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Abstract

In machine learning, model compression is vital for resource-constrained Internet

of Things (IoT) devices, such as unmanned aerial vehicles (UAVs) and wearable

devices. Currently, there are some state-of-the-art (SOTA) compression methods,

but little study is conducted to evaluate these techniques across different models

and datasets.

In this paper, we present an in-depth study on two SOTA model compression

methods, pruning and quantization. We apply these methods on AlexNet, ResNet18,

VGG16BN and VGG19BN, with three well-known datasets, Fashion-MNIST, CIFAR-

10, and UCI-HAR. Through our study, we draw the conclusion that, applying pruning

and retraining could keep the performance (average less than 0.5% degrade) while

reducing the model size (at 10⇥ compression rate) on spatial domain datasets (e.g.

pictures); the performance on temporal domain datasets (e.g. motion sensors data)

degrades more (average about 5.0% degrade); the performance of quantization

is related with the pruning rate, network architecture, and clustering methods.

We also conduct comparative experiments on knowledge distillation. The result

indicates that more prerequisites need to be satisfied when using the knowledge

distillation to achieve average performance.

Finally, we provide some interesting directions for future research.
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Chapter 1

Introduction

“E 8!2 Â¿vô 8 2 Â¿vº”

Lao Tzu - Tao Te Ching

1.1 General Introduction

With the development of deep neural network (DNN), many success models are

proposed, and DNNs have already became an important part of modern society, e.g.

face recognition [37], electricity power grid management [77] and autonomous

driving [75]. It is worth noting that, in order to improve the model accuracy,

modern DNN usually contain dozens to hundreds of layers, e.g. MobileNet [36]

and Vision Transformer (ViT) [20]. The corresponding model parameters have also

proportionally increased, which leads to a large model size. Though these models

could perform well, they require a substantial computing resources to deploy. For

instance, the size of a commonly used pre-trained model VGG19 [62] is 550MB. As

a result, leveraging these models with high accuracy requires sufficient computing

resources. Thus, most of them are deployed on edge computing (EC), fog computing

(FC) and cloud computing (CC).

On the other hand, accompanied with the development of Internet of Things

(IoT), the amount of deployed IoT devices and edge devices keeps growing [71].

These devices are commonly used around our daily lives. From smart homes to

unmanned vehicles, from factory streamline to ocean oil platforms, IoT devices are

deployed in every corner. This kind of usage has determined the design concept

1



§1.1 General Introduction 2

of these devices, that they would require a long period of deployment within

unattended environments. Directed by this concept, longer battery life becomes

the first priority. Restricted by contemporary and foreseeable future technology

and industrial process limitations, the only way to reach maximum battery life

is to sacrifice the computing resources. Mainstream strategies to reduce power

consumption is by:

• using single-level cell (SLC) flash memory for data storage instead of multi-

level cell (MLC) or triple-level cell (TLC) to minimize electricity consumption

during writing procedure [54];

• using small size random access memory (RAM) to decrease the energy cost

during the memory refresh, which is the regular data maintaining procedure

of RAM [26];

• using low central processing unit (CPU) clock speed to help reduce the power

usage [7].

It is a last resort to leverage every aspect of requirements, but also leads to

reduced computing abilities. Table A.1 shows a comparison of mainstream IoT MCU

devices and their detailed specifications.

Meanwhile, the IoT devices will produce a large amount of raw and real-time

data. According to IBM research1, A large refinery is able to generate IoT sensor

data for 1 TeraByte (TB) per day, while one offshore oil platform could generate

several TBs. These data could only be handled well by DNN [9].

However, due to the resources requirement of conventional DNN, most of them

are deployed on cloud or fog servers. Leveraging existed servers not only requires

stable internet connection and sufficient bandwidth to transit the data, but also

consumes a considerable amount of power. These requirements are not always

1 https://www.ibm.com/blogs/internet-of-things/energy-industry/
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possible to satisfy, and is against the real-time processing, power efficiency and

network tolerance requirements of IoT devices. For instance, unmanned aerial

vehicles (UAVs) require power efficiency to conduct long term tasks without power

recharge [24]. Offshore oil platforms usually contain considerable IoT devices but

the devices’ connection to the Internet is limited, or require large investigation

to use the internet, e.g. satellite service [53]. Industrial control systems require

real-time response for monitoring and security [21, 65]. All these scenarios require

the IoT data to be processed on the premises to minimize the power consumption,

Internet usage and time delay. Not only the IoT devices, modern edge devices,

e.g. micro controller units (MCUs) and smart wearable devices, are also limited by

their battery capacity and computing resources. Table 1.1 shows a comparison of

commonly used model sizes against mainstream edge devices memory capacity.

Table 1.1: Model size / hardware memory comparison

Model Memory Capacity

Name Size2 B1a B2a B3a SW1b SW2b G1c G2c M1d M2d

ResNet18 ⇡ 45MB

32KB 32KB 8MB 1GB 1.5GB 3GB 4GB 6GB 8GB

ResNet50 ⇡ 100MB

AlexNet ⇡ 235MB

VGG11 ⇡ 500MB

VGG19 ⇡ 550MB

a B1: Arduino MKR1010, B2: Arduino Portenta H7, B3: Raspberry Pi Zero
b SW1: Apple Watch Series 8, SW2: Samsung Galaxy Watch 4
c G1: Google Glass Enterprise Edition 2, G2: Microsoft HoloLens 2
d M1: iPhone 13 Pro Max, M2: Samsung Galaxy 22 Ultra

Comparing with the raw model size, the RAM size of IoT MCUs (Arduino and

2 https://pytorch.org/docs/stable/hub.html
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Raspberry Serials) is far from enough for the deployment. For portable IoT de-

vices (i.e. smart watches, smart glasses and smart phones), though the memory is

enough for executing the network, occupying this considerable amount of memory

is bound to lock memory space from other user-end softwares, which will lead to

the degradation of user experience.

Thus, to deploy these accurate but sizable models onto IoT devices, it is a must

to do pre-processing for both successful inference execution and promising user

experience.

1.2 Recent Research

Recently, several related approaches were proposed, which attract our attention.

