects and π1 is a discrete opfibration. By Proposition 2.13,

the diagram (4.16) is equivalent to a lens over B.
By the 2-dimensional universal property (Theorem 4.6) of the globular transfor-

mation (4.12) induced by SMult as the left-connected completion, given lax double
functors F,G : V(B)→ SMult, there is an equivalence between horizontal transforma-
tions θ : F ⇒ G and horizontal transformations Lθ : LF ⇒ LG and Rθ : RF ⇒ RG

such that:

VB VB

Sq(Set) Span
LF

1

LG
RG

(−)∗

φG
Lθ =

VB VB

Sq(Set) Span

1

LF
RF

RG

(−)∗

φF
Rθ

By Lemma 4.12, this is equivalent to the following morphisms in Cat/B:

∫
LF

∫
LG

∫
RG

B

∫
Lθ

∫
φG

=

∫
LF

∫
RF

∫
RG

B

∫
φF

∫
Rθ

By Theorem 3.26, the diagram above is equivalent to a morphism of lenses over B.

Conceptually, the central idea of this theorem is that lenses may be understood
as generalised fibrations. Given a lens (f, ϕ) : A → B, for every morphism u : x → y
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in B, there is a split multi-valued function between the fibres. The splitting of the
multi-valued function is capturing the information of the chosen lifts of the lens.

Another key benefit is the new perspective this fibred approach to lenses provides.
Rather than beginning with a functor and attempting to build a lens structure on it
(which may not exist), one may start with a category and build a lens into it via a “lax
diagram” into SMult. In a sense, SMult is a classifying object for lenses.

Section 3.5 provided a new characterisation of split opfibrations in terms of lenses
using the décalage construction. In the next section, a new characterisation of split
opfibrations in terms of lax double functors into SMult is studied.

4.4 Split opfibrations as lax double functors

The classical Grothendieck construction is the right-to-left direction of the well-known
equivalence of categories,

SOpfB ' [B,Cat]

between the category of split opfibrations over B and the category of functors from
B to Cat. However, split opfibrations are also lenses with a certain property, so it is
natural to ask how this property might transfer under the equivalence in Theorem 4.14.
The goal of this section is to show that lax double functors V(B) → SMult satisfying
a local invertibility requirement are equivalent to split opfibrations (Proposition 4.15).

Consider a lax double functor F : V(B) → SMult. Using the components of the
globular transformation (4.15) and the composition comparison cell µ for F , there
exists a cell,

F (x) F (x) F (x)

F (y) F (y)

F (y) F (y) F (y)

εu(LF (u))∗ F (u)

F (u)

1F (1y)

µu,y

F (1y)

(4.17)

in SMult which may be constructed for all morphisms u : x→ y ∈ B. The cell εu above
is defined by the following morphism in SMult:

F (x) F (x)

F (x) F (u)

F (y) F (y)

1 ϕu1

tuϕu

ϕu

su

tu
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Proposition 4.15. A lax double functor F : V(B) → SMult is equivalent to a split
opfibration if and only if the cell (4.17) is horizontally invertible.

Proof. Consider the composite of the vertical morphisms (LF (u))∗ : F (x) •−→F (y) and
F (1y) : F (y) •−→ F (y) in SMult:

F (x, 1y)

F (x) F (1y)

F (x) F (y) F (y)

〈1,ηytuϕu〉

πx

πyy

1

1

tuϕu
ηy

sy

ty

The cell (4.17) is invertible if and only if the function,

µu,y(ϕu × 1) : F (x, 1y)→ F (u)

is a bijection, which holds if and only if there exists a function χu : F (u) → F (1y)
rendering the following three diagrams commutative:

F (u) F (1y)

F (x) F (y)

χu

su sy

tuϕu

F (x, 1y) F (1y)

F (u, 1y) F (u)

πy

ϕu×1

µu,y

χu

F (u)

F (u, 1y) F (u)

〈ϕusu,χu〉
1

µu,y

Altogether, these diagrams are equivalent to stating that for each w : a → a′ ∈ F (u)
there exists a unique χu(w) ∈ F (1y) such that χu(w) ◦ ϕu(a) = w. This states that
each morphism ϕu(a) is weakly opcartesian. However, by the composition coherence
condition for the lax double functor F , these morphisms are closed under composition,
and thus each morphism ϕu(a) is opcartesian. Since each lift is opcartesian, the lax
double functor F corresponds to a split opfibration.

Although the complete proof of the above result is quite technical, the main benefit
is another perspective on how split opfibrations arise as lenses. This particular view of
split opfibrations is considered again in Proposition 5.29 where it is stated in terms of
a strict factorisation system on the domain of a lens.

4.5 Characterising classes of lenses

The goal of this section is to demonstrate the way in which many classes of lenses may
be characterised as lax double functors with a specified property. The basic idea is
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that given a lens corresponding to a lax double functor F : V(B) → SMult, the lens
belongs to a specified class if there exists a specified double functor D → SMult such
that F factorises through it:

V(B)

D SMult
F

Example 4.16. A lax double functor F : V(B) → SMult corresponds to a discrete
opfibration if and only if it factors through the inclusion Sq(Set) → SMult, whose
image on vertical morphisms are split multi-valued functions of the form:

A A B
1A

1A

f

Example 4.17. By Proposition 4.2, there is an adjunction of double categories:

Sq(Set) SMult>

Restricting this adjunction by pre-composing with a lax double functor V(B)→ SMult
and applying the Grothendieck construction for lenses (Theorem 4.14) yields, for each
category B, an adjunction:

DOpfB LensB>

Thus the category of discrete opfibrations over B is a coreflective subcategory of the
category of lenses over B. Lenses in the image of the left adjoint correspond to discrete
opfibrations as in Example 2.15.

However, since Set has products there is also an adjunction of double categories,

Sq(Set) SMult>

whose right adjoint sends vertical morphisms in Sq(Set) to split multi-valued functions
of the form:

A A×B B
〈1A, f〉

πA

πB

Restricting this adjunction by pre-composing with a lax double functor V(B)→ SMult
and applying the Grothendieck construction for lenses yields, for each category B, an
adjunction:

DOpfB LensB>

Thus the category of discrete opfibrations over B is a reflective subcategory of the
category of lenses over B. Lenses in the image of the right adjoint correspond to lenses
whose underlying functor is fully faithful as in Example 2.16.

47



Example 4.18. A category enriched in a monoidal category V may be defined as a lax
functor of bicategories from a codiscrete category into V, considered as a bicategory
with a single object. Enrichment in a double category D may be similarly defined as
lax double functor from V(B) → D for B a codiscrete category. Therefore, if B is a
codiscrete category, then lax double functors V(B)→ SMult correspond to categories
enriched in the double category SMult. They are also equivalent to state-based lenses
as in Example 2.17.

Example 4.19. The full double subcategory P(Set) of SMult on a singleton set {∗},
whose vertical morphisms are split multi-valued functions of the form,

{∗} X {∗}
x

corresponds to the cartesian monoidal category of pointed sets. A lax double functor
F : V(B) → SMult corresponds to a bijective-on-objects lens if and only if it factors
through the inclusion P(Set)→ SMult. These are also equivalent to bijective-on-objects
functors with a chosen section as in Example 2.19.

Example 4.20. A lax double functor F : V(B)→ SMult corresponds to a surjective-
on-objects lens if and only if F (x) is non-empty for all objects x ∈ B.

Dually, a lax double functor F : V(B) → SMult corresponds to an injective-on-
objects lens if and only if F (x) is the empty set or a singleton set for all objects x ∈ B.

Example 4.21. The double category SMono of functions with a chosen retraction is
a full double subcategory of SMult on split multi-valued functions of the form:

A B B
σ

ρ

1B

A lax double functor F : V(B) → SMult corresponds to a lens structure on a discrete
fibration if and only if it factors through the inclusion SMono → SMult. The lens
structure determines exactly a choice of retraction to each function between the fibres
defined by the discrete fibration.

This final example is interesting, as the theory of lenses usually involves working
with discrete opfibrations rather than discrete fibrations. It also demonstrates how
Theorem 4.14 may be used to generate new examples of lenses as well as unifying
existing ones.
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Chapter 5

Lenses as monad morphisms

The aim of this chapter is to generalise from lenses as morphisms between categories
to lenses as morphisms between monads. The key idea is that for a double category D
equipped with a functorial choice of companions, there is a double category Mndret(D)
whose objects are monads, such that the double category Mndlens(D) of lenses between
monads may be defined as its right-connected completion:

Mndlens(D) := Γ(Mndret(D))

Specialising this definition to the double category D = Span recovers the familiar
double category of lenses (between categories),

Lens ∼= Mndlens(Span)

while the case D = Span(E), for a category E with pullbacks, yields a notion of internal
lens which is used to study new characterisations of internal split opfibrations.

Section 5.1 begins with a review of the formal theory of monads in double categories,
and the double category Mnd(D) of monads in a double category D is constructed. In
Section 5.2, the notion of retrocell in a double category with companions is used to
definemonad retromorphisms, andMndret(D) is obtained as the full double subcategory
of Mnd(D) determined by these vertical morphisms. Section 5.3 focuses on the case
D = Span(E), where monads are internal categories, monad morphisms are internal
functors, and monad retromorphisms are internal cofunctors, thus generalising the
results of Chapter 3 where E = Set.

The definition of lenses between monads is introduced in Section 5.4, where they
are defined as vertical morphisms in the right-connected completion of Mndret(D),
and internal lenses are obtained in the case D = Span(E). The main application
of the theory developed in this chapter is presented in Section 5.5, with two new
characterisations of internal split opfibrations via properties of internal lenses.
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5.1 Monads in double categories

The goal of this section is to review some elementary notions from the formal theory of
monads in double categories [FGK11; FGK12], based on the formal theory of monads in
2-categories [Str72; LS02]. The double category Mnd(D) of monads, horizontal monad
morphisms, and vertical monad morphisms in a double category D is defined, and is
shown to have conjoints whenever D has conjoints (Proposition 5.1).

The main purpose of this section is to establish notational conventions, and to
prepare for the definition of Mndret(D) as a full double subcategory of Mnd(D) in
Section 5.2, and thus it does not contain any new material.

A monad (A, t, η, µ) in D consists of an object A, a vertical morphism t : A •−→ A,
and cells called the unit and multiplication, respectively,

A A

A A

1A η t

A A

A

A A

t

µ t

t

which satisfy the standard unit and associativity laws.
A horizontal monad morphism (u, ū) from (A, t) to (A′, t′) consists of a horizontal

morphism u : A→ A′ and a cell,

A A′

A A′

t

u

ū t′

u

satisfying the following conditions:

A A A′

A A A′

1A η t

u

ū t′

u

=
A A′ A′

A A′ A′

1A

u

1u η t′

u

A A A′

A

A A A′

t

µ t

u

ū t′

t

u

=

A A′ A′

A A′

A A′ A′

u

t ū t′

µ t′

t ū t′

u
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A vertical monad morphism (f, ϕ) from (A, t) to (B, s) consists of a vertical mor-
phism f : A •−→B and a cell,

A A

B A

B B

f

ϕ

t

s f

(5.1)

satisfying the following conditions:

A A A

B B A

B B B

f 1f f

ϕ

t

1B η s f

=

A A

A A

B B

1A η t

f 1f f

A A A

B B

B A

B B B

f 1f f

t

s

µ s

ϕ

s f

=

A A A A

B A A

B B A A

B B B B

f

ϕ

t 1t t

µ t

s f

ϕ

t

s 1s s f 1f f

Let Mnd(D) denote the double category of monads, horizontal monad morphisms,
and vertical monad morphisms, with cells in Mnd(D) on the left below given by cells
in D on the right below,

(A, t) (A′, t′)

(B, s) (B′, s′)

(h, h̄)

(f, ϕ) α (g, γ)

(k, k̄)

A A′

B B′

h

f α g

k

satisfying the following condition:

A A A′

B A A′

B B B′

f

ϕ

h

t h̄ t′

s f α g

k

=

A A′ A′

B B′ A′

B B′ B′

h

f α g

γ

t′

s k̄ s′ g

k

(5.2)
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Remark. Note that underlying vertical bicategory ofMnd(D) is precisely the bicategory
of monads, monad functors, and monad functor transformations defined by Street
[Str72]. In more modern terminology, monad functors are often called lax monad
morphisms.

Remark. If a double category D has local coequalisers, then there is also a double
category Mod(D) of monads, horizontal monad morphisms, and bimodules [Shu08,
Theorem 11.5], and there is a double functor Mnd(D) → Mod(D) which assigns each
vertical monad morphism to a corresponding bimodule.

Recall (Definition A.12) that a horizontal morphism f : A → B has a vertical
conjoint f ∗ : B •−→ A if there are cells,

B B

A B

f∗ ♣ 1

f

A B

A A

f

1 ♠ f∗ (5.3)

such that the following pasting conditions hold:

♠ | ♣ = 1f and ♣
♠

= 1f∗

Proposition 5.1 ([FGK11, Lemma 3.4]). If D is a double category with conjoints,
then Mnd(D) has conjoints.

Proof. Suppose that D has conjoints, and consider a horizontal monad morphism
(f, f̄) : (A, t) → (B, s) together with a conjoint f ∗ : B •−→ A to f with cells (5.3).
Then there exists a vertical monad morphism (B, s) •−→ (A, t) consisting of the vertical
morphism f ∗ : B •−→ A and the cell,

B B

A B

A B

A A

f∗ ♣ 1B

t f̄ s

1A ♠ f∗

which is conjoint to (f, f̄) : (A, t)→ (B, s) using the cells (5.3).

The above result shows that every horizontal monad morphism is, in the presence of
conjoints, a special case of a vertical monad morphism. Recall [GP99, Proposition 1.4]
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that in a double category D with all companions and conjoints, for a horizontal mor-
phism f : A→ B, the companion f∗ : A •−→B is left adjoint to the conjoint f ∗ : B •−→A

in the vertical bicategory of D. In this way, companions and conjoints are dual to each
other. In the next section, companions will be used to define a special case of vertical
monad morphisms which are, in a sense, dual to horizontal monad morphisms.

5.2 Monad retromorphisms

The goal of this section is to introduce a morphism between monads called a monad
retromorphism (Definition 5.2) which generalises cofunctors between categories. The
full double subcategory of Mnd(D) determined by the monad retromorphisms is given
by Mndret(D), and several basic properties of this double category are investigated
including companions (Proposition 5.4), conjoints (Proposition 5.7), horizontal invari-
ance (Corollary 5.5) and flatness (Proposition 5.8).

The key idea motivating monad retromorphisms is the notion of retrocells [Par19].
In a double category D equipped with a functorial choice of companions, a retrocell on
the left below is defined by a globular cell in D on the right below:

A C

B D

h

f ⇐=
θ g

k

!

A A

C B

D D

h∗

θ

f

g k∗

(5.4)

The similarity between a retrocell and the underlying cell (5.1) of a vertical monad
morphism encourages the following definition.

Definition 5.2. A monad retromorphism from (A, t) to (B, s) is a vertical monad
morphism (f∗, ϕ) : A •−→ B such that f∗ : A •−→ B is the companion of a horizontal
morphism f : A→ B.

The duality between monad retromorphisms and horizontal monad morphisms is
inherited from the duality between companions and conjoints, which is demonstrated
by comparing their corresponding vertical monad morphisms:

A A

B A

B B

f∗

ϕ

t

s f∗

B B

A B

A A

f∗

ϕ

s

t f∗
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On the left-hand side, a monad retromorphism is a vertical monad morphism defined
using a companion (that is, a retrocell), while on the right-hand side, a horizontal
monad morphism corresponds to a vertical monad morphism constructed using a con-
joint (Proposition 5.1).
Remark. Although monad retromorphisms don’t strictly require the notion of retrocells
for their definition, the notion is closely related to horizontal comonad morphisms in
a double category Dret constructed by Paré using retrocells. The concept of retrocells
was crucial to arriving at the definition of monad retromorphism, and is included here
to provide context for the name (which is due to Matthew Di Meglio) and the idea.

