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Summary

The research described in the thesis is devoted to a rigorous solution of the Neumann

boundary value problem for the Helmholtz equation in two-dimensional open arbitrary domains,

and its application to the diverse problems of practical acoustics and electro-engineering. The

Method of Analytical Regularisation is used to transform the initial surface integral equation

in the form of a double layer potential to well-conditioned coupled infinite systems of linear

algebraic equations, thus addressing the hyper-singular kernel arising from the normal derivative

of the double layer potential. The compactness of the matrix operators provides the fast

convergence of the truncated versions of the infinite systems, numerical solution of which

may be obtained with any predetermined accuracy.

Furthermore, complex eigenvalues of natural complex oscillations for various structures

have been analysed extensively, using the spectral parameter (frequency) for which the matrix

operator has zero valued determinant. A root finding algorithm is developed to improve the

accuracy of the calculations as well as the computation time and performance. The developed

method uses the spectral map of truncated system condition number for initial approximations.

There are no restrictions imposed on boundaries of domains (except requirements on smoothness

of the bounding contours), frequency range and size of entries (slits). To take advantage of all

these merits of the solution, an object-oriented software for its numerical implementation has

been developed: bounding contours of slotted arbitrary cylinders are generated by interpolation

functions and Sobolev’s approximation, providing a smooth parametrisation.

The numerical results cover spectral studies and resonance excitation of the slotted cylin-

ders. Spectral studies of classical (closed) waveguides, ridged waveguides, and magnetron-type

resonator cavities reveal an excellent agreement with the results available in literature. Complex

eigenvalues associated with slotted arbitrary cylinders are obtained for the first time. Classical

cylinders (circular, elliptic and rectangular) as well as their corrugated and modified shapes (sin-

gle and paired acoustic resonators with attached necks, polygonal and sinusoidally corrugated

cylinders) are investigated.

Finally, wave scattering from slotted circular, elliptic, rectangular cavities, duct and bent

duct cavities, parabolic reflector antennas (with and without flanges), corner reflectors, finite

sinusoidally profiled gratings, and complex shapes such as an airplane and a submarine are

studied. The MAR approach allows calculation of radar cross sections, scattering patterns and
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field distributions for a frequency range from a few to a half-thousand wavelengths, covering

the low-frequency region (Rayleigh scattering), the resonance regime (diffraction), and the high-

frequency regions.
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1
Introduction

1.1 Preliminary Remarks

This thesis concerns some investigations of the Neumann boundary value problems for

the Helmholtz Equation arising in two-dimensional (2D) open structures. A few remarks and

observations that are common to each chapter should be made. First, there is a direct correspon-

dence between acoustic and electromagnetic scattering from 2D objects which are open or closed

infinitely long cylinders, and in general of arbitrary cross section. In the following chapters we

mostly analyse closed or slotted 2D cavities with infinitesimally thin walls, without investi-

gating solid acoustically penetrable or dielectric cylinders. We study acoustic wave scattering

from sound-hard (SH) or rigid cylinders, and in parallel, we study electromagnetic scattering of

𝐻−polarised waves from perfect electric conductor (PEC) cylinders. Although acoustic waves

are longitudinal waves while electromagnetic waves are transverse, they share similar wave

equations and boundary conditions. In our case, both acoustic and electromagnetic scattering is

described by the 2D Helmholtz equation (Δ + 𝑘2)𝑈 = 0 with wavenumber 𝑘 = 2𝜋/_ satisfying

the Neumann boundary condition at the surface 𝑆 of the cylinder. In acoustics, the function 𝑈

represents the velocity potential while in electromagnetics it describes the longitudinal compo-

nent of magnetic field 𝐻𝑧. Therefore, by proper reformulation of the physical terms and correct

treatment of the numerical result, the same method can be used to obtain the solution to either
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an acoustic or an electromagnetic problem.

Beyond this theoretical aspect, the similarity of electromagnetic and acoustic scattering has

practical applications. For example, based on these similarities a method of measuring electro-

magnetic radar cross section (RCS) using underwater acoustic technology is proposed in [1].

The non-trivial analogy between propagation of the TEM mode and propagation of viscoelastic

S waves (shear waves with the displacement in the horizontal plane) in the plane of symmetry

of a monoclinic medium is shown in [2]. The similarities are further highlighted in [3]; it

is shown that the two-dimensional Maxwell equations are mathematically equivalent to the S-

wave equation based on a Maxwell stress–strain relation. The corresponding terms are listed

as follows: magnetic field/particle velocity, electric field/stress, dielectric permittivity/elastic

compliance, resistivity/viscosity, and magnetic permeability/density. Acoustic-electromagnetic

analogies in diffraction phenomena are discussed in [4] where similarities between acoustic and

electromagnetic wave fields occurring in bounded areas, such as waveguides, when electromag-

netic waves are not purely transversal are presented. The acoustic-electromagnetic analogies

exist in structures such as plane, rectangular, or cylindrical infinite waveguides, if the fields are

analysed by means of potentials - the velocity potential for sound waves and the Hertz potentials

for electromagnetic waves.

A list of publications on the correspondence between acoustic and electromagnetic problems

might be substantially extended, but in context of the present thesis this would be excessive.

In this thesis we do not use any non-trivial acoustic-electromagnetic analogies (discussed for

example in [2] and [3]). When the Dirichlet boundary condition for the 2D Helmholtz equation

is imposed, the solution of the corresponding problem describes wave scattering of acoustic

radiation from a sound-soft (SS) cylinder and electromagnetic 𝐸−polarised radiation from a PEC

cylinder. In case of the Neumann boundary condition, it describes acoustic radiation from an SH

cylinder or 𝐻−polarised radiation from PEC cylinder. When restricted for closed domains only,

the solution for Dirichlet Boundary Value Problem (BVP) and Neuman BVP can be obtained

in form of Magnetic Field Integral Equation (MFIE) which is numerically well conditioned.

However, the solution for open domains is obtained in form of Electric Field Integral Equation

(EFIE)which contains aweak singularity for Dirichlet BVP and a hyper-singularity for Neumann

BVP.

The second remark is related to the well-known observation that any open cavity with rigid

walls may be regarded as a Helmholtz resonator. This fact is of great importance in many
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practical areas of acoustics; it is often considered as a basic acoustic application but sometimes

it can be used for special acoustic applications. For example, the paper [5] presents a method that

uses acoustic Frequency Response Functions (FRF) to predict modifications in a novel acoustic

system: a cavity of a rocket engine combustion chamber. Insertion of Helmholtz Resonators

(HR) is applied as a cavity modification: the use of HR in such chambers attenuates the effect of

combustion instability, which can seriously damage an engine. The acoustical-electromagnetic

analogy has resulted in a number of theoretical studies ([6–8]) and practical applications ([9, 10]).

Another remark should bemade on the spectral investigation of 2D closed or slotted cylinders

that may be regarded as 2D cavities supporting a regime of standing waves, or providing regime

of wave propagation in waveguides. In both cases, the values of “cavity resonances” and

“cut-off frequencies” for 2D arbitrary cylinders are numerically identical. It simply means

that the spectrum of acoustic (or electromagnetic) oscillations in 2D cavities is at the same

time the spectrum of cut-off frequencies for propagating modes in acoustic (or electromagnetic)

waveguides of the same cross sections.

A final remark concerns applications of slotted and closed cavities in acoustics and elec-

tromagnetics. In acoustics, sound-soft cavities are mostly utilised for simulation of underwater

scattering problems while sound-hard cavities are used for modelling wave scattering problems

arising in aero-acoustics. In electromagnetics, the problems of wave scattering and wave prop-

agation of both 𝐸−polarised and 𝐻−polarised waves for closed cavities are equally significant

and valuable. For slotted cavities, the case of 𝐻−polarisation brings an additional physical

effect when the spectrum of the complex oscillations is supplemented by the Helmholtz mode

with an eigenvalue which precedes that of the fundamental mode. In our opinion, the solution

of the Neumann problem for the Helmholtz equation uncovers more possibilities for the design

of practical devices in acoustical and electro-engineering. This thesis is devoted to the compre-

hensive theoretical examination of this problem, which in turn significantly extends the areas of

application in practical acoustics and electro-engineering.

1.2 Brief Survey of Regularisation Techniques for the Solu-

tion of Surface Integral Equations

The Neumann problem for the Helmholtz equation in two-dimensional space, incorporating

closed or slotted cavities of arbitrary cross section, obeys the principle of superposition. This
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equation is usually analysed by methods of potential theory, and they explicitly or implicitly rely

on the linearity of the underlying partial differential equation. An example of the solution of

theHelmholtz equationwith theNeumann boundary condition at the surface of a closed (or open)

cavity, sought in the form of the double-layer potential, is presented in [11]. Using the boundary

condition, the problem is reduced to solving a hyper-singular integral equation. Such equations

appear in many areas of mathematical physics and motivate thorough studies. It should be

noted that the solution of this equation with various level of mathematical rigour or correctness

has been investigated by many authors. The extensive literature and number of publications on

the subject indicate the continuing present-day interest in this problem. A detailed review of

various solution methods can be found in [11–18]. Let us briefly outline the main approaches

to numerical solutions of hyper-singular integral equations in wave scattering.

It is widely postulated in the literature that the time-harmonic acoustic and electromagnetic

scattering problems are among the engineering problems for which boundary element methods

(BEM) have already shown to yield powerful numerical techniques. This general assertion

should be more critically examined. BEMs proceed by representing the unknown quantity

defined on the boundary as an unknown linear combination of known basis elements, and a

finite linear system of linear equations is obtained by either Galerkin’s method, or the least

squares method or more general Petrov-Galerkin techniques; point-matching or collocation

approaches can also be used ([19]). In all cases, the aim is to refine the basis (increasing its

order) until the obtained numerical solution is deemed sufficiently accurate. This procedure

can be expected to converge to the exact solution as the order is increased if the underlying

integral equation is of second kind, but such an expectation of a first kind integral equation

is unreasonable. Typically, the error (or difference from the exact solution) in the numerical

solution at first decreases as the basis order is increased, reaching a non-zero minimum, but then

increases and usually diverges to infinity. It can thus be difficult, if not impossible, to identify a

numerical solution that is “reasonably” accurate. The situation is most acute when the scattering

structure is nearly resonant, i.e., the cavity sustains high-Q oscillations, in which case either

very high order systems are required for any accuracy (with excessive computational resource

requirements), or it is impossible to obtain any reasonable numerical solution ([20]).

The popularity of integral equation methods among the engineering community is explained

by the possibility of obtaining the numerical solution of integral equations by their discretisation.

In the realisation of numerical schemes, there is a well-known drawback in that the standard
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integral equation formulations obtained from the Green’s representation formula fail to have

a unique solution at frequencies corresponding to the eigenfrequencies of the adjoint associated

interior problem for time-harmonic acoustics. This is not a physical drawback, nor does it appear

when the problem is represented by partial differential equations, but it arises entirely as a result

of a deficiency of the integral equation representation ([12]).

To avoid this drawback, two conventional techniques have been developed for acousti-

cally hard body scattering. The first one is called CHIEF, the combined Helmholtz integral

equation formulation ([21]), which is perhaps the most extensively used in engineering appli-

cations. The second technique is derived by Burton and Miller ([22]) which linearly com-

bines the Helmholtz integral equation with its normal derivative equation. The details of

both approaches are discussed in [13], and the comparison of these two methods reveals their

complications ([23–26]). The CHIEF method imposes an additional constraint on the solu-

tion of the boundary integral equation by requiring it to vanish at selected positions inside

the boundary to suppress the resonant solution that has no physical significance in the exter-

nal problem. The alternative approach proposed by Burton and Miller (BM) involves solving

a hyper-singular integral equation in which the original boundary integral equation is the real

part and the boundary integral equation for the normal derivative is the imaginary part. In both

cases, the equations that need to be solved contain mathematical singularities associated with

the conventional formulation of the boundary integral equation and much effort since then has

been made in the expeditious and efficient treatment of these singularities.

Sometimes, implementation of purely numerical approaches in solving the hyper-singular

integral equations requires state of the art techniques to cope with concrete shapes of scatterers.

For example, as reported in [26], the BM method uses a coupling parameter which, in theory,

is a complex number with a non-vanishing imaginary part. In practice, it is usually chosen

proportional or even equal to 𝑖/𝑘 . A literature review of papers about the BM method and its

implementations reveals that in some cases it is better to use −𝑖/𝑘 as the coupling parameter.

Surprisingly, an unexpectedly large number of studies are based on the wrong choice of the sign

in the coupling parameter. Herein, it is described which sign of the coupling parameter should

be used for different configurations. Furthermore, it is shown that the wrong sign does not just

make the solution process inefficient but in some cases can lead to completely wrong results. To

reduce the condition number of the resulting BM formulation at low frequencies, a regularised

version 𝛼 = 𝑖𝑘/
(
𝑘2 + _

)
of the classical BM coupling factor 𝛼 = 𝑖/𝑘 is proposed in [27]. It
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becomes evident that the enforcement of the BMmethod does not guarantee the uniform relative

error of calculations across a wide frequency band.

The peculiarities of the different methods of discretisation, usually applied to both the elec-

tric field integral equation (EFIE) and the magnetic field integral equation (MFIE), are discussed

in many publications (see, for example, [28]). In particular, it is stressed that direct methods

involving the inversion of dense matrix systems are not realistic alternatives for many scattering

problems of practical interest, and iterative algorithms are often required. In such cases, the nu-

merical consequences of poor conditioning of the EFIE are more significant. The unbounded

increase of the condition number of the discretised EFIE as the discretisation interval tends to

zero generally leads to an unbounded increase in the iteration count of complex Krylov sub-

space algorithms ([29]). Naturally, the surface integral equations are the Fredholm equations of

the first kind with their main prominent feature being “ill-posedness”. In fact, the straightfor-

ward application of usual numerical methods to the matrices obtained by discretisation of these

types of equations gives rise to implausible and incorrect numerical answers. As a matter of

fact, a paradoxical behaviour appears: the finer the discretisation, the worse the divergence of

the solution from the actual solution can become.

A detailed overview of numerical methods for first kind Fredholm integral equations and

its critical analysis is presented in [30]. From the point of view of current methods for solving

the first kind Fredholm integral equation, the main approach is to use a regularisation algo-

rithm and adopt various regularisation operators to solve different integral equations. Another

approach uses the wavelet method which gives a set of wavelet bases as the basis functions

to approximate the integral equation, and solves the integral equation by improving the basis

function or improving the iterative algorithm. In addition, multi-scale iteration methods, the

Lagrange polynomial interpolation methods, algebraic solution methods, statistical methods,

orthogonal inversion methods, and others can be applied to specific equations. These methods

employ approximation of differing types. It is not only challenging to select correct approxima-

tion functions, but also finding a numerical solution based on such approximation functions is a

complex task.

The algorithms for numerical regularisation can be constructed in many ways. We will not

go into a detailed discussion of the merits and shortcomings of various numerical regularisation

techniques, since none of them nor their modifications are used in this thesis. Nevertheless, this

problem is considered in, for example, the publications [30, 31]. In general, most of the numerical
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regularisation techniques presented so far in the literature for evaluating the hyper-singular

integrals in the boundary integral equations (BIE) arise from certain identities associated with

the fundamental solution to the Laplace equation. This is due to the fact that the Laplace operator

in the Helmholtz equation is responsible for the singular behaviour of the kernels of the BIE.

From this overview of the problem, let us summarise the key observations which will

contribute to our treatment of its effective solution. First, the exterior Neumann problem

(formulated in terms of double layer potentials [11]), breaks down for closed objects when

the wavenumber 𝑘 equals the eigenvalue of the interior Dirichlet problem: the same is true

for the exterior Dirichlet problem (formulated in terms of single layer potentials [11]) and

the corresponding interior Neumann problem. When the wavenumber 𝑘 takes certain discrete

values, the interior problem with homogeneous boundary conditions has non-trivial solutions.

These values of 𝑘 are the eigenvalues of the interior problem and the corresponding non-trivial

solutions are its eigenfunctions. It can be shown that these eigenvalues must be real ([32]). At

these values the corresponding integral equation governing the exterior problem breaks down,

i.e., it may either fail to yield a unique solution or be insoluble for the given inhomogeneous

term. The investigation [33] gives a detailed treatment of this. It is shown that the exterior

Neumann (Dirichlet) problem breaks down whenever the wavenumber 𝑘 equals the eigenvalue

of the interior Dirichlet (Neumann) problem.

Secondly, surface integral equations when used for the solution of the problems both in

open and closed domains by their nature are first kind Fredholm integral equations which are

ill-posed. The enforcement of direct numerical methods for their solution is not a simple

procedure; there are issues concerning the computational accuracy, uniform validity in different

parts of frequency range, behaviour at resonance frequencies, etc. Even the most advanced

numerical techniques are not capable of overcoming the generic ill-conditioning of the original

equations. For this reason, robust numerical solvers are obtained by subjecting these equations

to numerical (or analytical) transforms (regularisation, preconditioning, etc.). In other words, it

is highly desirable to convert the originally ill-conditioned equations to well-conditioned second

kind Fredholm equations, whether it is done numerically or analytically.

In this thesis we mainly consider open 2D cylinders of arbitrary cross section. Equally

for acoustic and electromagnetic scattering, the mathematically rigorous and correct problem

statement involves mixed boundary conditions: the Neumann boundary condition at the surface
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of the slotted cylinder and the Dirichlet boundary condition across a slit. The term “mixed” indi-

cates the absence of such distinctions between the internal or external problem as the “internal”

or “external” regions of space are in fact coupled with each other through the openings (slits).

The presence of a slit leads to the leakage of acoustic (or electromagnetic) energy through the slit

to external space, i.e. leads to dissipation of energy from the interior of a cylinder, and hence

to the radiation losses. In this case, the spectrum of real eigenvalues, which is characteristic for

a closed cylinder, is replaced by a spectrum of complex eigenvalues and the non-uniqueness of

the external Neumann or Dirichlet problem for closed cylinders disappears: the mixed boundary

value problem describing a slotted cylinder now has a unique solution. The solution uniqueness

of the acoustic (or electromagnetic) scattering problems in open domains is proved in many

publications (see, for example [34]).

We revisit the regularisation of the surface integral equation to discuss a few relatively

new methods, in addition to the publications mentioned above. In [35–37], a similar idea to

those in [12] is used, where a procedure of regularisation is described for both weakly singular

and hyper-singular kernels. The weakly singular integrals are de-singularised by subtracting

a term from the integrand and adding it back with its exact value. The hyper-singular kernel is

further de-singularised using some properties of the interior Laplace problem. As asserted by

authors, the new formulations are advantageous in a sense that they can be computed directly by

using standard quadrature formulas. In [35] a boundary integral formulation for the solution of

the Helmholtz equation is developed in which all traditional singular behaviour in the boundary

integrals is removed analytically. In a reformulated boundary integral solution of the Laplace

equation and the Stokes equation of fluid mechanics all singular terms in the integrals are

removed analytically ([36]). The regularisation of all the singular behaviour on the boundary

means that the surface integrals can be evaluated using any convenient quadrature method.

Except for some minor peculiarities, a similar approach to de-singularisation is demonstrated

in [37]. A different way of de-singularisation can be found in [38], where the singularity

of the MFIE and its extraction is considered. Another interesting variant of regularisation is

demonstrated in [18], where it is achieved via the analytical inversion of the hyper-singular

part of the combined field integral equation, without negative repercussions on computational

complexity.

Despite the development of rather advanced and theoretically solid methods for the solution
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of the surface integral equations and wide-spread use of them by the acoustic and electro-

engineering communities, there is still a need for more efficient methods which would be

capable of comprehensive and accurate analysis of wave scattering problems, including finding

the eigenvalues in closed and open arbitrary cylinders. Furthermore, it is highly desirable to use

one unique method to cover the different parts of the frequency range: the low-frequency region

(Rayleigh scattering), where wavelength _ greatly exceeds the characteristic size 𝑎 of a scatterer

(_ � 𝑎); the resonance (diffraction) region (_ ∼ 𝑎); and the high-frequency region (_ � 𝑎).

The Method of Analytical regularisation (MAR), developed in this thesis for the solution

of the Neumann boundary value problem for 2D Helmholtz equation addresses all the issues

above. The basic principles of the method are discussed in the next section.

1.3 Distinctive Features of the Method of Analytical Regular-

isation

In this thesis we implement a rigorous approach, the Method of Analytical Regularisation

(MAR), which is applied to acoustic and electromagnetic wave scattering by slotted sound-

hard (rigid) and PEC cavities bounded by arbitrary smooth contours. It is an analytical-

numerical method, which is based on the analytical inversion of the singular part of the original

operator occurring in the integral equation formulation of the scattering problem, and is derived

from the double-layer potential representation of the scattered field. For this reason, in many

publications, the historically employed title “method of regularisation” is replaced by the more

specific “method of analytical regularisation” or “method of semi-inversion”. Although these two

terms are often used interchangeably, the semi-inversion method does not allow for a free choice

of space mapping, which is very important from the numerical point of view [39]. Returning

to the process, it converts the double-layer (or single-layer potential for case of the Dirichlet

problem) formulation to a second kind Fredholm matrix equation (of infinite dimension), which

is solved by truncation to a finite dimension system. Simplistically, this methodmay be explained

as follows.