Some of them are not directly designed for solving the conflict between strong

computing requirements of intelligent application and low computing abilities, but

provided a workaround solution which could help to deploy deep neural network

(DNN) on IoT devices [14, 59, 73]. While some of them are aimed for deploying

DNN on IoT devices and held this ideology though out the approaches. Among them

the model compression (MC) and tiny maching learning (TinyML) are notice-worthy.

1.2.1 Internet of Things Enabled by Machine Learning

By connecting the astonishing amount of IoT objects, sensors and devices, IoT

combined with machine learning (ML) has successfully been used not only in

industrial area, but also been adapted by medical area and consumer grade area.

For instance, Chun et al. [16] designed a hardware set, which could detect eating

episodes by tracking the users’ jawbone movement, and could provide more than

18 hours of continually working time. Jiang et al. [40] successfully achieved human

walking monitoring with high accuracy and power efficiency in both in-door and

out-door environments on smart watches. This level of accuracy could only achieved
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by using cumbersome equipment in the past, which would require sufficient budget

while affecting users’ daily routine. The development of IoT and ML has successfully

helped reaching the miniaturization and affordability.

The build-in high sensitivity attributes of IoT could also help managing manu-

facturing [61] and support the power distribution of electric power grid [69].

1.2.2 Model Compression

The approaches of model compression could be classified as four aspects, parameter

pruning [30, 63], quantization [28, 57, 80], low-rank factorization [19, 51] and

knowledge distillation [6].

Srinivas and Babu [63] proposed a systematic way for removing similar neurons

in the network In 2015, which removed 35% for AlexNet, while still maintaining

the performance of the network in the same level.

Gupta et al. [28] applied an parameter quantization method, which limited

the data precision while representing and computing. Their results showed that

DNN is endurable for quantization, which incur little or even no degradation for

classification tasks.

Han et al. [30] proposed Deep Compression in 2015, which applied pruning,

quantization, and Huffman coding on LeNet, AlexNet and VGG-16 networks. They

successfully reached 35⇥ compression rate (2.88% of the original size) for AlexNet

at maximum, and 49⇥ (2.04% of the original size) for VGG-16 at maximum, without

impacting the model accuracy.

In 2014, Denton et al. [19] noted that, within a Convolution Neural Network

(CNN), nearly 90% of the computing time are spent on convolution layers, while

the first several layers are the most time-consuming ones. By using low rank approx-

imation, which decomposes the original parameter matrices with Singular Value

Decomposition (SVD), the required space for matrices storage could be significantly

decreased. Moreover, the decomposed matrices could be clustered, and the method
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reaches a final compression rate at 3.9⇥.

Ba and Caruana [6] proposed knowledge distillation the same year. The main

idea of this method is to train a shallow network by mimicking a deep network,

which could reach the same level of accuracy. This method was based on one of the

authors’ previous work [10], which trained a small network to approximate a full

network on pseudo data.

1.2.3 TinyML

Considering model compression, which act as a top-bottom strategy, is to modify

and adjust current neural networks, which are trained on computers with suffi-

cient computing resources, try to fit these networks inside devices with much less

computing power.

Though using current networks that are been proved as success could help

minimize network developing cost and cut down the fine tuning compression the

models is not always possible, especially when the target model contains complex

structures and blocks.

On the contrary, TinyML is a bottom-top strategy, which first consider the capacity

of the target IoT devices and provide the well-adjusted framework. By this the

framework will be suitable for devices with less computing resources, especially

MCUs.

Unlike DNN, which has a long history and different significant contributions

for the theory build-up, TinyML is a concept, which appears accompanied with the

increasing urgent requirement of IoT environment machine learning deployment,

and is still in its nascent stage [58].

The target IoT devices are typically enegry efficient with miliwatt level of power

consumption. It is a challenge to deploy conventional machine learning approaches

like Random Forest or support vector machine (SVM), not even mention about

executing neural network models. By adopting TinyML, it is possible to provide
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intelligence to every IoT devices, which could help decrease latency for and increase

the reliability [22].

In the foreseeable future, the demands for pervasive IoT devices accompanied

with edge computing IoT will keep increasing, and these demands could not be

fulfilled without TinyML.

1.3 Research Gaps

However, these methods are limited within several aspects, e.g. on particular

networks (i.e. LeNet [46], AlexNet [43]) or datasets (i.e.MNIST [45]). The general-

ization and compatibility is yet not revealed on modern deep networks, e.g. VGG

network family [62] and ResNet networks family [34].

Meanwhile, with the advancement of neural network theory and design, modern

networks contain complex architectures and layers to extract features from large

datasets, e.g. residual block [34] which aimed for avoiding the vanishing gradient

problem. Apply the compression methods directly to complex modern networks

may lead to poor performance.

It is necessary, and urgently needed, to investigate the capabilities, as current

researches lack the exploration of the applicability of these methods on modern

models and datasets. Among them the compression ones are the most prominent, as

compression could utilize current existing models, which have already been proved

as success, and accelerate the deployment of DNN with IoT.

Thus, we present this study, in which we apply two state-of-the-art (SOTA)

compression methods, i.e. pruning and quantization, on different models and

datasets, provide an in-depth comparison of the method performance on different

models along with different datasets. We also attempt the knowledge distillation

method as a comparison baseline.

Within this study, we also show the understanding of both limitations and
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possibilities of the model compression techniques, which indicates the research

directions in the future.

1.4 Contributions of the Work

In order to address the research gaps we pointed out, we go through a comprehensive

research which could help bridging the gap between previous research and the

urgent increasing demand from IoT areas. We also point out the future research

directions for model compression within IoT scenarios.

This study makes four major contributions as following:

• By comprehensive experiments of two SOTA model compression techniques,

we propose a general guideline for applying compression methods on modern

models. According to the best of our knowledge, this kind of guideline is one

of the first been proposed.

• For the quantization experimentation within the empirical study, we apply the

quantization progressively, probe the limitation and compare different cluster-

ing methods. By this exploration, we provide the boundaries for quantization

and reveal the impact in great detail.

• We conduct knowledge distillation experiments and compare the result with

pruning and quantization. From the comparison, we draw the conclusion that

knowledge distillation has prerequisites while pruning and quantization are

relatively universal.

• We open-sourced our implementation on GitHub3. We believe that by making

our research results accessible to the public, the community could be benefited,

not only from having solid experimentation as reference, but also from gaining

a clearer vision for guiding the future researches.
3 https://github.com/broadnet2022-compression/code
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1.5 Roadmap of the Thesis

The remainder of this paper is structured as follows.