Given two kinds of morphisms which are dual to each other, it is often useful to
assemble them into a double category to study their relationship. Examples include
the double category of small double categories, lax double functors, and oplax double
functors [GP04], and the double category of model categories, right Quillen functors,
and left Quillen functors [Shu11]. These examples motivate the following definition.

Definition 5.3. For a double category D with companions, let Mndret(D) be the full
double subcategory of Mnd(D) determined by the monad retromorphisms.

In detail, Mndret(D) is the double category whose objects are monads in D, whose
horizontal morphisms are (horizontal) monad morphisms, whose vertical morphisms
are monad retromorphisms, and whose cells are the same as those in Mnd(D). From
the remarks above, these horizontal and vertical morphisms share a kind of duality, and
the double category Mndret(D) provides a natural setting to study their relationship.

The remainder of this section studies some of the basic properties of the double
category Mndret(D), namely, companions, conjoints, horizontal invariance, and flat-
ness. The aim is to show how these properties, which were proven for Cof, actually
follow from the level of monads rather than categories. Henceforth, horizontal monad
morphisms will be simply called monad morphisms in the context of Mndret(D).

Proposition 5.4. Let D be a double category with a functorial choice of companions.
A monad morphism (f, f̄) : (A, t)→ (B, s) has a companion in Mndret(D) if and only
if the cell,

A A

A B

A B

B B

1A ♦ f∗

t f̄ s

f∗ ♥ 1B

(5.5)
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(where f∗ is a companion of f) is invertible.

Proof. Suppose that (f, f̄) : (A, t)→ (B, s) is a horizontal monad morphism such that
the cell (5.5) has an inverse ϕ. Then it is straightforward to verify that the pair (f∗, ϕ)
is a monad retromorphism which is a companion of (f, f̄).

Conversely, suppose that (f, f̄) : (A, t) → (B, s) is a horizontal monad morphism
with a companion (g∗, γ) in Mndret(D) defined using the cells:

(A, t) (A, t)

(A, t) (B, s)

1 ♦ (g∗, γ)

(f, f̄)

(A, t) (B, s)

(B, s) (B, s)

(f, f̄)

(g∗, γ) ♥ 1

Applying the identities (5.2) to the cells ♦ and ♥ above, it is straightforward to prove
that the cell γ is inverse to (5.5) as required.

Recall (Definition A.15) that a double category is horizontally invariant if every
horizontal isomorphism has a companion.

Corollary 5.5. If D is a double category equipped with a functorial choice of compan-
ions, then Mndret(D) is horizontally invariant.

Proof. For every horizontal monad morphism (f, f) which is invertible, the cell (5.5)
is invertible. Therefore (f, f) has a companion, and the double category Mndret(D) is
horizontally invariant

Recall (Definition A.17) that a double category D is unit-pure if the identity map
id: D0 → D1 is fully faithful. This means that for every cell whose vertical boundary
morphisms are identities,

A B

A B

h

α1 1

k

then it necessarily holds that h = k and α = 1h = 1k.

Lemma 5.6. Let D be a unit-pure double category equipped with a functorial choice
of companions, and consider horizontal morphisms f : A → B and g : B → A. Then
f∗ = g∗ if and only if f = g−1.

Proof. Suppose f∗ = g∗ and consider the following pasting of cells:

B A B

B B B

♠

g

1 ♥

f

1

A A A

A B A

♦1 ♣ 1

f g
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Then by unit-purity, fg = 1B and gf = 1A. Conversely, suppose f = g−1. Since
(fg)∗ = f∗g∗ = 1B and (gf)∗ = g∗f∗ = 1A, it follows that f∗ is adjoint (indeed, inverse)
to g∗ in the vertical bicategory of D, and therefore g∗ = f∗.

Proposition 5.7. Let D be a unit-pure double category equipped with a functorial
choice of companions. A horizontal monad morphism (f, f̄) : (A, t) → (B, s) has a
conjoint in Mndret(D) if and only if f : A→ B is invertible.

Proof. Suppose (f, f̄) : (A, t) → (B, s) has a conjoint (g, γ) : (B, s) •−→ (A, t) together
with cells:

(A, t) (B, s)

(A, t) (A, t)

(f, f̄)

1 ♠ (g∗, γ)

(B, s) (B, s)

(A, t) (B, s)

1

(g∗, γ) ♣ 1

(f, f̄)

By construction, f ∗ = g∗, therefore f = g−1 by Lemma 5.6.
Conversely, suppose (f, f) : (A, t) → (B, s) such that f : A → B has an inverse

g : B → A. Then f has a conjoint f ∗ = g∗ by Lemma 5.6. Thus there is a cell,

B B

A B

A B

B B

♣g∗ 1

t f̄ s

1 ♠ g∗

which yields a monad retromorphism (B, s) → (A, t). This monad retromorphism
is conjoint to (f, f); the cells ♠ and ♣ are used to construct corresponding cells in
Mndret(D), from which it is straightforward to check that the pasting laws for conjoints
hold.

Proposition 5.8. If D is a unit-pure double category equipped with a functorial choice
of companions, then Mndret(D) is flat.

Proof. Consider a pair of cells α and β in Mndret(D) with the same boundary. The
vertical boundary morphisms of the underlying cells in D are companions, since vertical
morphisms in Mndret(D) are monad retromorphisms. Pasting with the binding cells
for companions yields a pair of cells which are equal to a vertical identity cell by
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unit-purity:

A A C D

A B D D

♦1 αf∗

h

♥

g

g∗ 1

f k

=
A A C D

A B D D

♦1 βf∗

h

♥

g

g∗ 1

f k

Pasting the above equation with the alternative binding cells and applying the identities
for companions yields α = β, and therefore Mndret(D) is flat (Definition A.2).

5.3 The double category of internal cofunctors

This section studies the double category Mndret(D) in the case of D = Span(E) for a
category E with pullbacks. The central motivation is that Mndret(Span(E)) is a double
category whose objects are internal categories, whose monad morphisms are internal
functors, and whose monad retromorphisms are internal cofunctors. Specialising to
E = Set yields the usual double category of cofunctors:

Mndret(Span(Set)) = Cof

The benefit is that many of the results of Chapter 3 may be understood as properties of
Mndret(D), while also revealing cofunctors as a fundamental kind of morphism between
categories.

It is well-known that monads in Span(E) are precisely internal categories, and
that (horizontal) monad morphisms are internal functors [FGK11]. The definition of
internal category and internal functor are now recalled to set notation for the rest of
the chapter.

Remark. The notation for an internal category and internal functor used in this chapter
follows the usage in [Str17], where internal categories are treated as truncated simplicial
objects. The advantage is that notation is concise, at the expense of immediate famil-
iarity for some readers. To avoid distracting from the essential part of each definition,
the reader should also be aware, particularly in Definition 5.13, that some morphisms
appear in commutative diagrams before they are defined at the end of the definition.

Definition 5.9. An internal category A is a diagram in a category E with pullbacks,

A0 A1 A2 A3i0

d0

d1

i0

i1

d0

d1

d2

d0

d1

d2

d3
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where the objects A2 and A3 are defined by the pullbacks,

A2

A1 A1

A0

d0 d2y

d1 d0

A3

A2 A2

A1

d0 d3y

d2 d0

(5.6)

where the identity map i0 : A0 → A1 and the composition map d1 : A2 → A1 satisfy the
commutative diagrams,

A0

A0 A1 A0

1 1
i0

d0 d1

A1 A2 A1

A0 A1 A0

d0

d0 d2

d1 d1

d0 d1

(5.7)

and satisfy the unitality and associativity axioms given by the commutative diagrams:

A1

A2 A2

A1

i0 i1

1

d1 d1

A3

A2 A2

A0

d1 d2

d1 d1

(5.8)

An internal category is often depicted by its underlying directed graph consisting of the
object of objects A0, the object of morphisms A1, the domain map d0 : A1 → A0, and
the codomain map d1 : A1 → A0. The morphisms i0, i1 : A1 → A2 and d1, d2 : A3 → A2

appearing in (5.8) are defined using the universal property of the pullback.

Definition 5.10. An internal functor f : A→ B consists of a pair of morphisms,

f0 : A0 −→ B0 f1 : A1 −→ B1

satisfying the commutative diagrams with respect to the domain and codomain maps,

A0 A1 A0

B0 B1 B0

f0

d0 d1

f1 f0

d0 d1

(5.9)

and which respect the identity and composition maps:

A0 A1

B0 B1

i0

f0 f1

i0

A2 A1

B2 B1

d1

f2 f1

d1

(5.10)

The morphism f2 : A2 → B2 is defined using the universal property of the pullback.
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Together, internal categories and internal functors form a category Cat(E).
In Chapter 3 it was shown that bijective-on-objects functors and discrete opfi-

brations were the conjoints and companions, respectively, in the double category of
cofunctors. The notions readily generalise to the internal category setting.

Definition 5.11. An internal functor f : A → B is called isomorphism-on-objects if
the morphism f0 is an isomorphism. In particular, if f0 = 1 the internal functor is
called identity-on-objects.

Definition 5.12. An internal discrete opfibration is an internal functor f : A → B

such that the following commutative diagram, appearing in (5.9), is a pullback:

A1

A0 B1

B0

d0 f1

f0 d0

(5.11)

Cofunctors as morphisms between categories were actually first introduced in the
setting of internal category. The following definition of internal cofunctor adapts the
original version introduced by Aguiar [Agu97].

Definition 5.13. An internal cofunctor (f0, ϕ1) : A → B consists of a pair of mor-
phisms,

f0 : A0 −→ B0 ϕ1 : Λ1 −→ A1

with the objects Λ1 and Λ2 defined by the pullbacks,

Λ1

A0 B1

B0

d0 f1y

f0 d0

Λ2

Λ1 B2

B1

d0 f2y

f1 d0

(5.12)

satisfying commutative diagrams with respect to the domain and codomain maps,

Λ1 B1

A0 A1 A0 B0

d0 ϕ1

f1

d1

d0 d1 f0

(5.13)

and with respect to the identity and composition maps:

A0 Λ1

A0 A1

i0

ϕ1

i0

Λ2 Λ1

A2 A1

d1

ϕ2 ϕ1

d1

(5.14)
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It is useful to define the morphism p1 = d1ϕ1 : Λ1 → A0. The morphisms i0 : A0 → Λ1,
d1 : Λ2 → Λ1, and ϕ2 : Λ2 → A2 are defined using the universal property of the pullback:

A0

B0

Λ1

A0 B1

B0

ϕ0

1 i0

i0d0 f1y

f0 d0

Λ2

Λ1 B2

Λ1

A0 B1

B0

d0 f2

d1

d0 d1d0 f1y

f0 d0

Λ2

Λ1 B2

Λ1

A0 B1

B0

d0 f2

p2

p1 d2d0 f1y

f0 d0

Λ2

Λ1 Λ1

A2

A1 A1

A0

d0 p2

ϕ2

ϕ1 ϕ1d0 d2y

d1 d0

Remark. The definition of internal cofunctor uses the notation Λ1 for the pullback
A0 ×B0 B1 as it is more compact (likewise for Λ2). However, it is also chosen to align
with the notation for the tabulator of a cofunctor as in Proposition 2.6; later it will
be shown that the pair (A0,Λ1) forms the tabulator of an internal cofunctor. For a
similar reason, the notation d0 : Λ1 → A0 and f 1 : Λ1 → B1 is chosen for the pullback
projections π0 : A0 ×B0 B1 → A0 and π1 : A0 ×B0 B1 → B1, respectively, as this will be
particularly useful in the following results.

Recall (Example A.13) that the double category Span(E) is equipped with a func-
torial choice of companions. The companion of a horizontal morphism f : A → B is
given by the span:

A A B
1A f

The following result provides the main motivation for studying (internal) cofunctors.

Proposition 5.14. A monad retromorphism between monads in Span(E) is precisely
an internal cofunctor.

Proof. A monad retromorphism in Span(E) between internal categories A and B con-
sists of a morphism f0 : A0 → B0 together with a cell in Span given by:

A0 A0

A0 A1

B0 Λ1 A1 A0

B1 A0

B0 B0

f0

d0

d1

p

d0

f1

ϕ1
y

d1

d0

d1 f0
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This agrees with the data of a cofunctor (f0, ϕ1) : A→ B satisfying (5.13). It is straight-
forward to prove that the diagrams (5.14) correspond exactly to the compatibility of a
monad retromorphism with the unit and multiplication cells.

It has now been shown that the double category Mndret(Span(E)) has internal
categories as objects, internal functors as horizontal morphisms, and internal cofunctors
as vertical morphisms. By Proposition 5.8, this double category is flat. The cells with
boundary,

A C

B D

(h0, h1)

(f0, ϕ1) (g0, γ1)

(k0, k1)

satisfy the commutative diagrams:

A0 C0

B0 D0

h0

f0 g0

k0

A0 ×B0 B1 C0 ×D0 D1

A1 C1

h0×k1

ϕ1 γ1

h1

(5.15)

When E = Set, the conditions in (5.15) correspond to the conditions on cells in
the double category of cofunctors Cof stated in Definition 3.1. Together with Propo-
sition 5.14, this yields the following result.

Theorem 5.15. The double category of monads, monad morphisms, and monad retro-
morphisms in Span is equivalent to the double category of categories, functors, and
cofunctors:

Mndret(Span) ' Cof

An immediate implication of this result is that many of the properties of the dou-
ble category of cofunctors are inherited directly from the double category Mndret(D).
This includes that the companions are discrete opfibrations, that the conjoints are
bijective-on-objects functors, and that Cof is horizontally invariant and flat. One of
the important properties however which doesn’t automatically arise from this level of
generality is that of tabulators. However, in the case of D = Span(E), these are also
quite easy to compute.

Lemma 5.16. Given a cofunctor (f0, ϕ1) : A → B, there is an internal category Λ
defined by the diagram:

A0 Λ1 Λ2i0

d0

p1

d0

d1
p2
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Proof. First, to show Λ2 is the pullback of the morphisms d0, p1 : Λ1 → A0, consider
the following diagrams which are equal by the construction of p2 : Λ2 → Λ1 in Defini-
tion 5.13:

Λ2 Λ1 B1

Λ1 A0 B0

p2

d0 d0

f1

y
d0

p1 f0

=
Λ2 B2 B1

Λ1 B1 B0

f2

d0
y

d0

d2

y
d0

f1 d1

Using the pullback pasting lemma, the remaining square must be a pullback.
To show the identity map i0 : A0 → Λ1 and the composition map d1 : Λ2 → Λ1

are well-defined, first notice by their construction in Definition 5.13 that the following
diagrams commute:

A0

A0 Λ1

i0
1

d0

Λ1 Λ2

A0 Λ1

d0

d0

d1

d0

The counterparts to the diagrams immediately above are obtained by pasting as follows:

A0

A1

Λ1 A0

i0

i0
1

d1ϕ1

p1

Λ2 Λ1

A2 A1

A1 A0

Λ1 A0

ϕ2

d1

p2

ϕ1

p1d1

d2

d1

d1
1ϕ1

p1

Thus axiom (5.7) is satisfied as required. The details required to prove (5.8) are not
difficult, but involve many diagrams to construct the appropriate morphisms and check
commutativity using the universal property of the pullback.

Proposition 5.17. The double category Mndret(Span(E)) has tabulators.