Let us represent the surface integral equation in operator form ([11])

𝐴𝑥 = 𝑏 (1.1)
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where 𝐴 is the problem operator (involving the free-space Green’s functions), 𝑥 is the solution

vector to be found and 𝑏 is the known right-hand side of the equation, given by an incident

acoustic (or electromagnetic) radiation. The first step in the MAR is the splitting of operator 𝐴

into singular (𝐴0) and regular (𝐴1) parts:

𝐴 = 𝐴0 + 𝐴1 (1.2)

where 𝐴0 is extracted from 𝐴 in analytical form so that the operator 𝐴1 = 𝐴 − 𝐴0 formed as

the difference between the initial operator 𝐴 and its singular part 𝐴0 is regular (“smooth”). As

a result, we arrive at the equation

(𝐴0 + 𝐴1) 𝑥 = 𝑏. (1.3)

The second step is the analytical construction of the inverse operator 𝐴−10 . Then operator 𝐴
−1
0 is

applied to both parts of equation (1.3)

𝐴−10 (𝐴0 + 𝐴1) 𝑥 = 𝐴
−1
0 𝑏, (1.4)

which leads to a second kind Fredholm equation

(𝐼 + 𝐻) 𝑥 = 𝐵, (1.5)

where 𝐼 = 𝐴−10 𝐴0 (‖𝐼 ‖ = 1) is the identity operator, 𝐻 = 𝐴−10 𝐴1 is a completely continuous

(compact) operator in the corresponding functional class, and the right-hand side of the equation

𝐵 = 𝐴−10 𝑏 belongs to the same class. The splitting of operator 𝐴 into 𝐴0 and 𝐴1, and analytical

construction of 𝐴−10 is not an arbitrary process and explained in detail in Chapter 2. The solution

class is entirely defined by the smoothness of the bounding contours of closed cavities, and the

presence of the sharp edges in case of cavities with openings. In all cases equation (1.5) is

presented in discretised form as well-conditioned infinite systems of linear algebraic equations.

When solving 2Dwave scattering problems for closed (or open) cavities, discretisation is attained

by the expansion of all terms contributing to the integral equation functions in exponential series{
𝑒𝑖𝑛𝜗

}∞
𝑛=−∞, which are complete and orthogonal in the interval 𝜗 ∈ [−𝜋, 𝜋] ( i.e. Fourier series).

One of the Fredholm theorems, known as the Fredholm alternative in its version for linear

algebra, allows us to use the truncationmethod to solve the infinite-dimensional matrix equations

of type (1.5), in which the solution of the infinite-dimensional matrix equations is approximated
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by the solution of a truncated finite-dimensional linear system of equations, characterised by

the truncation number 𝑁 . The MAR provides extremely fast convergence of the solution

{𝑥𝑛}𝑁𝑛=0 of the truncated systems to the exact solution {𝑥𝑛}
∞
𝑛=0 as 𝑁 →∞. The convergence rate

of truncated systems is examined in the thesis.

The MAR is not a new method. It has had almost sixty years of development [40]; the first

forty years of its use has been described in the review [41]. A significant number of publications

where the MAR is used are devoted to wave scattering from canonically shaped objects, i.e.,

scatterers the bounding surfaces of which are described by complete or partial coordinate

surfaces. Solution of the boundary problems for the Helmholtz (or Maxwell) equations for

such structures may be obtained by the method of separation of variables. The effectiveness

of the MAR is demonstrated in the two-volume monograph [42, 43] where potential and wave

scattering problems for canonically shaped open cavities have been investigated. In addition,

the short surveys [44] and [45] highlight new aspects of the MAR application. The existence of

a powerful mathematical tool in solving wave scattering problems for canonical structures was

an incentive for generalisations of the MAR for analysis of wave scattering problems for a wide

class of open arbitrarily shaped cavities.

The first generalisation of the MAR was realised in two-dimensional wave-scattering prob-

lems for slotted arbitrary cylinders. The first steps weremade as far back as 1985 for the Dirichlet

boundary conditions ([46]) and in 1987 for the Neumann boundary conditions ([47]). In these

short publications, the mathematical formal scheme was reported. An exhaustive mathematical

treatment of the generalised MAR with the proof of solution existence and uniqueness, expan-

sion of the hyper-singular kernels in the neighbourhood of their singular points and many other

useful aspects for the realisation of numerical algorithms is presented in [48]. Moreover, further

substantial manipulations and developments are required and necessary for the practical imple-

mentation of a numerical algorithm, especially where the Neumann problem for the Helmholtz

equation is investigated. (These are also absent in the publications [46, 47]). Possibly this

is the main reason why this rigorous and highly effective approach to the Neumann problem

for the Helmholtz equation has found little usage, focusing on closed problems ([49, 50]). By

contrast, it should be noted, that the employment of the MAR for the Dirichlet problem has

found its full realisation and implementation, passing all the way from the pioneering paper [46]

to comprehensive practical investigations ([51–55]). The full implementation of the numerical

solution to the Neumann problem for the Helmholtz equation for a range of two-dimensional
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open domains is a major and novel outcome of this thesis. The developments necessary for

the practical implementation of MAR solution are detailed in Chapter 2. Both the method of

solution and the applications to Helmholtz resonators, to spectral studies of slotted cavities, their

complex eigenvalues and resonant wave scattering, and other applications detailed in subsequent

chapters are new contributions to the field of study.

After this brief review of publications relevant to the research topic of this thesis, let us write

down the truncated form of equation (1.5) (here 𝐿 ≡ 𝐼 + 𝐻) :

𝐿𝑁𝑥𝑁 = 𝐵𝑁 . (1.6)

The focus for the spectral problem is on the underlyingmatrix operator and the complex eigenval-

ues at which non-trivial solutions of the homogenous equation (𝐵𝑁 ≡ 0) occur. The dispersion

equation then emerges as the requirement

det 𝐿𝑁 (𝑘) = 0. (1.7)

as a parameter of wavenumber 𝑘 . The compact nature of operator 𝐻 ensures that any individual

root of the dispersion equation converges to its exact value as truncation number 𝑁 increases.

This feature makes the MAR approach both accurate and efficient and allows us to use the

well-known routines for finding the complex roots of the complex-valued function representing

the determinant of the truncated system. It thus represents a new approach to obtaining highly

accurate spectral information for slotted cavities with modest computational resource require-

ments. The fruitfulness of this approach was demonstrated, in particular, in [54], in the context

of finding the spectrum of the complex eigenvalues in a slotted sound-soft cavity.

1.4 Research Objectives

In this thesis, we apply the Method of Analytical Regularization, for the first time, to the

Neumann boundary value problem for arbitrarily shaped open/closed domains, using piecewise

cubic Hermite interpolation and Sobolev space approximation by Friedrich’s mollifier. We aim

to achieve the same effectiveness of results as obtained for Dirichlet boundary value problem

noting that the problem is more complex because the corresponding integral equation has a

hyper-singular kernel.
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Once the solution is obtained, it is the subject of further applied and computational math-

ematical studies where the theoretically effective solutions are converted into computational

routines of high effectiveness. We aim to develop computer codes that are efficient and fast

while providing flexibility to apply a wide class of objects and practical applications.

Various aspects of thesis include obtaining well-conditioned algebraic systems employing

a compact perturbation of the identity operator in 𝑙2, examining the fast convergence of the trun-

cation method, and demonstrating how accuracy of the computations can be predetermined.

From the theoretical point of view, this program provides a highly satisfactory completion

of the studies related to the rigorous solution of acoustic (or electromagnetic) wave scattering by

two-dimensional arbitrary shaped open or closed cavities (or waveguides), encompassing both

sound soft (𝐸−polarisation) and sound-hard (𝐻−polarisation) cases.

From a practical viewpoint, contour smoothing by means of Sobolev approximation, to

construct a smooth parametrization that has continuous higher order derivatives, is combined

with the Method of Analytical Regularization for the first time. This enables us to carry out

detailed investigation and calculation of the complex eigenvalues of various structures for which

Method of Regularization has not been applied before.

1.5 Outline of the Thesis

In Chapter 2, the mathematically challenging Neumann boundary value problem for

the Helmholtz equation in open 2D domains is rigorously solved. By enforcement of theMethod

of Analytical Regularisation, the originally ill-posed integral equationwith hyper-singular kernel

is reduced to coupled well-conditioned infinite systems of linear algebraic equations. The com-

pactness of the matrix operators ensures an effective solution of these equations is obtained

by the truncation method. The fast convergence of the solution of the truncated equation to

the exact solution is provided by calculation of the truncation error function 𝑒(𝑁), which tends

to zero as 𝑁 →∞. The ease of the matrix filling, when matrix elements are mostly computed by

the Fast Fourier Transform and recursive procedures, and absence of the limitation on modelling

the slotted arbitrary cylinders make the developed approach a reliable and highly accurate in-

strument for the diverse practical problems arising in acoustics and electromagnetics. By taking

advantage of shape preserving interpolation functions together with Sobolev’s approximation

using the Frederich’s mollifier (also known as standard mollifier function), the capability of
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the MAR for investigation of polygonal and arbitrary cross sections (i.e. rectangular, triangular,

and double-ridge waveguides) is demonstrated.

Chapter 3 is devoted to the investigation of the Helmholtz resonators described for acoustic

resonators of cylindrical and rectangular shapes widely used in practice. The application of

the MAR to this important area of engineering acoustics shows the universality and accuracy of

the method. The preliminary investigation of the performance of multiple Helmholtz Resonators

considers a pair of resonators for circular and rectangular types and may be useful in making

estimates of their coupling for design of practical devices. The effects of parameters defining

the structures are presented in terms of unloaded 𝑄−factors of the respective resonators.

In Chapter 4, we demonstrate the applicability of the developed method to the highly delicate

problem of spectral studies for 2D open arbitrary cylinders. In our opinion, the successful

treatment of complex open cavities conducted in this chapter is due, not only to the rigorous

method itself, but also to the procedure of parametrisation of the arbitrary bounding contours

described in detail in Chapter 2. Practically all of the presented results on the complex values

of natural complex oscillations are obtained for the first time. It is shown that the accuracy of

the approach used allows us to investigate without limitations the fine structure of the spectra,

resolve problems of mode competition and separate higher modes, the complex eigenvalues of

which may differ only in the fifth or sixth significant decimal place. Considering the-state-

of-the-art in spectral studies for open structures, we would assert that the presented method

possesses some unique merits and may be successfully applied in practice when solving non-

trivial practical problems arising in acoustics and electromagnetics.

In Chapter 5, we investigate the resonance scattering of slotted cylinders of various shapes.

In all cases the qualitative predictions of the resonance response is substantiated by the spectral

studies of the slotted arbitrary cylinders. The discovery of delicate details in resonance scatter-

ing are obtained by these reliable high-accuracy computational algorithms. The phenomenon

of the resonance duplet which is characteristic for open systems possessing natural complex

oscillations with sufficiently high 𝑄−factors is described. The total distribution of the scattered

acoustic field at all observation angles is observed by employing the normalised scattering pat-

tern, or in other words, the bistatic cross section. Examples of wave scattering for bent ducts

demonstrates one more aspect of the universality of the MAR.

Further advanced applications of the MAR to the analysis of high-frequency scattering is

demonstrated in Chapter 6. We apply the MAR to the classical parabolic cylindrical reflectors,
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focusing on finding the fine details in the distribution of the reflected electromagnetic field in

the neighbourhood of the geometrical optics (GO) focal line. Parabolic reflectors with attached

flanges are also considered, where the effect of flange size on total field distribution is analysed.

Although the performed calculations including corner reflectors are of illustrative character,

they clearly demonstrate the potential for further accurate analysis. Finite sinusoidal gratings

are also investigated in this chapter. Studies of the diffraction space harmonics (Floquet modes)

for large gratings exceeding a half-thousand wavelengths show the high efficiency of the MAR.

The capability of the MAR for comprehensive analysis of backscattering from complex 2D

targets is shortly discussed at the end of this chapter.

Finally, the Conclusions chapter summarises the outcomes of this thesis and discusses further

fruitful directions for future development and applications of the MAR.
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2
The Neumann Boundary Value Problem for

the Helmholtz Equation and the MAR

In this chapter, the MAR is applied to solving the problem of plane wave scattering from

slotted sound-hard 2D arbitrary cavities. As noted in section 1.1, this problem is equivalent

to the problem of scattering of 𝐻−polarised plane waves from slotted infinitely long PEC

cylinders of arbitrary cross section. The approach is mainly based on ideas contained in

[47, 48]. The expansion suggested in [47] of the hyper-singular kernel in the neighbourhood of

the singular points is used for further numerical analysis.

2.1 Problem Statement

Geometry of the problem of an arbitrary slotted PEC cylinder excited by 𝐻−polarised

radiation is shown in Figure 2.1. The arbitrarily shaped cavity with a longitudinal slit is

bounded by the contour 𝐿 which is part of a closed contour 𝑆, i.e. 𝐿 ⊆ 𝑆.

Formulation of the scattering problem is as follows. A rigid slotted cavity of arbitrary shape

is illuminated by an obliquely incident plane wave; the incidence angle 𝛼 is measured from

the positive part of the x-axis in counter-clockwise direction, as shown in Figure 2.1. We want to

find the scattered velocity potential𝑈𝑠𝑐 which alongwith incident potential𝑈0 = 𝑒𝑖𝑘 (𝑥 cos𝛼+𝑦 sin𝛼)
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𝑥

𝑦
𝐿

𝐿′

𝑞1

𝑞2

𝑆 = 𝐿 ∪ 𝐿′

𝛼

Figure 2.1: 2D arbitrary slotted rigid cavity illuminated by an incident plane wave at angle 𝛼.

defines the total field 𝑈𝑡𝑜𝑡 = 𝑈0 + 𝑈𝑠𝑐. The time harmonic dependence 𝑒−𝑖𝜔𝑡 is suppressed

throughout the text. The function𝑈𝑠𝑐 (𝑞) must satisfy the following conditions:

a) the homogeneous Helmholtz equation for all 𝑞 ∈ R2:

(
Δ + 𝑘2

)
𝑈𝑠 (𝑞) = 0; (2.1)

b) the mixed boundary conditions at each point 𝑞 ∈ 𝑆:

lim
ℎ→0

𝜕𝑈𝑠𝑐
(
𝑞 ± ℎ 𝑛𝑞

)
𝜕𝑛𝑞

+ 𝜕𝑈0 (𝑞)
𝜕𝑛𝑞

= 0, 𝑞 ∈ 𝐿, (2.2)

lim
ℎ→0

𝑈𝑠𝑐
(
𝑞 + ℎ𝑛𝑞

)
= lim
ℎ→0

𝑈𝑠𝑐
(
𝑞 − ℎ𝑛𝑞

)
, 𝑞 ∈ 𝑆 \ 𝐿, (2.3)

where 𝑛𝑞 is a unit vector denoting the outward normal to the contour 𝑆 at the point 𝑞;

c) the radiation condition:

𝜕𝑈𝑠𝑐 (𝑞)
𝜕𝑞

− 𝑖𝑘𝑈𝑠𝑐 (𝑞) = 𝑜
(
|𝑞 |−1/2

)
, |𝑞 | → ∞, (2.4)

which means that the scattered field must behave as an outgoing cylindrical wave at

infinity;

d) the edge condition concerning the endpoints 𝑞1, 𝑞2 of the slotted cavity, requiring that
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grad𝑈𝑠𝑐 (𝑞) is of the form

grad𝑈𝑠𝑐 (𝑞) = ℎ (𝑞)√︁
|𝑞 − 𝑞1 | |𝑞 − 𝑞2 |

, (2.5)

where ℎ (𝑞) is a smooth vector-function bounded across the entire plane.

The mathematically correct problem statement should involve all conditions of the unique-

ness theorem. If it exists, the solution of the problem defined by the conditions (a)-(d) above

admits an integral representation in the form of a double-layer potential ([11]),

𝑈𝑠𝑐 (𝑞) =
∫
𝐿

𝜕𝐺2 (𝑘 |𝑞 − 𝑝 |)
𝜕𝑛𝑝

𝑍 (𝑝) 𝑑𝑙𝑝, 𝑞 ∈ 𝑅2 \ 𝐿, (2.6)

where the Green’s function 𝐺2 (𝑘 |𝑞 − 𝑝 |) is defined by

𝐺2 (𝑘 |𝑞 − 𝑝 |) = −
𝑖

4
𝐻
(1)
0 (𝑘 |𝑞 − 𝑝 |) . (2.7)

Here 𝑍 (𝑝) is an unknown function to be found and represents the jump of the scattered velocity

potential at contour 𝐿, i.e.

𝑍 (𝑝) = 𝑈𝑠𝑐 (𝑝 − 0) −𝑈𝑠𝑐 (𝑝 + 0) , 𝑝 ∈ 𝐿, (2.8)

and 𝑑𝑙𝑝 is the differential of arc length. In electromagnetics, the function 𝑍 (𝑝) corresponds to

the jump of the surface current density at the infinitesimally thin walls of a cavity. As proved in

[48], the fulfilment of the conditions (2.1) - (2.5) leads to the relationship

lim
ℎ→±0

𝜕

𝜕𝑛𝑞

∫
𝐿

𝑍 (𝑝)
𝜕𝐺2

(
𝑘
��𝑞 + ℎ𝑛𝑞 − 𝑝��)
𝜕𝑛𝑝

𝑑𝑙𝑝 = −
𝜕𝑈0 (𝑞)
𝜕𝑛𝑞

, 𝑞 ∈ 𝐿. (2.9)

Further transformations of equation (2.9) are studied extensively in [47, 48], and in [49].

We suppose that the contour is parametrised in the Cartesian coordinate system by a smooth

vector-function

[ (𝜗) = {𝑥 (𝜗) , 𝑦 (𝜗)} , 𝜗 ∈ [−𝜋, 𝜋]

such that, after its 2𝜋 periodic continuation, it is smooth on 𝜗 ∈ (−∞,∞) and [(−𝜋) = [(𝜋).

Screen 𝐿 is parametrised by a sub-interval [−𝜗0, 𝜗0] : 𝐿 = {(𝑥(𝜗), 𝑦(𝜗)) , 𝜗 ∈ [−𝜗0, 𝜗0]}

whilst the slot 𝐿′ = {(𝑥 (𝜗) , 𝑦 (𝜗)) , 𝜗 ∈ [−𝜋,−𝜗0) ∪ (𝜗0, 𝜋]} is created by the removal of
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the segment from S, where 𝑆 = 𝐿 ∪ 𝐿′; the choice of 𝐿′ is not unique and may be chosen as

convenient for the problem at hand. In establishing all mathematical arguments in analytical

regularisation, we assume that the vector-valued function [ (\) is infinitely differentiable, i.e.,

[ (\) ∈ 𝐶∞ (−∞,∞). However, in a numerical implementation of the solution algorithm, it

is sufficient to require continuity of the first and second derivatives and existence of the third

derivative. We also require satisfaction of the condition

𝑙 (𝜗) =
√︃
[𝑥′ (𝜗)]2 + [𝑦′ (𝜗)]2 > 0, (2.10)

which guarantees that [ = [ (𝜗) is a one-to-one mapping. In addition, we assume that point [(𝜗)

moves in the anticlockwise direction along the contour 𝑆 as 𝜗 increases. Hence, the differential

of arc length at point 𝑝 = 𝑝 (𝜏) is

𝑑𝑙𝑝 = 𝑑𝑙 (𝜏) = 𝑙 (𝜏) 𝑑𝜏 =
√︃
[𝑥′ (𝜏)]2 + [𝑦′ (𝜏)]2 𝑑𝜏, (2.11)

and the distance between two points 𝑝 = 𝑝(𝜏) and 𝑞 = 𝑞(\) is

𝑅 = |𝑝 − 𝑞 | =
√︃
[𝑥 (𝜏) − 𝑥 (\)]2 + [𝑦 (𝜏) − 𝑦 (\)]2. (2.12)

Using this parametrisation we can introduce a new discontinuous function 𝑧 (𝜏) defined on

the complete interval of variation 𝜏 ∈ [−𝜋, 𝜋] as

𝑧 (𝜏) =


𝑍 (𝜏) , 𝜏 ∈ [−𝜗0, 𝜗0]

0 , 𝜏 ∈ [−𝜋,−𝜗0) ∪ (𝜗0, 𝜋] .
(2.13)

Following [48], we interchange the order of integration and differentiation, to transform (2.9) to

lim
ℎ→±0

𝜋∫
−𝜋

𝜕2𝐺2
(
𝑘
��𝑞 + ℎ𝑛𝑞 − 𝑝��)
𝜕𝑛𝑞𝜕𝑛𝑝

𝑧 (𝜏) 𝑙 (𝜏) 𝑑𝜏 = −𝜕𝑈
0 (𝑞 (𝜗))
𝜕𝑛𝑞(𝜗)

(2.14)

where 𝑝 (𝜏) ∈ 𝑆, 𝑞 (𝜗) ∈ 𝐿, 𝜗 ∈ [−𝜗0, 𝜗0].
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2.2 Solution of the Surface Integral Equation by the MAR

Although the process of analytical extraction of the singular part of the kernel in equa-

tion (2.14) is briefly described in [49] for the complete interval of parameter 𝜗, (when

𝜗 ∈ [−𝜋, 𝜋]), it can also be applied in the case of the incomplete interval 𝜗 ∈ [−𝜗0, 𝜗0]

due to its independence on the limits of parameter 𝜗. Taking into account this observation

and considering that this extraction is the key to further transformation of (2.14) into a well-

conditioned equation, we demonstrate the principal points of the extraction process below.

After evaluating the limit in (2.14), we arrive at the equation

𝜋∫
−𝜋

𝐷0 (𝜗, 𝜏) 𝑧 (𝜏) 𝑙 (𝜏) 𝑑𝜏 = −
𝜕𝑢0 (𝑞 (𝜗))
𝜕𝑛𝑞 (𝜗)

, 𝜗 ∈ [−𝜗0, 𝜗0] , (2.15)

where

𝐷0 (𝜗, 𝜏) ≡
𝜕2𝐺2 (𝑘 |𝑞 − 𝑝 |)

𝜕𝑛𝑞𝜕𝑛𝑝
. (2.16)

As mentioned in Section 1.2, a variety of approaches have been used to treat this hyper-

singular kernel. Our method of regularising this equation employs the approach of [46–48] with

the goal of achieving a second kind system of equations which are readily amenable to numerical

solution techniques that are reliable and stable.