• In Chapter 2, we review the related work among the area of:

– Internet of Things (IoT);

– Model Compression, including a) Pruning, b) Low Rank Factorization,

and c) Knowledge Distillation;

– TinyML.

• In Chapter 3, we introduce the techniques we apply for the experiments and

present the empirical study results with discussion.

• In Chapter 4, we draw the conclusion and point out our future research

direction.

• In Appendix A, full comparison and experimentation results are presented as

tables.



Chapter 2

Literature Review

Å⌘„⌘K⌫E⌧&⇤S⇣⇡�⌧
Ä⌅↵⌘&+*K
H>I*⌅ H>L*⌅H > !⌅�✏&B

KuuKaa/Liella! - Tiny Stars

This chapter goes through the past literatures, which helps us to build up the

appropriate theoretical and methodological foundations. It is also crucial that

only by reviewing the past researches we could have a better understanding of the

underlying ideas and concepts. From within the research gap could been found,

and form up into research questions for experimentation guidance.

2.1 Internet of Things Enabled by Machine Learning

The terminology of Internet of Things (IoT) has a rather long history. Accompanied

by the development of semi-conductor manufacturing technology and the widely

usage of cloud computing, IoT has successfully entered into every corners of the

society, including industrial area, medical area, and consumer grade area.

The three layer structure of IoT is a widely accepted view, that IoT is constructed

by perception layer, network layer and application layer, which complete the data

collection, transmission, and presentation, respectively. This eventually became

a consensus for both industrial and academic [79]. Fig.2.1 shows the technical

architecture of De facto IoT framework.

By leveraging different cutting-edge transmission technologies, e.g. Zigbee,

Wi-Fi, 5G and LoRa IoT has already been widely used in industrial areas and has

10



§2.1 Internet of Things Enabled by Machine Learning 11

Fig. 2.1. The architecture of IoT from technical view

greatly increased the efficiency and performance1.

The combination of IoT and machine learning (ML) has also achieved great

success. For instance, in 2018, Chun et al. [16] designed a hardware set for detecting

eating episodes by tracking jawbone movement. This set includes a proximity

sensor, a Bluetooth LE module and a micro-controller, and could continually work

for more than 18 hours. By leveraging the smartwatch and well designed algorithm,

Jiang et al. [40] successfully achieved pedestrians’ movements tracking in both

indoor and outdoor scenarios, and reach high accuracy in 2019. In the past, these

accurate tracking could only be done by expensive medical equipment, which usually

presented as cumbersome machines and is hard to maintain tracking procedure while

not affecting users’ daily life. With the help of high accuracy sensors, transmission

modules and edge devices, it is possible to approach the medical-level accuracy with

consumer-level gadgets. These successful research approaches, i.e. miniaturised

tracking system and monitoring framework, could only be done with the IoT and

ML.

Meanwhile, unmanned vehicles and unmanned aerial vehicles (UAVs) are also

benefited. The implementation of computing vision (CV) on on-board computer of

cars and trucks could help achieving autonomous driving without using expensive

1 https://www.ge.com/digital/blog/what-industrial-internet-things-iiot
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LiDAR [25]. By leveraging ML, it is possible for the UAVs to distinguish rooftops,

trees and open spaces, which could be used for automated landing [56].

IoT and ML could also provide more time-sensitive data and information than

conventional methodologies, which could help large scale managing. For instance,

they could empower manufacturing of the factory with visibility and flexibility, which

helps reducing energy and material wastes and improving overall efficiency [61].

They could also help supervising electric power grid with automatic dispatching

and fail-safe electric re-routing [69].

It is worth noting that, the base of IoT, i.e. the sensors and other real world

objects, might be deployed in harsh environment and contains limited computing

resources. For instance, Arduino’s business grade IIoT controller, Nicla Sense ME2,

contains a 64MHz CPU with 64KB RAM and 512KB of storage. The environment of

deployment decided that the hardware will focus on low power consumption and

long battery life, instead of strong computing ability. Thus, the design of IoT-based

framework should consider this situation as an important part. It is vital to reduce

the power consumption, and the algorithm should be as lightweight as possible

while keeping the accuracy.

In 2020, Lin et al. [50] proposed a framework MCUNet, which contains a neural

architecture, TinyNAS, and an inference engine, TinyEngine. Instead of using

interpreter-based inference libraries like TF-Lite Micro [1], TinyEngine will and will

only compile the codes that will be executed. This not only reduced the execution

time, but also cut the RAM requirement for the framework. MCUNet could reach

3x faster execution speed and about 3x smaller RAM usage. In 2021, Cox et al. [17]

proposed MASA, which is a multi-DNN inference that could be de- ployed on edge.

This research has proved the possibility of archiving low latency responsibility with

tight computing resources.

Lin et al. from MIT-IBM Watson AI Lab proposed MCUNet [50] in 2020, which

2 https://docs.arduino.cc/hardware/nicla-sense-me
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is a framework build for Micro-controller Unit (MCU). By designing the compiler

and runtime simultaneously, MCUNet used a compiled version of inference libraries

instead of interpreter version like TF-Lite Micro. This could cut the runtime binary

size, lower the memory usage, and accelerate the execution. MCUNet outperformed

TF-Lite Micro [1], MicroTVM [13] and CMSIS-NN [44]. They also improved the

MCUNet and released a second version in 2021[49].

In 2021, Cox et al. proposed MASA [17], a multi-DNN execution framework

which could be deployed on small memory devices and cut the latency. Fig.2.2

shows the architecture of MASA.

Fig. 2.2. Architecture of MASA [17].

By using a memory profiler mechanism, MASA could manage the memory

usage of each mission and reach a minimum time latency. The task scheduler of

MASA could split the task of DNN inference and leverage the CPU time for high

responsibility. As the result, MASA showed high responsibility on small memory

devices (i.e. 512MB, 1GB, 2GB) and reached the state-of-the-art.

There are also researches like ProxylessNAS [11], MnasNet [66], targeted on

optimize hardware-related neural network and have fruitful results.
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2.2 Model Compression

2.2.1 Pruning

To the best of our knowledge, the original idea of network pruning was proposed

by Hanson and Pratt [31], which has been used to minimize the number of hidden

units in the network. After then, optimal brain damage [47] and optimal brain sur-

geon [32] have been successively proposed. Both of them could purge unimportant

weights within the network by leveraging Hessian matrix.