Proof. Given an internal cofunctor (f0, ϕ0) : A→ B, there is a cell in Mndret(Span(E))
given by:

Λ A

Λ B

1

ϕ

(f0,ϕ1)

f

(5.16)
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The internal fucntor f : Λ→ B is determined by the pair of morphisms (ϕ0, f 1) which
satisfy the commutative diagrams:

A0 Λ1 A0

B0 B1 B0

f0

d0 p1

f1

x
f0

d0 d1

A0 Λ1

B0 B1

f0

i0

f1

i0

Λ2 Λ1

B2 B1

f2

d1

f1

d1

The internal functor ϕ : Λ→ A is determined by the pair of morphisms (1A0 , ϕ1) which
satisfy the commutative diagrams:

A0 Λ1 A0

A0 A1 A0

1

d0 p1

ϕ1 1

d0 d1

A0 Λ1

A0 A1

1

i0

ϕ1

i0

Λ2 Λ1

A2 A1

ϕ2

d1

ϕ1

d1

These commutative diagrams all appear in Definition 5.13. Using the universal property
of the pullback in E, it may be shown that (5.16) has the universal property of a
tabulator.

Finally, note that the functor f : Λ → B is an internal discrete opfibration, while
ϕ : Λ → B is clearly identity-on-objects. It may also be shown that Mndret(Span(E))
has strong tabulators, meaning that every cofunctor has a unique factorisation, up to
isomorphism, into a conjoint (isomorphism-on-objects functor) followed by a companion
(discrete opfibration). Therefore, all the properties of interest of the double category
Cof arise more generally as properties of Mndret(Span(E)).

5.4 Lenses between monads

In the double category Mndret(D) the horizontal morphisms generalise functors while
the vertical morphisms generalise cofunctors. In Chapter 3, it was shown that the
double category of lenses, Lens, was equivalent to the right-connected completion of
the double category of cofunctors, Cof. The goal of this section is to define the double
category Mndlens(D) of lenses between monads in a double category D, and to introduce
internal lenses in the case D = Span(E).

Assumption. Throughout this section D is assumed to be a unit-pure double category
equipped with a functorial choice of companions.

Definition 5.18. A lens between monads is a vertical morphism in the right-connected
completion of Mndret(D). Let Mndlens(D) := Γ(Mndret(D)) denote the double category
of lenses between monads.
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By construction, the objects and horizontal morphisms in Mndlens(D) are monads
and (horizontal) monad morphisms, respectively.

Proposition 5.19. Consider a vertical morphism in Mndlens(D) given by a monad
morphism (f, f̄) : (A, t)→ (B, s) and a monad retromorphism (g, γ) : (A, t) •−→ (B, s).
Then the cell,

A A

A B

A B

B B

1 ♦ f∗

t f̄ s

f∗ ♥ 1

(5.17)

has a chosen horizontal section given by the cell γ.

Proof. The vertical morphisms in Mndlens(D) are cells in Mndret(D) of the form:

(A, t) (B, s)

(B, s) (B, s)

(f,f̄)

(g∗,γ) α 1

1

In detail, there is a cell,
A B

B B

f

g∗ α 1B
(5.18)

satisfying the following condition:

A A B

B A B

B B B

g∗

γ

f

t f̄ s

s g∗ α 1

=

A B B

B B B

B B B

f

g∗ α 1 s

s s 1

(5.19)

Pasting (5.18) with the companion binding cell yields a cell,

A A B

A B B

1 ♦

f

g∗ α 1B

g

(5.20)
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which implies that f = g and g∗ = f∗, since D is assumed to be unit-pure. By properties
of the right-connected double categories with a functorial choice of companions, it
follows that (5.18) is equal to the binding cell ♥. Moreover, pasting (5.19) with the
binding cell ♦ for the companion f yields the following:

A A A

A A B

B A B

B B B

1 1 ♦ f∗

f∗

γ

t f̄ s

s f∗ ♥ 1

=

A A

B B

B B

1
f∗ f∗

s s

Therefore γ is a section to the cell (5.17) as required.

The main benefit of the above result is a deeper conceptual understanding of lenses
as generalised section-retraction pairs. While it is intuitively understood that ordinary
lenses between categories lift morphisms, and thus behave like a split epimorphism
with a chosen section, this is not formally true. However, from the perspective of lenses
between monads, Proposition 5.19 demonstrates the sense in which chosen sections play
a formal role. It is also interesting to note that when this section-retraction pair is an
isomorphism, the lens between monads is equivalent to a companion in Mndret(D).

Lenses between monads may be denoted by triples (f, f , ϕ) : (A, t) •−→ (B, s). Re-
call that since Mndret(D) is flat (Proposition 5.8), its right-connected completion
Mndlens(D) is also flat (Lemma 3.16). The following result provides a characterisa-
tion of the cells in the double category of lenses between monads.

Proposition 5.20. A cell in Mndlens(D) with boundary given by,

(A, t) (A′, t′)

(B, s) (B′, s′)

(f, f̄ , ϕ)

(h, h̄)

(g, ḡ, γ)

(k, k̄)

(5.21)

is equivalent to a cell in Mndret(D) given by,

(A, t) (A′, t′)

(B, s) (B′, s′)

(f, ϕ)

(h, h̄)

(g, γ)

(k, k̄)

(5.22)
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and a commuting diagram of horizontal monad morphisms:

(A, t) (A′, t′)

(B, s) (B′, s′)

(f, f̄)

(h, h̄)

(g, ḡ)

(k, k̄)

(5.23)

Proof. By definition of the right-connected completion, cell (5.21) in Mndlens(D) is
given by a cell (5.22) in Mndret(D) such that the following condition holds:

(A, t) (A′, t′) (B′, s′)

(B, s) (B′, s′) (B′, s′)

(f, ϕ)

(h, h̄) (g, ḡ)

(g, γ) 1

(k, k̄)

=
(A, t) (B, s) (B′, s′)

(B, s) (B, s) (B′, s′)

(f, ϕ)

(f, f̄) (k, k̄)

1 1

(k, k̄)

However, since Mndret(D) is flat, this condition contains no information on cells, and is
therefore equivalent to the condition (5.23) on the boundary of monad morphisms.

Taken together, Proposition 5.17 and Proposition 5.20 provide simple a character-
isation of the vertical morphisms and cells in Mndlens(D). This section now concludes
with the case of D = Span(E), where vertical morphisms in Mndlens(D) are called
internal lenses.

Definition 5.21. Let A and B be internal categories. An internal lens (f, ϕ) : A→ B

consists of an internal functor f : A → B and an internal cofunctor (ϕ0, ϕ1) : A → B

satisfying the commutative diagrams:

A0

A0 B0

ϕ0

f0

Λ1

A1 B1

ϕ1 ϕ1

f1

(5.24)

By the universal property of the pullback, the right-hand diagram in (5.24) is
equivalent to the commutative diagram:

Λ1

A1 Λ1

ϕ1 1

〈d0, f1〉

This section-retraction may be understood as an instantiation of Proposition 5.19.
The following result provides a version of Proposition 2.12 for the internal category

setting.
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Proposition 5.22. An internal lens (f, ϕ) : A → B is equivalent to a commutative
diagram of internal functors,

Λ

A B

ϕ f

f

(5.25)

where ϕ is identity-on-objects and f is an internal discrete opfibration.

Proof. Follows directly from the span representation of internal cofunctors implicit in
Proposition 5.17 together with (5.24).

Lenses between categories are a special case of internal lenses between internal
categories, as summarised by the following theorem.

Theorem 5.23. The right-connected completion of the double category of monads,
monad morphisms, and monad retromorphisms in Span is equivalent to the double
category of categories, functors, and lenses:

Mndlens(Span) = Lens

Proof. Follows immediately from Theorem 5.15 and Theorem 3.21.

5.5 Characterising internal split opfibrations

The goal of this section is to provide two characterisations of internal split opfibrations
as internal lenses with a certain property.

Recall that an internal discrete opfibration is an internal functor f : A → B such
that the following commutative square is a pullback:

A1

A0 B1

B0

d0 f1

f0 d0

There are two key aspects of this definition:

1. It involves a simple pullback condition on a commutative diagram;

2. It equips the object of morphisms A1 of the domain with a universal property.
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The characterising property of an internal discrete opfibration may equivalently be
expressed via unique structure. An internal discrete opfibration is equivalent to an
internal functor f : A→ B equipped with a morphism,

ϕ1 : A0 ×B0 B1 −→ A1

making the following diagrams commute:

A0 ×B0 B1

A0 A1 B1

π0 ϕ1
π1

d0 f1

A0 ×B0 B1

A1 A1

〈d0, f1〉 ϕ1

1

The two characterisations of internal split opfibrations as internal lenses presented
in this section involve:

1. A simple pullback condition on a commutative diagram;

2. A universal property on the object of morphisms A1 of the domain.

Furthermore, the above properties are expressed equivalently via unique structure.
These characterisations completely mirror the definition of an internal discrete opfi-
bration, and provide a deeper insight into lenses between internal categories.

Internal split opfibrations via décalage

In Section 3.5, split opfibrations were characterised using the décalage construction.
There is a corresponding construction on internal categories which may be used to
define internal split opfibrations.

Definition 5.24. The internal décalage construction is a copointed endofunctor D on
Cat(E) which assigns f : A→ B to an internal functor Df : DA→ DB given by:

A1 A2 A1

B1 B2 B1

f1

d1

f2

d2

f1

d1 d2

(5.26)

The natural transformation ε : D ⇒ 1 assigns each internal category A to an internal
functor εA : DA→ A given by:

A1 A2 A1

A0 A1 A0

d0

d1

y
d0

d2

d0

d0 d1

(5.27)
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Remark. In general, the internal décalage construction is defined on simplicial objects A
in a category E by forgetting the object A0 and each morphism labelled d0 and i0. From
the presentation of an internal category as truncated simplicial object (Definition 5.9)
we may recover a simplicial object in E, called the nerve, by taking pullbacks of certain
morphisms. In this sense, the décalage of a internal category is well-defined, as we may
take the décalage of its nerve then truncate.

Consider an internal lens (f, ϕ) : A → B together with its representation (5.25) as
a commutative triangle of internal functors, and construct the following commutative
diagram in Cat(E):

Λ×A DA DA DB

Λ A B

π1

π2

y
εA

Df

εB

f

ϕ f

(5.28)

The identity-on-objects internal functor π2 : Λ×A DA→ DA is given by,

A1 Λ1 ×A1 A2 A1

A1 A2 A1

1

d1π2

π2

d2π2

1

d1 d2

where the object of morphisms Λ1 ×A1 A2 is defined by the pullback:

Λ1 ×A1 A2

Λ1 A2

A1

π1 π2y

ϕ1 d0

(5.29)

The internal functor Df ◦ π2 : Λ ×A DA → DB is an internal discrete opfibration
if and only if the commutative square,

Λ1 ×A1 A2

A1 B2

B1

d1π2 f2π2

f1 d1

(5.30)

is a pullback. The characterisation of split opfibrations in terms of the décalage con-
struction in Theorem 3.28 motivates the following working definition of internal split
opfibration.
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Definition 5.25. An internal split opfibration is an internal lens (f, ϕ) : A→ B such
that the following commutative square is a pullback:

Λ1 ×A1 A2

A1 B2

B1

d1π2 f2π2

f1 d1

To unpack this definition of an internal split opfibration consider the pullback:

A1 ×B1 B2

A1 B2

B1

π0 π1y

f1 d1

(5.31)

The following result characterises internal split opfibrations in terms of unique structure
on an internal lens. This characterisation is essentially the same as given in [AU17],
except that it is formulated using internal category theory rather than directed con-
tainers.

Proposition 5.26. An internal lens (f, ϕ) : A → B is an internal split opfibration if
and only if there exists a morphism,

ψ : A1 ×B1 B2 −→ A1

satisfying the following four commutative diagrams:

� This diagram specifies a “domain condition”:

A1 ×B1 B2 A1

Λ1 A1 A0

ψ

d0×d0 d0

ϕ1 d1

(5.32)

� This diagram specifies a “uniqueness condition”:

Λ1 ×A1 A2 A2 A1 ×B1 B2

A2 A1

π1

π1

〈d1, f2〉

ψ

d2

(5.33)

� This diagram specifies a “lifting condition”:

A1 ×B1 B2 A1

B2 B1

ψ

π1 f1

d2

(5.34)
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� This diagram specifies a “composition condition”:

A1 ×B1 B2

A2 A1

ψ̂ π0

d1

(5.35)

The pullback Λ1 ×A1 A2 is from (5.29), the pullback A1 ×B1 B2 is from (5.31), and the
morphism ψ̂ is defined using (5.32) via the universal property of the pullback:

A1 ×B1 B2

Λ1

A2

A1 A1

A0

ψ̂

d0×d0

ψ

ϕ1 d0 d2y

d1 d0

Proof. First notice from Definition 5.25 that an internal lens (f, ϕ) : A → B is an
internal split opfibration if and only if there is an isomorphism Λ1×A1 A2 ∼= A1×B1 B1.
For any internal lens the diagram (5.30) commutes, thus following composite morphism
exists by the universal property of the pullback:

Λ1 ×A1 A2 A2 A1 ×B1 B2
π1 〈d1, f2〉 (5.36)

Therefore an internal lens is an internal split opfibration if and only if (5.36) has an
inverse. Given a morphism ψ : A1 ×B1 B2 → A1 satisfying axiom (5.32) there exists a
morphism,

〈d0 × d0, ψ̂〉 : A1 ×B1 B2 −→ Λ1 ×A1 A2

which is the required inverse if axioms (5.33), (5.34), and (5.35) are satisfied. Con-
versely, an inverse to (5.36) exists exactly when there is a morphism ψ which satisfies
the axioms in the statement of Proposition 5.26.

Interpreting the above proposition for E = Set, the morphism ψ : A1×B1B2 → A1 is
assigning the unique filler morphisms determining the universal property of the chosen
lifts of an internal lens to be opcartesian.

Internal split opfibrations via strict factorisation systems

It is well known that a split opfibration factorises each morphism in its domain into
a chosen opcartesian lift followed by a vertical morphism with respect to the functor.
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This was the main idea behind the characterisation of split opfibrations in Section 4.4,
where this process is carried out fibre-wise. There is a corresponding characterisation
for internal split opfibrations which uses strict factorisation systems [RW02].

Definition 5.27. A strict factorisation system (E,M) on an internal category A con-
sists of a pair of injective-on-morphisms, identity-on-objects internal functors,

e : E −→ A m : M −→ A

together with the pullback,

E1 ×A0 M1

E1 M1

A0

π0 π1y

d1 d0

(5.37)

such that the morphism d1(e1 ×m1) : E1 ×A0 M1 → A2 → A1 is an isomorphism.

Given an internal lens (f, ϕ) : A→ B, the goal is to give a strict factorisation system
(Λ, V ) on the internal category A, where the internal functor ϕ : Λ → A provides the
left class, and the right class j : V → A is defined as follows.

Definition 5.28. Given an internal functor f : A → B, there is an injective-on-
morphisms, identity-on-objects internal functor j : V → A constructed by the following
pullback,

V

A B0

B

f̂j y

f i

 

V1

A1 B0

B1

f̂1j1 y

f1 i0

(5.38)

where i : B0 → B is the inclusion of the discrete category of objects, and V is the
internal category of vertical morphisms for an internal functor f . Explicitly, the internal
functor j : V → A is given by:

A0 V1 A0

A0 A1 A0

1

d0 d1

j1 1

d0 d1

(5.39)

To define the strict factorisation system (Λ, V ) on A for an internal lens given by
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(f, ϕ) : A→ B, first construct the following pullback:

Λ1 ×A0 V1

Λ1 V1

A0

π0 y π1

p1 d0

(5.40)

The following result provides the unique structure such that d1(ϕ1×j1) : Λ1×A0V1 → A1

is an isomorphism.