Interchanging of the limit and integration to obtain equation (2.15) is justified as the un-

known function is a function of 𝑝, while the normal derivative 𝜕𝑛𝑞 of the Green’s function is

calculated in the vicinity of the boundary for a small positive value of ℎ, thus |𝑞 + ℎ𝑛𝑞 − 𝑝 | > 0.

The kernel 𝐷0 (𝜗, 𝜏) contains the non-integrable algebraic singularity in the form (𝜗 − 𝜏)−2, and

the logarithmic singularity (when 𝜗 − 𝜏 → 0). It was proved in [48] that the function 𝐷0 (𝜗, 𝜏)

allows the decomposition

𝐷0 (𝜗, 𝜏) =
1

2𝜋𝑙 (𝜗) 𝑙 (𝜏)

𝐾 (𝜗, 𝜏) −
1

4
(
sin 𝜗−𝜏2

)2  , (2.17)

where the function 𝐾 (𝜗, 𝜏) has only a logarithmic singularity. When 𝜗→ 𝜏, 𝐾 (𝜗, 𝜏) takes the

form:

𝐾 (𝜗, 𝜏) ∼ 𝐶 + 1
2
𝑘2𝑙 (𝜗) 𝑙 (𝜏) log

����2 sin 𝜗 − 𝜏2 ����. (2.18)
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After substitution of the decomposed kernel into equation (2.15) and making use of the well-

known differentiation formula

𝜕2

𝜕𝜗2
log

����2 sin 𝜗 − 𝜏2 ���� = − 1

4
(
sin 𝜗−𝜏2

)2 , (2.19)

we obtain the equivalent integral-differential equation

𝑑2

𝑑𝜗2

𝜋∫
−𝜋

𝑧 (𝜏) log
����2 sin 𝜗 − 𝜏2 ���� 𝑑𝜏 + 𝜋∫

−𝜋

𝑧 (𝜏) 𝐾 (𝜗, 𝜏) 𝑑𝜏 = 𝐹 (\) , 𝜗 ∈ [−𝜗0, 𝜗0] , (2.20)

where the kernel 𝐾 (𝜗, 𝜏) and right-hand side function 𝐹 (𝜏) are defined by

𝐾 (𝜗, 𝜏) = 2𝜋 𝑙 (𝜗) 𝑙 (𝜏) 𝐷0 (𝜗, 𝜏) +
[
4
(
sin

𝜗 − 𝜏
2

)2]−1
,

𝐹 (𝜗) = −2𝜋 𝑙 (𝜗)
[
𝜕𝑈0 (𝑞)
𝜕𝑛𝑞

]
𝑞=[(𝜗)

.

(2.21)

The next stage of regularisation is decomposition of the kernel 𝐾 (𝜗, 𝜏) into a purely singular

part and a “smooth” (regular) part 𝐾𝑠 (𝜗, 𝜏):

𝐾𝑠 (𝜗, 𝜏) = 𝐾 (𝜗, 𝜏) −
1
2
𝑘𝑙 (𝜗) 𝑘𝑙 (𝜏) log

����2 sin 𝜗 − 𝜏2 ����. (2.22)

The function 𝐾𝑠 (𝜗, 𝜏) is smooth in a sense that all of its first derivatives are continuous and

its second derivatives have only logarithmic singularities in the plane (−∞,∞) × (−∞,∞) after

the 2𝜋-periodic continuation of the function 𝐾𝑠 (𝜗, 𝜏) with respect to both variables. This allows

for its expansion in a double Fourier series, where the Fourier coefficients can be found numer-

ically. Before the expansion, it is necessary to organise the correct calculation of the function

𝐾𝑠 (𝜗, 𝜏). When 𝜗 ≠ 𝜏, 𝐾𝑠 (𝜗, 𝜏) may be calculated directly using equations (2.16), (2.21), and

(2.22):

𝐾𝑠 (𝜗, 𝜏) = 2𝜋 𝑙 (𝜗) 𝑙 (𝜏) 𝐷0 (𝜗, 𝜏) +
[
4
(
sin

𝜗 − 𝜏
2

)2]−1
− 1
2
𝑘𝑙 (𝜗) 𝑘𝑙 (𝜏) log

����2 sin 𝜗 − 𝜏2 ���� , 𝜗 ≠ 𝜏.

(2.23)

Since the function 𝐷0 (𝜗, 𝜏) possesses both algebraic and logarithmic singularities as 𝜗 → 𝜏,
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equation (2.23) can not be used for computation of 𝐾𝑠 (𝜗, 𝜏) at 𝜗 = 𝜏. The expression for

the function 𝐾𝑠 (𝜗, 𝜗) with an arbitrary parametrisation [ (𝜗) was derived analytically in [48],

which we use in numerical computations:

𝐾𝑠 (𝜗, 𝜗) =
1
2
(𝑘𝑙)2 log 𝑘𝑙

2
− 1
(𝑘𝑙)2

[
1
6
𝑘2𝑃1,3 − 1

4
𝑘2𝑃2,2

]
− 1
2 (𝑘𝑙)4

[
𝑘2𝑀1,2

]2 − (𝑘𝑙)2 [
−𝑖 𝜋
4
− 𝛾
2
+ 1
4

]
+ 1
12
...,

(2.24)

where 𝛾 = 0.57721566 . . . is the Euler’s constant, and

𝑃𝑖, 𝑗 ≡ 𝑃𝑖, 𝑗 (𝜗) = 𝑥 (𝑖) (𝜗) 𝑥 ( 𝑗) (𝜗) + 𝑦 (𝑖) (𝜗) 𝑦 ( 𝑗) (𝜗)

𝑀 𝑖, 𝑗 ≡ 𝑀 𝑖, 𝑗 (𝜗) = 𝑥 (𝑖) (𝜗) 𝑦 ( 𝑗) (𝜗) − 𝑦 (𝑖) (𝜗) 𝑥 ( 𝑗) (𝜗) , 𝑖, 𝑗 = 1, 2.

Here 𝑥 (𝑠) (𝜗) and 𝑦 (𝑠) (𝜗) are the derivatives of order 𝑠 of the functions 𝑥 (𝜗) and 𝑦 (𝜗),

respectively. Thus, employment of the expression in equation (2.24) requires computation of

only the first three derivatives of the arc length function [ (𝜗).

The dual series equations are now formed by the Fourier expansion of the terms in equations

(2.13) and (2.20), which are defined on two disjoint intervals of the variable 𝜗 : [−𝜗0, 𝜗0]

and [−𝜋,−𝜗0) ∪ (𝜗0, 𝜋], respectively. Thus after expansion of the unknown function 𝑧 (𝜏) in

the Fourier series

𝑧 (𝜏) =
∞∑︁

𝑛=−∞
b𝑛𝑒

𝑖𝑛𝜏, (2.25)

we immediately obtain one of the equations using (2.13)

∞∑︁
𝑛=−∞

b𝑛𝑒
𝑖𝑛𝜏 = 0, 𝜏 ∈ [−𝜋,−𝜗0) ∪ (𝜗0, 𝜋] . (2.26)

Obtaining the companion series equation defined on the complementary interval of the vari-

able 𝜗 ∈ [−𝜗0, 𝜗0] is not as straightforward. It requires transformation of the integral-differential

equation (2.20). The singular behaviour of the function 𝐾𝑠 (𝜗, 𝜏) is the same as for the cor-

responding kernel function arising in the Dirichlet problem ([52]) since its singularity is of

logarithmic type. It means that the Fourier coefficients of the function 𝐾𝑠 (𝜗, 𝜏) can be found
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numerically with the use of the Fast Fourier Transform (FFT), as was done in [52]:

𝐾𝑠 (𝜗, 𝜏) =
∞∑︁

𝑚=−∞

∞∑︁
𝑛=−∞

^
(𝑠)
𝑚𝑛𝑒

𝑖(𝑚𝜗+𝑛𝜏) , 𝜗, 𝜏 ∈ [−𝜋, 𝜋] . (2.27)

Once the coefficients ^ (𝑠)𝑚𝑛 are found, one can compute the Fourier coefficients ^𝑚𝑛 of the kernel

𝐾 (𝜗, 𝜏):

𝐾 (𝜗, 𝜏) =
∞∑︁

𝑚=−∞

∞∑︁
𝑛=−∞

^𝑚𝑛𝑒
𝑖(𝑚𝜗+𝑛𝜏) , 𝜗, 𝜏 ∈ [−𝜋, 𝜋] . (2.28)

Since the functions𝐾 (𝜗, 𝜏) and𝐾𝑠 (𝜗, 𝜏) are related by equation (2.18) and the function 𝐿 (𝜗, 𝜏)

has the expansion in Fourier series

𝐿 (𝜗, 𝜏) = 1
2
[𝑘𝑙 (𝜗)] · [𝑘𝑙 (𝜏)] log

����2 sin 𝜗 − 𝜏2 ���� = ∞∑︁
𝑚=−∞

∞∑︁
𝑛=−∞

𝐿𝑚𝑛𝑒
𝑖(𝑚𝜗+𝑛𝜏) , 𝜗, 𝜏 ∈ [−𝜋, 𝜋] ,

(2.29)

then ^𝑚𝑛 = ^ (𝑠)𝑚𝑛 − 𝐿𝑚𝑛. To find 𝐿𝑚𝑛, we use the well-known expansion

log
����2 sin 𝜗 − 𝜏2 ���� = ∞∑︁

𝑛=−∞
𝑛≠0

1
|𝑛| 𝑒

𝑖𝑛(𝜗−𝜏) . (2.30)

The right-hand side 𝐹 (𝜗) of equation (2.20) is expanded into the Fourier series numerically:

1
𝜋
𝐹 (𝜗) = −2𝑙 (𝜗) 𝜕𝑈

0 (𝑞 (𝜗))
𝜕𝑛𝑞(𝜗)

=

∞∑︁
𝑛=−∞

𝑓𝑛𝑒
𝑖𝑛𝜗. (2.31)

Using the Fourier series expansions above and the orthogonal property of the set of the functions{
𝑒𝑖𝑛𝜗

}∞
𝑛=−∞ on the complete interval 𝜗 ∈ [−𝜋, 𝜋], equation (2.20) is transformed into the series

equation:

∞∑︁
𝑛=−∞

{
|𝑛| b𝑛 + 2

∞∑︁
𝑚=−∞

^𝑛,−𝑚b𝑚

}
𝑒𝑖𝑛𝜗 =

∞∑︁
𝑛=−∞

𝑓𝑛𝑒
𝑖𝑛𝜗, 𝜗 ∈ [−𝜗0, 𝜗0] . (2.32)

Thus, the dual series equations take the form

∞∑︁
𝑛=−∞

{
|𝑛| b𝑛 + 2

∞∑︁
𝑚=−∞

^𝑛,−𝑚b𝑚

}
𝑒𝑖𝑛𝜗 =

∞∑︁
𝑛=−∞

𝑓𝑛𝑒
𝑖𝑛𝜗, 𝜗 ∈ [−𝜗0, 𝜗0] ,

∞∑︁
𝑛=−∞

b𝑛𝑒
𝑖𝑛𝜗 = 0, 𝜗 ∈ [−𝜋,−𝜗0) ∪ (𝜗0, 𝜋] .

(2.33)
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The customary way of solving equations (2.33) is to utilise the mathematical apparatus of

the theory of analytical functions so that equations (2.33) are treated as a Riemann-Hilbert

boundary value problem. This approach has been successfully applied in solving diverse

problems of 2D wave diffraction and wave propagation ([41]). In this thesis, we give preference

to an equivalent approach which transforms equations (2.33) to a pair of coupled dual series

equations with trigonometric functions. Our purpose is to re-cast the form of the dual series

equations to be solved so that themethods of [42] may be employed. This uses the same approach

of conversion to trigonometric form as employed in [43]. First, we separate sums as follows.

Writing
∞∑︁

𝑛=−∞
𝑏𝑛 = 𝑏0 +

∞∑︁
𝑛=1
(𝑏𝑛 + 𝑏−𝑛),

and using the well known identities

𝑒𝑖𝑛\ = cos 𝑛\ + 𝑖 sin 𝑛\,

𝑒−𝑖𝑛\ = cos 𝑛\ − 𝑖 sin 𝑛\,

we decouple (2.33) into a pair of dual series equations with trigonometric kernels;

∞∑︁
𝑛=1

𝑛𝑥𝑛 cos 𝑛𝜗 +
∞∑︁
𝑛=1

{ ∞∑︁
𝑚=1

(
1
2
K (+,+)0,𝑚 + K

(+,+)
𝑛,𝑚

)
𝑥𝑚

}
cos 𝑛𝜗

+
∞∑︁
𝑛=1

{ ∞∑︁
𝑚=1

(
1
2
K (−,−)0,𝑚 + K (−,−)𝑛,𝑚

)
𝑦𝑚

}
cos 𝑛𝜗

= 𝐹 (𝜗) b0 + 𝑓0 +
∞∑︁
𝑛=1

𝑓
(+)
𝑛 cos 𝑛𝜗, 𝜗 ∈ [0, 𝜗0] , (2.34)

∞∑︁
𝑛=1

𝑥𝑛 cos 𝑛𝜗 = −b0, 𝜗 ∈ (𝜗0, 𝜋] , (2.35)
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and

∞∑︁
𝑛=1

𝑛𝑦𝑛 sin 𝑛𝜗 +
∞∑︁
𝑛=1

∞∑︁
𝑚=1
K (+,−)𝑛,𝑚 𝑦𝑚 sin 𝑛𝜗

+
∞∑︁
𝑛=1

∞∑︁
𝑚=1
K (−,+)𝑛,𝑚 𝑥𝑚 sin 𝑛𝜗

= 𝐺 (𝜗) b0 +
∞∑︁
𝑛=1

𝑓
(−)
𝑛 sin 𝑛𝜗, 𝜗 ∈ [0, 𝜗0] (2.36)

∞∑︁
𝑛=1

𝑦𝑛 sin 𝑛𝜗 = 0, 𝜗 ∈ (𝜗0, 𝜋] (2.37)

where

𝑥𝑛 = b𝑛 + b−𝑛, 𝑦𝑛 = b𝑛 − b−𝑛, 𝑓
(±)
𝑛 = 𝑓𝑛 ± 𝑓−𝑛, (2.38)

and
K (+,+)𝑛,𝑚 =

(
^𝑛,−𝑚 + ^−𝑛,𝑚

)
+

(
^𝑛,𝑚 + ^−𝑛,−𝑚

)
,

K (−,−)𝑛,𝑚 =
(
^𝑛,−𝑚 − ^−𝑛,𝑚

)
−

(
^𝑛,𝑚 − ^−𝑛,−𝑚

)
,

K (+,−)𝑛,𝑚 =
(
^𝑛,−𝑚 − ^−𝑛,𝑚

)
+

(
^𝑛,𝑚 − ^−𝑛,−𝑚

)
,

K (−,+)𝑛,𝑚 =
(
^𝑛,−𝑚 + ^−𝑛,𝑚

)
−

(
^𝑛,𝑚 + ^−𝑛,−𝑚

)
,

K (+,+)0,𝑚 = 2
(
^0,−𝑚 + ^0,𝑚

)
,

K (−,−)0,𝑚 = 2
(
^0,−𝑚 − ^0,𝑚

)
,

K (+,−)
𝑛,0 = 2

(
^𝑛,0 − ^−𝑛,0

)
,

𝐹 (𝜗) = −2
(
^00 +

∞∑︁
𝑛=1

^𝑛,0 cos 𝑛𝜗

)
,

𝐺 (𝜗) = −
∞∑︁
𝑛=1
K (+,−)
𝑛,0 sin 𝑛𝜗.

(2.39)

The edge condition (2.5) defines the solution class for the infinite sequences of the unknown

coefficients {𝑥𝑛}∞𝑛=0 ∈ 𝑙2 (1) and {𝑦𝑛}
∞
𝑛=1 ∈ 𝑙2 (1), where by 𝑙2 (`) we denote the space of

sequences {𝑧𝑛}∞𝑛=0 satisfying the condition
∞∑︁
𝑛=0

𝑛` |𝑧𝑛 |2 < ∞.

Various solution methods of dual series equations are well developed and their detailed

review can be found in [42] where in addition to the existing approaches, a new mathematically

justified method is presented. In this method, the initial dual series equations with trigonometric

kernels are converted into dual series equations with Jacobi polynomials 𝑃𝛼,𝛽 (cos 𝜗) as kernels.

This conversion is based on the well-known relations between trigonometric functions and
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Jacobi polynomials below:

cos 𝑛𝜗 =
√
𝜋
Γ (𝑛 + 1)

Γ

(
𝑛 + 12

) 𝑃(− 12 ,− 12 )𝑛 (cos 𝜗); sin 𝑛𝜗 =

√
𝜋

2
Γ (𝑛 + 1)

Γ

(
𝑛 + 12

) sin 𝜗𝑃( 12 , 12 )
𝑛−1 (cos 𝜗). (2.40)

Using relations in equation (2.40) one can transform the dual series equations in (2.34)-(2.37)

to the equivalent dual series equations with Jacobi polynomials 𝑃(−
1
2 ,
1
2 )

𝑛 (𝑢) and 𝑃(
1
2 ,
1
2 )

𝑛−1 (𝑢), as

follows:



∑∞
𝑛=1 𝑥𝑛

Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
(− 12 ,− 12 )
𝑛 (𝑢) = − 1√

𝜋
b0, 𝑢 ∈ (−1, 𝑢0)∑∞

𝑛=1 𝑛𝑥𝑛
Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
(− 12 ,− 12 )
𝑛 (𝑢) +∑∞

𝑛=1

{∑∞
𝑚=1

(
1
2K
(+,+)
0,𝑚 + K

(+,+)
𝑛,𝑚

)
𝑥𝑚

}
Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
(− 12 ,− 12 )
𝑛 (𝑢)

+∑∞𝑛=1 {∑∞𝑚=1 (
1
2K
(−,−)
0,𝑚 + K (−,−)𝑛,𝑚

)
𝑦𝑚

}
Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
(− 12 ,− 12 )
𝑛 (𝑢) = 1√

𝜋
( 𝑓0 − 2^00b0)

−2b0
∑∞
𝑛=1 ^𝑛,0

Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
(− 12 ,− 12 )
𝑛 (𝑢) +∑∞

𝑛=1 𝑓
(+)
𝑛

Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
(− 12 ,− 12 )
𝑛 (𝑢) , 𝑢 ∈ [𝑢0, 1]

(2.41)

∑∞
𝑛=1 𝑦𝑛

Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
( 12 , 12 )
𝑛−1 (𝑢) = 0, 𝑢 ∈ (−1, 𝑢0)∑∞

𝑛=1 𝑛𝑦𝑛
Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
( 12 , 12 )
𝑛−1 (𝑢) +

∑∞
𝑛=1

∑∞
𝑚=1

(
K (+,−)𝑛,𝑚 𝑦𝑚 + K (−,+)𝑛,𝑚 𝑥𝑚

)
Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
( 12 , 12 )
𝑛−1 (𝑢)

= −b0
∑∞
𝑛=1

Γ(𝑛+1)
Γ(𝑛+ 12 )

K (+,−)
𝑛,0 𝑃

( 12 , 12 )
𝑛−1 (𝑢) +

∑∞
𝑛=1 𝑓

(−)
𝑛

Γ(𝑛+1)
Γ(𝑛+ 12 )

𝑃
( 12 , 12 )
𝑛−1 (𝑢) , 𝑢 ∈ [𝑢0, 1]

(2.42)

The method for solving equations of type (2.41) and (2.42) is given in [42]. The key idea

of the solution process is the transformation of the dual series equations into a single unique

piece-wise continuous function defined on the complete interval of variation of the variable

𝑢 ∈ [−1, 1]. The transformation employs the Abel’s integral transform, which is a special

case of an operator of fractional integration and differentiation. Following [42], we arrive at

the transformed equations in the form:

𝐹 (𝑢) =


𝐹1 (𝑢) , 𝑢 ∈ (−1, 𝑢0) ,

𝐹2 (𝑢) , 𝑢 ∈ (𝑢0, 1) .
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Explicitly, we obtain

(1 − 𝑢)
∞∑︁
𝑛=1

1
𝑛
𝑥𝑛�̂�

(1,0)
𝑛−1 (𝑢) =



2b0, 𝑢 ∈ [−1, 𝑢0) ,

− (1 − 𝑢)∑∞𝑛=1 {∑∞𝑚=1 (
1
2K
(+,+)
0,𝑚 + K

(+,+)
𝑛,𝑚

)
𝑥𝑚

}
1√
𝑛𝑚

1
𝑛
�̂�
(1,0)
𝑛−1 (𝑢)

− (1 − 𝑢)∑∞𝑛=1 {∑∞𝑚=1 (
1
2K
(−,−)
0,𝑚 K

(−,−)
𝑛,𝑚

)
�̂�𝑚

}
1√
𝑛𝑚

1
𝑛
�̂�
(1,0)
𝑛−1 (𝑢)

−2 ( 𝑓0 − 2^00b0) log 1+𝑢2 − 2b0 (1 − 𝑢)
∑∞
𝑛=1 ˆ̂𝑛,0

1
𝑛2
�̂�
(1,0)
𝑛−1 (𝑢)

+ (1 − 𝑢)∑∞𝑛=1 𝑓 (+)𝑛
1
𝑛2
�̂�
(1,0)
𝑛−1 (𝑢), 𝑢 ∈ [𝑢0, 1] .