The following research attention are focused on removing redundant units from

DNN models. In 2015, Srinivas and Babu [63] proposed a systematic way for

removing similar neurons in the network, which successfully removed 35% for

AlexNet, without affecting the performance of the network significantly. In the

same year, Han et al. [30] proposed the prestigious method, Deep Compression,

which applied pruning, quantization, and Huffman coding on LeNet, AlexNet and

VGG-16 networks. By combining the three compression methods together, Han et

al. successfully reached the max compression rate 35⇥ (2.88% of the original size)

for AlexNet, and 49⇥ (2.04% of the original size) for VGG-16, without impacting

the model accuracy.

Pruning with pre-trained DNN models could use the networks that has been

proved success, which significantly reduces the difficulty of redesigning the network

and helps accelerating the research progress. However, network pruning could

only help reducing the size of network, while requires manually setting for the

hyperparameter (i.e. pruning sensitivity, which will be discussed in detail in Chapter

3).

It is also worth noting that, network pruning will not help reducing training time

cost. As the pruning method is targeting on reducing model size by pruning trained

model, the training of the full model is unchanged. Besides, the re-training of the

pruned model still requires time for reaching the best performance. Meanwhile,the
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reduction of time cost for inference are not quite noticeable, as the network structure

is still maintained during the pruning procedure. Thus, it is important to combine

pruning with other techniques for better performance, e.g. quantization.

2.2.2 Quantization

Gupta et al. [28] applied an parameter quantization method, which limited the data

precision. Instead of using typical 32-bit floating-point value for data representing

and computing, a fixed-point value has been used. It is defined as h↵,�i, where ↵

and � denote the bits length of the number’s integer and fractional part, respectively.

� is defined as (↵+�), which stands for the total length of the number. Their results

showed that DNN is endurable for numerical quantization. Setting � to 16 could

incur little or even no degradation for classification tasks, comparing with normal

32-bit floating-point value.

In 2018, Zhou et al. [80], proposed an optimization framework using quanti-

zation. They first measured the error raise caused by quantization for each layer

within the model, then adjusted the quantization bit-width for each layer accordingly.

Using this layer-by-layer modification, they reached at least 15% smaller model size

(40% at maximum).

2.2.3 Low Rank Approximation

In 2014, Denton et al. [19] noted that, within a Convolution Neural Network (CNN),

nearly 90% of the computing time are spent on convolution layers, while the first

several layers are the most time-consuming ones.

Based on the general statement of knowledge that the weight matrices within

the network models usually contain high sparsity, the main idea of low rank approx-

imation approach is to decompose the sparse weight matrices into several matrices

with high density and low rank.

Fig.2.3 shows the core step of low rank approximation. For the sparse weight
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matrix in one convolution layer, it will be analyzed and decomposed into dense

matrices and help reduce the storage space usage. This process will go through the

target network model.

Fig. 2.3. Concept of low rank approximation [15]

Applying the low rank approximation methodology, Denton et al. decomposes

the original parameter matrices with Singular Value Decomposition (SVD), the

required space for matrices storage has been significantly decreased. Further more,

the decomposed matrices could be clustered, and their approach reaches a final

compression rate at 3.9⇥.

As the convolution layer plays an important part of CNN, the low rank approx-

imation could decrease the model size notably. Nevertheless, the decomposing

operation requires significant computing resources, and each layer in CNN model

need to be processed. This will lead to remarkable time cost.

2.2.4 Knowledge Distillation

It is generally accepted that, Ba and Caruana are the first who proposed knowledge

distillation [6]. They successfully trained a shallow network to mimic a deep

network, without sacrificing accuracy back in 2014. This method was based on one

of the authors’ previous work [10], which trained a small network to approximate a

full network on pseudo data.
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Further more, Fu et al. [23] proposed the "Panel-Student" scheme. By introduc-

ing the Panel, which formed by the combination of teachers’ representation, this

approach could leverage multiple teacher networks and provide more comprehen-

sive data representation to the student network. The student network could be

supervised by the panel as soft target loss, along with the ground truth as hard

target loss.

Comparing with previous approaches, knowledge distillation could impressively

reduce the size of model by creating shallow student networks which learn from

the original deep neural networks. However, this requires the student networks

and teacher networks share similar network structures. If the difference between

two structures are relatively large, this approach may not reach a satisfied situation.

Meanwhile, comparing with other approaches, the accuracy performance of knowl-

edge distillation is less competitive, as the student networks always under-perform

the teacher, though the discrepancy may be tiny.

2.3 Tiny Machine Learning (TinyML)

Comparing with DNN, TinyML is a relative young concept [58], which appears with

the development of IoT. As a bottom-top strategy, tinyML frameworks, which target

at IoT and edge devices, have already taken the computing and energy capacity

under consideration.

It is worth noting that TinyML is not a replacement, but a supplement for

existing IoT architecture. While the cloud computing contains sufficient resources

for heavy workloads, the latency of data transferring and the cost for stable network

is remarkable. On the other hand, most of the IoT devices are designed with miliwatt

level of power consumption, which is not possible to execute conventional machine

learning nor deep learning. By empowering the edge devices with intelligence, the

TinyML could help bridging the gap [22].
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Currently, there are some pilot TinyML frameworks, e.g. TensorFlow Lite3, Apple

Core ML4, and Pyorch Mobile5. These frameworks are designed for edge devices

(i.e. smart portable devices and MCUs) and are widely adopted in several areas,

including data collection, computer vision and medication [2, 3, 48].

3 https://www.tensorflow.org/lite/
4 https://developer.apple.com/documentation/coreml/
5 https://pytorch.org/mobile/home/



Chapter 3

An Empirical Study on Model Pruning
and Quantization1

It is the nature of humankind to push it self towards the horizon.
We test our limits, we face our fears, we rise to the challenge,
and become something greater than ourselves, a civilization.