Proposition 5.29. If (f, ϕ) : A → B is an internal lens, then (Λ, V ) is a strict fac-
torisation system on A consisting of the internal functors ϕ : Λ→ A and j : V → A if
and only if there exists an endomorphism,

χ : A1 −→ A1

satisfying the following four commutative diagrams:

� This diagram specifies a “domain condition”:

A1 A1

Λ1 A1 A0

χ

〈d0,f1〉 d0

ϕ1 d1

(5.41)

� This diagram specifies a “uniqueness condition”:

Λ1 ×A0 V1 A2 A1

V1 A1

π1

ϕ1×j1 d1

χ

j1

(5.42)

� This diagram specifies a “fibre condition”:

A1 A1

B1 B0 B1

χ

f1 f1

d1 i0

(5.43)

� This diagram specifies a “composition condition”:

A1

A2 A1

χ̂ 1

d1

(5.44)
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The pullback Λ1×A0 V1 is defined in (5.40), and the morphism χ̂ is defined using (5.41)
via the universal property of the pullback:

A1

Λ1

A2

A1 A1

A0

χ̂

〈d0, f1〉

χ

ϕ1 d0 d2y

d1 d0

Proof. By Definition 5.27 the pair (Λ, V ) is a strict factorisation system on A if and
only if the morphism d1(ϕ1 × j1) : Λ1 ×A0 V1 → A1 has an inverse.

Given a morphism χ : A1 → A1 satisfying axioms (5.41) and (5.43) there is a
morphism, 〈

〈d0, f1〉, 〈χ, d1f1〉
〉

: A1 −→ Λ1 ×A0 V1

which is the required inverse if axioms (5.42) and (5.44) are satisfied. Conversely, an
inverse to d1(ϕ1 × j1) : Λ1 ×A0 V1 → A1 exists exactly when there is a morphism χ

which satisfies the axioms in the statement of Proposition 5.29.

The important aspect of the above strict factorisation is that it equips the object
of morphisms A1 of an internal lens with the universal property of a pullback. The
following theorem shows that this result may be used to characterise internal split
opfibrations.

Theorem 5.30. An internal lens (f, ϕ) : A→ B is an internal split opfibration if and
only if the pair (Λ, V ) is a strict factorisation system on A.

Proof. Given an internal split opfibration (f, ϕ) : A → B equipped with a morphism
ψ : A1 ×A0 B2 → A1 as in Proposition 5.26, define a morphism χ′ : A1 → A1 as the
following composite:

A1 A1 ×B1 B2 A1
〈1, i0f1〉 ψ (5.45)

It may be shown that χ′ satisfies the axioms of Proposition 5.29 and thus yields a strict
factorisation system (Λ, V ) on A.

Conversely, given an internal lens (f, ϕ) : A→ B equipped with an endomorphism
χ : A1 → A1 as in Proposition 5.29, define a morphism ψ′ : A1 ×B1 B2 → A1 as the
following composite:

A1 ×B1 B2 A2 A1
〈ϕ1p2〈d0×d0, π1〉, χπ0〉 d1 (5.46)
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It may be shown that ψ′ satisfies the axioms of Proposition 5.26 and thus yields an
internal split opfibration.

In summary, internal split opfibrations admit two characterisations as internal lenses
with a certain property:

1. A simple pullback condition on a commutative diagram, using the décalage con-
struction;

2. A universal property on the object of morphisms A1 of the domain, using strict
factorisation systems.

The above properties may equivalently be expressed via unique structure, and are
entirely analogous to the way in which internal discrete opfibrations are defined.
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Chapter 6

Lenses as algebras and coalgebras

The aim of this chapter is to characterise lenses as both algebras for a monad and
coalgebras for a comonad. Formally, this amounts to proving that the forgetful functor
Lens → Cof, assigning a lens to its underlying cofunctor, is comonadic, and that the
forgetful functor Lens→ Sq(Cat), assigning a lens to its underlying functor, is monadic.

The question of whether lenses are algebras or coalgebras has long been asked.
For the classical state-based lenses (Example 2.17), Johnson, Rosebrugh, and Wood
demonstrated a characterisation as algebras [JRW10], and independently, O’Connor
determined a characterisation as coalgebras [OCo11]. These two approaches were later
shown to be closely related [GJ12], and the results were generalised to state-based
lenses between objects in a suitable category rather than merely between sets.

Instead of taking a concrete approach to characterising (delta) lenses as algebras and
coalgebras, Section 6.1 first introduces a setting (C,W,M) in which generalised lenses
between objects are defined. The main example specialises to C = Cat together with
the class W of bijective-on-objects functors and the class M of discrete opfibrations to
yield the diagrammatic formulation of lenses. By gradually adding axioms to the setting
(C,W,M), each of which are satisfied by the main example, clear and precise sufficient
conditions are identified for (generalised) lenses to arise as algebras or coalgebras.

Section 6.2 identifies two basic axioms on (C,W,M), from which it is shown that
(generalised) lenses are coalgebras for a comonad (Theorem 6.15), and the cofree lens on
a cofunctor is constructed. Section 6.3 introduces three additional axioms on (C,W,M)
such that the corresponding forgetful functor for generalised lenses has a left adjoint
(Theorem 6.24). In the main example, this forgetful functor is then proved to be
monadic (Theorem 6.30), and the free lens on a functor is constructed.

The chapter concludes with several interesting results arising from the study of
generalised lenses. In Section 6.4, it is shown that the double category Lens corresponds
to an algebraic weak factorisation system on Cat, while in Section 6.5, the notions of
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change of base and generalised split opfibrations are explored.

6.1 Preliminaries

For a category C with pullbacks, let Span(C) be the double category of spans. Suppose
thatW andM are classes of morphisms in C which each satisfy the following properties:

(A1) The class contains the isomorphisms;

(A2) The class is closed under composition;

(A3) The class is stable under pullback along morphisms in C.

Notation 6.1. The following decorations are used to denote the arrows in these classes:

• •∼ ∈W • • ∈M

Under additional axioms to be introduced in the following sections, W is shown to be
a class of weak equivalences (that is, additionally satisfies 2-out-of-3 ), and M will be
the right class of an orthogonal factorisation system.

Definition 6.2. Let Span(C,W,M) be the full double subcategory of Span(C) deter-
mined by the collection of spans whose left leg is in the class W and whose right leg is
in the class M, as depicted below.

• • •∼

The corresponding internal category presentation is given by:

Span(C,W,M)×Cat Span(C,W,M) Span(C,W,M) C
comp dom

cod
id

The vertical composition of spans in the double category Span(C,W,M) is well-
defined by axioms (A2) and (A3), and is horizontally invariant by axiom (A1) as
every horizontal isomorphism has a companion and a conjoint. Indeed, the classes of
conjoints and companions are given by W and M, respectively; this can be seen by
direct comparison with conjoints and companions in Span(C) in Example A.13. Apart
from flatness, the double category Span(C,W,M) has many of the properties that were
proven of Cof in Chapter 3.

Example 6.3. For the category C = Cat, let W be the class of bijective-on-objects
functors and let M be the class of discrete opfibrations. These classes are easily shown
to satisfy axioms (A1)–(A3). By Theorem 3.24, it follows that Span(C,W,M) ' Cof.
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In Theorem 3.21, the double category of lenses is shown to be the right-connected
completion of the double category of cofunctors. This result motivates the following
definition for generalised lenses.

Definition 6.4. Let the double category Lens(C,W,M) of generalised lenses be the
right-connected completion of Span(C,W,M). The corresponding internal category
presentation is given by:

Lens(C,W,M)×Cat Lens(C,W,M) Lens(C,W,M) C
comp dom

cod
id

By construction of the right-connected completion (Definition 3.12), the vertical
morphisms in Lens(C,W,M) are given by commutative diagrams in C of the form,

A B

X B

B B

∼

(6.1)

while cells in Lens(C,W,M) are given by cells in Span(C,W,M) such that the following
condition holds:

A B D

X B D

B B D

∼

=

A C D

X Y D

B D D

∼ ∼

The vertical morphisms in Lens(C,W,M) will be called (generalised) lenses, and
are often simply depicted as a commutative triangle in C of the form:

X

A B

∼

Similarly, cells in Lens(C,W,M) can be depicted in the following way:

A C

X Y

B D

∼ ∼
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Example 6.5. For the category C = Cat, let W be the class of bijective-on-objects
functors and let M be the class of discrete opfibrations. Then generalised lenses are
precisely lenses by Proposition 2.13, and there is an equivalence of double categories
Lens ' Lens(C,W,M) by Theorem 3.26.

The classes of companions and conjoints are given by M and Iso(C), respectively,
by Lemma 3.17 and Lemma 3.18. Tabulators are inherited from Span(C,W,M) by
Lemma 3.19. Furthermore, since Lens(C,W,M) is right-connected, the identity map
id: C→ Lens(C,W,M) has a left adjoint, and therefore all cotabulators exist.

The construction of Lens(C,W,M) as a right-connected completion yields forgetful
double functors to Span(C,W,M) and Sq(C) with assignment on cells given by:

A C

X Y

B D

∼ ∼

←− [

A C

X Y

B D

∼ ∼

7−→

A C

B D

Underlying these double functors are ordinary functors over the category C given by:

Span(C,W,C) Lens(C,W,M) Sq(C)

C

cod
cod

cod

The aim of the following two sections is to show that, under certain conditions, these
forgetful functors are comonadic and monadic, respectively, in the slice over C. Thus
(generalised) lenses may be understood as coalgebras for a comonad, and algebras for
monad.

6.2 Lenses as coalgebras for a comonad

The goal of this section is to show that the forgetful functor,

Lens(C,W,M) −→ Span(C,W,M)

is comonadic over C with respect to the codomain functors. However, it is not possible
to establish this result for generalised lenses with just the axioms (A1)–(A3) intro-
duced in Section 6.1. To prove this comonadicity, two additional conditions (which are
satisfied for the C = Cat case) are required on the class of morphisms W:

(A4) The canonical inclusion functor Sq(C,W)→ Sq(C) creates pullbacks.
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(A5) The functor dom: Sq(C,W)→ C has a right adjoint right inverse.

Axiom (A4) is a limit closure property on the class of morphisms W, which asserts
that given a diagram in C of the form,

A X C

B Y D

∼

∼ ∼

the unique morphism A×X C → B ×Y D is in the class of morphisms W.
Axiom (A5) introduces additional structure on the category C which behaves well

with the class of morphisms W. Having a right inverse means that for every morphism
A→ B there is a commutative square in C denoted:

A B

A∞ B∞

∼ ∼ (6.2)

Being a right adjoint means that for every morphism X → A in W, there exists a
unique morphism A→ X∞ such that the following diagram commutes:

X X

A X∞

∼ ∼

∃!

(6.3)

This diagram describes the component of the unit of the adjunction at X → A. An
object A in C is called codiscrete if if A ∼= X∞.

Example 6.6. For the category C = Cat, the class W of bijective-on-objects func-
tors satisfies the axioms (A4) and (A5). The objects X∞ are precisely the codiscrete
categories.

Proposition 6.7. Let (C,W,M) be a triple satisfying axioms (A1)-(A5). Then the
codomain map cod: Span(C,W,M)→ C has a right adjoint right inverse, and for each
object B in C, the fibre with respect to the codomain map SpanB(C,W,M) has finite
products.

Proof. Using (A5) and (6.2), the right inverse C → Span(C,W,M) assigns to each
morphism A→ B a morphism given by:

A∞ B∞

A B

A B

∼ ∼
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Using (6.3), the component of the unit for the adjunction at a span A ← X → B is
the cell in Span(C,W,M) defined by:

A B∞

X B

B B

∼ ∼

=

A X∞ B∞

X X B

B B B

∃!

∼ ∼ ∼

The above diagram demonstrates that the fibre SpanB(C,W,M) over an object B with
respect to the codomain functor has a terminal object.

Moreover, binary products in SpanB(C,W,M) are computed by pullback over the
terminal object. For a cospan of morphisms in SpanB(C,W,M) given by,

A B∞ C

X B Y

B B B

∼ ∼ ∼

using (A4) their pullback (that is, their binary product) is given by:

A A×B∞ C C

X X ×B Y Y

B B B

∼ ∼ ∼

Therefore each fibre SpanB(C,W,M) has finite products.

Collection of minor properties

This subsection collects a number of interesting properties of the class W which follow
from axioms (A4) and (A5), but which are not required for the main result of this
section.

Lemma 6.8. Let C be a category with a class of morphisms W satisfying axioms (A4)
and (A5). Then each fibre of the domain functor dom: Sq(C,W)→ C has finite limits.

Proof. By axiom (A4), each fibre has pullbacks. By axiom (A5), each fibre has a
terminal object; for example, the universal property of the terminal object for the fibre
over X is exhibited in (6.3). Therefore, each fibre has finite limits.
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Lemma 6.9. Let C be a category with a class of morphisms W satisfying axioms (A4)
and (A5). Then W is the left class of an orthogonal factorisation system on C.

Proof. Given a morphism A → B in C, consider the cospan in Sq(C,W) given by the
following commutative diagram:

A B B

A∞ B∞ B

∼

∼

Then there is a factorisation given by the universal property of the pullback whose left
factor is in W by (A4):

A A B

A∞ A∞ ×B∞ B B

∼

∼

∼

(6.4)

The right class of the factorisation system is characterised by those morphisms for
which the square (6.2) is a pullback. It is not difficult to show that these classes of
morphisms are orthogonal, and therefore form an orthogonal factorisation system.

Lemma 6.10. Let C be a category with a class of morphisms W satisfying axioms (A4)
and (A5). Then the class W satisfies the two-out-of-three property.

Proof. Consider morphisms f : A → B and g : B → C. If f, g ◦ f ∈ W, then g ∈ W

since W is the left class of an orthogonal factorisation system. If g, g ◦ f ∈ W, then
f ∈W using (A4).

Remark. Since W contains the isomorphisms, by (A1), and satisfies two-out-of-three,
by Lemma 6.10, it is a class of weak equivalences. This justifies the decoration for the
arrows which is traditionally used to denote the weak equivalences in a model structure.

Lemma 6.11. Let (C,W,M) be a triple satisfying axioms (A1)-(A5). Then the functor
cod: Span(C,W,M)→ C is a fibration.

Proof. Given an object C ← Y → D in Span(C,W,M) and a morphism B → D in C,
there is a morphism in Span(C,W,M) given by,

Q C

B ×D Y Y

B D

o.f.s.∼

y

∼

where Q is the image with respect to the orthogonal factorisation system in Lemma 6.9.
It is straightforward to verify that this is a cartesian lift.
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Constructing the right adjoint

This subsection constructs a right adjoint to the forgetful functor,

Lens(C,W,M) Span(C,W,M)

C
cod cod

(6.5)

in the slice 2-category CAT/C. Assume throughout that (C,W,M) is a triple which
satisfies the axioms (A1)–(A5).

In Proposition 6.7 it was shown that for each objectB, the category SpanB(C,W,M)
has finite products constructed by taking the pullback over the terminal object. The
main idea in constructing the right adjoint is that for each object in SpanB(C,W,M)
one takes the product with the identity span over B to yield a generalised lens over B.

In detail, consider an object in Span(C,W,M) given by,

A X B∼

together with the canonical cospan of morphisms in Span(C,W,M) given by the com-
mutative diagram:

A B∞ B

X B B

B B B

∼

∼ ∼

By Proposition 6.7, taking the pullback of this cospan yields a span of morphisms in
Span(C,W,M) given by:

A A×B∞ B B

X X B

B B B

∼

∼ ∼

(6.6)

The right-hand side of this diagram is of the form (6.1), and therefore is a lens with
codomain B.

Lemma 6.12. There is a functor Span(C,W,M)→ Lens(C,W,M) with an assignment
on objects given by:

X

A B

∼ 7−→
X

A×B∞ B B

∼
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Proof. The assignment on objects is constructed in (6.6), and using the universal prop-
erty of the pullback it is straightforward to show this extends to a functorial assignment
on morphisms.

Proposition 6.13. The functor Lens(C,W,M)→ Span(C,W,M) has a right adjoint.

Proof. The right adjoint Span(C,W,M) → Lens(C,W,M) is defined in Lemma 6.12.
The component of the counit at an object in Span(C,W,M) is constructed in (6.6)
from the left projection:

A×B∞ B A

X X

B B

∼

∼ ∼

The component of the unit at an object in Lens(C,W,M) is constructed using the
universal property of the pullback:

A A×B∞ B

X X

B B

∼

∼ ∼

It is not difficult to show that components of the unit and counit are natural and satisfy
the triangle identities for an adjunction.