(2.43)

∞∑︁
𝑛=1

�̂�𝑛�̂�
(1,0)
𝑛−1 (𝑢) =


0, 𝑢 ∈ [−1, 𝑢0)

−∑∞
𝑛=1

∑∞
𝑚=1

(
K̂ (+,−)𝑛,𝑚 �̂�𝑚 + K̂ (−,+)𝑛,𝑚 𝑥𝑚

)
�̂�
(1,0)
𝑛−1 (𝑢)

−b0
∑∞
𝑛=1 K̂

(+,−)
𝑛,0 �̂�

(1,0)
𝑛−1 (𝑢) +

∑∞
𝑛=1 𝑓

(−)
𝑛 �̂�

(1,0)
𝑛−1 (𝑢) , 𝑢 ∈ [𝑢0, 1]

(2.44)

where {
𝑥𝑛, �̂�𝑛, 𝑓

(+)
𝑛 , 𝑓

(−)
𝑛

}
=
√
2𝑛

{
𝑥𝑛, 𝑦𝑛, 𝑓

(+)
𝑛 , 𝑓

(−)
𝑛

}
,{

K̂ (+,−)𝑛,𝑚 , K̂ (−,+)𝑛,𝑚

}
=
1
√
𝑛𝑚

{
K (+,−)𝑛,𝑚 ,K (−,+)𝑛,𝑚

}
,{

K̂ (+,−)
𝑛,0

}
=

√︂
2
𝑛

{
K (+,−)
𝑛,0

}
,

(2.45)

and �̂�(1,0)
𝑛−1 (𝑢) =

𝑃
(1,0)
𝑛−1 (𝑢)𝑃(1,0)
𝑛−1 (𝑢)

 =

√︂
𝑛

2
𝑃
(1,0)
𝑛−1 (𝑢) are the normalised Jacobi polynomials which form

a complete orthogonal system on the interval [−1, 1] with respect to the weighting function

(1 − 𝑢):
1∫

−1

(1 − 𝑢) �̂�(1,0)
𝑛−1 (𝑢) �̂�

(1,0)
𝑠−1 (𝑢) 𝑑𝑢 = 𝛿𝑛𝑠 =


1, 𝑛 = 𝑠,

0, 𝑛 ≠ 𝑠.
(2.46)

It should be noted that to obtain equations (2.43) both equations in (2.41) have been integrated

using Rodrigues’ formula

−2𝑛 (1 − 𝑧)𝛼 (1 + 𝑧)𝛽 𝑃(𝛼,𝛽)𝑛 (𝑧) = 𝑑

𝑑𝑧

{
(1 − 𝑧)𝛼+1 (1 + 𝑧)𝛽+1 𝑃(𝛼+1,𝛽+1)

𝑛−1 (𝑧)
}

where we set 𝛼 = 𝛽 = −1
2
. This integration is a necessary step since direct enforcement of

the Abel’s integral transform on equations (2.41) is not feasible due to the restriction imposed

on values 𝛼 and 𝛽 (for details, see [42]).
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Using notations (2.45), we transform equations (2.43) and (2.44) to the following coupled

infinite systems of linear algebraic equations of the second kind:

𝑥𝑠 = 2b0R (𝑢0) (1 + 𝑢0) �̂�(0,1)𝑠−1 (𝑢0) −
∞∑︁
𝑛=1

{ ∞∑︁
𝑚=1

(
1
2
K (+,+)0,𝑚 + K

(+,+)
𝑛,𝑚

)
𝑥𝑚

}
1
√
𝑛𝑚

𝑠

𝑛
�̂�
(1,0)
𝑠−1,𝑛−1 (𝑢0)

+2 𝑓0
{
(1 + 𝑢0) log

1 + 𝑢0
2

�̂�
(0,1)
𝑠−1 (𝑢0) +

1 − 𝑢0
𝑠

�̂�
(0,1)
𝑠−1 (𝑢0)

}
−4^00b0

1 − 𝑢0
𝑠

�̂�
(0,1)
𝑠−1 (𝑢0) − (1 − 𝑢0) (1 + 𝑢0) �̂�

(0,1)
𝑠−1 (𝑢0)

∞∑︁
𝑛=1

𝑓
(+)
𝑛

1
𝑛2
�̂�
(1,0)
𝑛−1 (𝑢0)

+
∞∑︁
𝑛=1

𝑓
(+)
𝑛

1
𝑛
�̂�
(0,1)
𝑠−1,𝑛−1 (𝑢0) − 2b0

∞∑︁
𝑛=1
ˆ̂𝑛,0
1
𝑛
�̂�
(0,1)
𝑠−1,𝑛−1 (𝑢0)

(2.47)

where

R (𝑢0) = 1 − 2^00 log
1 + 𝑢0
2
+ (1 − 𝑢0)

∞∑︁
𝑛=1
ˆ̂𝑛,0
1
𝑛2
�̂�
(1,0)
𝑛−1 (𝑢0), (2.48)

and

�̂�𝑠 +
∞∑︁
𝑛=1

∞∑︁
𝑚=1

(
K̂ (+,−)𝑛,𝑚 �̂�𝑚 + K̂ (−,+)𝑛,𝑚 𝑥𝑚

)
�̂�
(1,0)
𝑠−1,𝑛−1 (𝑢0) =

− b0
∞∑︁
𝑛=1
K̂ (+,−)
𝑛,0 �̂�

(1,0)
𝑠−1,𝑛−1 (𝑢0) +

∞∑︁
𝑛=1

𝑓
(−)
𝑛 �̂�

(1,0)
𝑠−1,𝑛−1 (𝑢0). (2.49)

In equation (2.47), the notation �̂� (𝛼,𝛽)
𝑘 𝑝
(𝑢0) stands for the incomplete scalar product of Jacobi

polynomials �̂�(𝛼,𝛽)
𝑘
(𝑢) and �̂�(𝛼,𝛽)𝑝 (𝑢), defined as

�̂�
(𝛼,𝛽)
𝑘 𝑝
(𝑢0) =

1∫
𝑢0

(1 − 𝑢)𝛼 (1 + 𝑢)𝛽�̂�(𝛼,𝛽)
𝑘
(𝑢) �̂�(𝛼,𝛽)𝑝 (𝑢) 𝑑𝑢. (2.50)

It can be seen from equation (2.47) that for an arbitrary value b0 the infinite set of coefficients

{𝑥𝑠}∞𝑠=1 does not necessarily belong to the solution class 𝑙2 (0) ≡ 𝑙2, which is defined by condition

(2.5). The following relations can be used to clarify this assertion:

�̂�
(1,0)
𝑠−1,𝑛−1 (𝑢0) = − (1 − 𝑢0)

1
𝑠
�̂�
(0,1)
𝑠−1 (𝑢0) �̂�

(1,0)
𝑛−1 (𝑢0) +

𝑛

𝑠
�̂�
(0,1)
𝑠−1,𝑛−1 (𝑢0) (2.51)

In fact, �̂� (1,0)
𝑠−1,𝑛−1 (𝑢0) = 𝑂

(
𝑠−1

)
, as 𝑠→ ∞. Hence, 𝑠�̂� (1,0)

𝑠−1,𝑛−1 (𝑢0) = 𝑂 (1) , 𝑠→ ∞. It implies

that 𝑥𝑠 = 𝑂 (1) as 𝑠→∞. The proper choice of b0 ensuring the required solution class is based
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on the well-known correlation between smoothness of the function and the asymptotic behaviour

of its Fourier coefficients. Therefore, the constant b0 is defined by requiring the continuity of

the function 𝐹 (𝑢) at the point 𝑢 = 𝑢0. From equation (2.43):

b0 = −
1 − 𝑢0
2R (𝑢0)

∞∑︁
𝑛=1

{ ∞∑︁
𝑚=1

(
1
2
K (+,+)0,𝑚 + K

(+,+)
𝑛,𝑚

)
𝑥𝑚

}
1
√
𝑛𝑚

1
𝑛
�̂�
(1,0)
𝑛−1 (𝑢0)

− 1 − 𝑢0
2R (𝑢0)

∞∑︁
𝑛=1

{ ∞∑︁
𝑚=1

(
1
2
K (−,−)0,𝑚 + K (−,−)𝑛,𝑚

)
�̂�𝑚

}
1
√
𝑛𝑚

1
𝑛
�̂�
(1,0)
𝑛−1 (𝑢0)

− 𝑓0
R (𝑢0)

log
1 + 𝑢0
2
+ 1 − 𝑢0
2R (𝑢0)

∞∑︁
𝑛=1

𝑓
(+)
𝑛

1
𝑛2
�̂�
(1,0)
𝑛−1 (𝑢0),

(2.52)

Substituting relation (2.52) into (2.45) leads to the correct asymptotic (𝑠→∞) behaviour

𝑂 (𝑠−1) for coefficients {𝑥𝑠}∞𝑠=1.

𝑥𝑠 = −
∞∑︁
𝑛=1

{ ∞∑︁
𝑚=1

(
1
2
K (+,+)0,𝑚 + K

(+,+)
𝑛,𝑚

)
𝑥𝑚

}
1
√
𝑛𝑚

�̂�
(0,1)
𝑠−1,𝑛−1 (𝑢0)

−
∞∑︁
𝑛=1

{ ∞∑︁
𝑚=1

(
1
2
K (−,−)0,𝑚 + K (−,−)𝑛,𝑚

)
�̂�𝑚

}
1
√
𝑛𝑚

�̂�
(0,1)
𝑠−1,𝑛−1 (𝑢0)

+2 𝑓0
1 − 𝑢0
𝑠

�̂�
(0,1)
𝑠−1 (𝑢0) − 4^00b0

1 − 𝑢0
𝑠

�̂�
(0,1)
𝑠−1 (𝑢0)

+
∞∑︁
𝑛=1

𝑓
(+)
𝑛

1
𝑛
�̂�
(0,1)
𝑠−1,𝑛−1 (𝑢0) − 2b0

∞∑︁
𝑛=1
ˆ̂𝑛,0
1
𝑛
�̂�
(0,1)
𝑠−1,𝑛−1 (𝑢0)

(2.53)

The coefficients {𝑥𝑠}∞𝑠=1 in equation (2.53) now belong to the functional class of square

summable sequences:{𝑥𝑠}∞𝑠=1 ∈ 𝑙2. Keeping in mind equation (2.43), where the coefficients

{𝑥𝑠}∞𝑠=1 are replaced by {𝑥𝑠}
∞
𝑠=1, we may assert that the solution for {𝑥𝑠}

∞
𝑠=1 satisfies (2.5), and it

can be shown that {𝑥𝑠}∞𝑠=1 ∈ 𝑙2 (1), which provides the asymptotic behaviour 𝑥𝑠 = 𝑂
(
𝑠−
3
2

)
, 𝑠→

∞. In the coupled equations (2.53) and (2.49), we keep the constant b0 as amultiplier before terms

which possess asymptotic behaviour 𝑂
(
𝑠−1

)
, 𝑠→∞. It is possible to eliminate the constant b0

completely, but it will lead to bulky expressions for the matrix elements in (2.49) and (2.53).

Thus, the discussed problem is reduced to the solution of coupled infinite systems of linear

algebraic equations of the second kind (2.49) and (2.53), with the constant b0 defined by (2.52).
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2.2.1 Complex Frequencies and Spectral Theory of Open Cavities

We stated in the introduction that from a physical point of view the presence of a slit leads to

the leakage of acoustic (or electromagnetic) energy through the slit to external space, i.e. leads to

dissipation of energy from the interior of a cylinder, and hence to the radiation losses. Therefore

the spectrum of real eigenvalues, which is characteristic for a closed cylinder, is replaced by

a spectrum of complex eigenvalues. From the point of view of the classic 𝐿2 spectral theory this

means discrete eigenvalues are replaced with a continuous spectrum of the real positive axis of

frequencies. A rigorous treatment of the propagation and diffraction of waves having complex

frequencies has been studied in [39, 56, 57].

The principles of the general theory of waves with complex wavenumbers require an outer

domain in the vicinity of infinityΩ∞ , where the Svechnikov-Reihardt partial radiation condition

is used. The Riemann surface 𝑆𝑅 of analytical continuation of the function 𝐻10 (𝑧) is a natural

choice. It is similar to 𝑙𝑛(𝑧) with a cut along the real negative semi-axis, where 𝑧 contains

complex values. Let us use the following notations to express the domains:

𝐷0 = 𝐶 [0,∞), 𝐷 (+) =
{
𝑧 ∈ 𝐷0 : 𝐼𝑚 > 0

}
, 𝐷 (−) =

{
𝑧 ∈ 𝐷0 : 𝐼𝑚 < 0

}
(2.54)

here 𝐷0 denotes “physical” sheet of 𝑆𝑅 and its open upper and lower half-planes 𝐷 (+) and

𝐷 (−) . The Svechnikov-Reihardt partial radiation condition provides point-wise restriction on

the scattered field 𝑢𝑠 (𝑞) for every point 𝑞 ∈ Ω∞ while the Sommerfeld radiation condition

restricts the asymptotic behaviour of 𝑢𝑠 (𝑞) for 𝑞 →∞.

It is shown in [56] that this additional restriction is necessary and sufficient to prove the

correctness of our method using the Green’s function in an open domain for every wavenumber

𝑘 ∈ 𝑆𝑅, and the following statements can be made:

• There is a one to one correspondence between solutions ofNeumannBVP and the solutions

of equation (2.49) for any fixed value of 𝑘 ∈ 𝐷0.

• The set of 𝜎 = 𝑘1, 𝑘2, 𝑘3, ...𝑘 𝑗 , .... ⊂ 𝐷0 of eigenvalues of the Neumann BVP is a

countable subset in 𝐷 (−) = 𝐷 (−)
⋃(0,∞) for non-trivial solutions.

• The standard Green function 𝐺 (𝑘𝑅) of the Neumann BVP is analytical for 𝑘 ∈ 𝐷 (+) and

has analytical continuation for 𝑘 ∈ 𝐷 (−) .

• The operator function 𝐴(𝑘) = (𝐼 + 𝐻) (𝑘) is an analytical matrix-operator function in 𝑙2
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and it is invertible in 𝐷 (+) . The inverse operator 𝐴−1(𝑘) is meromorphic operator function

in 𝑙2 for 𝑘 ∈ 𝐷 (−) .

• The characteristic values of 𝐴(𝑘) correspond to the eigenvalues of Neumann BVP for real

and complex values of 𝑘 .

2.3 Aspects of Numerical Implementation of the Solution

In operator form, the solution obtained in the previous section can be represented as


(𝐼 + 𝐻11) 𝑥 + 𝐻12 �̂� = 𝑏1

𝐻21𝑥 + (𝐼 + 𝐻22) �̂� = 𝑏2,

(2.55)

where { 𝑥, �̂�} ∈ 𝑙2 are infinite sequences of the Fourier coefficients to be found, 𝐼 is the iden-

tity operator, 𝐻𝑖 𝑗 (𝑖, 𝑗 = 1, 2) are completely continuous (compact) matrix operators in 𝑙2, and

{𝑏1, 𝑏2} are known right-hand sides, also belonging in the functional class 𝑙2. Properties of

such types of equations which arise as result of the MAR, are well-studied (see, for example

the review [58]). They are efficiently solved by a truncation method which is characterised

by a fast convergence rate. Computation of the matrix elements mostly requires the usage of

recurrence formulas and the Fast Fourier Transform (FFT) which makes filling the matrix a fast

and efficient procedure.

2.3.1 Object Oriented Programming for the Solution Using MATLAB

The codes to run numerical simulation are developed in MATLAB using Object Oriented

Programming (OOP) principles. It is important to note that an “object” does not necessarily

refer to scatterers which will be investigated, rather to parts of the codes that are described

as a “class”. Examples of classes are as follows; Incident Field, Scatterer (Physical Object),

Solver (a class that sets up the algebraic system and solves the resulting matrix), Scattering (a

class to calculate scattered field) etc. This approach has been found to be beneficial as it allows

for properties to be modified without changing the rest of the numerical implementation. For

example once a system is set up for calculation of the complex eigenvalues for a rectangle, we can

repeat the calculation by changing its slot width, wavenumber or the type/direction of incident
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field without changing any code. The numerical implementation can be briefly described as

follows;

1. Define the scatterer.

A scatter is realised using tgeometry class inMatlab. For each physical object a number of

parameters will be passed on to a child class of tgeometry, required to define the boundary

and the opening size in radians. As it can be seen in snippets 2.1 and 2.2, parameters for a

circle are a radius and an opening used in analytical formulation to set up the object while

for a rectangle it will be number of parameters passed in to a numerical interpolation

algorithm explained in the next chapter. The important part here is once the scatterer

object is created, its property of opening can be changed without recreating the object

from the beginning.

Code Snippet 2.1: A circle object.
classdef tcircle < tgeometry

properties
a
theta

end
methods

function self = tcircle(a,theta)
% if the parameters are not passed on assume a unit circle
% without opening

if nargin < 2; theta = 0;
if nargin < 1; a=1;
end

end
% call parent constructor
self = self@tgeometry(theta);
self.a = a;
self.theta=theta;

end
% calculate return parameters
function [x,y,dx,dy,d2x,d2y,d3x,d3y] = geom(self,tgrid)

x = self.a.*cos(tgrid);
y = self.a.*sin(tgrid);
dx = -self.a*sin(tgrid);
dy = self.a*cos(tgrid);
d2x = -self.a*cos(tgrid);
d2y = -self.a*sin(tgrid);
d3x = self.a*sin(tgrid);
d3y = -self.a*cos(tgrid);

end
end % end of methods

end

2. Define incident field.

The incident field class is coded for 3 options and the parameters they take is given below:
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• Planewave incident field: Requires wavenumber 𝑘 and direction along 𝑧 axis

• Point source: Requires wavenumber 𝑘 and location in 𝑥 − 𝑦 coordinates

• Complex point source: Requires wavenumber 𝑘 , location in 𝑥 − 𝑦 coordinates,

parameters 𝑏, 𝛽 (aperture width and orientation angle respectively).

As they are object classes, one or more of the parameters can easily be changed which is

useful in searching a solution for a spectrum of 𝑘 for while keeping all other parameters

fixed. It should also be noted that the incident field can be left empty for modal field

analysis which does not require the right hand side of the equation to be constructed.

Code Snippet 2.2: A rectangle object using interpolation.
classdef trectangle < tgeometry

properties
a % longer side
b % sharter side
w % slot width
h_mol % mollifier ratio

end
methods

function self = trectangle(a,b,w,h_mol)
% if mollifying ratio is not given, set it to 2%
if nargin < 4 ; h=0.02; end
% calculate the opening with respect to total length
screen = a/2+b+(a/2-w/2);
opening = w/2;
tau0 = (opening / (opening + screen))*pi;
% call parent constructor
self = self@tgeometry(tau0);
self.a = a;
self.b = b;
self.w = w;
self.h_mol = h_mol;

end
function [x,y,dx,dy,d2x,d2y,d3x,d3y] = geom(self,tgrid)

% set known points
known_points = [self.a/2,0; self.a/2,self.b/2;

-self.a/2,self.b/2; -self.a/2,-self.b/2;
self.a/2,-self.b/2; self.a/2,0];

% call Interpolation with Sobolev approximation
[A,B]=hermitmollifier(known_points,tgrid,self.h_mol,1);

x = A(1,:);
dx = A(2,:);
d2x = A(3,:);
d3x = A(4,:);
y = B(1,:);
dy = B(2,:);
d2y = B(3,:);
d3y = B(4,:);

end
end % end of methods

end
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3. Define truncation number 𝑁 .

4. Pass scatterer object, incident field (including wavenumber) and system size to solver class

which solves the problem to find the unknown coefficient of surface distribution using the

algorithm:

(a) First, the solver is initialised: passed parameters are assigned to the object

“solverNeumann” in Matlab.

(b) Then setup method is called. As a result, the matrix of the system is calculated/filled

following below steps:

• Initial parametrization of the scatterer which returns 𝑥, 𝑦, 𝜕𝑥, 𝜕𝑦, 𝜕2𝑥, 𝜕2𝑦 and

𝜕3𝑥, 𝜕3𝑦.

• Then a mesh grid 𝑅 is created based on the 𝑥 − 𝑦 axes. Using the meshgrid, and

the standard Matlab method besselj, the Green’s function and the coefficients

of 𝐷0 are calculated.

• Next step is the calculation of the coefficients of 𝐾𝑠 which is done in two parts:

first all elements except the diagonal which corresponds to the singularity, then

the diagonal using the analytical expression found.

• Once the coefficients of 𝐾𝑠 is found, they are expanded into their Fourier series.

Combinedwith Fourier transform of the function 𝑙 (\) 𝑙 (𝜏)
2
𝑙𝑜𝑔

(
2𝑠𝑖𝑛

(
(\ − 𝜏)
2

))
this step contributes the vast majority of computation time of the algorithm.

This is due to the need for nested for-loops (see code snippet 2.3) which can

not be vectorized and are very time-consuming operations. This step has

been improved with a C++ implementation (see code snippet 2.4), as a result,

computation time for root finding algorithm with a system size 𝑁 = 1028

dropped from 142 seconds minutes to 48 second, while for a system size

𝑁 = 2048 the change was more significant, from 13.2 minutes to 2.8 minutes.

• Then rescaling sequences are initialised depending on a problem type whether

the boundary is open or closed.

• Calculation of elements of the matrix 𝑄, including incomplete scalar products

of needed order, leads to solution matrix 𝐴 of the system.

(c) After the matrix of the system is defined, “solve” method is called. As a result,
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Fourier coefficients of the unknown surface density distribution are obtained. The

method works in the following way:

• First, the incident field is checked, if it is not provided it means modal field

representation is being solved, which doesn’t require the right hand side. There-

fore, the standard Matlab function 𝑥 = 𝑒𝑖𝑔𝑠(𝐴, 1, 𝑠𝑚) returns the first smallest

magnitude eigenvalues vector of the corresponding solution matrix.