Sid Meier’s Civilization VI

3.1 Introduction

Recently, several approaches were proposed to perform model compression with

different methdology, and reached state-of-the-art respectively. Deep Compression

by Han et al. [30], which applied pruning, quantization, and Huffman coding on

LeNet, AlexNet and VGG-16 networks; low rank approximation by Denton et al. [19],

which decomposes the original parameter matrices with Singular Value Decompo-

sition (SVD); Gong et al. [27] applied the vector quantization on a convolutional

neural network, which contains 5 convolutional layers and 3 dense connected layers;

knowledge distillation by Ba and Caruana [6], which trained a shallow network to

mimic a deep network, without sacrificing accuracy.

These approaches provided promising outcomes and were widely accepted.

However, it is worth noting that these methods are limited on particular networks or

datasets, LeNet, AlexNet, MNIST, etc. The further investigation for other networks

1 This chapter is based on the submitted paper, An Empirical Study on Model Pruning and Quantiza-
tion. I am responsible for the solution, implementation, experimentation, and paper writing. The
supervisor is involved with the discussion of motivation, design and results. The other co-authors
are contributing to the writing of the paper.

19
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and datasets are yet unrevealed.

Meanwhile, with the advancement of neural network theory and design, modern

networks contain complex architectures, layers and blocks to extract features from

large datasets. Apply the compression methods directly to complex modern networks

may lead to performance degradation or even fatal corruption of the networks. It is

necessary to investigate the capabilities, as current researches lack the exploration

of the applicability of these compression methods on modern models and datasets.

In this chapter, we introduce the methodology that has been used to conduct a

comprehensive experimentation and comparison among pruning and quantization.

We also conduct an attempt on knowledge distillation. Finally, we explain the results

to the best of our knowledge and draw the conclusion.

3.2 Methodology

3.2.1 Data Augmentation

To increase the generalization of deep learning models, there are two major ap-

proaches, one is on modifying models architecture, and the other one is on enlarging

training datasets [60]. Commonly used model-side techniques will require adding

specific functions and layers to the models, e.g. dropout layer [64] and batch nor-

malization layer [39]. While commonly used data augmentation methods on images

will perform geometric transformations, flipping, color space alteration, cropping,

rotation, and noise injection [60].

As our research target is to explore the compression effectiveness on specific

models, we choose to augment the training datasets, which could help mitigate

model overfitting. The image datasets that we use in our experiments, i.e. Fashion-

MNIST and CIFAR-10, are both augmented. The augmentation procedure that we

follow is shown in Fig 3.1.

The augmentation step adopts from the practice in [34]. As our implementation
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Fig. 3.1. Dataset augmentation procedure

of networks require constant input shape, we first reshape the image to the required

size, 63⇥63 for AlexNet [43], 33⇥33 for ResNet 18 [34], 32⇥32 for VGG-11 [62]

with Batch Normalization [39] and VGG-19 [62] with Batch Normalization [39]. A

random crop is sampled, follows by a random horizontal flip with 0.5 as possibility.

It is worth noting that the random crop is padding-enabled to maintain the

required size.

3.2.2 Pruning

Model pruning will remove certain weights from the network, which could help

reduce the amount of parameters, while keep the performance degradation in an

acceptable level. The pruning method we apply to the chosen models is adopted

from Han et. al [30]. We train the chosen models from scratch, prune these models

with different thresholds, and evaluate the consequence of different compression

rates.

The pruning threshold is calculated as:

T = ST D(Wl)⇥ Sensi t ivi t y (3.1)

where T stands for the pruning threshold, ST D stands for standard deviation, and

Wl stands for weights per layer.

Sensi t ivi t y is a hyperparameter, by adjusting it, we could tune the pruning

ratio and explore through different compression rates.

The pruning procedure is shown as Fig 3.2.
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Fig. 3.2. Train, prune, retrain

3.2.3 Quantization

After the pruning, the weight matrices could still be compressed through quanti-

zation. We choose to perform weight sharing as a method of quantization, which

will cluster weight values and use the value of centroids as the representative value

for the weights in the same clustering. An example of weight sharing is shown in

Fig 3.3. There are 6 non-zero weights in this 3⇥ 3 weight matrix. 1.1, 1.2, 1.3 are

clustered to 1.2, and 1.6,1.7,1.8 are clustered to 1.7. The new weight matrix is

then generated by replacing the original number with the clustered one.

Though there are several clustering centroid initialization methods (e.g. ran-

dom [52], density-based [18], linear [12]), it has been proved that initializing the

centroids with linear method could mitigate poor representation caused by the

singular value [30]. However, the limitation of the linear centroids lacks discovery.

Thus, we investigate the boundary of the linear centroid method in terms of com-

pression ratio and accuracy. We also investigate modern non-linear method and

conduct comparison.

The linear centroids of weights clustering can be calculated as:

Cent roids = Cluster(2Q_Bit ,Wl) (3.2)

where the Q_Bit stands for the quantization bits, which is a hyperparameter,

Cluster stands for the clustering algorithm, and Wl stands for weights per layer.

The non-linear centroids of weights clustering can be calculated as:

Cent roids = Cluster(Wl) (3.3)
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where Wl stands for weights per layer. As the centroids initialization in this

non-linear method is value-based, no centroid value is required for input.

Fig. 3.3. An example of non-zero weight sharing

3.2.4 Knowledge Distillation, a Comparative Baseline

In most of the neural networks, the cross-entropy loss will be used to measure the

diverges from predicted label to the actual label (ground truth), which is calculated

as:

L = �
KX

i=1

ti log pi (3.4)

and the one-hot encoding will be used to represent the possibilities of the

corresponding classes.

Meanwhile, it is worth noting that, for most of the real-life scenario, the similarity

lies between different classes and within the same class is relatively important for

the classification. For instance, in hand writing number recognition, some hand-

written ‘2’ may look similar to ‘3’, while some may have higher similarity with ‘7’.

For different ‘2’, cross-entropy loss will provide different values for class ‘3’ and class

‘7’. These different values together provide a comprehensive description for the

data.
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However, applying the one-hot encoding arbitrarily may cause loss of these kind

of information. To help preserve the information, Hinton et al. [35] proposed an

altered softmax function as:

qi =
exp (zi/T )P
j exp
�
zj/T
� (3.5)

where the T stands for the distillation temperature, which is a hyperparameter.

When T = 1, this function works the same as normal softmax function. When

adjusting the value of T to greater than 1, this softmax function will be soften and

help protecting the inner relationship within the data. The higher the value, the

softer it is.