Note that whiskering the unit natural transformation with the codomain map
cod: Lens(C,W,M)→ Span(C,W,M) yields the identity natural transformation; sim-
ilarly for the counit. The following result is immediate.

Corollary 6.14. The morphism in CAT/C shown below has a right adjoint.

Lens(C,W,M) Span(C,W,M)

C
cod cod

Comonadicity

Theorem 6.15. The forgetful functor Lens(C,W,M)→ Span(C,W,M) is comonadic.
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Proof. A coalgebra for the comonad induced by the adjunction in Proposition 6.13 is
given by a section to the component of the counit in Span(C,W,M):

A A×B∞ B A

X X B

B B B

∼ ∼

∼ ∼ ∼

However, by the universal property of the pullback, the coalgebra map above is equiv-
alent to the following commutative diagram:

A B

X B

B B

∼

This is precisely an object in Lens(C,W,M). Moreover, it can be shown that com-
patibility of the coalgebra with the comultiplication of the comonad adds no further
conditions. Likewise, there is a correspondence between morphisms of coalgebras and
morphisms in Lens(C,W,M). Therefore, Lens(C,W,M) is equivalent to the category
of coalgebras and the forgetful functor is comonadic.

The cofree lens on a cofunctor

Consider a cofunctor (f, ϕ) : A→ B as an object in the category,

Cof = Span(Cat,W,M)

where W is the class of bijective-on-objects functors and M is the class of discrete
opfibrations.

Example 6.16. The cofree lens on a cofunctor (f, ϕ) : A→ B is a lens with:

• domain category A×B∞B which has the same objects as A and morphisms given
by pairs (w : a→ a′ ∈ A, u : fa→ fa′ ∈ B);

• functor component given by the projection π : A ×B∞ B → B which sends a
morphism above to u : fa→ fa′;

• lifting operation given by (a, u : fa→ b) 7−→ (ϕ(a, u), u).
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Intuitively, the reason why a cofunctor is not a lens is that it does not “know” how
to send morphisms from the domain to codomain. The cofree lens solves this problem
universally through constructing a functor with the same underlying object assignment
as the cofunctor, whose assignment on morphisms is given trivially by projection, while
essentially keeping the same lifting operation.

6.3 Lenses as algebras for a monad

The goal of this section is to show that the forgetful functor,

Lens(C,W,M) Sq(C)

C

U

cod cod
(6.7)

has a left adjoint in the slice 2-category CAT/C, and is moreover monadic in the case
where C = Cat together with the class W of bijective-on-objects functors and the class
M of discrete opfibrations. In other words, lenses are characterised as algebras for a
monad. A useful corollary is the construction of the free lens on a functor over a fixed
codomain.

There are three conditions on the triple (C,W,M) which will be required in order
to prove that the left adjoint exists.

(A6) The functor cod: Sq(C,W)→ C has a left adjoint right inverse.

(A7) There is an orthogonal factorisation system (E,M) on C, where the arrows in the
left class E are denoted:

• • ∈ E

(A8) Pushouts of morphisms in W along morphisms in E exist.

Let us consider each of these conditions in more detail before progressing to the main
results.

Axiom (A6) introduces additional structure on the category C which behaves well
with the class of morphisms W. The functor cod: Sq(C,W)→ C having a right inverse
means that for every morphism f : A → B in C, there is a morphism in Sq(C,W)
denoted:

A0 B0

A B

f0

∼ ∼

f

(6.8)
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Moreover, being a left adjoint means that for every morphism X → A in W, that is, an
object in Sq(C,W), there exists a unique morphism A0 → X such that the following
diagram commutes:

A0 X

A A

∃!

∼ ∼ (6.9)

This diagram describes the component of the counit of the adjunction at X → A.
Axiom (A7) means that every morphism A → B in C has a unique factorisation

(up to unique isomorphism) into a morphism in E followed by a morphism in M,

A B

•

and for each solid commutative square in C of the form,

A C

B D

f

e mh

g

(6.10)

there exists a unique morphism h such that f = h ◦ e and g = m ◦ h.
The left class E and the right class M of an orthogonal factorisation system enjoy

several nice properties. If g ◦ f ∈ E and f ∈ E, then g ∈ E; dually, if g ◦ f ∈ M and
g ∈ M, then f ∈ M. The left class E is stable under pushout along morphisms in
C, while the right class M is stable under pullback along morphisms in C, a condition
already required of M by (A3).

Axiom (A8) means that every cospan as follows has a pushout:

• • •∼

Moreover, since both E and W are left classes of a factorisation system (see Lemma 6.9)
they are stable under pushout, so we obtain a commutative square:

• •

• •

∼

p
∼

We now check that these three conditions hold for our main example.

Example 6.17. Let C = Cat together with the class W of bijective-on-objects functors
and the class M of discrete opfibrations.
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• Axiom (A6): For each category A there is a discrete category A0, together with
an identity-on-objects functor A0 → A. By functoriality this assignment satis-
fies (6.8), while (6.9) is precisely the universal property for bijective-on-objects
functors.

• Axiom (A7): Discrete opfibrations are the right class of the comprehensive fac-
torisation system [SW73], whose left class E is precisely the class of initial functors
(that is, those functors f : A→ B such that for each b ∈ B the comma category
f/ b is connected).

• Axiom (A8): All pushouts in Cat exist.

Assumption. For the remainder of this chapter, assume that the axioms (A1)–(A8)
hold unless otherwise stated.

We now consider a couple of statements which may be proven using these axioms,
and which will be essential in constructing the left adjoint to the functor U in (6.7).

Proposition 6.18. The functor dom: Span(C,W,M) → C has a left adjoint right
inverse.

Proof. Given a morphism f : A→ B in C, there is a morphism in Span(C,W,M) given
by the commutative diagram:

A B

A0 B0

A0 B0

f

∼

f0

∼

f0

(6.11)

This assignment is functorial and right inverse to the domain map using (6.8), and
is moreover left adjoint using (6.9), with the counit of the adjunction given by the
commutative diagram:

A A

A0 X

A0 B

∼

∃!

∼

(6.12)

Therefore the functor dom: Span(C,W,M)→ C has a left adjoint right inverse.
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Corollary 6.19. For each morphism f : A→ B, there is a morphism in Span(C,W,M)
given by:

A B

A0 B

A0 B

f

∼

(6.13)

Proof. Apply the counit (6.12) to the identity span on B, and then compose with the
morphism (6.11) in Span(C,W,M).

In Lemma 6.11 it was shown that the codomain map cod: Span(C,W,M)→ C is a
fibration. The theorem below shows that this functor is also an opfibration.

Proposition 6.20. The functor cod: Span(C,W,M)→ C is an opfibration.

Proof. We demonstrate the existence and universal property of weakly opcartesian lifts,
and note that these morphisms are closed under composition, from which it follows that
all opcartesian lifts exist.

Given an object A ← X → B in Span(C,W,M) and a morphism B → D in C,
there is a morphism in Span(C,W,M) constructed from (A7) and (A8) as follows,

A A+X J

X J

B D

∼

o.f.s.

x

∼

where J is the image of the composite morphism X → B → D with respect to the
(E,M)-factorisation.

Given any other morphism over B → D, there is a unique factorisation below using
the universal properties of the orthogonal factorisation system (6.10) and pushouts:

A C

X Y

B D

∼ ∼

=

A A+X J C

X J Y

B D D

∃!

x

o.f.s.

∼ ∼

∃!

∼

(6.14)

Finally, by the pushout pasting property and the uniqueness of factorisations,
weakly opcartesian morphisms for the codomain map are closed under composition.
Therefore, the functor cod: Span(C,W,M)→ C is an opfibration.
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Corollary 6.21. The functor cod: Span(C,W,M)→ C is a bifibration.

Proof. Follows immediately from Lemma 6.11 and Proposition 6.20.

Using Proposition 6.20 and Proposition 6.18 (in particular, Corollary 6.19), we may
construct the left adjoint to the functor (6.7). In preparation we introduce some useful
notation, which is chosen to provide some consistency with the next section where
algebraic weak factorisation systems [BG16a] will be studied.

Notation 6.22. Given a morphism f : A→ B, denote the factorisation (6.14) of the cell
(6.13) as follows:

A B

A0 B

A0 B

f

∼

=

A Ef B

A0 Jf B

A0 B B

Lf Rf

x

o.f.s.

ef

∼ ∼
mf

mf

Iterating this construction with the morphism Rf : Ef → B produces the following:

Ef B

(Ef)0 B

(Ef)0 B

Rf

∼

=

Ef ERf B

(Ef)0 JRf B

(Ef)0 B B

LRf R2f

x

o.f.s.

eRf

∼ ∼

mRf

mRf

Before proving the universal property of a left adjoint, let us show that there is a
suitable functor F which is well-defined by the following proposition.

Proposition 6.23. There is a functor F : Sq(C) → Lens(C,W,M) with assignment
on objects given by:

A B
f 7−→

Jf

Ef B

∼
mf

Rf

(6.15)

Proof. The assignment on objects above is constructed in the first displayed diagram
in Notation 6.22. For the assignment on morphisms, consider a morphism in Sq(C)

91



and construct the following commutative diagram:

A0 C0

A C

B D

h0

∼ ∼

h

f g

k

(6.16)

Then since the functor cod: Span(C,W,M) → C is an opfibration, there exists the
following factorisation:

A C Eg

A0 C0 Jg

A0 C0 D

h Lg

∼

h0

∼

eg

x

o.f.s.

∼

mg

h0

=

A C Eg

A0 Jf Jg

A0 B D

Lf E(h,k)

∼

ef

x

o.f.s.

∼

mf

J(h,k)

∼

mg

k

This yields a morphism in Lens(C,W,M) given by:

Ef Eg

Jf Jg

B D

E(h,k)

Rf Rg

∼

mf

∼

mg

J(h,k)

k

It is straightforward to show that this assignment on morphisms is functorial using
universal properties.

Note also that post-composing the above functor with cod: Lens(C,W,M) → C

yields the codomain map cod: Sq(C) → C as desired. We are now able to prove the
first main result of this section: showing that the functor F defined in Proposition 6.23
is a left adjoint to the forgetful functor U .

Theorem 6.24. The functor U : Lens(C,W,M) → Sq(C) has a left adjoint given by
F : Sq(C)→ Lens(C,W,M).

Proof. We construct the components of the unit and counit natural transformations,
and omit the straightforward details establishing naturality and the triangle identities.
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For an object f : A→ B in Sq(C), the component of the unit is given by:

A Ef

B B

f

Lf

Rf (6.17)

The component of the counit at an object in Lens(C,W,M) is given by the morphism,

Ef A

Jf X

B B

p̂

Rf f

∼

mf

∼

f

(6.18)

which is constructed from applying the factorisation (6.14) to the morphism (6.12):

A A

A0 X

A0 B

∼

∼ ∼

f

=

A Ef A

A0 Jf X

A0 B B

Lf p̂

x

o.f.s.

ef

∼ ∼

mf

∃!

∼
f

This completes the proof.

A key benefit to the existence of the left adjoint F is the construction of the free
lens (6.15) on a morphism in C. In particular, when C = Cat we are able to construct
the free delta lens on a functor, which without diagrammatic reasoning would seem to
be very difficult to achieve. The underlying reason is that the construction of pushouts
and the image of the comprehensive factorisation system in Cat are typically difficult
to realise explicitly due to quotients. However, as the following lemma shows, some
instances are easier to understand.

Lemma 6.25. Given a functor f : A→ B, there is an isomorphism of categories:

Jf ∼=
∑
a∈A0

fa/B

Proof. Since the factorisation is unique, up to unique isomorphism, it is enough to verify
that the functor ef : A0 → Jf with an assignment on objects a 7→ (a, 1fa) is initial,
and that the functor mf : Jf → B with assignment on objects (a, u : fa→ b) 7→ b is a
discrete opfibration. The conditions in both cases are easy to check.
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The initial functor ef : A0 → Jf is a particularly interesting case, as it chooses
an initial object in each connected component of its codomain (also known as local
initial objects). Therefore, constructing the pushout of ef along the identity-on-objects
functor A0 → A essentially involves no quotients, instead merely gluing the morphisms
in A between the local initial objects in Jf and closing under composition.

Example 6.26. Consider category B = {• → •}. The free lens Ef → B on the
identity functor 1B is given by Example 2.20.

On the other hand, not every lens is free on a functor. For example, a discrete
opfibration is a free lens on a functor if and only if its domain is discrete.

Constructing the algebras

Theorem 6.24 has shown that the forgetful functor U : Lens(C,W,M) → Sq(C) has a
left adjoint under some reasonable conditions on the triple (C,W,M). The goal of this
subsection is to show that, in the case where C = Cat together with the class W of
bijective-on-objects functors and the class M of discrete opfibrations, the functor U is
monadic.

We begin by constructing the algebras for the monad UF : Sq(C)→ Sq(C) induced
by the adjunction, then provide a simpler presentation which makes use of the universal
property of the pushout. Finally we show how the category of algebras Alg(UF ) is
equivalent to Lens(C,W,M) in the case of C = Cat.

Consider the induced monad UF on Sq(C). The unit for the monad at an object
f : A→ B is given by (6.17):

A Ef

B B

f

Lf

Rf

To construct the component of the multiplication for the monad, consider the following
factorisation:

Ef Ef

(Ef)0 Jf

(Ef)0 B

∃!
∼

∼ ∼

mf

=

Ef ERf Ef

(Ef)0 JRf Jf

(Ef)0 B B

LRf µf

x

o.f.s.

eRf

∼ ∼

mRf

νf

∼

mf

(6.19)

94



Post-composing the above morphisms in Span(C,W,M) with the morphism for the free
lens,

Ef B

Jf B

B B

Rf

∼

mf

mf

and applying the universal property of the pushout yields the component of the mul-
tiplication µ at f : A→ B given by:

ERf Ef

B B

µf

R2f Rf (6.20)

Example 6.27. An algebra for the monad UF : Sq(C) → Sq(C) consists of an object
f : A→ B and a morphism in Sq(C) given by,

Ef A

B B

p̂

Rf f (6.21)

which is compatible with the unit,

A Ef A

B B B

f

Lf

Rf

p̂

f =
A A

B B

f f (6.22)

and compatible with the multiplication:

ERf Ef A

B B B

R2f

µf

Rf

p̂

f =
ERf Ef A

B B B

R2f

E(p̂, 1)

Rf

p̂

f (6.23)

Note that by the closure properties of the left class of a factorisation system, the algebra
map p̂ is necessarily in E.

A morphism of algebras (f, p̂)→ (g, q̂) consists of a morphism in Sq(C) compatible
with the algebra maps:

Ef A C

B B D

Rf

p̂

f

h

g

k

=
Ef Eg C

B D D

Rf

E(h, k)

Rg

q̂

g

k

Let Alg(UF ) denote the category of algebras for the monad UF .
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There is a lot of redundancy in the full presentation of algebras for the monad UF .
Aside from (6.21), only the top row of the diagrams for compatibility with the unit and
multiplication contain information. More importantly, an algebra map p̂ : Ef → A is
a morphism out of a pushout, and utilising its universal property provides a simpler
presentation as follows.

Proposition 6.28. An algebra (f : A→ B, p̂ : Ef → A) for the monad UF is equiva-
lent to a pair,

(f : A→ B, p : Jf → A)

which satisfies the following commutative diagrams:

Jf A

B B

p

mf f

A0 Jf

A A

∼
ef

p

JRf Jf

Jf A

νf

J(p0, 1)

p

p

(6.24)

Proof. Let f : A → B be a morphism in C. Consider the middle square in (6.24)
and take the pushout of ef : A0 → Jf along the weak equivalence A0 → A to yield a
universal morphism [1, p] : Ef → A. It is not difficult to show that this is an algebra
for the monad UF .