• If an incident field is provided then the right hand side of the problem 𝐵 is

calculated. Then the system is solved using the standard Matlab backslash

operator 𝑥 = 𝐴\𝑏

• Then the back rescaling is performed, to obtain original surface density dis-

tribution depending on the problem type (whether the boundary is open or

closed).

Code Snippet 2.3: Matlab nested loop for arclength.
function [Lsn] = coefFourier_ll_log(k,ll)

N=length(ll);
ll_n=coefFourier1(k*ll);
lambda=zeros(1,N-1); lambda(N/2+1:N-1)=-0.5./(1:N/2-1);
lambda(N/2-1:-1:1) = lambda(N/2+1:N-1);
M = N/2-1; Lsn = zeros(N-1, N-1,’like’, ll_n);
M1 = M+1;
for n = -M:M

c = min(M-n, M);
d = max(-M, -M-n);
for s = -M:M

rmin = max(s-M, d);
rmax = min(s+M, c);
Lsn(s+M1, n+M1) = Lsn(s+M1, n+M1) + ...
sum(ll_n(s-rmin+M1:-1:s-rmax+M1) .* ...
ll_n(n+rmin+M1:n+rmax+M1) .* ...
lambda(rmin+M1:rmax+M1));

end
end
Lsn=0.5*Lsn;

5. Once the surface density distribution is known, we can search for the roots or complex

roots of the system, continue with calculation of scattering characteristics of interest, such

as backscattering cross-section, field distribution, radiation resistance etc.

6. At this stagewe can also check the truncation error, and increase the system size (truncation

number), repeat the procedure until a desired accuracy is obtained.
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Code Snippet 2.4: C++ nested loop for arclength.
#include "mex.h"
#include <iostream>
#include <stdlib.h>
#include <complex>
using namespace std;

/* computational subroutine */
void myMexFunction(const mxArray * lambda,const mxArray * ll_n, mxArray *

↩→ output,
int N)
{

mwSignedIndex n,s,r;
mwSignedIndex M = N/2-1;
mwSignedIndex N1 = N-1;
mwSignedIndex c,d,rmin,rmax;

/* get pointers to the arrays */
mxDouble * lam = mxGetDoubles(lambda);
mxComplexDouble * lln = mxGetComplexDoubles(ll_n);
mxComplexDouble * out = mxGetComplexDoubles(output);

/* perform the nestedloop op */
for(s = -M; s <= M; s++){

c = max(-M,s-M);
d = min(M,s+M);
for(n = -M; n <= M; n++){

rmin=max(-M-n,c);
rmax=min(M-n,d);
for(r= rmin; r<=rmax; r++){

out[N1*(s+M)+(n+M)].real =
out[N1*(s+M)+(n+M)].real + (lln[s-r+M].real * lln[n+r+M].real -

↩→ lln[s-r+M].imag * lln[n+r+M].imag)*lam[r+M];
out[N1*(s+M)+(n+M)].imag =
out[N1*(s+M)+(n+M)].imag + (lln[s-r+M].real * lln[n+r+M].imag +

↩→ lln[s-r+M].imag * lln[n+r+M].real)*lam[r+M];}
}

}
}

/* The gateway routine. */
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{

int N = (int) mxGetScalar(prhs[3]);

/* coppy array and set the output pointer to it */
plhs[0] = mxDuplicateArray(prhs[2]);

/* call the C subroutine */
myMexFunction(prhs[0], prhs[1], plhs[0], N);

return;
}

Critical parts of the solverNuemann class setup and solve functions, as well as auxiliary

functions created for easily accessing parameters such as current, far field are summarized
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below.

Code Snippet 2.5: Setup function in solverNeumann class.
function setup(self)

self.tgrid = 2*pi*(0:self.N-1)/self.N;
self.nk = self.N/2-1;
[self.x,self.y,self.dx,self.dy,self.d2x,self.d2y,self.d3x,self.d3y] =

↩→ self.scatterer.geom(self.tgrid);
self.ll=sqrt(self.dx.^2+self.dy.^2);

% Initialize
R=sqrt((self.x’*ones(1,self.N)-ones(self.N,1)*self.x).^2 +

↩→ (self.y’*ones(1,self.N)-ones(self.N,1)*self.y).^2);
R1=R+eye(self.N);
H01=besselj(0,self.kwave*R1)+1i*bessely(0,self.kwave*R1);
H11=besselj(1,self.kwave*R1)+1i*bessely(1,self.kwave*R1);
U=1./(self.kwave*R1).*H11; V=2*U-H01;
A_=(self.x.’*ones(1,self.N)-ones(self.N,1)*self.x).*

↩→ (ones(self.N,1)*self.dy)-(self.y.’*ones(1,self.N)-
↩→ ones(self.N,1)*self.y).*(ones(self.N,1)*self.dx);

B_=(self.x.’*ones(1,self.N)-ones(self.N,1)*self.x).*
↩→ (self.dy.’*ones(1,self.N))-(self.y.’*ones(1,self.N)-
↩→ ones(self.N,1)*self.y).*(self.dx.’*ones(1,self.N));

C_=(self.dx.’*ones(1,self.N)).*(ones(self.N,1)*self.dx)+
↩→ (self.dy’*ones(1,self.N)).*(ones(self.N,1)*self.dy);

D0=-1i/4*1./((self.ll.’*ones(1,self.N)).*(ones(self.N,1)*self.ll)).*
↩→ (self.kwave^2*U.*C_-self.kwave^4*A_.*B_.*V./((self.kwave*R1).^2));

% Ksmooth without the diagonal
stt=2*(sin(toeplitz(0:self.N-1)*pi/self.N)+eye(self.N));
Ktt=2*pi*(self.ll.’*ones(1,self.N)).*(ones(self.N,1)*self.ll).*D0+

↩→ 1./(stt.^2);
Ksmooth=Ktt-self.kwave^2/2*(self.ll.’*ones(1,self.N)).*

↩→ (ones(self.N,1)*self.ll).*log(abs(stt));

% Diagonal of Ksmooth
P13=self.dx.*self.d3x+self.dy.*self.d3y; P22=self.d2x.^2 +self.d2y.^2;
M12=self.dx.*self.d2y-self.d2x.*self.dy;
diagonalKs=0.5*(self.kwave*self.ll).^2.*log(self.kwave*self.ll*0.5)-

↩→ (self.kwave^2/6*P13-self.kwave^2/4*P22)./((self.kwave*self.ll).^2)
-0.5*(self.kwave^2*M12).^2./((self.kwave*self.ll).^4)-
(self.kwave*self.ll).^2.*(1i*pi/4-0.5*0.57721566490153+0.25)+1/12;

% Ksmooth with the diagonal
Kd=diag(Ksmooth);
Ksmooth=Ksmooth-diag(Kd)+diag(diagonalKs);

% Fourier coefficients of K
Ksmooth_sn=coefFourier2(Ksmooth);
L_sn=coefFourier_ll_log_v3(self.kwave,self.ll);
K_sn=Ksmooth_sn+L_sn;
self.tau=sqrt([self.nk:-1:1,1,1:self.nk]);
Kreg_sn=zeros(self.N-1,self.N-1);
Kreg_sn(:,self.N/2+1:self.N-1)=fliplr(K_sn(:,1:self.N/2-1));
Kreg_sn(:,1:self.N/2-1)=fliplr(K_sn(:,self.N/2+1:self.N-1));
Kreg_sn(:,self.N/2)=K_sn(:,self.N/2);
Kreg_sn=2*Kreg_sn;
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% Scale Close Problem
if self.scatterer.tau0==0

Kreg_sn(self.N/2,self.N/2)=Kreg_sn(self.N/2,self.N/2)-1;
Kreg_sn=(((1./self.tau)’)*(1./self.tau)).*Kreg_sn;
self.A=eye(self.N-1)+Kreg_sn;

% Scale Open Problem
else

self.mig=(-1).^(-self.nk:self.nk);
Kreg_sn=(((self.mig./self.tau)’)*(self.mig./self.tau)).*Kreg_sn;
t0 = cos(self.scatterer.tau0);
self.D=zeros(self.N-1,self.N-1);
self.D(1,1)=sqrt(2)-1;
[self.q10,self.q01,self.p01]=in_sc_pr10(t0,self.nk-1);
self.pn=(1+t0)./(1:self.nk).*self.p01;
self.C=zeros(self.N-1,self.N-1);
self.C(1:self.nk+1,1)=-sqrt(2)*[log((1-t0)/2), self.pn].’;
self.C(1,2:self.nk+1)=-self.pn;
self.C(2:self.nk+1,2:self.nk+1)=self.q10;
self.C(self.nk+2:self.N-1,self.nk+2:self.N-1)=self.q01;

hnp=0.5*(Kreg_sn+fliplr(Kreg_sn)+flipud(Kreg_sn)+rot90(Kreg_sn,2));
hpp=hnp(self.nk+1:self.N-1,self.nk+1:self.N-1);
hpp(1,:)=0.5*hpp(1,:);
Kpp=hpp;

hnp=0.5*(Kreg_sn-fliplr(Kreg_sn)+flipud(Kreg_sn)-rot90(Kreg_sn,2));
hpm=hnp(self.nk+1:self.N-1,self.nk+2:self.N-1);
hpm(1,:)=0.5*hpm(1,:);
Kpm=hpm;

hnp=0.5*(Kreg_sn+fliplr(Kreg_sn)-flipud(Kreg_sn)-rot90(Kreg_sn,2));
hmp=hnp(self.nk+2:self.N-1,self.nk+1:self.N-1);
Kmp=hmp;

hnp=0.5*(Kreg_sn-fliplr(Kreg_sn)-flipud(Kreg_sn)+rot90(Kreg_sn,2));
hmm=hnp(self.nk+2:self.N-1,self.nk+2:self.N-1);
Kmm=hmm;
Kr=[Kpp,Kpm;Kmp,Kmm];

self.A=eye(self.N-1)+self.D+self.C*Kr;
end

end

Code Snippet 2.6: Solve function in solverNeumann class.
function solve(self)

if isempty(self.A)
error(’Must call setup() first’)

end
if isempty(self.incidentField{1})

% calculate eigenvalues
[self.X,~] = eigs(self.A,1,’sm’);

else
% solve system with incident field
self.B = get_rhs(self);
self.X = self.A\self.B;

end
if self.scatterer.tau0 == 0
% Scale back coefficients for closed problem
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self.X_kappa=self.X./self.tau’;
self.ksi0=self.X_kappa(self.nk+1);
self.ksin=self.X_kappa(self.nk+2:self.N-1);
self.ksi_n=flipud(self.X_kappa(1:self.nk));
self.Ksi = [flip(self.ksi_n);self.ksi0;self.ksin];

else
% Scale back coefficients for open problem
self.ksi0=self.X(1);
self.ksin=0.5*((-1).^(1:self.nk)’).*((self.X(2:self.nk+1)+
self.X(self.nk+2:2*self.nk+1))./sqrt((1:self.nk)’));
self.ksi_n=0.5*((-1).^(1:self.nk)’).*((self.X(2:self.nk+1)-
self.X(self.nk+2:2*self.nk+1))./sqrt((1:self.nk)’));
self.Ksi = [flip(self.ksi_n);self.ksi0;self.ksin];

end
end

Code Snippet 2.7: Current function in solverNeumann class.
function current = get_current(self)

current =self.ksi0+exp(1i*(self.tgrid-pi)’*(1:self.nk))*self.ksin+
↩→ exp(1i*(self.tgrid-pi)’*(-1:-1:-self.nk))*self.ksi_n;

end

Code Snippet 2.8: Far field function in solverNeumann class.
function farfield = getFarField(self,points,index)

if nargin<3 || isempty(index)
index = 1:self.numIncidentField;

end
points = points(:);
farfield = zeros(length(points),self.numIncidentField);
for j = 1:self.numIncidentField

F = exp( -1i * self.kwave * ((self.x.’) * cos(self.tgrid) +
↩→ (self.y.’ * sin(self.tgrid))).*
↩→ (self.dy.’*cos(self.tgrid)-self.dx.’*sin(self.tgrid));

wf = fftshift( fft2(F) / (self.N * self.N));
beta = wf( 2:self.N, 2:self.N);
fullcurr = [flipud(self.ksin(:,j));self.ksi0(:,j);self.ksi_n(:,j)];
fullprod = (fullcurr.’) * beta;
sums = fullprod * exp( 1i * ((-self.nk:1:self.nk).’) * points.’);
tmp = abs(sums);
farfield(:,j) = tmp(:);

end
end

A number of helper functions are also created for fast and easy numerical implementation.

The helper functions are used for calculation of system condition number and determinant,

finding the eigenvalues (roots), complex eigenvalues (complex roots), for evaluation and plotting

field distribution, radiation patterns and radar cross sections.
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Code Snippet 2.9: Calculation of system determinant.
function detA = detNeumann(scatterer,n_tr,kwave)

s_mar = solverNeumann(scatterer,kwave,[],n_tr); % initialising the
↩→ problem

s_mar.setup();
detA = det(s_mar.A);

end

Code Snippet 2.10: Evaluate scattered field.
% Evaluate Scattered Field
function evaluate(self,s_mar)

Usc_v = zeros(1,size(self.XY,2));
XY_masked = self.XY(:,self.mask);
nk = s_mar.N/2-1;
self.J = s_mar.ksi0+exp(1i*(s_mar.tgrid)’*(1:nk))*s_mar.ksin+

↩→ exp(1i*(s_mar.tgrid)’*(-1:-1:-nk))*s_mar.ksi_n;

v = zeros(1,size(XY_masked,2));
ind = self.scatterer.getIndices(s_mar.tgrid);
% normal derivatives to the contour
nx=s_mar.dy./s_mar.ll; ny=s_mar.dx./s_mar.ll;

for i = 1:length(v)
% calculate the distance for each point
R = sqrt((XY_masked(1,i)-s_mar.x).^2 + (XY_masked(2,i)-s_mar.y).^2);
if min(R(ind)) > self.eps_prec

dH = -s_mar.kwave * besselh(1,s_mar.kwave*R) .*
↩→ ((XY_masked(1,i)-s_mar.x).*nx - (XY_masked(2,i)-s_mar.y).*ny
↩→ )*1./R;

U_int = 1i/4*dH.*self.J.’;
v(i) = (trapz(s_mar.tgrid,U_int.’));

elseif min(R(ind)) <= self.eps_prec
U_int = ((s_mar.d2x.*s_mar.dy - s_mar.d2y.*s_mar.dx)).*self.J.’;
v(i) = (trapz(s_mar.tgrid,U_int.’))/(4*pi);

end
% insert values into the return array
Usc_v(:,self.mask) = v;
Usc_v(:,~self.mask) = 0;
self.Usc = reshape(Usc_v,self.ngrid,self.ngrid);
if ~isempty(s_mar.incidentField{1})

Uinc_v = s_mar.incidentField{1}.evaluate(self.XY(1,:)+
↩→ 1i*self.XY(2,:),self.mask);

self.Uinc = reshape(Uinc_v(1,:),self.ngrid,self.ngrid);
end

end
end

Before proceeding to detailed results, we will give a brief summary of the plots used in this

thesis and why they are preferred. First, the calculations of eigenvalues, especially complex

eigenvalues require a very close initial approximation. This is true whether we use Matlab’s

standard root finding algorithm “fsolve” or our root finding algorithm (see Algorithm 1) based on

derivative estimated iterative functions ([59]). We use a log scaled line plot of system condition

number against the wavenumber 𝑘 where the peaks correspond to locations of roots and gives
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us initial approximations (see figure 2.4).

Next, field representation plots are provided as colourmaps using Matlab “surf” plots.

The only exception is the use of contour lines to highlight the effect of necks in Helmholtz

resonators. Matlab “contourf” plots provided more informative visuals where the resonators are

illuminated with an incident field, which are also used for phase plots; these are calculated only

for Helmholtz resonators.

Finally, we have opted for line plots for radiation patterns which can often be presented as

polar plots, as it presents better visuals for comparison of patterns for different parameters.

Wrapping up the the discussion about the numerical code, it must be noted that in a math-

ematical sense, the implementation of the MAR for solving the problem for a slotted arbitrary

rigid cylinder is much more complex than the analogous problem for a sound-soft cylinder (see

[46], [48], and [52]). It is, thus, of interest to start the numerical implementation by evaluating

the convergence rate of the solution for truncated systems as truncation number increases. For

this purpose we may use the duct-like structure, described in [52]. This cavity is characterised

by the following parameterisation involving parameters 𝑎 and 𝑞:

𝑥 (𝜙) = 𝑎 cos 𝜙, 𝑦 (𝜙) = 𝑎
[
tan−1

(
3
2
cos 𝜙

)
+ 𝑞 sin 𝜙

]
, 𝑎 = 1, 0 < 𝑞 < 1,

and the aperture of the duct is defined by the angle 𝜙1.

To measure the convergence rate, we calculate the normalised truncation error 𝑒 (𝑁) as

a function of system size 𝑁 , treated in the maximum 𝑙2-norm sense [60] defined by

𝑒(𝑁𝑖) =
𝒛𝑁𝑖+1 − 𝒛𝑁𝑖

𝒛𝑁𝑖

 , 𝑖 = 1, 2, . . . , (2.56)

where 𝑁𝑖 < 𝑁𝑖+1 are two successive truncation numbers and 𝒛𝑁𝑖+1 is a projection of the solution

vector 𝒛𝑁𝑖+1 on the C𝑁𝑖 space consisting of the first 𝑁𝑖 coordinates.

The geometry of the duct-like structures with parameters 𝜙1 = 30◦ and 𝑞 = 0.3 is shown in

Figure 2.2. We investigate two cavities with parameters 𝜙1 = 5◦ and 𝜙1 = 15◦ excited by plane

wave with incident angle 𝛼 = 0◦. The relative wavenumber 𝑘𝑎 takes three values 𝑘𝑎 = 5, 20, 50.

The dependencies of 𝑒 (𝑁) upon system size 𝑁 are shown in Figures 2.3a and 2.3b, respectively.

It is clear that 𝑒 (𝑁) exhibits fast convergence, which is characteristic of MAR ([61, 62]).

It should be noted that the parameters 𝑘𝑎 = 5, 20, 50 have been chosen somewhat arbitrarily.
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Figure 2.2: Duct-like structure (𝜙1 = 30◦, 𝑞 = 0.3) excited by a plane wave at the incidence
angle 𝛼.

The following question may arise: what happens when the incidence frequency (or parameter

𝑘𝑎) coincides with one of the real parts of the complex eigenvalues from the spectrum of complex

oscillations which may be excited in the considered structure? To answer this question, first we

need to find the complex eigenvalues. How the MAR solution can be used for this purpose was

shown in [54]. Having in hand the solution for the scattering problem given by equations (2.55),

we null their right-hand sides, assuming 𝑏1 = 𝑏2 ≡ 0. Then, we use the well-known result of

linear algebra: non-trivial (non-zero) solutions of the homogeneous linear algebraic equations

exist if and only if the corresponding determinant equals to zero. Thus, the characteristic

(dispersion) equation for finding the complex eigenvalues has the form

det 𝐴𝑁 = 0 (2.57)

where 𝐴𝑁 is the matrix of the truncated joint system of equations (2.55) with truncation number

𝑁 . Consequently, extraction of the complex eigenvalues is reduced to finding the complex roots

of equation (2.57). Finding the complex roots of an arbitrary matrix equation of the type (2.57)

is in general a very challenging task. However, one of the strengths of the method presented

in this thesis is that even for arbitrary domains the approach of [54] is effective, especially

for cavities with moderate to high Q-factors, i.e., cavities in which the imaginary part of the

complex eigenvalue is small compared to the real part, This relies on the fact that the real part of
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Figure 2.3: Truncation error 𝑒 (𝑁) for duct-like cavity, 𝑘𝑎 = 5, 20, 50.

such a complex eigenvalue under investigation is well approximated by the real value at which

condition number ^ (𝐴𝑁 (𝑘𝑎)) of the matrix 𝐴𝑁 has a local maximum.

In Chapter 4, we will examine the peculiarities around complex eigenvalues arising from

mode splitting (for which modes double roots occur). We will demonstrate that the accuracy of

the approach used allows us to investigate without limitations the fine structure of the spectra,

resolve problems of mode competition and separate higher modes, the complex eigenvalues of

which may differ only in the fifth or sixth significant decimal place. Any prescribed accuracy

of calculations is achievable by increasing the truncation number 𝑁 until the desired number of

significant decimal digits is reached in both real and imaginary parts of the complex eigenvalues.

In case of a cavity of non-canonical geometry, it is practically impossible to make prior

predictions of the spectrum composition and location of its individual components. The unique

feature of the matrices generated by the MAR is its capability to cope with this problem and

furthermore to obtain the detailed spectrum map on any frequency interval. Such map (or

spectrum “portrait”) appears as the result of calculating the frequency dependence of condition

number ^ (𝐴𝑁 (𝑘𝑎)) of the matrix 𝐴𝑁 . We illustrate this by finding ^ (𝐴𝑁 (𝑘𝑎)) for the duct-

like structure with parameters 𝑞 = 0.3 and 𝜙1 = 15◦. Let us introduce the following notations

𝛾𝑛 = 𝛾
′
𝑛 − 𝑖𝛾′′𝑛 , 𝑛 = 0, 1, 2, . . . for the real and imaginary parts of complex eigenvalues.
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The corresponding unloaded 𝑄−factor of each complex oscillation is defined by the well-

known formula 𝑄𝑛 =
−𝛾′𝑛
2𝛾′′𝑛
. Intrinsically, the reduction of slot width should lead to a reduced

imaginary part of 𝛾𝑛, and consequently, to an increase in𝑄𝑛 since 𝛾′𝑛 � 𝛾′′𝑛 . Hence, the condition

number ^ (𝐴𝑁 (𝑘𝑎)) becomes highly sensitive to the case when 𝛾′′𝑛 � 1 and |𝑘𝑎 − 𝛾′| = 𝛿 � 1.