Using Eq.3.5 to replace the normal softmax function in the teacher model (i.e.

the deep one), we could obtain the soft target rather than normal arbitrary one-hot

target, which contains more information that could help training the student model

(i.e. the shallow one).

For the student model, we could apply an altered cross-entropy loss function:

Lsoft = �
KX

i=1

pi logqi (3.6)

where pi stands for the soft target of the teacher network, and qi stands for the

soft target of the student network.

Meanwhile, to ensure the performance of distillation, the final loss function

could be set as:

L = w1Lhard + w2Lsoft (3.7)

where Lhard stands for the normal cross-entropy loss. Coefficients w1 and w2 are

weights for the loss values, respectively. It is worth mentioning that, w2 need to be

multiplied by T 2 before actually been used. The reason is that the gradients been
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calculated by using soft targets will be scaled as 1/T 2.

3.3 Experiment Design

3.3.1 Experimental Setup

Dataset: The experiments are conducted based on three widely used datasets,

Fashion-MNIST2 [72], CIFAR-103 [42], and UCI-HAR4 [4].

Fashion-MNIST dataset is an image dataset of Zalando’s article images, with a

training set of 60, 000 examples and a test set of 10, 000 examples. Each example

is a 28⇥ 28 grayscale image, associated with a label from 10 different classes.

CIFAR-10 dataset consists of 60, 000 colour images, with a training set of 50, 000

examples and a test set of 10,000 examples. Each example is a 32⇥ 32 grayscale

image, associated with a label from 10 classes.

UCI-HAR dataset is a human activities dataset. It is built from the recordings

of 30 study participants, aged from 19 to 48, performing activities of daily living

(ADL). The data are collected by a waist-mounted smartphone (Samsung Galaxy S

II) with embedded inertial sensors. This dataset contains six ADL, i.e. WALKING,

WALKINGUPSTAIRS, WALKINGDOWNSTAIRS, SITTING, STANDING and LAYING.

The sampling rate of the inertial sensors (i.e. accelerometer and gyroscope) is 50Hz,

and the labels are tagged manually with respect to the video recording. The sensor

signals are pre-processed with noise-filtering and sampled through fixed-width (128

readings per window) sliding windows.

Evaluated Neural Networks: The aim of this experiment is to investigate the fea-

sibility of the network compression method in different SOTA neural networks. The

chosen neural networks are ResNet 18 [34], AlexNet [43], VGG-11 [62] with Batch

Normalization [39] (VGG11BN), and VGG-19 [62] with Batch Normalization [39]
2 https://github.com/zalandoresearch/fashion-mnist
3 https://www.cs.toronto.edu/ kriz/cifar.html
4 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
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Table 3.1: Experimental hyperparameter setting

Hyperparameter description Values

Number of training epochs 100
Batch size 64
Spatial learning ratea 0.01 with a decay rate=0.1 per 20 epochs
Temporal learning rateb 0.001 with a decay rate=0.1 per 30 epochs
Random seed 42
Optimizer SGD with default setting
Weight initialization Kaiming He Initialization [33]

a Learning rate for spatial domain datasets, i.e. Fashion-MNIST and CIFAR-10.
b Learning rate for temporal domain datasets, i.e. UCI-HAR.

(VGG19BN), which have 11.2M, 20.3M, 28.1M, 40.0M parameters, respectively.

Training: All experiments are implemented on Ubuntu 20.04. The machine

learning framework is Pytorch (version 1.11.0) with CUDA (version 11). The GPU

we use for computing acceleration is one NVIDIA RTX 2080Ti. The experimental

hyperparameter settings we use during the model training stages are illustrated in

Table 3.1.

3.3.2 Research Questions

• RQ1: How the weight-based pruning affects the models’ performance?

To explore the impact of network pruning, we first train the full networks

from the scratch, then apply the weight-based pruning on the backbone net-

works with different pruning rates {�10%,�50%,�90%}. The corresponding

compression rates are {1.1⇥, 2⇥, 10⇥}, respectively.

• RQ2: How the various compression rates affect the models’ performance

if retraining the model?

To inspect the retraining output, we adopt the pruned networks with different

compression rates from the previous research question. The training settings

we use here are set the same as the full ones in RQ1, which could prevent
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other variates from affecting the results.

• RQ3: How the various quantization storage bits affect the models’ per-

formance, and what is the modern non-linear centroids initialization

performance?

We quantize the non-zero weights with different storage bits settings (ad-

just by hyperparameter Q_Bit). The corresponding centroid numbers for

different Q_Bit {4,3,2} are {24,23, 22}, respectively. It is worth mention-

ing that, We apply a modern non-linear clustering centroid initialization

(i.e. K-Means++ [5]), along with the conventional linear clustering centroid

initialization, for further comparison.

• RQ4: How the knowledge distillation perform with the selected net-

works?

We implement the knowledge distillation from scratch for the selected back-

bone networks and compare the performance. We use VGG-11 and VGG-19

as teacher models while AlexNet as the student model.

3.4 Experiment Results

In order to explore the impact and suitability of model compression on different

networks, we perform extensive experiments on the selected neural networks. The

pruning results for the three datasets, Fashion-MNIST, CIFAR-10 and UCI-HAR, are

shown in Table A.2, A.3, A.4, respectively. The quantization results are shown in

Table A.5. The comparison with knowledge distillation are shown in Table A.6.

For RQ1, comparing with the full models, the performance of compressed ones

degrade 2.33% on Fashion-MNIST dataset, 4.25% on CIFAR-10, 41.57% on UCI-HAR,

at average, with 2⇥ models. While 73.19% on Fashion-MNIST dataset, 62.88% on

CIFAR-10, 67.29% on UCI-HAR, at average, with 10⇥ models. The 1.1⇥ models
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shows no significant difference. This phenomenon shows that pure pruning could

still keep the model performance until 2⇥, but models for temporal domain dataset

are more vulnerable for pruning.

It is also noticeable that, though pruning will lead to model performance degrade,

different pruning rates will lead to opposite performance. On spatial domain datasets

(Fashion-MNIST and CIFAR-10), VGG19BN, the biggest network among the 4 chosen

networks, shows the least degrade (less than 1%) for 2⇥ compression, while the

largest degrade (more than 78%) occurs for 10⇥ compression. On the contrast,

ResNet18, the smallest network, shows the largest degrade (more than 4%, the

same as AlexNet) for 2⇥ compression, while the least degrade (less than 63%) for

10⇥ compression.