Conversely, given an algebra (6.21), precompose with the morphism Jf → Ef to
obtain a morphism Jf → A which satisfies the commutative diagrams (6.24).

These two processes are mutually inverse, and therefore the two presentations of
algebras for the monad UF are equivalent.

When we say an algebra for the monad UF , we will mean either of its presentations
above.

Corollary 6.29. There is a functor Q : Lens(C,W,M)→ Alg(UF ) with an assignment
on objects determined by the components of the unit (6.18) as follows:

X

A B

∼ f

f

7−→
Ef

A B

p̂ Rf

f

The main theorem of this section is to show that the functor Q is an equivalence of
categories in the case of C = Cat. The proof is based on the presentation of lenses as
algebras for a semi-monad by Johnson and Rosebrugh [JR13].

Theorem 6.30. Let C = Cat together with the class W of bijective-on-objects functors
and the class M of discrete opfibrations. Then functor U : Lens(C,W,M) → Sq(C) is
monadic, that is, there is an equivalence of categories Lens(C,W,M) ' Alg(UF ).
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Proof. By Proposition 6.28 and Lemma 6.25, an algebra for the monad UF consists of
a functor f : A→ B together with a functor,

Jf A

(a, u) p(a, u)

(a, v ◦ u) p(a, v ◦ u)

p

· · ·
〈a,v〉 p〈a,v〉

· · ·

(6.25)

where u : fa → b and v : b → b′ are morphisms in B. Compatibility with the unit
means that p(a, 1fa) = a. Therefore, for each morphism 〈a, u〉 : (a, 1fa) → (a, u),
define a lifting operation:

ϕ(a, u : fa→ b) = p〈a, u〉 : a→ p(a, u)

Then the axioms (6.24) imply the axioms (L1), (L2), and (L3) for the lifting oper-
ation are satisfied. Therefore every algebra (f, p) corresponds to a lens (f, ϕ). It is
straightforward to show that this correspondence extends functorially to morphisms,
and provides an inverse to the inclusion Q : Lens(C,W,M)→ Alg(UF ).

Remark. This proof essentially follows that of [JR13, Proposition 3]. The key obser-
vation is that the presentation of algebras in Proposition 6.28 for the monad UF is
precisely (up to change of notation) the same as the algebras for a semi-monad in the
cited paper (that is, the semi-monad which assigns f : A → B to mf : Jf → B in the
notation above). Thus the most important aspect of Theorem 6.30 lies in constructing
the left adjoint (Theorem 6.24) and simplifying the presentation of the algebras for the
induced monad (Proposition 6.28).

6.4 Algebraic weak factorisation systems and lenses

In this section, we show that lenses are the R-algebras for an algebraic weak fac-
torisation system [BG16a] on Cat. The corresponding L-coalgebras for this AWFS
are constructed, and we demonstrate the lifting “property” exhibited by lenses with
respect to these coalgebras.

Recall from Bourke and Garner [BG16a, Section 3.3] that a right-connected double
category D is called monadic if the canonical functor D1 → Sq(D0) is strictly monadic.

Lemma 6.31. The double category Lens is a monadic right-connected double category.
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Proof. By Theorem 3.21, the double category of lenses is the right-connected comple-
tion of Cof, and is therefore right-connected. The functor Lens→ Sq(Cat) is monadic
by Theorem 6.30, and therefore the double category of lenses is monadic.

Using this lemma, the main theorem of this section follows immediately.

Theorem 6.32. The double category Lens of lenses is isomorphic the double category
R-Alg of R-algebras for an algebraic weak factorisation system.

Proof. This follows from Lemma 6.31 and [BG16a, Proposition 11].

Recall [BG16a, Section 2.2] that an algebraic weak factorisation system (L,R) on
C consists of a monad R on Sq(C) over the codomain map cod: Sq(C) → C and a
comonad L on Sq(C) over the domain map dom: Sq(C) → C which are compatible
via a distributive law and form a functorial factorisation (L,E,R) on C. Algebraic
weak factorisation systems (AWFS) generalise orthogonal factorisation systems (OFS).
Analogous to how an OFS has unique filler morphisms (6.10), an AWFS has a canonical
choice of filler morphisms (Proposition 6.35).

Since lenses are R-algebras for the monad R = UF on Sq(C), we now wish to
construct the comonad L and the L-coalgebras, and state the relationship that they
share with R-algebras.

Notation 6.33. Given the morphism Lf : A → Ef constructed in Notation 6.22, con-
struct the following factorisation:

A Ef

A0 Ef

A0 Ef

Lf

∼

=

A ELf Ef

A0 JLf Ef

A0 Ef Ef

L2f RLf

x

o.f.s.

eLf

∼ ∼

mLf

mLf

Now using the universal property of the orthogonal factorisation system to obtain a
morphism,

A0 JLf

Jf Ef

eLf

ef mLf

∼

we can construct a morphism ∆f : Ef → ELf using the universal property of the
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pushout:

A0 A A

Jf Ef ELf

ef

∼

p
Lf L2f

∼ ∆f

=
A0 A0 A

Jf JLf ELf

ef eLf

∼

p
L2f

∼

(6.26)

Proposition 6.34. There is a comonad L : Sq(C)→ Sq(C) with assignment on objects
f 7→ Lf . Given an object f : A→ B, the component of the counit is given by,

A A

Ef B

Lf f

Rf

(6.27)

while the component of the comultiplication was constructed in (6.26) and is:

A A

Ef ELf

Lf L2f

∆f

(6.28)

A coalgebra for the comonad L consists of a morphism f : A→ B and a morphism
q : B → Ef which is compatible with the counit,

A A A

B Ef B

f Lf f

q Rf

=
A A

B B

f f (6.29)

and compatible with the comultiplication:

A A A

B Ef ELf

f Lf L2f

q E(1,q)

=
A A A

B Ef ELf

f Lf L2f

q ∆f

(6.30)

Proposition 6.35 ([BG16a, Section 2.4]). Given a commutative square,

A C

B D

h

f g
ψ

k

such that (f, q) is a L-coalgebra and (g, p) is a R-algebra, there is a canonical morphism
ψ = p ◦ E(h, k) ◦ q : B → C such that g ◦ ψ = k and ψ ◦ f = h.
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When the left-hand side of the above square is the special case of a cofree coalgebra,
this canonical choice of morphism can be illustrated as follows.

Proposition 6.36. Let f : A→ B be a functor arising from a pushout of the form:

A0 A

J B

∼

p
f

∼

Then for every commutative square,

A C

B D

h

f g
ψ

k

such that g has a lens structure, there is a canonical choice of morphism ψ : B → C

such that g ◦ ψ = k and ψ ◦ f = h.

Proof. Consider the solid diagram below where the morphism C → D has the structure
of a generalised lens:

X

A0 A C

J B D

∼

∼

p
∼

We describe the construction of each of the dashed morphisms in three steps.
By the universal property of discrete objects (6.9) there exists a unique morphism

A0 → X such that the following diagram commutes:

A0 X

A C

∼ ∼

By the universal property (6.10) of the orthogonal factorisation system (E,M),
there exists a unique morphism J → X such that the following diagram commutes:

A0 X

J D
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Finally, by the universal property of the pushout there exists a morphism B → C

such that the following diagram commutes:

A C

B D

Although the construction of this morphism is canonical, it may not be the only mor-
phism such that the lower-right triangle above commutes.

6.5 Change of base for lenses and generalised split
opfibrations

In this section, we demonstrate two interesting uses of a diagrammatic approach to
(generalised) lenses. The first is the notion of change of base, through the statement
that the codomain functor cod: Lens(C,W,M)→ C is a bifibration, yielding an adjunc-
tion between the fibres for every morphism A→ B in C. The second is exploration of
how split opfibrations may be transferred to this diagrammatic setting in the presence
of a copointed endofunctor on C.

Change of base

Let Sq(C,M) be the restriction of Sq(C) to the class of morphisms M as defined in
Example A.8. There is a strict double functor Sq(C,M)→ Lens(C,W,M) which sends
a morphism in M to its companion. There is an adjunction of categories,

Sq(C,M) Lens(C,W,M)> (6.31)

whose unit is the identity transformation, and whose counit component at a lens is
given by the cell:

X A

X X

B B

∼

∼

(6.32)

Furthermore, this is an adjunction in the slice over C between the codomain maps
cod: Sq(C,M)→ C and cod: Lens(C,W,M)→ C. Since C has pullbacks and the class
M satisfies (A3), the former map, cod: Sq(C,M)→ C, is a fibration. Since W satisfies
(A3), we also have the following result for the latter.
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Proposition 6.37. The functor cod: Lens(C,W,M)→ C is a fibration.

Proof. Given a lens from C to D and a morphism B → D, there is a morphism in
Lens(C,W,M) given by:

B ×D C C

B ×D Y Y

B D

y∼ ∼

Using the universal property of the pullback in C, it is straightforward to verify that
this a cartesian lift.

Since the cartesian lifts with respect to the fibration cod: Sq(C,M)→ C are given
pullback squares, the following result is immediate consequence of Proposition 6.37.

Corollary 6.38. The forgetful functor,

Lens(C,W,M) Sq(C)

C

U

cod cod

preserves cartesian lifts.

When M satisfies (A7), that is, when there is an orthogonal factorisation system
(E,M), the codomain map cod: Sq(C,M) → C is an opfibration (Proposition 6.20).
When W satisfies (A8), we also have the following result for lenses.

Proposition 6.39. The functor cod: Lens(C,W,M)→ C is an opfibration.

Proof. Given a lens from A to B and a morphism B → D, there is a factorisation in
Span(C,W,M) using (6.14) given by:

A B D

X B D

B B D

∼

=

A A+X J D

X J D

D D D

∃!

x

o.f.s.

∼ ∼

(6.33)
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Rearranging the diagram, we may see this as a morphism in Lens(C,W,M) given by:

A A+X J

X J

B D

∼ ∼

Using the universal property of the opcartesian lift for cod: Span(C,W,M)→ C, it is
straightforward to verify that this is an opcartesian lift in Lens(C,W,M) with respect
to the codomain functor.

Since the opcartesian lifts of the opfibration cod: Span(C,W,M) → C are con-
structed in exactly the same way, the following result is an immediate consequence of
Proposition 6.39.

Corollary 6.40. The forgetful functor,

Lens(C,W,M) Span(C,W,M)

C
cod cod

preserves opcartesian lifts.

We now arrive at the main result of this subsection.

Theorem 6.41. The functor cod: Lens(C,W,M)→ C is a bifibration.

Proof. Follows directly from Proposition 6.37 and Proposition 6.39.

From this result, we obtain a notion of change of base for lenses over an object.

Proposition 6.42. For every morphism f : A→ B there is an adjunction,

LensA(C,W,M) LensB(C,W,M)
Σf

⊥
∆f

between the fibres of the codomain map cod: Lens(C,W,M)→ C.

Proof. The right adjoint ∆f is given by taking the cartesian lift of the morphism
f , while Σf is given by taking the opcartesian lift of the morphism f . Since the
codomain map cod: Lens(C,W,M) → C is a bifibration, it follows immediately that
these functors are adjoint.
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In the case where C = Cat, if f is a discrete opfibration then Σf is given by post-
composition of a lens into A by f . Therefore, Σf more generally is describing how one
“composes” a lens with a functor. On the other hand, ∆f is describing the pullback of
a lens along a functor, and if f has a lens structure, this is the “pullback” of lenses as
studied in the work of Johnson and Rosebrugh [JR17a].

Generalised split opfibrations

In Section 3.5, split opfibrations were characterised as lenses satisfying a certain dia-
grammatic property with respect to the décalage construction. The goal of this subsec-
tion is to extend this to the setting of generalised lenses for a triple (C,W,M) satisfying
(A1)-(A3).

The key ingredient in the generalisation is the additional structure of a copointed
endofunctor on C:

C C

D

1

ε

A natural transformation is called cartesian if all the naturality squares are pullbacks.
Of course, the natural transformation ε need not be cartesian in general, but one may
still consider the morphisms in C for which the naturality square is a pullback. For
that purpose, we introduce the following definition.

Definition 6.43. A morphism f : A→ B in a category C with a copointed endofunctor
(D, ε) is called D-universal if the naturality square,

DA A

DB B

εA

Df f

εB

is a pullback square.

The class of D-universal morphisms in C is closed under composition, contains
the isomorphisms, and is stable under pullback. Therefore, the class of D-universal
morphisms satisfies the axioms (A1)–(A3). Recall (Definition 3.27) that the décalage
construction is a copointed endofunctor on Cat.

Example 6.44. The class of discrete opfibrations in Cat is precisely the class of D-
universal morphisms for the décalage construction.

If M denotes the class of D-universal morphisms, then there is a full subcategory,

I : Sq(C,M) −→ Sq(C)
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and the copointed endofunctor lifts to this full subcategory, in the sense that there is
a diagram in the 2-category CAT given by,

Sq(C,M) Sq(C)

C C

cod

D

I

ε

cod
D

1

ε

(6.34)

such that ε ·cod = cod · ε. The assignment of D on objects is defined by the assignment
on D on morphisms. Furthermore, the components of the natural transformation ε at
an object in Sq(C,M) are pullback squares in C, which in turn are precisely cartesian
lifts with respect to the codomain functor cod: Sq(C)→ C.

Proposition 6.45. The category Sq(C,M) is the largest full subcategory of Sq(C) such
that the lifting ε of the natural transformation ε along the functor cod: Sq(C)→ C has
components which are cartesian lifts.

In a sense, this result describes the universal property characterising the lifting ε a
copointed endofunctor (D, ε). It also leads to a nice coincidence of the term cartesian.
In summary, a copointed endofunctor (D, ε) on a category C is cartesian if and only if
Sq(C,M) = Sq(C), which of course holds if and only if M = C.

There are a few aspects of Proposition 6.45 that require further explanation. First,
note that the functor cod: Sq(C) → C is a fibration, thus all cartesian lifts exist.
Second, it is possible to replace cod with an arbitrary functor and ask for the universal
lift of a copointed endofunctor along it. Generalising these aspects allows one to define
a suitable replacement for split opfibrations in the setting of generalised lenses.

Given a copointed endofunctor (D, ε) on C, there is an induced copointed endo-
functor on Sq(C), which through an abuse of notation will also be denoted (D, ε). The
forgetful functor U : Lens(C,W,M) → Sq(C) is not a fibration in general, but we can
describe its opcartesian lifts as morphisms,

A C

X Y

B D

∼ ∼
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such that the commutative square below is a pullback:

X Y

A C

∼ ∼

Definition 6.46. Let Lens(C,W,M, D) be the full subcategory of Lens(C,W,M) de-
termined by lenses which admit a cartesian lift, with respect to the forgetful functor
U , over a naturality square for copointed endofunctor (D, ε) on Sq(C).

In other words, the objects in Lens(C,W,M, D) are precisely those lenses C → D

such that the following morphism in Lens(C,W,M),

A C

X Y

B D

∼ ∼

is a cartesian lift of the functor U : Lens(C,W,M)→ C.
The following example of split opfibrations is the main reason for this abstract

definition.

Example 6.47. The category SOpf is the full subcategory of Lens determined by the
lenses which admit a cartesian lift over naturality squares for the décalage construction
with respect to the functor U : Lens→ Sq(Cat).
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Chapter 7

Conclusion

In this thesis, we have demonstrated the important role that double categories play
in unifying the theory of lenses. The motivation for this research grew out of a desire
to better understand lenses as mathematical structures, while also building a strong
foundation for their continued study using category theory.

Although there are now many kinds of lenses studied by the computer science and
applied category theory community, one of the reasons why delta lenses [DXC11] remain
of interest to the category theorist, more than ten years since their introduction, is that
they are morphisms between categories. Johnson and Rosebrugh [JR13] showed that
lenses capture the underlying structure of split opfibrations, while Ahman and Uustalu
[AU17] demonstrated how lenses integrate the notions of functor and cofunctor [Agu97].