Under this condition, the dependence on ^ (𝐴𝑁 (𝑘𝑎)) is expected to exhibit sharp peaks, as

shown in figure 2.4.
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Figure 2.4: Condition number ^ (𝐴𝑁 (𝑘𝑎)) against relative wavenumber 𝑘𝑎 for a duct-like cavity
with the parameters: 𝑞 = 0.3 and 𝜙1 = 50

(
𝑑

2𝑞
≈ 0.097

)
, 𝑁 = 256.

The spectral dependence of condition number ^ (𝐴𝑁 (𝑘𝑎)), 𝑁 = 256 demonstrates the pres-

ence of complex oscillations (modes), which may emerge near the frequencies corresponding

to the peaks of the function ^ (𝐴𝑁 (𝑘𝑎)). In Table 2.1, we have collected the results for se-

lected complex eigenvalues 𝛾0, 𝛾4, 𝛾10 of two duct-like structures characterised by values of

relative slot width
𝑑

2𝑞
≈0.28 (𝜙1 = 15◦) and

𝑑

2𝑞
≈0.097 (𝜙1 = 5◦). The low-frequency oscilla-

tions represent the mode special to Helmholtz resonators where the complex eigenvalues are

𝛾0 = 0.49543092 − 0.01381610 𝑖
(
𝜙1 = 150

)
and 𝛾0 = 0.45737160 − 0.01104749 𝑖

(
𝜙1 = 50

)
.

The tabulated results illustrate rapid convergence as truncation number increases, also as shown

in Figure 2.3. Calculation of the complex eigenvalues starts with an initial approximation using

a truncation number 𝑁 = 64. The calculated value is then used as an initial approximation for

the next step (𝑁 = 128) of the recursive algorithm. This procedure continues until the desired

accuracy is achieved. The number of digits stabilised after each step is highlighted in Table 2.1.
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Table 2.1: Selected complex eigenvalues calculated for increasing truncation numbers for a duct-
like structure. The bold digits indicate convergence to the exact value.

𝛾𝑛 𝑁 𝜗0 = 165◦ 𝜗0 = 175◦

𝛾0

64 0.4952914151 − 0.0649950669i 0.4572203430 − 0.0110384464i
128 0.4954306135 − 0.0138160668i 0.4573713370 − 0.0110474689i
256 0.4954308890 − 0.0138161007i 0.4573715761 − 0.0110474947i
512 0.4954309237 − 0.0138161049i 0.4573716063 − 0.0110474980i
1024 0.4954309280 − 0.0138161054i 0.4573716101 − 0.0110474984i

𝛾4

64 4.8694667580 − 0.0649950669i 4.7667972705 − 0.0298953143i
128 4.8700204157 − 0.0650836917i 4.7673150804 − 0.0299434674i
256 4.8700821262 − 0.0650939449i 4.7673723993 − 0.0299491106i
512 4.8700896905 − 0.0650951954i 4.7673794568 − 0.0299498063i
1024 4.8700906326 − 0.0650953511i 4.7673803347 − 0.0299498927i
2048 4.8700907501 − 0.0650953705i 4.7673804443 − 0.0299499035i

𝛾10

128 9.6912309912 − 0.0002487920i 9.6900803968 − 0.0000028950i
256 9.6925527640 − 0.0002491026i 9.6913999381 − 0.0000024459i
512 9.6927162254 − 0.0002491979i 9.6915631197 − 0.0000024452i
1024 9.6927366025 − 0.0002492107i 9.6915834619 − 0.0000024460i
2048 9.6927391479 − 0.0002492123i 9.6915860030 − 0.0000024461i

Analysis of the spectral dependence ^ (𝐴𝑁 (𝑘𝑎)) in Figure 2.4 reveals two groups of reso-

nances. The first group occupies the interval 0.45 ≤ 𝑘𝑎 ≤ 9while the second is characterised by

𝑘𝑎 > 9. The half-beam width of resonances populating the first group significantly exceeds that

of the second, where one can observe significantly sharper resonance peaks. It indicates different

formation mechanisms of the standing waves in each group. In fact, this phenomenon can be

explained by simple physical arguments. The considered structure can be characterised by an ap-

proximate relative length
𝐿

𝑎
= 2
√
2 and varying relative thickness

𝑡

𝑎
' 0.33 − 0.35. The average

distance between neighbouring peaks of the condition number graph ^ (𝐴𝑁 (𝑘𝑎)) is Δ𝑘𝑎 ≈ 1.1.

Hence, Δ𝑘𝐿 ≈ 1.1 × 2.83 = 3.11 ≈ 𝜋, i.e. Δ𝑘𝐿 ≈_
2
. It simply means that each peak is sepa-

rated from the preceding one by a half-wave distance in the interval 0.45 ≤ 𝑘𝑎 ≤ 9. Considering



2.3 Aspects of Numerical Implementation of the Solution 47

the fact that inside this interval the parameter 𝑘𝑡 is less than 𝜋, i.e., 𝑡 <
_

2
, conditions for stand-

ing waves to emerge in the “transverse” direction do not exist. We arrive at the conclusion:

the maxima of the condition number ^ (𝐴𝑁 (𝑘𝑎)), lying in the interval 0.45 ≤ 𝑘𝑎 ≤ 9 represents

only one-dimensional “longitudinal” acoustic oscillations in the form of standing waves along

the duct of length 𝐿. When parameter 𝑘𝑎 crosses the “threshold” value of 𝑘𝑎 ≈ 9, the trans-

verse size 𝑡 approaches a half-wave length 𝑘𝑡 =
𝑡

𝑎
𝑘𝑎 = (0.33 − 0.35) × 9 ≈ 𝜋. This gives rise

to the emergence of the first lower “transverse” oscillation. Further increase in 𝑘𝑎 generates

the spectrum of higher transverse oscillations. These oscillations dominate the longitudinal

oscillations since the amount of acoustic energy leakage through the slot is significantly smaller

than that for longitudinal oscillations. With further increase in acoustic size (bigger relative

wavenumber 𝑘𝑎), the spectrum complexity increases, reflecting emergence of complex oscilla-

tions containing systems of transverse and longitudinal standing waves. This complication is

accurately described by the spectral dependence of condition number ^ (𝐴𝑁 (𝑘𝑎)).
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Figure 2.5: Truncation error 𝑒 (𝑁) for duct-like cavity at the resonant frequencies
𝑘𝑎 = 𝑅𝑒(𝛾𝑛), 𝑛 = 0, 4, 10.

We complete this subsection by investigating the relative error 𝑒(𝑁) when the parameter 𝑘𝑎

coincides with the real part 𝛾′𝑛 of the complex eigenvalue 𝛾𝑛, i.e. 𝑘𝑎 = 𝑅𝑒(𝛾𝑛). It can be clearly

seen that application of the MAR avoids the well known “numerical catastrophe” encountered

by other methods in the vicinity of resonance. The convergence rate of the complex roots of

the determinant against the truncation number 𝑁 is reflected in Table 2.1. Using this data,
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the relative error 𝑒(𝑁) is presented in Figure 2.5 at the points 𝑘𝑎 = 𝑅𝑒(𝛾𝑛), 𝑛 = 0, 4, 10 for

the structures with parameters 𝑞 = 0.3 , 𝜙1 = 150 and 𝑞 = 0.3 , 𝜙1 = 50. Comparison of the plots

in Figure 2.5a and 2.5b for the same complex eigenvalues 𝑘𝑎 = 𝑅𝑒(𝛾𝑛), 𝑛 = 0, 4, 10 shows

that decreasing the slot width from
𝑑

2𝑞
≈0.28 (𝜙1 = 165◦) to

𝑑

2𝑞
≈0.097 (𝜙1 = 175◦) results in

a smaller system size required to reach to the same values of 𝑒(𝑁).

2.4 Practical Modelling of Arbitrary Surfaces

The assumption about the capability of the developed approach to be applied to the analysis of

arbitrarily shaped cylindrical cavities should be supported by a reliable simulation mechanism

modelling various surfaces without undue limitations. While simple shapes such as circles

and ellipses can be expressed analytically, a generalisation of the superellipse formula ([63])

(superformula) is often used for parametrisation of various canonical shapes (see [64–67]):

𝑟 (𝜙) =
[(����1𝑎 cos 𝑚𝜙4 ����)𝑛2 + (����1𝑏 sin 𝑚𝜙4 ����)𝑛3]− 1𝑛1 , (2.58)

and

𝑥 = 𝑟 (𝜙) cos(𝜙), 𝑦 = 𝑟 (𝜙) sin(𝜙),

where 𝑟 is the radius and 𝜙 is the angle in polar coordinates, 𝑎 and 𝑏 describe the structure size,

𝑚 represents the symmetry of the structure while parameters 𝑛1, 𝑛2, 𝑛3 define sharpness of its

corners.

Although the superellipse formula extends the number of structures that can be investigated,

more complex cross sections are required for special problems. Analytical parametrisation

of those structures and calculation of derivatives up to the third order is a challenging task

in itself, if not impossible. In this thesis we investigate Cubic Spline Interpolation ([68])

which has been successfully applied to the Dirichlet value problems using the MAR (see [69]

and [70]), Piecewise Cubic Hermite Interpolation ([71]) and Sobolev space approximation by

the Friedrich’s mollifier ([72]) for parametrisation of arbitrarily shaped canonical and polygonal

structures with closed and open/slotted boundaries.
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2.4.1 Interpolation Techniques

A number of interpolating functions and spline approximation methods described in litera-

ture are used for representing complex boundaries arising in antenna and waveguide problems

([73–75]).

Let us assume that a set of points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) for 𝑖 = 0, 1, 2, ..., 𝑛 is known. Let 𝑙𝑖 be

the arc length of 𝑝𝑖 from the starting point, with 𝐿 defining the total length of the curve, and

set \𝑖 = −𝜋 + 2𝜋𝐿 𝑙𝑖; then it is possible to map each of those known points 𝑝𝑖 to a set of knots

−𝜋 = \0 < \1 < \2 < ... < \𝑛 = 𝜋.

A cubic spline function is a real-valued function 𝑆(\) : [−𝜋, 𝜋] → R with the following

properties:

• 𝑆(\) is twice continuously differentiable on [−𝜋, 𝜋] :∈ [−𝜋, 𝜋];

• On each subinterval [\𝑖, \𝑖+1] for 𝑖 = 0, 1, 2, ..., 𝑛 − 1, 𝑆(\) is a third degree polynomial;

• For all knots \𝑖 ∈ [−𝜋, 𝜋], 𝑆(\𝑖) = 𝑝𝑖.

Let us define the following notation;

𝑆(\) =



𝑠1(\), \0 ≤ \ < \1

...

𝑠𝑖 (\), \𝑖−1 ≤ \ < \𝑖

...

𝑠𝑛 (\), \𝑛−1 ≤ \ ≤ \𝑛

where

𝑠𝑖 (\) = 𝑎𝑖 (\ − \𝑖)3 + 𝑏𝑖 (\ − \𝑖)2 + 𝑐𝑖 (\ − \𝑖) + 𝑑𝑖 (2.59)

is the cubic on the 𝑖𝑡ℎ interval defined by constants 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖.

During investigation of polygonal cross sections, where ensuring that an applied approach

preserves the structure’s shape is critical, cubic spline interpolation can “over-smooth” the edges

to attain a continuous second derivative. In [76], this problem is described in terms of the trade-

off between interpolation of the data in order to preserve monotonicity, or of monotonicity in

order to preserve interpolation. Monotone piecewise cubic interpolation is suggested in order
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to derive necessary and sufficient conditions for a cubic interpolation function to be monotone

in an interval thus preventing “bumps” and “wiggles” near the connections of curves. We now

declare a second approach known as Piecewise Cubic Hermite Interpolation (PCHIP). Using

the same parametrisation defined above, let −𝜋 = \0 < \1 < \2 < ... < \𝑛 = 𝜋 be the knots

for a given set of points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑖 = 0, 1, 2, ..., 𝑛. It is desired to construct a piece-wise

cubic interpolation function 𝑃(\) such that 𝑃(\𝑖) = 𝑝𝑖 for 𝑖 = 0, 1, 2, ..., 𝑛 on each subinterval

[\𝑖, \𝑖+1] for 𝑖 = 0, 1, 2, ..., 𝑛 − 1. 𝑃(\) can be represented as follows:

𝑃(\) = 𝑝𝑖𝐻1(\) + 𝑝𝑖+1𝐻2(\) + 𝑑𝑖𝐻3(\) + 𝑑𝑖+1𝐻4(\), (2.60)

where

𝑑𝑖 = 𝑝
′(\𝑖) 𝐻1(\) = 𝜙 ((\𝑖 − \)/ℎ𝑖)

𝜙(𝑡) = 3𝑡2 − 2𝑡3 𝐻2(\) = 𝜙 ((\ − \𝑖)/ℎ𝑖)

𝜓(𝑡) = 𝑡3 − 𝑡2 𝐻3(\) = −ℎ𝑖𝜓 ((\𝑖+1 − \)/ℎ𝑖)

ℎ𝑖 = \𝑖+1 − \𝑖 𝐻4(\) = ℎ𝑖𝜓 ((\ − \𝑖)/ℎ𝑖)

and the 𝐻𝑘 (\) are known as the Hermite basis functions.

Figure 2.6 represents two different functions modelled with standard MATLAB libraries

([77]) to compare the behaviour of the two methods above. It can be clearly seen that the choice

of the technique leads to a different level of “shape closeness”.

Figure 2.6: Examples of shape preserving and smoothing interpolation functions.



2.4 Practical Modelling of Arbitrary Surfaces 51

2.4.2 Sobolev Approximation

In this thesis we deal with various polygonal structures and as such PCHIP is preferred for

parametrisation of the bounding contours. Our implementation of the MAR requires second and

third derivatives of the contour defining the scatterer to be continuous but PCHIP only ensures

continuity of the first derivative. Therefore, we need to smooth the function’s sharp edges while

ensuring that the smoothed contour remains close to the original shape. The Friedrich’s mollifier

arising in the Sobolev approximation ([72]) can be used to address this problem. Let us define

the function 𝜓 ∈ 𝐶∞(R) by

𝜓(𝑡) =


𝑐 · 𝑒−

1
1−|𝑡 |2 , |𝑡 | < 1

0, |𝑡 | ≥ 1

where 𝑐 > 0 is chosen so that ∫
R

𝜓 (𝑡) 𝑑𝑡 = 1.

For Y > 0, set

𝜓Y (𝑡) =
1
Y
𝜓

( 𝑡
Y

)
.

The function 𝜓Y is known as Friedrich’s mollifier. For Y > 0, let us use the change of variable

𝑢 =
𝑡

Y
, 𝑑𝑢 = Y𝑑𝑡 to obtain

∫
R

𝜓Y (𝑡)𝑑𝑡 =
1
Y

∫
R

𝜓

( 𝑡
Y

)
𝑑𝑡 =

1
Y

∫
R

𝜓 (𝑢) Y𝑑𝑢 =

∫
R

𝜓 (𝑡) 𝑑𝑡.

If 𝑓 ∈ 𝐿1 then its convolution mollification 𝑓Y on (−∞,∞) is given by

𝑓Y (𝑥) = ( 𝑓 ∗ 𝜓Y) (𝑥) =
∞∫

−∞

𝑓 (𝑡)𝜓Y (𝑥 − 𝑡)𝑑𝑡 =
𝑥+Y∫

𝑥−Y

𝑓 (𝑡)𝜓Y (𝑥 − 𝑡)𝑑𝑡. (2.61)

The function 𝑓Y is infinitely differentiable which follows from the same property of 𝜓Y. In this

formula, parameter Y is used as the mollifier coefficient.

Let us demonstrate the effect of convolution mollification on a parametrised contour and

its derivatives using a rectangular boundary as an example in Figure 2.7. We note that straight

line segments are transformed to straight line segments at all points except near the corners.

Rather than the mollifier coefficient itself, we use a dimensionless mollifying ratio 𝑑 = Y/𝐿

which depends on the characteristic length 𝐿 of the structure. In general, 𝐿 is chosen as
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the longest side of the scatterer. We demonstrate the effect of rounding using two mollifying

ratios 𝑑 = 0.001 and 𝑑 = 0.01. This helps one visually distinguish the change on the boundary.

We also demonstrate the variation on the third derivative as a function of the parameter \,

recalling the contour is parametrised by [(\) = (𝑥(\), 𝑦(\)). As a result, the trade-off between

“closeness” to the original shape and its “smoothness” can be easily seen in figure 2.7.
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Figure 2.7: Effect of mollifier on the contour parameterisation and its third derivative: a) 𝑑 =

0.001, b) 𝑑 = 0.01.

As we switch from boundaries that can be expressed analytically (circles, ellipses, superel-

lipses) to contours that are approximated (by splines or otherwise), we introduce another source

of numerical error that also should be investigated. In the following chapters we demonstrate that

solutions with 5-6 digits accuracy can be obtained by proper approximation methods. We also

compare the results for arbitrary shapes with those available in literature to show the accuracy

of the solution obtained by the MAR.

It is worth mentioning that in the thesis we have used a number of different methods for

obtaining the set of known point coordinates (i.e. knots) to construct interpolation/mollification
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geometries. Naturally, more known points on the contour will generate an interpolating surface

that is closer to the desired shape, especially for complex boundaries. For example, a triangle

contour can be generated and parametrised, using only the corner points given in the following

format:[(𝑥𝑛, 𝑦𝑛)] = [(0, 0), (1, 0), (0, 1), (0, 0)]. For arbitrary non-canonical shapes, such as

the boundary of a submarine, CAD (computer-aided design) tools are used to create a contour

that can be imported into MATLAB. Standard libraries in MATLAB also allow for importing

image files and translating bounding contours into sets of coordinate points. This is a method

used often to analyse x-ray images.

2.5 The MAR Solution for Arbitrarily Shaped Cross Sections

In this section, we demonstrate the excellent agreement between numerical results obtained

by the MAR for polygonal contours generated and smoothed by use of PCHIP and Sobolev’s

approximation technique and the analytical/numerical results available in literature.

For the classical rectangular waveguide shown in Figure 2.8a, relative cut-off wavenumbers

(𝑘𝑐𝑎)𝑚𝑛 can be calculated analytically ([78]), using the readily deducible formula

(𝑘𝑐)𝑚𝑛𝑏 = 𝜋

√︄(
𝑏

𝑎

)2
𝑚2 + 𝑛2 (2.62)

where 𝑚, 𝑛 = 0, 1, 2, ... and 𝑚2 + 𝑛2 ≠ 0.
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Figure 2.8: Cross sections of polygonal structures.

The exact values of the first 6 cut-off wavenumbers for a rectangular waveguide with sides

𝑎 = 2 and 𝑏 = 1 are shown in Table 2.2. To analyse the same waveguide by the MAR, we
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Table 2.2: The cut-off wavenumbers for a rectangular waveguide.

𝑚 𝑛 (𝑘𝑐𝑎)𝑚𝑛

1 0 1.57079632
0,(2) 1,(0) 3.14159226
1 1 3.51240736
2 1 4.44288293
3 0 4.71238898
3 1 5.66358669

need to start with a parametrisation of the contour. As demonstrated in Figure 2.7, the mollifier

coefficient defines the degree of the “closeness” of the generated structure to the desired shape.

Naturally, taking a smaller mollifier ratio and adding more points on the contour will result in

a shape closer to the desired polygonal structure. As a result, increased system size will then

provide higher accuracy in numerical simulations.

Using a mollifier ratio of 𝑑 = 0.02 and a system size 𝑁 = 128, we calculated the spectral

dependence of the condition number of the resulting matrix. The choice of the mollifying ratio

of 2% is based on the standard production tolerances of waveguides ([79]). The locations of

the spikes in the graph shown in Figure 2.9 gives us the first approximation for calculation

of the roots where the equation det (𝐴) = 0 defines cut-off wavenumbers of a rectangular

waveguide. We follow the same approach (described earlier for finding the roots of a duct-

like cavity) of the recursive root finding algorithm. Using each calculated root as the initial

approximation for the next step, and fine tuning the mollifier coefficient, we calculate the roots

(cut-off wavenumbers) with increased accuracy, and show digits stabilisation as the truncation

number increases in Table 2.3.

Table 2.3: The fundamental mode against increasing system size for a rectangular waveguide.

𝑑 𝑁 𝑘𝑐𝑎 Computation Time

2.5% 128 1.57188349 1.2 sec
2.1% 256 1.57070692 4.5 sec
1.8% 512 1.57079083 18.7 sec
1.4% 1024 1.57079311 62.3 sec
1.2% 2048 1.57079655 337.6 sec
Analytical - 1.57079632 -
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Figure 2.9: Condition number ^ (𝐴𝑁 (𝑘𝑎)) against relative wavenumber 𝑘𝑎 for a rectangular
waveguide.