We believe that for large network with considerable feature extraction layers,

the stability could maintain when pruning. But when certain portion of the weights

been removed, the performance will drastically drop. For residual networks, the

feature extraction layers are shallow, but the structure makes them more restrainable

when large amount of weights are pruned (i.e. 90%). In other words, large deep

networks are insensitive but vulnerable for pruning. Meanwhile, residual networks

are sensitive but robust for pruning.

On temporal domain dataset (UCI-HAR), though AlexNet shows the least degrade

among all chosen networks, all four networks shows obvious degrade start from

2⇥ compression. We believe that models trained for temporal domain datasets are

more fragile and susceptible for pruning.

For RQ2, from Table A.2, A.3, A.4, after retraining the pruned networks, the

performance of all compressed networks (i.e. 1.1⇥, 2⇥, 10⇥) show no noticeable or

tolerable degrade (average degrade is less than 0.7% on spatial domain datasets and

4.9% on temporal domain datasets, maximum 0.62% and 11.46%, respectively).

Which reflects that retraining is essential for high compression rate (e.g. 10⇥),

applying retraining step could keep the overall accuracy.
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For RQ3, from Table A.5, the performance degrade for 4 quantization bits (Q_Bit

{4}) is not noticeable, as the average degrade is less than 1%, while minimum de-

grade is 0.04% and maximum degrade is 1.92%. For Q_Bit {2}, all the evaluated

neural networks show fatal performance degradation, which indicates that quantiza-

tion with {2} (i.e. 22, or 4 unique numbers as clustering centroids) cannot maintain

a usable status for model quantization.

It is worth noting that, for deep networks (i.e. ResNet18 and VGG19BN), the

performance of quantization correlates to the pruning rate. The higher the pruning

rate, the higher the quantization performance.

We believe the reason is that, small-value weights will become the noise for

clustering and degrade the performance worse. The increasing pruning rate can

reduce the noise and help mitigate the performance degradation. On the contrary,

for shallow networks (i.e. AlexNet and VGG11BN), the performance of quantization

is related not only with the pruning rate, but also the Q_Bit value. When Q_Bit is

lower than {4}, the quantization performance is in inverse proportion to the pruning

rate. When Q_Bit equals {4}, it shows the similar characteristic as deep networks.

We believe the reason is that, shallow networks contains less layers and the

distinctiveness of parameters are the key for maintain the performance. Applying

quantization with less clustering centroids will destroy the distinctiveness and

degrade the performance. While deep networks contain enough layers, which is

more robust for the distinctiveness loss after the quantization.

It is also worth noting that, ResNet18 performs the best among all four networks.

As ResNet18 contains residual block (RESBLOCK), which might be the key part

for maintaining the accuracy. We believe the reason is that, shallow networks

contains less layers and the distinctiveness of parameters are the key for maintain

the performance. Applying quantization with less clustering centroids will destroy

the distinctiveness and degrade the performance. While deep networks contain

enough layers, which is more robust for the distinctiveness loss after the quantization.
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Among all four selected backbone networks, ResNet18 reaches the best performance.

As ResNet18 contains residual block (RESBLOCK), which might be the key part for

maintaining the accuracy.

For RQ4, our experimentation could not provide a satisfied results among

the networks we’ve chosen, as shown in Table A.6. Comparing with the original

VGG11BN and VGG19BN, the corresponding AlexNets trained through distillation

show perceivable degradation of performance (more than 7%). This degradation

even exists when comparing with original AlexNet (more than 5%).

Compare with pruning and quantization, for instance, VGG11BN been processed

by h10⇥,Q_Bit{3}i setting could still reach 90% accuracy on Fashion-MNIST and

85% accuracy on CIFAR-10, distilled AlexNet only reaches 85% accuracy on Fashion-

MNIST and 74% accuracy on CIFAR-10. Considering the parameters in distilled

AlexNet is 7⇥ as VGG11BN h10⇥,Q_Bit{3}i, the performance is not as good as

pruning and quantization.

We believe the reason is that, during our experiments, the teacher models we

choose from the backbone networks are relatively small, which could not provide

enough representation of the feature to the student model. Nevertheless, we have

drawn some conclusions for future usage. The student model should share a similar

structure with the teacher model to guarantee the feature representation could

be successfully adapted. Meanwhile, the hyperparameter T within the training

procedure is inversely proportional to the size ratio between teacher and student

models, and need to be adjust accordingly. However, if the student model is relatively

too small for the teacher model and the dataset, it would not be possible to learn

the feature representation no matter how the T changes.
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3.5 Related Work

Since AlexNet [43] won the 2012 ImageNet competition, Convolutional Networks

have become more accurate by growing larger. However, deep Convolutional Neural

Networks are often overparameterized, which has led to researchers attempting to

reduce model size by trading accuracy for efficiency.

Handcraft efficient mobile-size Convolutional Networks: It is a common solu-

tion to handcraft efficient mobile-size Convolution Networks, such as SqueezeNets [38],

and ShuffleNets [78]. One of the most famous models is MobileNet [36], which pro-

poses depthwise separable convolutions to build light weight deep neural networks.

This work introduces two simple global hyperparameters that efficiently trade off

between latency and accuracy. These hyper-parameters allow the model builder to

choose the right sized model for their application based on the constraints of the

problem.

Comparing with model compression, this solution is also possible to deploy

a high-accurate neural network on IoT devices, which could be an efficient way

for solving particular tasks. However, to design a network from scratch requires

considerable time and computing resources, while model compression could directly

leverage existing, high-maturity neural networks with small efforts.

Neural architecture search for efficient mobile-size Convolutional Networks:

Recently, neural architecture search has become increasingly popular in the design of

efficient mobile-sized Convolutional Networks [11, 66], and can achieve even better

performances than hand-crafted mobile Convolutional Networks by carefully tuning

the width, depth, size, and type of convolution kernels. EfficientNet [67] is one of

the typical models which scales the networks to small their size. EfficientNet uses

fixed scaling coefficients to uniformly scale width, depth, and resolution of networks.