The main goal of this thesis was to explore how lenses between categories could be
characterised using universal properties.

In Chapter 3, we introduced the right-connected completion of a double category,
and proved that the double category of lenses is the right-connected completion of the
double category of cofunctors. The construction induces a canonical span of double
functors,

Cof Lens Sq(Cat)U1 U2

and for every unitary double functorW : D→ Cof, there exists a unique unitary double
functor V : D → Lens, such that W = U1 ◦ V . Therefore the double category Lens is
completely determined by the universal property of the right-connected completion.

In Chapter 4, we introduced the left-connected completion of a double category
equipped with a functorial choice of companions, and constructed SMult, the double
category of split multi-valued functions, as the left-connected completion of Span,
the double category of spans. Lenses into a category B were characterised as lax
double functors V(B)→ SMult, which by the universal property of the left-connected
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completion, correspond uniquely to globular transformations:

V(B)

Sq(Set) Span
(−)∗

In Chapter 5, we introduced the flat double category Mndret(D) of monads, monad
morphisms, and monad retromorphisms in a double category D equipped with a func-
torial choice of companions. The double category of cofunctors was shown to arise as
from the formal theory of monads via an equivalence of categories:

Cof 'Mndret(Span)

Using the right-connected completion, this construction provided a natural setting
for introducing lenses between more general structures such as monads and internal
categories.

In Chapter 6, we introduced the double category of lenses Lens(C,W,M) in a
category C equipped with suitable classes of morphisms W and M. When C = Cat
together with the class W of bijective-on-objects functors and the class M of discrete
opfibrations, it was shown that the forgetful functor Lens → Cof is comonadic, and
that the forgetful functor Lens → Sq(Cat) is monadic. Therefore every lens is both
a coalgebra for a comonad and an algebra for a monad, unifying previous work of
Ahman and Uustalu [AU16] and Johnson and Rosebrugh [JR13]. Moreover, since
Lens is both right-connected and monadic over Sq(Cat), it corresponds to an algebraic
weak factorisation system, and every lens admits a canonical lift against the class of
coalgebras for a certain comonad on Sq(Cat).

A significant application of this work has been towards new characterisations of
split opfibrations, which have long been important in the study of lenses [JRW12]. At
the most basic level, split opfibrations are lenses whose chosen lifts are opcartesian,
and one of the core challenges has been translating this property into each new context
where lenses were studied. New approaches to split opfibrations were found using the
décalage construction, using strict factorisation systems, and via lax double functors
satisfying a simple property.

The results presented in each chapter focus on a certain aspect of lenses using both
new constructions and familiar tools in category theory. Collectively, they illustrate
the utility of using double categories to study lenses, as well as the richness of Lens as
a double category itself.

While the primary focus of this thesis is towards the theory of lenses, it has also
made important contributions to double category theory. These include introducing the
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right-connected completion and the left-connected completion, formalising the relation-
ship between left-connected double categories and double categories with companions,
defining a stronger notion of span representable double categories, and developing new
applications of the formal theory of monads for double categories and retrocells.

Category theory has long been used to study lenses, and the elevation of this study
to the level of double category theory represents a natural progression in the journey
towards understanding their mathematical structure. It is hoped that the research
presented in this thesis helps inspire new work on both lenses and double categories.

Future work and open questions

There are many possibilities for future work arising from the research presented in this
thesis. The following explores a collection of ideas and open questions which may be
avenues for further study.

Enriched lenses Given a construction in category theory, it is often interesting to
consider how it generalises to the setting on internal categories or enriched categories.
For a category E with pullbacks, internal categories and internal functors are precisely
monads and monad morphisms in the double category Span(E). In Chapter 5, it
was shown that internal cofunctors are precisely monad retromorphisms in the double
category Span(E). The double category of internal lenses is then defined as the right-
connected completion of the double category of internal cofunctors:

Mndlens(Span(E)) = Γ(Mndret(Span(E)))

In ongoing joint work with Matthew Di Meglio, we show that the framework of
lenses between monads may also be used to define enriched lenses. A V-matrix from
A to B is a functor A × B → V where A and B are discrete categories (or sets).
For a distributive monoidal category V, enriched categories and enriched functors are
monads and monad morphisms in the double category Mat(V) of sets, functions, and
V-matrices. An enriched cofunctor may be defined as a monad retromorphism in
the double category Mat(V). In other words, a V-enriched cofunctor (F,Φ): C → D

consists of a function F : C0 → D0 between underlying sets of objects, together with,
for each pair of objects (c, d) ∈ C0 ×D0, a lifting operation given by a morphism in V,

Φc,d : D(Fc, d) −→
∑
x∈X

C(c, x)

where X = F−1(d) is the fibre of the function F over the object d. The lifting operation
is also subject to two conditions related to identities and composition that are notably
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more complex than the corresponding conditions for enriched functors. The double
category of enriched lenses may then be defined as the right-connected completion of
the double category of enriched cofunctors:

Mndlens(Mat(V)) = Γ(Mndret(Mat(V)))

One example of the utility of enriched lenses comes from recent work of Perrone
[Per21] which introduces the notion of weighted lens. Let the interval [0,∞] be a
category with morphisms a ≥ b, and a monoidal structure given by point-wise addition.
The distributive monoidal category wSet of weighted sets arises as the free coproduct
completion of [0,∞]. Categories enriched in wSet are called weighted categories. It
may be shown that weighted lenses are exactly enriched lenses in the category wSet.
Future work aims to uncover further examples of enriched lenses, as well as study their
mathematical properties.

Internal lenses (again!) Suppose W is a monoidal category with equalisers, such
that, for each pair of objects A and B, the functor A⊗(−)⊗B : W→W preserves them.
Let Comod(W) be the double category of comonoids, comonoid homomorphisms, and
(two-sided) comodules in W. The monads and monad morphisms in Comod(W) are
precisely internal categories and internal functors in W as defined by Aguiar [Agu97].
Internal cofunctors were also originally introduced in this monoidal category setting,
and although the definition was not framed in terms of monads, it is not difficult to see
that an internal cofunctor corresponds to a monad retromorphism in Comod(W). The
double category of internal lenses in W may then be defined as the right-connected
completion of the double category of internal cofunctors in W:

Mndlens(Comod(W)) = Γ(Mndret(Comod(W)))

A cartesian monoidal category with equalisers is the same as a category with finite
limits, and in this setting the two notions of internal category coincide. However there
are at least two reasons why the monoidal setting is interesting. The first reason is that
it encompasses new examples, such as for W the category of vectors spaces together
with the usual tensor product. The second reason is that it opens the possibility of
using a string diagram calculus [Chi11] for cofunctors and lenses, which may be useful
both for proving new results and for drawing comparisons to other kinds of lenses based
on monoidal structures.

Transformations between monad retromorphisms An unsatisfying aspect of
the double category Mndret(D) is that it is flat whenever D is a unit-pure double cat-
egory equipped with a functorial choice of companions. This means that the vertical
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bicategory Mndret(D), whose objects are monads and whose 1-cells are monad retro-
morphisms, has only trivial 2-cells. However, in the case D = Comod(W), Aguiar
defines natural transformations between cofunctors. How can we understand these
transformations as arising naturally from the formal theory of monads?

For every double category D there is a double category EM(D) which has the same
objects, horizontal morphisms, and vertical morphisms as Mnd(D), but with different
cells. While the definition of this double category does not appear in the work of
Fiore, Gambino, and Kock [FGK11; FGK12] on monads, its definition is analogous
to the free completion of a 2-category under Eilenberg-Moore objects [LS02]. Despite
the similarities in definition, it is currently unknown whether EM(D) is also the free
completion of D under Eilenberg-Moore objects, as there are subtle details to check
with regards to strictness and the appropriate direction of transformation between
double functors.

Restricting the double category EM(D) to monad retromorphisms yields a double
category EMret(D) whose underlying vertical bicategory contains non-trivial 2-cells.
When D = Span, monad retromorphisms correspond to spans of functors whose left leg
is bijective-on-objects and whose right leg is a discrete opfibration (that is, cofunctors),
and the 2-cells correspond to diagrams in Cat given by:

X

A B

Y

These 2-cells correspond exactly to the transformations of cofunctors due to Aguiar,
thus demonstrating how they arise naturally from the formal theory of monads.

Lax lenses The double category EMret(D) contains within it all of the information
of Mndret(D), and therefore may be understood as a direct generalisation. Vertical
morphisms in the right-connected completion of EMret(D) may be appropriately called
lax lenses, as they correspond to diagrams in Cat of the form,

X

A B

ϕ f ′

f

where ϕ is bijective-on-objects and f ′ is a discrete opfibration. It is conjectured that
lax lenses share a close relationship to delta lenses with amendment [DKL19; Dis20]
and this will be the subject of further study.
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The category of cofunctors is coreflective For any double category D with a
functorial choice of companions, we may define monad retromorphisms together with
the fully faithful inclusion of double categories:

Mndret(D) −→Mnd(D)

When D = Span, the corresponding fully faithful functor between the categories of
morphisms,

Mndret(D) −→Mnd(D)

admits a right adjoint, and thus Mndret(D) is a coreflective subcategory. This provides
another reason why monad retromorphisms are special among all vertical monad mor-
phisms in the case of D = Span. It is an open question as to what conditions on D are
required for this property to hold in general.

Strong tabulators and monad retromorphisms In Section 3.4 it was shown
that the double category of cofunctors has strong tabulators and is strongly span rep-
resentable, forming the basis for replacing Cof with the strongly span representable
double category Span(C,W,M) in Chapter 6. It is natural to ask: what are necessary
conditions on D to ensure that that double category Mndret(D) has strong tabulators,
and moreover is strongly span representable? In other words, when are monad retro-
morphisms equivalent to spans of monad morphisms? It is conjectured that D must
be equivalent to the double category Span(E) for a category E with pullbacks. The
potential for studying enriched cofunctors as spans of enriched functors is dependent
on a solution to this conjecture.

The right-connected completion Right-connected double categories were first de-
fined by Bourke and Garner [BG16a; BG16b] in the study of algebraic weak factori-
sation systems (AWFS). A right-connected double category D such that the forgetful
functor D1 → Sq(D0) is monadic is equivalent to an AWFS on the category D0.

The central construction of this thesis is the construction of the right-connected
completion Γ(D) of a double category D, which comes equipped with a canonical span
of double functors:

D←− Γ(D) −→ Sq(D0)

In Chapter 6, it was shown that when D = Span(C,W,M), the corresponding functor
between categories of morphisms Γ(D)1 → D1 is comonadic, and when D = Cof, the
corresponding functor between categories of morphisms Γ(D)1 → Sq(D0) is monadic.
It is reasonable to wonder if these results could be proven entirely at the level of a
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general double category D with conditions, rather than for specific double categories
as considered above.

Conjecture 7.1. The component of the double functor Γ(D)→ D between categories
of morphisms is comonadic if the category D1 has pullbacks and the codomain functor
cod: D1 → D0 has a right adjoint right inverse.

Conjecture 7.2. The component of the double functor Γ(D) → Sq(D0) between
categories of morphisms has a left adjoint if the functor dom: D1 → D0 has a left
adjoint right inverse and the functor cod: D1 → D0 is an opfibration.

Conjecture 7.2 raises a further question: under what conditions on D does the
right-connected completion correspond to an AWFS on D0?

In many senses, the right-connected completion presents a generalised theory of
lenses in a double category, however further examples are needed to solidify this intu-
ition. For example, if D is the double category of quintets for a 2-category K, vertical
morphisms in the right-connected completion Γ(D) are simply 2-cells in K, which seems
to be very far from a lens. There is also the question of what it means for a category
(such as Lens) to be both comonadic over a category (such as Cof) and monadic over
another category (such as Sq(Cat)).

Lax limits and restricted classes of 2-cells In Section 4.1, the left-connected
completion of a double category equipped with a functorial choice of companions was
shown to induce a 2-cell,

Γ′(D)

Sq(D0) D

L R

(−)∗

φ

which almost has the universal properties of a lax limit of the morphism (−)∗ in the
2-category DBLlax of double categories, lax double functors, and horizontal transfor-
mations. The reason this isn’t precisely the lax limit is that the 1-dimensional universal
property only holds for globular transformations, a restricted class of 2-cells in DBLlax.
What is the general theory of such lax limits?

The Grothendieck construction for cofunctors The double category Span clas-
sifies functors, in the sense that functors into a category B are in bijection with lax
double functors V(B)→ Span. Similarly, the double category SMult = Γ′(Span) clas-
sifies lenses. Let CofB be the fibre of the codomain functor cod: Cof → Cat. Is there
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a double category D such that there is an equivalence of categories,

CofB ' [V(B),D]lax

between the category of cofunctors over B and the category of lax double functors from
V(B) into D?

Dependent lenses Consider a double category DepLens whose objects are functions,
whose horizontal morphisms are commutative squares of functions, and whose vertical
morphisms are dependent lenses, that is, pairs (f, f ]) : g → h such that the following
diagram of functions commutes:

A • C

B D

g

f]

y
h

f

With a suitable definition of cells for DepLens, there is a double functor Cof → DepLens
which assigns:

• every category A, considered as an internal category in Set, to its domain map
d0 : A1 → A0;

• every functor f : A→ B to the commutative square of functions:

A1 B1

A0 B0

f1

d0 d0

f0

• every cofunctor (f0, ϕ1) : A→ B to the dependent lens:

A1 Λ1 B1

A0 B0

d0

ϕ1

y
d0

f0

Does this double functor have a left or a right adjoint? What can the theory of
cofunctors tell us about the theory of dependent lenses? Is it interesting to consider
the right-connected completion of DepLens?
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Symmetric lenses In the paper [Cla21a] by the author, a diagrammatic approach
to symmetric lenses [Dis+11; JR17a; JR17b] is developed. Without explaining the
key details of the paper, there are two comments on its relation to this thesis. Firstly,
although the constructions developed in that paper used bicategories, it is possible
to generalise to the setting of double categories. Second, although the diagrammatic
approach worked entirely in the category Cat together with the class W of bijective-on-
objects functors and the class M of discrete opfibrations, every result in the paper may
be generalised to a triple (C,W,M) which satisfies the same axioms as in Chapter 6.
The study of symmetric lenses in this general setting will be the subject of future work.

Properties of lenses In the paper [Cho+21] by the author and colleagues, properties
of the category of (small) categories and lenses are studied. Key results characterised
initial objects, terminal objects, monomorphims and epimorphisms, equalisers, and
coproducts. A distributive monoidal product, a proper factorisation system, and the
property of extensivity were also established. Several other properties of this double
category were studied by Di Meglio [DiM21]. Many of the results utilise a diagrammatic
approach to lenses, and it is natural to ask if they also generalise to a triple (C,W,M)
under certain conditions, and furthermore, if they may be framed in terms of properties
of the double category Lens(C,W,M)? For example, monomorphisms may be charac-
terised as certain cartesian lifts for the codomain functor cod: Lens(C,W,M)→ C, and
dually for epimorphisms. The systematic study of properties of the double category
Lens(C,W,M) will be the subject of future work.

The work presented in this thesis, and the way it seems to lead to promising new
questions, shows the utility of taking a double categorical approach to the study of
lenses and their generalisations. In some cases, the results can be understood or even
obtained without double categories, but the double categorical approach nicely orders
the material required such as when defining lenses as monad morphisms, or showing
that they are algebras and coalgebras. In other cases, such as for the Grothendieck
construction for lenses, the use of the double categorical approach is essential and has
provided interesting and fruitful insights. It is hoped that this thesis leads to exciting
new directions in the theory of lenses and double categories.
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Appendix A

Review of double categories

The aim of this appendix is to review the basic notions of double category theory for
the reader’s quick reference and to avoid cluttering the exposition of new work with
well known material. The main reference is Grandis and Paré [GP99; GP04], and most
of the notation used here is chosen to agree with their work (for example, denoting
vertical morphisms with a decorated •−→ arrow to distinguish them from horizontal
morphisms). Definitions or results taken from other places in the literature are cited
as they occur.