It is important to note here that to offset computing resources introduced by numerical imple-

mentation of an arbitrary contour, we use an improved root finding algorithm (see Algorithm 1)

based on derivative estimated iterative functions ([59]) developed using the following set of

relations:

𝑓 ′(𝑥) = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ)
2ℎ

𝑓 ′′(𝑥) = 𝑓 (𝑥 + ℎ) − 2 𝑓 (𝑥) + 𝑓 (𝑥 − ℎ)
ℎ2

Δ = 𝑓 ′(𝑥) ∓
√︃
( 𝑓 ′′(𝑥))2 − 4 𝑓 (𝑥) 𝑓 ′(𝑥)

𝛿 =
−2 𝑓 (𝑥)

Δ

(2.63)

where 𝑓 (𝑘𝑎) = det (𝐴𝑁 (𝑘𝑎)) and ℎ is a sufficiently small step size
(
10−6

)
. The computation time

required for the root finding algorithm on a personal computer (Intel(R) Core(TM) i7-8750H

CPU @ 2.20GHz, 16.0 GB RAM, Geforce GTX 1050 Ti 4GB) is presented in Table 2.3. It is

shown that roots with 5 digits accuracy are obtained for a system size 𝑁 = 512 and computation

time of 18.7 seconds. We would like to demonstrate that the calculation of higher frequency

cut-off wavenumbers and simulation of high frequency field distribution 𝐻𝑧 can also be achieved

without any modification to the algorithm. To highlight this capability, we present the frequency
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Algorithm 1Modified Troub Root Finder
1: procedure
2: 𝑥0, 𝑥𝑛𝑒𝑤 ← initial guess
3: 𝑚𝑎𝑥𝑖𝑡 ← maximum number of iterations
4: ℎ← step size for derivative
5: repeat
6: 𝑥𝑜𝑙𝑑 ← 𝑥𝑛𝑒𝑤
7: 𝑖 ← 𝑖 + 1
8: calculate 𝑓 (𝑥𝑜𝑙𝑑), 𝑓 ′(𝑥𝑜𝑙𝑑), 𝑓 ′′(𝑥𝑜𝑙𝑑),Δ, 𝛿
9: if 𝑖 > 𝑚𝑎𝑥𝑖𝑡 then
10: no convergence
11: 𝑥𝑛𝑒𝑤 ← 𝑥𝑛𝑒𝑤 + 𝛿
12: calculate 𝑓 (𝑥𝑛𝑒𝑤)
13: until | 𝑓 (𝑥𝑜𝑙𝑑) | ≥ | 𝑓 (𝑥𝑛𝑒𝑤) | and 𝑖 > 𝑚𝑎𝑥𝑖𝑡

dependence of the condition number in Figure 2.10 and normalised modal field distribution for

selected modes in Figure 2.11. We also note that unless otherwise stated we use truncation size

𝑁 = 512 for the rest of the calculations in this thesis.
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Figure 2.10: Condition number ^ (𝐴𝑁 (𝑘𝑎)) against relative wavenumber 𝑘𝑎 for a rectangular
waveguide − high frequency region.

Closed-form exact analytical solutions for calculation of cut-off wavenumbers for triangular

waveguides for various cross sections (including equilateral and isosceles right) are available in

the literature. It can be seen that in [80, 81] some fundamental modes are missed while in [82]

complete exact results are available for equilateral waveguides. In [83], one can find the ratio

of cut-off wavenumbers against fundamental modes for four different triangular waveguide

construction. Cut-off wavenumber calculations are presented in Table 2.4 and the modal field

distribution plots in Figure 2.12 shows a very good agreement with the results available in [82].
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(a) 𝑚=10, 𝑛=10, 𝑘𝑎=35.1240 (b) 𝑚=10, 𝑛=20, 𝑘𝑎=64.765 (c) 𝑚=10, 𝑛=40, 𝑘𝑎=126.641

(d) 𝑚=20, 𝑛=10, 𝑘𝑎=44.428 (e) 𝑚=20, 𝑛=20, 𝑘𝑎=70.248 (f) 𝑚=20, 𝑛 = 40, 𝑘𝑎=129.531

Figure 2.11: Normalised modal field representation of selected high frequency modes for a
rectangular waveguide.

(a) 𝑇𝐸1𝑇 (b) 𝑇𝐸1𝐻 (c) 𝑇𝐸2 (d) 𝑇𝐸3𝑇

(e) 𝑇𝐸3𝐻 (f) 𝑇𝐸4𝑇 (g) 𝑇𝐸4𝐻 (h) 𝑇𝐸4𝑇

(i) 𝑇𝐸5𝐻 (j) 𝑇𝐸6 (k) 𝑇𝐸7𝑇 (l) 𝑇𝐸7𝐻

Figure 2.12: Normalised modal field representation of the first 7 modes for a triangular waveg-
uide.
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Table 2.4: The cut-off wavenumbers for triangular waveguides.

Cross Section Modes(𝑚𝑛) 𝑘𝑐 MAR [83] [82]

equilateral TE01 1.209257 1.20920 1.2092
TE10 2.094406 2.094334 2.0944

TE11,TE02 2.418413 2.418392 2.4184
TE12 3.199255 3.199542 3.1992

isosceles right TE01 3.141592 3.141593
TE11 4.442260 4.442212
TE02 6.283275 6.283115
TE12 7.024832 7.024601

Next we turn our attention to arbitrary shaped ridge waveguides which are extensively used

in various applications due to their numerous advantages including smaller size and weight,

wider operating frequency range, larger cut-off wavenumbers, lower impedance characteristics

and higher Q factor of resonators based on such shapes. As it is one of the most common cross

sections, we investigate double-ridge waveguides shown in figure 2.8b where AB = EF = GH =

KL = 0.508cm, BC = DE = HI = JK = 0.3863cm, CD = IJ = 0.254cm, and FG = LA = 1.016cm.

Its corresponding condition number plot with a system size 𝑁 = 128 can be seen in Figure 2.13,

which provides us with an initial approximation for the cut-off wavenumber calculation with

a bigger system size for higher accuracy. The results are validated against [84], while [85],
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Figure 2.13: Condition number ^ (𝐴𝑁 (𝑘𝑎)) against relative wavenumber 𝑘𝑎 for double-ridge
waveguide.
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(a) TE10H (b) TE10T

(c) TE20T (d) TE30H

Figure 2.14: Normalised modal field representation of double-ridge waveguide for selected
modes.

[86] and [87] are used for the comparison. The cut-off wavenumbers collected in Table 2.5,

shows good agreement with other numerical methods where an exact solution is not available. In

Figure 2.14, modal field𝐻𝑧 distribution for the cut-offmodes TE10𝐻 , TE10𝑇 , TE20𝑇 , TE30𝐻 which

are validated against [84] is presented. A similar approach is followed in naming the waveguide

modes, i.e. the suffixes H and T stand for Hybrid (a basic ridged waveguide mode) and Through

(a rectangular waveguide-type mode existing in the connecting region), respectively.

Table 2.5: The cut-off wavenumbers for a double-ridge waveguide.

Modes(𝑚𝑛) 𝑘𝑐 MAR [85] [86] [87] [84]

TE10𝐻 1.4568 1.434 1.5097 1.4849 1.4843
TE10𝑇 3.1713 3.168 3.1931 3.2015 3.1570
TE20𝑇 6.2055 6.192 6.2218 6.2065 6.1916
TE30𝐻 6.7265 6.705 6.7629 6.7230 6.7112
TE11𝑇 6.9916 6.975 7.0123 7.0021 6.9745
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Figure 2.15: Accuracy of the solution and the condition number of the truncated systems for
rectangular, triangular and double-ridge waveguides.

Prior to finalising this chapter, we would like to further demonstrate the accuracy of the ob-

tained results when analytical parametrisation is replaced with interpolation/mollifier functions.

The truncation error function against the system truncation number is shown in Figure 2.15a for

the geometries investigated: rectangular, equilateral triangular and double-ridge waveguides.

We also present the fast convergence of system’s condition number to its limiting value for each

geometry in Figure 2.15b.



3
2D Helmholtz Resonators

In this chapter, we investigate Helmholtz resonators and present accurate numerical re-

sults obtained by the application of the MAR. We collect all material related to emergence

of the Helmholtz modes so as to avoid repetition of comments regarding this phenomenon in

the following chapters. We consider various shapes of resonators to demonstrate the effective-

ness of the MAR-based approach which can be easily extended for numerical simulation of

different practical and theoretical problems.

In solving the Neumann problem for an slotted arbitrary cylinder, one inevitably encounters

a resonance phenomenon in the low-frequency region (𝑘𝑎 � 1, where 𝑎 is the characteristic lin-

ear size of the cross section), when the relative wavenumber 𝑘𝑎 of incident radiation approaches

the real part 𝛾′
𝐻
of the complex eigenvalue 𝛾𝐻 = 𝛾′

𝐻
− 𝑖𝛾′′

𝐻
, of the Helmholtz mode. This simply

means that when the slit is relatively narrow, any slotted cylinder may be regarded as a Helmholtz

resonator. The Helmholtz mode for each structure is unique, in a sense that equation (2.57) can

only have a single root and a single field distribution pattern. Examples of modes and cases

where we have double roots resulting in symmetric and anti-symmetric modes, are provided in

the following chapters. The unloaded𝑄−factor, denoted by𝑄𝐻 of the Helmholtz mode is one of

the key characteristic properties of a Helmholtz resonator and is used in the analysis of various

types and structures. We use the standard definition of this value, 𝑄𝐻 = −
𝛾′
𝐻

2𝛾′′
𝐻

. Our focus on

the extraction of the Helmholtz mode from the complete spectrum of the complex oscillations
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(complex modes) is explained by two reasons: a) the widespread application of the Helmholtz

resonators in diverse areas of practical acoustics and electro-engineering; and b) the possibility

of individual study of the unique features arising in excitation of the Helmholtz mode in cylinders

of various cross sections and configurations with various neck lengths and sizes.

Practical applications of Helmholtz resonator are well described in literature; we men-

tion only some technical areas where the usage of Helmholtz resonators is most promulgated.

Helmholtz resonators find most applications in acoustics in amplification or attenuation of sound

waves, for example in musical instruments, to amplify certain frequencies to produce a desired

tone, or in internal combustion engines to attenuate high noise levels produced by the combus-

tion engine ([88]). In addition, the Helmholtz resonator is one of the devices most-exploited in

sound-energy harvesters ([89]). 2D arrays of Helmholtz resonators with optimised absorption

properties are frequently used at low frequencies in order to improve sound diffusion in the au-

dible regime. Furthermore, flow-excited Helmholtz resonators are used as flow control devices

([90]). Other applications may be found also in electromagnetics ([91]).

Production of devices based on distinctive properties of Helmholtz resonators requires esti-

mation of their characteristic parameters. In general, this is achieved by approximation methods.

The use of such methods can be justified by a clear understanding of the physical process and

non-complex geometry of most devices in creating the phenomenon of low-frequency reso-

nance. The classical view on these processes is well described, in particular, in [92, 93],

where the Helmholtz resonator is treated as the archetypical system exhibiting resonance with

distributed parameters. From a physical point of view, it is reasonable to postulate that all

the kinetic energy of the system is concentrated in the column of air in the neck that moves as

a plunger. On the other hand, the potential energy of the system is stored through the process

of elastic deformation of the air contained in the cavity. Periodic transformation of one type of

energy to the other is the key point in explaining emergence of the Helmholtz mode. In this

sense, the Helmholtz resonator may be regarded as an acoustic system analogous to a simple

harmonic oscillator, and hence may be described by the general postulates of classical oscillation

theory.

Furthermore, a close analogy can be established between the propagation of sound in pipes

or chambers and electrical circuits, which is a great aid in acoustical problems of many kinds,

since all the theory related to the electrical circuit theorems may be applied and it is possible to

substitute a complex acoustic system by a systematic circuit of its analogous electrical system. It
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Figure 3.1: Geometry of simple cavities as Helmholtz resonators.

is evident that we can even have equivalent mechanical, electrical, and acoustic expressions for

resonance frequency. The classic lumped approach approximates this resonator as an equivalent

spring (cavity) andmass (neck) system and yields the expressions for the resonator frequency and

the transmission loss. In other words, the classical approach in modelling these resonators is to

neglect the spatial distribution leading to an equivalent spring–mass system ([94]). An extensive

review of the lumped-elements approach (the spring-mass damper model) can be found in [95].

Themethods based on explanation of emergence of theHelmholtzmode by common physical

properties characteristic for oscillating systems with lumped parameters are widely used for pri-

mary estimates in the design of the systems incorporating Helmholtz resonators in practical use.

Nevertheless, the accuracy of such approximations is validated mostly by experiments, which,

sometimes, are rather resource consuming. Thus it is highly desirable to replace experiments

by numerical models where possible, taking advantage of a reliable and accurate theoretical

approach. Once developed, such an approach provides an independent external estimate for

the validity and accuracy of existing approximate methods.

3.1 Circular Helmholtz Resonators

A slotted infinitely long rigid circular cylinder may be regarded as a 2D analogy of the clas-

sical Helmholtz resonator, usually presented as a rigid spherical shell with a small circular

aperture, see [92, 93] . The diffraction problem for a circular slotted metallic cylinder, irradiated

by an 𝐻−polarised plane wave, was rigorously solved using the MAR, in 1971 ([96]). The low-

frequency approximation of the solution including the case of an electromagnetic Helmholtz
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Table 3.1: Complex eigenvalue 𝛾𝐻 of the Helmholtz mode for a slotted circular cylinder.

𝜙1 Approximate (eq. (3.1)) Accurate (MAR)

1◦ 0.324737-i0.0292825 0.309491-i0.012457
2◦ 0.351438-i0.0342960 0.332487-i0.0157361
5◦ 0.399536-i0.0443259 0.372456-i0.0229525
10◦ 0.452673-i0.0569003 0.414270-i0.0329788
15◦ 0.495537-i0.0681865 0.446178-i0.0426394
30◦ 0.608214-i0.1027207 0.523018-i0.0740877

resonator was investigated in [97] and [98]. In these publications, the authors derived the fol-

lowing approximate formula for the complex eigenvalue of the Helmholtz mode for small slit

widths 𝑑 = 2𝑎 sin 𝜙1, 𝜙1 � 1, where 𝜙1 denotes angular semi-width (see Figure 3.1a), when

𝑘𝑎 � 1:

𝛾𝐻 =

(
−2 log sin 𝜙1

2

)− 12 {
1 + 𝑖 𝜋

16

(
log sin

𝜙1
2

)−1}
. (3.1)

The derivation of this formula may be found in [99].

The extraction of the complex eigenvalue 𝛾𝐻 from the complete spectrum is obtained by

solving the dispersion equation det (𝐴𝑁 ) = 0. The predetermined accuracy of calculation is

achieved by proper choice of truncation number 𝑁; we calculated value 𝛾𝐻 with accuracy of

5-6 significant decimal places. The approximate values of 𝛾𝐻 obtained from equation (3.1) and

their accurate values obtained via the MAR are collected in Table 3.1. Comparison shows that

equation (3.1) has limited applicability, only for exceedingly small angular sizes of a slit, when

𝜙1 � 1.

The distributions of the resonance field (absolute value of the total potential velocity,��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)��, in logarithmic scale) for 𝑘𝑎 = 𝑅𝑒𝛾𝐻 ≡ 𝛾′𝐻 in the vicinity of “classical” Helmholtz

resonators as well as other basic shapes (ellipse and rectangle) shown in Figure 3.1, are presented

in Figure 3.2. The vertical slit ratio
𝑤𝑏

2𝑏
and eccentricity 𝑒 =

√︃
1 − 𝑞2

(
𝑞 =

𝑏

𝑎

)
for the parametri-

sation of the elliptic cavity and the vertical slit ratio of
𝑤𝑎

2𝑎
is used for the rectangular cavity,

where 𝑎 and 𝑏 stand for major and minor semi-axes.
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(a) 𝜙1=5◦, 𝑘𝑎=0.372456 (b) 𝜙1=15◦, 𝑘𝑎=0.446178

(c) 𝑒=0.5, 𝑤𝑏=0.2, 𝑘𝑎=0.447637 (d) 𝑒=0.9, 𝑤𝑏=0.2, 𝑘𝑎=0.550138

(e) 𝑎/𝑏=2, 𝑤/𝑎=0.1, 𝑘𝑎=0.486802 (f) 𝑎/𝑏=2, 𝑤/𝑎=0.25, 𝑘𝑎=0.566795

Figure 3.2: Distribution of
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� in logarithmic scale in the vicinity of circular, elliptic

and rectangular Helmholtz resonators, 𝑘𝑎 = 𝛾′
𝐻
, incident angle 𝛼 = 0◦ .
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Figure 3.3: Circular Helmholtz resonator: a)with attached neck; b)paired.

3.2 Influence of the Neck on the Helmholtz Mode for Slotted

Circular Cylinders

A more realistic shape for a Helmholtz resonator is shown in 3.3a, where a neck with

a length of 𝑙 is attached to the entry (slit) of a slotted cylinder. For optimal characterisation

of such Helmholtz resonators, it is convenient to use dimensionless length 𝑙𝑟 = 𝑙/𝑑, where

𝑑 = 2𝑎 sin 𝜙1 is the slot width. From a physical point of view, it is obvious that for a fixed

slit width one may predict that the longer the neck, the higher the value of the 𝑄−factor. This

qualitative argument is supported by accurate numerical calculations for three values of angular

slit semi-width 𝜙1 = 5◦, 10◦, 15◦, where the relative neck length 𝑙𝑟 varies from 𝑙𝑟 = 0 to 𝑙𝑟 = 2.5.

The calculations are collected in Table 3.2.

The results show agreement with the basic features characteristic for Helmholtz res-

onators with attached necks: as relative length 𝑙𝑟 increases, the resonance relative wavenumber

𝑘𝑎 ≡ 𝑅𝑒𝛾𝐻 decreases and radiation losses diminish which is reflected in the decrease of the val-

ues 𝐼𝑚𝛾𝐻 . This phenomenon has a notable impact on the significant growth of the unloaded

quality factor 𝑄𝐻 =
−𝑅𝑒𝛾𝐻
2𝐼𝑚𝛾𝐻 . For the “classical” Helmholtz resonator (𝑙𝑟 = 0), the values of

𝑄𝐻 for 𝜙1 = 5◦ and 𝜙1 = 15◦ are 8.1138 and 5.2320, respectively, but for the Helmholtz

resonator with attached neck length 𝑙𝑟 = 2.5, 𝑄𝐻 = 39.1548 and 𝑄𝐻 = 14.5878, respectively.

The influence of the neck length on the distributions of the total potential velocity
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� at

resonance frequencies (𝑘𝑎 = 𝛾′
𝐻
) is also analysed for various relative neck length 𝑙𝑟 ; the results
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Table 3.2: Complex eigenvalue 𝛾𝐻 of the Helmholtz mode for a circular cylinder with attached
neck.

𝑙𝑟 𝜙1 = 5◦ 𝜙1 = 10◦ 𝜙1 = 15◦

0 0.372457-i0.022953 0.414271-i0.032979 0.446178-i0.042639
0.05 0.369495-i0.022366 0.410492-i0.031992 0.441310-i0.041106
0.1 0.367206-i0.021907 0.406885-i0.031055 0.436065-i0.039494
0.5 0.345282-i0.017885 0.373884-i0.023545 0.393964-i0.028555
1 0.319073-i0.013869 0.339773-i0.017432 0.352736-i0.020459
1.5 0.297233-i0.011085 0.312189-i0.013465 0.320232-i0.015454
2 0.277855-i0.008987 0.289052-i0.010700 0.294846-i0.012247
2.5 0.263590-i0.007644 0.271611-i0.008920 0.273641-i0.009969

are presented in Figure 3.4. To understand the distribution
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� across the neck better,

(a) 𝑙𝑟 =0.5, 𝑘𝑎=0.373884 (b) 𝑙𝑟 =2.5, 𝑘𝑎=0.271611

Figure 3.4: Distribution of
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� in logarithmic scale in the vicinity of a circular Helmholtz

resonator with various relative neck lengths,𝑘𝑎 = 𝛾′
𝐻
, incident angle 𝛼 = 0◦.

we demonstrate the resonance distribution for a slotted circular Helmholtz resonator (𝜙1 = 10◦)

with a longer neck (𝑙𝑟 = 5) and a magnified view near the neck in Figure 3.5. It can be seen

that the distribution of the velocity vector is concentrated inside the resonance cavity. Another

important and illustrative image is the amplitude-phase distribution of the total potential velocity

𝑈𝑡𝑜𝑡 (𝑥, 𝑦) =
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� 𝑒𝑖𝜓 . The phase distribution 𝜓 (𝑥, 𝑦) in Figure 3.6b reveals the distor-

tion of the phase front of the propagating plane wave as an empty arc; this distortion makes

the Helmholtz resonator appear a bigger obstacle than its real physical size. Because of this

reason, the total and sonar cross sections become resonant quantities.
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Figure 3.5: Distribution of
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� in logarithmic scale in vicinity of a circular Helmholtz

resonator
(
𝜙1 = 15◦, 𝑙𝑟 = 5, 𝑘𝑎 = 𝛾′

𝐻
= 0.207895

)
, incident angle 𝛼 = 0◦.

(a) log( |𝑈𝑡𝑜𝑡 (𝑥, 𝑦) |) (b) log( |𝜓 (𝑥, 𝑦) |)

Figure 3.6: Amplitude-phase distribution
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� 𝑒𝑖𝜓 in the vicinity of a circular Helmholtz

resonator
(
𝜙1 = 15◦, 𝑙𝑟 = 2, 𝑘𝑎 = 𝛾′

𝐻
= 0.292612

)
, incident angle 𝛼 = 0◦.

3.3 Paired Cylindrical Helmholtz resonators

In practice, low-frequency noise attenuation and sound absorption is achieved by implemen-

tation of arrays of Helmholtz resonators (see, for example, [95]). A minimal fragment of such

an array consisting of two identical resonators is shown in Figure 3.3b. Although resulting array

of resonators will have multiple openings the screen 𝑆 is continuous and complementary surface

𝑆′ is arbitrary.