It is noteworthy that their scaling method can also be applied to MobileNet and

ResNet.
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Compared with other single-dimension scaling methods [34, 36, 76], their com-

pound scaling method performs better on all of these models. It is also possible

to combine this method with model compression for even smaller computing re-

quirement and higher efficiency (e.g. we apply the compression on ResNet in the

experimentation).

Others researches on model compression: In 2020, Yu et. al. [15] reviewed re-

cent model compression techniques, and classified them as Pruning, Quantization,

Low-rank Approximation, and Knowledge Distillation. Low rank approximation

could decompose the original parameter matrices with SVD and decrease the re-

quired matrices storage space, while knowledge distillation researches the target

by training a shallow network to mimic a deep one, instead of altering the original

network itself.

Other researches on splitting models: As edge devices play an vital role in

IoT, one possible methodology of deploying the deep neural networks on them are

model splitting. Inference models are spitted by layers, and the execution framework

will schedule the layers execution and transfer the layer output through internet

connection [29, 41, 70].

By leveraging the strong cloud computing abilities and internet connection

(e.g. Wi-Fi, LTE and 5G), model splitting could significantly improve the network

efficiency, comparing with pure local computing or cloud computing.

Other researches on distilling models: Data gathered from the real life world

usually contains several dimensions and semi-labeled [74], which lacks the trainabil-

ity for conventional neural networks. One of the solution is leveraging multi-view

learning (i.e. co-training) to bootstrap the training process and achieve maximum

mutual agreement [8, 55]. By adopting the co-training concept, Fu et al. proposed

the “Panel-Student” learning scheme [23]. The core idea is to combining three

teachers networks’ soft target loss as a training panel, rather than just using one

network’s output. Under the panel’s supervision, student model could leverage the



§3.6 Conclusion 33

knowledge from all three teacher models and reach high accuracy. The proposed

approach has been tested in real-world scenarios under a 6 months study, where it

outperformed previous state-of-the-art methods.

3.6 Conclusion

It this work, we practice the pruning and quantization compression empirical

study towards a popular SOTA method. We reveal the advantages of the SOTA

method, e.g. pruning 10⇥ with no noticeable degradation of performance (less

than 0.7%) and quantization with 23 with acceptable degrade (less than 5.0%) on

spatial domain datasets (i.e. Fashion-MNIST and CIFAR-10); while the performance

temporal domain datasets (i.e. UCI-HAR) degrades more (average 6.5%, maximum

15.55%). Meanwhile, we compare different clustering algorithms and improve the

performance (maximum 0.5%, on AlexNet 10⇥). we conduct knowledge distillation

attempt as well. The experiment shows that for relatively small networks, knowledge

distillation might not be an ideal option for compression.

We have open-sourced these experimentation codes on GitHub5. Based on the

well performance of graph neural networks on non-euclidean distance datasets, we

plan on further explore the compatible compression methods towards graph neural

networks. It is worth noting that, in recent years, other methods for deploying neural

networks on IoT devices appear, from both compression aspect (e.g. knowledge

distillation, low-rank approximation and transfer learning) and execution aspect

(e.g. model splitting). These new approaches provide us a horizon of researching.

Meanwhile, as transformer networks (i.e. [20, 68]) also contain residual blocks

as ResNet18, it is possible to apply model compression on transformer networks

with high P-Rate (e.g. 10⇥) and Q_Bit{4} to reach a high compression rate while

maintaining the performance. It is also worth mentioning that, the temperature T for

5 https://github.com/broadnet2022-compression/code
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knowledge distillation is a hyperparameter which needs to be adjusted manually. It

would be a significant progress if the learning scheme could be built to automatically

train the T as a parameter.

Through our experimentation, we draw the conclusion that a small pruning

rate is more suitable for large deep networks, while a large pruning rate could

be deployed on residual networks. For quantization, clustering with Q_Bit{4}
could be used as a general compression tool, as it shows no noticeable performance

degradation while greatly reducing the size for weight storage. As for knowledge

distillation, this method requires more prerequisites, some of which might not be

able to satisfy, thus leading to decreased practicality. Based on these conclusions,

we plan to further explore the boundaries and possibilities of these methods.



Chapter 4

Conclusion

Salimmo sù, el primo e io secondo, tanto ch’i’ vidi de
le cose belle che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle.

Dante - Divine Comedy

In this study, we go through the previous research, extract the fundemental

knowledge, implement the experimentation, and provide our views and explana-

tions to the results. We apply two state-of-the-art (SOTA) compression methods

on different models and datasets, provide an in-depth comparison of the method

performance on different models along with different datasets, and show the under-

standing of both limitations and possibilities of the model compression techniques.

As a result, we propose the guideline for applying compression methods, reveal

the impact of quantization, explore the knowledge distillation, indicate the future

research directions, and open our source code.

It is worth noting that there still exists research gaps that lie between model

compression and IoT deployment, including but not limited to paralleling DNN

on distributed MCU networks and scalability of DNN for universal deployment.

Meanwhile, accompanied by IoT and machine learning development, tinyML shows

a bright future for implementing neural networks on MCUs. These uncharted areas

and methodologies are worth exploring, and we plan on continuing the research in

the future.
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Appendix

We choose to go to the Moon in this decade and do the other things, not
because they are easy, but because they are hard; because that goal will
serve to organize and measure the best of our energies and skills,
because that challenge is one that we are willing to accept, one we are
unwilling to postpone, and one we intend to win, and the others, too.

John Fitzgerald Kennedy, the 35th President of the United States

A.1 Experimentation Results in Details

During the study, we review voluminous publications and materials, from where

we conduct the comparison among IoT devices. Meanwhile, In order to explore

the impact and suitability of model compression methods, we perform extensive

experiments on selected neural networks (i.e. ResNet18, AlexNet, VGG11BN and

VGG19BN) and datasets (i.e. Fashion-MNIST, CIFAR-10 and UCI-HAR). The full

results of the experimentation we conduct during this study are listed here.

Table A.1 shows the comparison of mainstream IoT MCU devices and corre-

sponding specifications in details.

Table A.2 shows the pruning results on Fashion-MNIST dataset.

Table A.3 shows the pruning results on CIFAR-10 dataset.

Table A.4 shows the pruning results on UCI-HAR, dataset.

Table A.5 shows the quantization results.
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