Definition A.1. A double category D is a (pseudo) internal category in CAT,

D1 ×D0 D1 D1 D0
comp dom

cod
id

with category of objects D0 and category of morphisms D1.

Using standard terminology for an internal category, dom: D1 → D0 is the domain
map, cod: D1 → D0 is the codomain map, id : D0 → D1 is the identity map, and
comp: D1 ×D0 D1 → D1 is the composition map of a double category D.

Unpacking the formal definition, a double category D has a collection of objects
(the objects of D0), collections of horizontal morphisms (the morphisms of D0) and
vertical morphisms (the objects of D1), and a collection of cells (the morphisms of D1).
A typical cell α in a double category is denoted as follows:

A C

B D

h

f α g

k

Such a cell is called globular if both h and k are identities. Cells may be composed
(or pasted) both horizontally and vertically, and these compositions are compatible via
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an interchange law. Identity cells on a vertical morphism f : A •−→ B, a horizontal
morphism h : A→ C, and an object A are denoted, respectively, as follows:

A A

B B

f 1f f

A C

A C

h

1 1h 1

h

A A

A A

1 1A 1

In this thesis, the horizontal composition of a double category is always taken
to be strictly associative and unital, while vertical composition may only be weakly
associative and unital up to comparison isocells (which are omitted in practice); this
is precisely what is meant by (pseudo) internal category in Definition A.1). A double
category is called unitary if vertical composition is strictly unital, and strict if vertical
composition is both strictly unital and associative.

Assumption. A double category is always understood to be unitary unless stated
otherwise.

Definition A.2. A double category is called flat if its cells are determined by their
boundary morphisms.

Example A.3. Given a category C, let Sq(C) denote the double category of squares
in C, whose objects are objects in C, whose horizontal and vertical morphisms are
morphisms in C, and whose cells are commutative squares in C.

A C

B D

h

f α g

k

:=
A C

B D

h

f g

k

Composition and identities in Sq(C) are given by those in C. The category of mor-
phisms is denoted Sq(C) and is commonly called the arrow category of C. Thus the
corresponding internal category presentation is given by:

Sq(C)×C Sq(C) Sq(C) C
comp dom

cod
id

The double category of squares is a flat strict double category.

Example A.4. Given a category C with pullbacks, let Span(C) denote the double
category of spans in C, whose objects are objects in C, whose horizontal morphisms are
morphisms in C, whose vertical morphisms are spans of morphisms in C, and whose
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cells are given by commutative diagrams in C of the form:

A C

B D

h

(s,X, t) α (u, Y, v)

k

!

A C

X Y

B D

h

s

t

α

u

v

k

Vertical composition of spans is given by pullback, while horizontal composition is
given by composition in C . Let Span(C) denote the category of morphisms, whose
objects are spans and whose morphisms are cells as above. The corresponding internal
category presentation is given by:

Span(C)×C Span(C) Span(C) C
comp dom

cod
id

The double category of spans in C is a non-flat non-strict double category, however
pullbacks in C are chosen such that composition in Span(C) in unitary. As a convenient
shorthand, the double category of spans in Set is denoted Span.

Notation A.5. Note that blackboard bold initial letters (e.g. D) are used to denote
double categories, and are replaced with calligraphic initial letters (e.g. D) to denote
their categories of morphisms and objects (except if they are better known by other
names, like Set or Cat).

Definition A.6. A full double subcategory of a double category D is determined by a
subset of vertical morphisms which is closed under vertical composition.

Example A.7. The double category Sq(C) is the full double subcategory of Span(C)
on the class of spans whose left leg (i.e. leg adjacent to the domain) is an identity
morphism.

Example A.8. Given a category C, let M be a class of morphisms which contains
the identities and is closed under composition. Let Sq(C,M) denote the full double
subcategory of Sq(C) determined by the class of morphisms M.

Example A.9. Given a category C with pullbacks, let W and M be classes of mor-
phisms which contain the identities, are closed under composition, and are stable under
pullback. Let Span(C,W,M) denote the full double subcategory of Span(C) determined
by the class of spans whose left leg (i.e. leg adjacent to the domain) is in the class W
and whose right leg (i.e. leg adjacent to the codomain) is in the class M.
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Example A.10. Given a category C, let V(C) denote the vertical double category of
C, whose objects are objects of C, whose horizontal morphisms are identity morphisms
in C, whose vertical morphisms are morphisms in C, and whose cells are horizontal
identities.

A A

B B

f f

This is a flat strict double category. Note that V(C) is not a full double subcategory
of Sq(C).

Definition A.11. A horizontal morphism f : A→ B has a companion f∗ : A •−→B if
there are cells,

A B

B B

f

f∗ ♥ 1

A A

A B

1 ♦ f∗

f

which are called binding cells, such that the following pasting conditions hold:

♦ | ♥ = 1f and ♦
♥

= 1f∗

A double category is equipped with a functorial choice of companions if every horizontal
morphism f has a companion f∗, and the equations (1A)∗ = 1A and (gf) = g∗f∗ hold.

In a unitary double category, companions may be expressed via a universal property.
A horizontal morphism f : A → B has a vertical companion f∗ : A •−→ B if for every
cell α below, there is a cell ♦ as above, such that there is a unique factorisation:

A C

A B

α1

h

g

f

=
A A C

A B B

1 ♦ f∗

h

α′ g

f

(A.1)

Definition A.12. A horizontal morphism f : A → B has a conjoint f ∗ : B •−→ A if
there are cells (also called binding cells),

B B

A B

f∗ ♣ 1

f

A B

A A

f

1 ♠ f∗

such that the following pasting conditions hold:

♠ | ♣ = 1f and ♣
♠

= 1f∗

A double category is equipped with a functorial choice of conjoints if every horizontal
morphism f has a conjoint f ∗, and the equations (1A)∗ = 1A and (gf)∗ = f ∗g∗ hold.
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Example A.13. A horizontal morphism f : A → B in the double category Span(C)
has a companion f∗ : A •−→B given by the span,

A A B
1A f

and a conjoint f ∗ : B •−→ A given by the span:

B A A
f 1A

Therefore Span(C) has a functorial choice of companions and conjoints.

Example A.14. The double category Sq(C) has a functorial choice of companions.
However, a horizontal morphism has a conjoint if and only if it is an isomorphism.

A double category may not have all companions or conjoints (as the above example
shows). However, in most “nice” double categories, the horizontal isomorphisms have
companions and conjoints.

Definition A.15. A double category is called horizontally invariant if every horizontal
isomorphism has a companion, or equivalently, if every horizontal isomorphism has a
conjoint.

The reason this property is called horizontal invariance is because it allows the
transport of vertical morphisms along horizontal isomorphisms.

Example A.16. In the double category Sq(C), every horizontal isomorphism has a
conjoint given by its inverse. Therefore Sq(C) is a horizontally invariant double cate-
gory. The double category Sq(C,M) is horizontally invariant if and only if the class of
morphisms M contains the isomorphisms.

Definition A.17 ([Ale18]). A double category D is called unit-pure if the identity map
id: D0 → D1 is fully faithful.

Unpacking the definition, a double category is unit-pure if for every cell whose
vertical boundary morphisms are identities,

A B

A B

h

α1 1

k

then it necessarily holds that h = k and α = 1h = 1k.

Example A.18. The double category Span(C) is unit-pure.
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Definition A.19. A vertical morphism f : A •−→B has a tabulator if there is a cell,

>f A

>f B

πA

1 πf f

πB

(A.2)

such that for every cell α below there is a unique factorisation:

X A

X B

α1

h

f

k

=
X >f A

X >f B

g

1 1g

πA

πf f

g πB

A double category D has all tabulators if the identity map id: D0 → D1 has a right
adjoint.

Definition A.20. A vertical morphism f : A •−→B has a cotabulator if there is a cell,

A ⊥f

B ⊥f

ιA

f ιf 1

ιB

satisfying a universal property dual to that of tabulators. A double category D has all
tabulators if the identity map id: D0 → D1 has a left adjoint.

Note that a double category is unit-pure if and only if the tabulator of each vertical
identity morphism is an identity cell if and only if the cotabulator of vertical identity
morphism is an identity cell.

Example A.21. The double category Sq(C) has all tabulators and cotabulators. The
tabulator of a vertical morphism f : A→ B is given by the commuting square:

A A

A B

1A

1A f

f

Example A.22. The double category Span(C) has all tabulators. The tabulator of a
span is given by the commutative diagram:

X A

X X

X B

s

1X

1X

1X

s

t

t

The double category Span(C) has all cotabulators if and only if C has pushouts.
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Definition A.23 ([Ale18]). A vertical morphism f : A •−→ B has a strong tabulator
if it has a tabulator (A.2) such that πA has a conjoint, πB has a companion, and the
composite cell,

A A

>f A

>f B

B B

♣(πA)∗ 1
πA

1 πf f

♥(πB)∗

πB

1

is horizontally invertible.

In a double category with strong tabulators, every vertical morphism is isomorphic
to a conjoint followed by a companion

Example A.24. The double categories Sq(C) and Span(C) have strong tabulators.

Definition A.25. A lax double functor F : C→ D between double categories consists
of an assignment,

A C

B D

h

f α g

k

7−→
FA FC

FB FD

Fh

Ff Fα Fg

Fk

together with identity and composition comparison cells (where f ⊗ g denotes the
vertical composite of f followed by g, and α

β
similarly denotes the vertical composite

of the cell α followed by the cell β),

FA FA

FA FA

1F A ηA F (1A)

FA FA

FB

FC FC

µf,g

Ff

F (f⊗g)

Fg

which satisfying the following naturality conditions,

FA FC FC

FA FC FC

1Fh1F A

Fh

ηC F (1C)

Fh

=
FA FA FC

FA FA FC

1F A ηA F (1h)

Fh

F (1C)

Fh
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FA FA FA′

FB

FC FC FC ′

µf,g

Ff

F (α
β
) F (f ′⊗g′)

Fg

=

FA FA′ FA′

FB FB′

FC FC ′ FC ′

FαFf

µf ′,g′ F (f ′⊗g′)

FβFg

as well as a coherence condition with the associativity comparison cells.

Definition A.26. A (pseudo) double functor is a lax double functor whose compar-
ison cells η and µ are horizontally invertible. A lax double functor is unitary if the
comparison cells η are identities. A strict double functor is a lax double functor whose
comparison cells η and µ are both identities.

Remark. A double functor is always understood to be a pseudo double functor unless
stated otherwise. The terms strong double functor and pseudo double functor are
synonymous, and strong double functor is occasionally used to emphasise strengthening
of the notion of lax double functor.

Example A.27. A small category is the same as a lax double functor ∗ → Span, where
∗ denotes the double category with a single object and no non-identity morphisms or
cells. A functor with codomain C is the same as a lax double functor V(C)→ Span.

Example A.28 ([Nie12]). Suppose D is a double category with tabulators such that
D0 has pullbacks. There is a canonical lax double functor D→ Span(D0) given by the
assignment:

A C

B D

h

f α g

k

7−→

A C

>f >g

B D

h

πA

πB

>α

πC

πD

k

(A.3)

If a double category is unit-pure, then this double functor is unitary.

A double functor F : C → D is equivalent to a pair of functors F0 : C0 → D0 and
F1 : C1 → D1 between the categories of objects and morphisms, respectively, satisfying
the conditions in Definition A.25.

Definition A.29. A double functor F : C→ D is called:

• faithful if the functor F1 : C1 → D1 is faithful

• full if the functor F1 : C1 → D1 is full;
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• fully faithful if it is both full and faithful;

• representative if the functor F1 : C1 → D1 is essentially surjective-on-objects;

• locally trivial if the functor F0 : C0 → D0 is the identity functor.

Definition A.30 ([GP17]). A double category D is called span representable if the
double functor (A.3) exists and is faithful.

Definition A.31. A pair of horizontally invariant double categories are equivalent if
there is a fully faithful representative double functor between them.

Definition A.32. Consider a pair of lax double functors F,G : C → D. A horizontal
transformation Ψ: F ⇒ G consists of, for each vertical morphism f : A •−→B, a cell,

FA GA

FB GB

Ψf

ΨA

Ff Gf

ΨB

which satisfies, for each cell α, the naturality condition,

FA FC GC

FB FD GD

Fh

Ff Fα Ψg

ΨC

Gg

Fk ΨD

=
FA GA GC

FB GB GD

Ψf

ΨA

Ff

Gh

Gα Gg

ΨB Gk

and the following coherence conditions with respect to the identity and composition
comparison cells (which by an abuse of notation, are denoted η and µ, respectively, for
both F and G):

FA GA GA

FA GA GA

1ΨA
1F A

ΨA

ηA G(1A)

ΨA

=
FA FA GA

FA FA GA

1F A ηA Ψ1A

ΨA

G(1A)

ΨA

FA FA GA

FB

FC FC GC

µf,g

Ff

Ψf⊗g

ΨA

G(f⊗g)

Fg

ΨC

=

FA GA GA

FB GB

FC GC GC

Ψf

ΨA

Ff

µf,g G(f⊗g)

ΨgFg

ΨC

Definition A.33. A globular transformation is a horizontal transformation Ψ: F ⇒ G

such that ΨA = 1A for every object A. It necessarily follows that F0 = G0.
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Definition A.34. Define the following 2-categories:

• Dbl of double categories, double functors, and horizontal transformations with
hom-categories [C,D]

• Dbllax of double categories, lax double functors, and horizontal transformations
with hom-categories [C,D]lax

• Dblunit of double categories, unitary double functors, and globular transforma-
tions with hom-categories [C,D]unit

Example A.35 ([Par11]). There are equivalences of categories,

Cat ∼= [∗, Span]lax Cat/B ∼= [V(B), Span]lax

where B is a small category. Both of these equivalences play an important role in
Chapter 4.

Definition A.36. A pair of double functors F : C→ D and G : D→ C are adjoint if
they form an adjunction internal to the 2-category Dbl.

There are some additional specific uses of known concepts in double category the-
ory that are only needed in a small part of the thesis, and are introduced when re-
quired. These include right-connected double categories (Section 3.2), left-connected
completion (Section 4.1), monads in double categories (Section 5.1), and algebraic weak
factorisation systems (Section 6.4).
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List of Notation

The following is a list of notation for important categories and double categories, in
the order in which they were introduced or used in the body of the thesis.

Set The category of sets and functions

Cat The category of small categories and functors

CAT The category of locally small categories and functors

B∞ The codiscrete category on the set of objects B0 of a category B

D A (unitary pseudo) double category

D0 The category of objects of a double category D

D1 The category of morphisms of a double category D

Γ(D) The right-connected completion of a double category D

Γ′(D) The left-connected completion of a double category D

Lens The double category of lenses

Lens The category of morphisms of Lens

LensB The fibre of the functor cod: Lens→ Cat over a category B

Cof The double category of cofunctors

Cof The category of morphisms of Cof

Sq(C) The double category of squares in a category C

Sq(C) The arrow category of C; also the category of morphisms of Sq(C)

DOpf The full subcategory of Sq(Cat) on the class of discrete opfibrations
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SOpf The full subcategory of Lens on the class of split opfibrations

Span The double category of spans in Set

Span The category of morphisms of Span

Span(C) The double category of spans in a category C with pullbacks

V(B) The vertical double category on a category B

SMult The double category of split multi-valued functions

Mnd(D) The double category of monads in a double category D

Mndret(D) The full double subcategory of Mnd(D) on the class of monad
retromorphisms

Mndlens(D) The double category of lenses between monads

(C,W,M) A category C equipped with classes of morphisms W and M

Sq(C,M) The full double subcategory of Sq(C) on a class of morphisms M

Span(C,W,M) The full double subcategory of Span(C) on the class of spans whose
left leg is in the class W and whose right leg is in the class M

Lens(C,W,M) The double category of generalised lenses
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