A pair of Helmholtz resonators present a multi-parameter system, described by four param-

eters: 𝑎 is the radius of a cylinder; 𝑑 = 2𝑎 sin 𝜙1 width of a slot; 𝑙 is the length of the neck; and

𝐿 is distance between resonance entry points.The distance 𝐿 between resonators is measured

by the relative value 𝐿𝑟 =
𝐿

2(𝑎 + ℎ) . From the variety of parameters available, we choose two

values of the neck width: 𝑑 = 2𝑎 sin 10◦ ≈ 0.3473 and 𝑑 = 2𝑎 sin 20◦ ≈ 0.6840; two values
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Figure 3.7: Quality factor of a paired cylindrical Helmholtz resonator with various neck width
and length.

of neck length: 𝑙𝑟 = 𝑙/𝑑 = 0.1 (Helmholtz resonator with minimal neck) and 𝑙𝑟 = 5 (“long”

neck); and the relative distance varies in the range 1 ≤ 𝐿𝑟 ≤ 3. The change of the quality

factor 𝑄𝐻 (𝐿𝑟) against distance 𝐿𝑟 at fixed parameters 𝜙1 = 10◦, 20◦ and 𝑙𝑟 = 0.1, 5 is shown in

Figure 3.7.

Before analysing numerical results and the graphs, it is possible to predict the scale of

acoustic (electromagnetic) coupling between two Helmholtz resonators for different sets of

parameters. Close co-location of resonators (𝐿𝑟 = 1 + 𝛿, 𝛿 � 1) should provide the maximum

coupling. This is due to significant radiation through the slits into the free space. As can be seen

in Figure 3.7 the closeness of their location is limited by the geometry. Strongest coupling is

only possible when Helmholtz resonators are oriented in such a way that they form “slit-to-slit”

configuration. As such a configuration is not implementable, each of Helmholtz resonators will

practically operate independently. Thus, we may predict rather weak coupling between them.

We verify this expectation by two sets of accurate numerical calculations. First, in Figure 3.8,

the modal field (|𝐻 (𝑥, 𝑦) |) is presented for two extreme relative locations of the resonators. One

location may be called “neighbouring” (𝐿𝑟 = 1.1); the other may be qualified as “distanced”

(𝐿𝑟 = 2.5). In both cases we use also the parameters 𝜙1 = 15◦, 𝑙𝑟 = 0.1, 2.5. The family of space

distributions
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� have been calculated for the forced oscillations induced by a normally



70 2D Helmholtz Resonators

propagating sound plane wave (𝛼 = 0◦) in Figure 3.9, for the same set of parameters. It can be

seen that in each case the Helmholtz mode is excited by the incident field.

(a) 𝑙𝑟 =0.1, 𝐿𝑟 =1.1, 𝑘𝑎=0.422697 (b) 𝑙𝑟 =0.1, 𝐿𝑟 =2.5, 𝑘𝑎=0.391943

(c) 𝑙𝑟 =2.5, 𝐿𝑟 =1.1, 𝑘𝑎=0.268497 (d) 𝑙𝑟 =2.5, 𝐿𝑟 =2.5, 𝑘𝑎=0.261009

Figure 3.8: Modal field distribution for various parameters of paired Helmholtz resonators
(𝜙1 = 15◦) , 𝑘𝑎 = 𝛾′

𝐻
.

Let us revisit Figure 3.7 and use the unloaded 𝑄−factor as indicator of the effectiveness of

the coupling of the paired Helmholtz resonators. Considering different values of the parameters

(𝜙1, 𝑙𝑟 , 𝐿𝑟), it is possible to investigate the following: a) the effect of 𝐿𝑟 by fixing (𝜙1, 𝑙𝑟), b)

the effect of 𝑙𝑟 by fixing (𝜙1, 𝐿𝑟), and c) the effect of 𝜙1 by fixing (𝐿𝑟 , 𝑙𝑟). The dependency

of 𝑄𝐻 (𝐿𝑟) demonstrates the qualitatively predicted behaviour. At fixed 𝐿𝑟 increase in neck

length leads to increased coupling which is reflected in higher 𝑄𝐻 . At fixed 𝑙𝑟 (or 𝜙1) increased
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(a) 𝑙𝑟 =0.1, 𝐿𝑟 =1.1, 𝑘𝑎=0.422697 (b) 𝑙𝑟 =0.1, 𝐿𝑟 =2.5, 𝑘𝑎=0.391943

(c) 𝑙𝑟 =2.5, 𝐿𝑟 =1.1, 𝑘𝑎=0.268497 (d) 𝑙𝑟 =2.5, 𝐿𝑟 =2.5, 𝑘𝑎=0.261009

Figure 3.9: Distribution of
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� in logarithmic scale in the vicinity of a paired circular

Helmholtz resonator, 𝑘𝑎 = 𝛾′
𝐻
, incident angle 𝛼 = 0◦.

separation (𝐿𝑟) of resonators weakens their coupling which leads to a decrease in the overall

performance (lower 𝑄𝐻).

3.4 Rectangular Helmholtz Resonators

One of the most promulgated shapes of Helmholtz resonators used in industry is a finite

hollow rectangular cylinder with circular aperture cut in one of the lids and neck attached
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to the aperture. Usually, the neck presents a pipe of circular cross section. Depending on

the technical problem to be solved, variously shaped necks are designed ([96–98]). In this

section, we restrict ourselves to the examination of 2D analogues of the axisymmetric Helmholtz

resonators shown in Figure 3.10. This structure is an infinite slotted rectangular cylinder with

sides 𝑎 and 𝑏, cut by a slot of width 𝑤, with attached neck of length 𝑙 and flanges of width

𝑓 as indicated in Figure 3.10a. As before, we examine the minimal part of array, consisting

of two Helmholtz resonators, with the cross section shown in Figure 3.10b. The following

parameters are chosen for the analysis of the single resonator: 𝑎/𝑏 = 0.5, 2; 𝑤/𝑎 = 0.1, 0.2, 0.5;

𝑙/𝑤 = 1, 2, 5; 𝑓 /𝑎 = 0.75. For the analysis of the paired resonators, the same parameters as for

the single one are selected, with the addition of the distance parameter 𝐿/𝑎 = 1, 2, 5.

𝑓
𝑥

𝑦

𝑏

𝑤

𝑙

𝑎

(a) Classical

𝑥

𝑦

𝐿

(b) Array of resonators

Figure 3.10: Rectangular Helmholtz resonator types

It should be noted that when operating in the low-frequency region, where the size of

a structure is small compared to the wavelength _, its precise form becomes immaterial since

the incident field “does not sense” the finer details of a scatterer. For this reason, whether

a Helmholtz resonator is shaped as a circular or rectangular cylinder, its performance, at least

qualitatively, will be the same. Therefore we provide only a brief analysis along with the nu-

merical results for selected rectangular Helmholtz resonators to complete this chapter. First, we

demonstrate (quantitatively) the growth of the 𝑄−factor as relative neck length increases: the de-

pendence 𝑄𝐻 (𝑙𝑟) is shown in Figure 3.11b for resonators with two aspect ratios 𝑎/𝑏 = 0.5, 2

and three values of relative slit widths 𝑤/𝑎 = 0.1, 0.2, 0.5.
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Figure 3.11: Quality factor 𝑄𝐻 for a single rectangular resonator against relative neck length 𝑙𝑟
for various slot width.

Table 3.3: 𝑄−factors for various 𝑤/𝑎, 𝑙𝑟 , and 𝐿𝑟 ratios for coupled rectangular resonator of
𝑎/𝑏 = 2, 𝑓 /𝑎 = 0.75.

𝑤/𝑎 𝐿𝑟 𝑄ℎ (𝑙𝑟 = 1) 𝑄ℎ (𝑙𝑟 = 2) 𝑤/𝑎 𝐿𝑟 𝑄ℎ (𝑙𝑟 = 1) 𝑄ℎ (𝑙𝑟 = 2)

0.1 1 13.79 23.34 0.2 1 10.92 18.64
0.1 2 10.35 12.26 0.2 2 10.24 12.01
0.1 3 6.30 12.05 0.2 3 5.18 10.68

Table 3.4: 𝑄−factors for various 𝑤/𝑎, 𝑙𝑟 , and 𝐿𝑟 ratios for coupled rectangular resonator of
𝑎/𝑏 = 0.5, 𝑓 /𝑎 = 0.75.

𝑤/𝑎 𝐿𝑟 𝑄ℎ (𝑙𝑟 = 2) 𝑄ℎ (𝑙𝑟 = 3) 𝑤/𝑎 𝐿𝑟 𝑄ℎ (𝑙𝑟 = 2) 𝑄ℎ (𝑙𝑟 = 3)

0.2 1 50.79 64.99 0.5 1 33.92 48.36
0.2 2 16.08 21.41 0.5 2 15.08 21.56
0.2 3 6.40 7.69 0.5 3 6.31 8.42

Turning to a pair of rectangular resonatorswith varying parameters 𝑎/𝑏, 𝑤/𝑎, 𝑙/𝑤, 𝐿/𝑎, a tab-

ulated view is preferred to demonstrate the relations between the parameters and the 𝑄−factors;

the results are collected in Tables 3.3 and 3.4. A similar behaviour to the circular paired res-

onators can be observed: for fixed ratios of 𝑎/𝑏, the slit width 𝑤/𝑎, and relative distance 𝐿𝑟 ,

larger neck length magnifies the coupling which leads to an increase in the overall performance

(higher 𝑄𝐻). Also, as in the case of a circular pair, for fixed ratios of 𝑎/𝑏, slit width 𝑤/𝑎 and

neck length 𝑙𝑟 , increased separation (𝐿𝑟) of resonators weakens their coupling which leads to a

decrease in the overall performance (lower 𝑄𝐻).
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Finally, we demonstrate the modal field (|𝐻 (𝑥, 𝑦) |) in Figure 3.12 and the space distribution��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� in Figure 3.13 for externally forced oscillations for two different separations of
resonators. A comparison of the plots presented in these figures with their circular counterparts

(see Figures 3.8 and 3.9) shows a high level of similarity, thus reinforcing the remarks made

regarding the precise shape of the resonators.

(a) 𝑙𝑟 =1, 𝐿𝑟 =0.5, 𝑘𝑎=0.434439 (b) 𝑙𝑟 =1, 𝐿𝑟 =1.2, 𝑘𝑎=0.411260

(c) 𝑙𝑟 =3, 𝐿𝑟 =0.5, 𝑘𝑎=0.318195 (d) 𝑙𝑟 =3, 𝐿𝑟 =1.2, 𝑘𝑎=0.310402

Figure 3.12: Modal field distribution for various parameters of paired rectangular Helmholtz
resonators (𝑎/𝑏 = 2, 𝑓 /𝑎 = 0.5, 𝑤/𝑎 = 0.2) , 𝑘𝑎 = 𝛾′

𝐻
.
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(a) 𝑙𝑟 =1, 𝐿𝑟 =0.5, 𝑘𝑎=0.434439 (b) 𝑙𝑟 =1, 𝐿𝑟 =1.2, 𝑘𝑎=0.411260

(c) 𝑙𝑟 =3, 𝐿𝑟 =0.5, 𝑘𝑎=0.318195 (d) 𝑙𝑟 =3, 𝐿𝑟 =1.2, 𝑘𝑎=0.310402

Figure 3.13: Distribution of
��𝑈𝑡𝑜𝑡 (𝑥, 𝑦)�� in logarithmic scale in the vicinity of a paired rectangular

Helmholtz resonators (𝑎/𝑏 = 2, 𝑓 /𝑎 = 0.5, 𝑤/𝑎 = 0.2) , 𝑘𝑎 = 𝛾′
𝐻
, incident angle 𝛼 = 0.
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4
Spectral Studies of Slotted Cavities

In this chapter, the generalised MAR is applied to find the spectrum of complex eigenvalues

for a selection of 2D slotted cavities: circular, elliptic, and rectangular cylinders, and cylinders

of arbitrary cross section (for example, corrugated cylinders). We present highly accurate (5-

6 significant decimal places) extended tables of complex eigenvalues for circular and elliptic

cylinders with variably placed slits.

In addition, we briefly consider slotted rectangular and polygonal (pentagon, heptagon,

nonagon) cavities, computing the few first complex eigenvalues. Furthermore, taking advantage

of the developed approach, we also conduct a preliminary examination of topologically more

complex slotted cavities. They include sinusoidally corrugated circular cylinders and cavities

used in design of magnetron resonators.

Finding the spectrum of acoustic complex oscillations in 2D open arbitrary cavities is

of practical interest in diverse areas of acoustic- and electro-engineering. This stimulated

development of purely numerical and semi-analytical techniques for extraction of the natural

eigenvalues in closed cavities and the complex eigenvalues in open cavities. It should be noted

that the values of “cavity resonances” and “cut-off frequencies” for 2D arbitrary cylinders are

numerically identical. It simply means that any investigation of the spectrum of standing waves

in 2D cavities is at the same time the investigation of cut-off wavenumbers (frequencies) for

propagating modes in waveguides ([100]).
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In many cases, electromagnetic waveguide theory may serve as a source to borrow solutions

for acoustic problems and vice versa. This interdisciplinary link is based on the appearance of

identical boundary value problems when formulating acoustic and electromagnetic scattering

problems for obstacles in 2D space. This observation has been discussed in Introduction; nev-

ertheless, since in this chapter we only address the acoustic problem, it is useful to recall this

equivalence. The Dirichlet problem for the Helmholtz equation, posed for a 2D obstacle, simul-

taneously describes acoustic scattering by a sound-soft obstacle and electromagnetic scattering

of 𝐸−polarised radiation by a PEC cylinder. The Neumann problem describes acoustic scatter-

ing by a sound-hard (rigid) obstacle or electromagnetic scattering of 𝐻−polarised radiation by

the same obstacle with a PEC surface.

Theoretical approaches to solving the corresponding wave scattering problem by real closed

or open cavities assume some idealisation. When posing the idealised boundary conditions

at the surface of an obstacle, generally neither acoustic losses in the cavity walls nor defects

of its manufacturing are considered. Similarly, in this thesis we consider idealised 2D open

arbitrary cylindrical cavities with absolutely reflecting (sound-hard or rigid) walls: the actual

walls of finite thickness are replaced by their mathematical (non-physical) model of infinitesi-

mally thin surfaces. Without focusing on detail of the well-studied problem of acoustic waves

penetration into solids, we simply state that the condition _ � 𝑑 ( where 𝑑 denotes thickness

of the walls) justifies our assumption. The most idealised structure is a closed lossless cavity.

Its eigenvalues of natural oscillations are real valued, leading to the infinite values of 𝑄−factor.

Using the idealised boundary conditions at the surface of a cavity with openings provides more

realistic modelling of radiation loss emergence, caused by leakage of the acoustic energy to

external space through the opening in the cavity. In this case, the total losses consist of losses

in the walls and radiation losses. The balance of these two contributions is the decisive factor

in arguments on the closeness of the mathematical model of wave scattering by a cavity with

openings to its practical counterpart. In practice, radiation losses exceed the losses in the walls

significantly, even for small openings.

The vast majority of publications (for example, see [101–103]) devoted to extraction of real

and complex eigenvalues by various methods in both acoustics and electromagnetics provide 3-4

significant digits accuracy in their calculations; which is usually sufficient for practical needs. In

many cases, it is challenging to make external estimates of the accuracy of these mainly purely

numerical techniques due to the absence of benchmark studies. Additionally, these techniques
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only work properly for extraction of the eigenvalues for lower frequency oscillations (since they

are well separated). However, spectrum compression (which occurs at higher frequencies when

neighbouring oscillations are separated by small frequency gap) prevents the use of numerical

techniques due to their restricted frequency resolution.

Let us illustrate this assertion by an example for a closed elliptical cavity with sound-soft

walls with extracted two natural oscillations 𝑆𝑐21 and 𝑆𝑠21 from the spectrum ([54]), when

eccentricity 𝑒 = 0.1. The corresponding eigenvalues 𝛾𝑐21 = 5.148339 and 𝛾𝑠21 = 5.148569

differ only in the fourth decimal place. It means that the accuracy of any applied method should

be, at least, no less than 10−4. We may conclude that there is a strong need for a universal,

reliable algorithm which provides a tool for the calculation of real eigenvalues (closed cavities)

and complex eigenvalues (cavities with openings) with the predetermined and proven accuracy.

4.1 Complex Eigenvalues of Slotted Circular Cylinder

Although there are number of publications ([104–107]) where MAR based solutions have

been obtained for electromagnetic diffraction from slotted PEC cylinders, systematic investiga-

tion of the spectrum of the complex oscillations for these structures has not been conducted. It is

well-known that, in closed sound-hard cylinders, the natural oscillations Ψ𝑚𝑛 (𝜌, 𝜙) are doubly

degenerate except those oscillations Ψ0𝑛 (𝜌, 𝜙). The indices 𝑚 and 𝑛 stand for the number of

oscillations along coordinates 𝜙 and 𝜌, respectively, which can be approximated using following

relation:

Ψ𝑚𝑛 ∼ 𝐴𝑚𝑛𝐽′𝑚
(
𝜒
(0)
𝑚𝑛

𝜌

𝑎

)
·


cos(𝑚𝜙)

sin(𝑛𝜙)
, (4.1)

where 𝑚, 𝑛 = 0, 1, 2... and 𝑚2 + 𝑛2 ≠ 0, 𝜒(0)𝑚𝑛 are zeros of the derivative of the Bessel function

of first kind and order 𝑚
(
𝐽′𝑚

(
𝜒
(0)
𝑚𝑛

)
= 0

)
, representing the eigenvalues of natural oscillations

Ψ𝑚𝑛. The degeneracy is removed as soon as any surface or volume inhomogeneity is introduced.

The longitudinal slit is of such nature and it leads to splitting of the eigenvalues 𝜒(0)𝑚𝑛 into two

complex eigenvalues 𝜒𝑐𝑚𝑛 = 𝑅𝑒𝜒𝑐𝑚𝑛 − 𝑖 · 𝐼𝑚𝜒𝑐𝑚𝑛 and 𝜒𝑠𝑚𝑛 = 𝑅𝑒𝜒𝑠𝑚𝑛 − 𝑖 · 𝐼𝑚𝜒𝑠𝑚𝑛, where

the indices 𝑐 (cosine) and 𝑠 (sine) indicate symmetric or asymmetric oscillations, respectively.

The lowest oscillation Ψ𝑐00 is characterised by the complex eigenvalue 𝜒𝑐00, originating from

the “non-physical” value 𝜒(0)00 = 0. This value becomes “physical” (𝜒(0)00 → 𝜒𝑐00) for a slotted

cylinder and characterises the low-frequency mode of the Helmholtz resonator, which has been
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analysed extensively in Chapter 3.

We have calculated the first 21 complex eigenvalues 𝜒𝑐(𝑠)𝑚𝑛 from the spectrumof the complex

oscillations Ψ𝑐(𝑠)𝑚𝑛 for a slotted circular cylinder. They are formed by the splitting of 9 of

the first 12 oscillations and by 3 remaning oscillations Ψ𝑐00,Ψ𝑐01,Ψ𝑐02 which cannot be split

since the phenomenon of degeneracy is absent for 𝑚 = 0. Calculations were performed with

5-6 significant decimal places accuracy and a truncation size 𝑁 = 512. The results are collected

in the Table 4.1 and Table 4.2 and Figures 4.1 - 4.5. We also provide a magnified view of

the complex oscillations Ψ𝑐(𝑠)41 and Ψ𝑐(𝑠)12 in Figure 4.4 due to their non-trivial coupling when

the slit width 𝜙1 exceeds some threshold value (𝜙1 ≥ 4.5◦).

Table 4.1 contains complex oscillations for small relative slit widths
𝑑

𝑎
' 0.035, 0.087where

𝑑 is slit semi-width, defined by 𝑑 = 𝑎 sin 𝜙1, with 𝜙1 = 2◦, 5◦. Calculations for wider slits are

presented in Table 4.2 for 𝑑
𝑎
' 0.174 (𝜙1 = 10◦) , 0.258 (𝜙1 = 15◦) , 0.5 (𝜙1 = 30◦). It can be

seen from both tables that non-symmetric complex oscillations Ψ𝑠𝑚𝑛 greatly dominate over

symmetric oscillations Ψ𝑐𝑚𝑛, even when the longitudinal slit is small (𝜙1 = 2◦, 5◦). Overall,

despite the small values of the imaginary parts 𝐼𝑚𝜒𝑠𝑚𝑛 ∼ 10−5 − 10−7, they significantly exceed

those of the imaginary pats 𝐼𝑚𝛾𝑠𝑚𝑛 which can be attributed to complex oscillations 𝑆𝑠𝑚𝑛 arising

in corresponding slotted sound-soft circular cylinders ([51]). For example, the values of 𝐼𝑚𝜒𝑠𝑚𝑛
at 𝜙1 = 2◦ become comparable with the values 𝐼𝑚𝛾𝑠𝑚𝑛 only when the slit cut in the sound-soft

circular cylinder is of angular size 𝜙1 = 10◦.

To explain the difference, it is pertinent to make use of the electromagnetic analogy of

the discussed problem. Formally, the solution for a sound-soft cylinder is the same as for

a perfectly electric conductor (PEC) cylinder supporting 𝐸-polarised (𝐸𝑧, 𝐻𝜌, 𝐻𝜙) oscillations,

while the solution for a sound-hard cylinder coincides with that of a PEC cylinder supporting 𝐻-

polarised (𝐻𝑧, 𝐸𝜌, 𝐸𝜙) oscillations. Since the surface current density ®𝑗 (defined by the formula
®𝑗 = 𝑐

4𝜋

[
®𝑛 × ®𝐻

]
where ®𝑛 is the outward normal unit vector (®𝑛 ≡ ®𝑒𝜌)) in the case of 𝐸−polarised

oscillations has only the longitudinal component 𝑗𝑧 ( ®𝑗 = 𝑗𝑧 ®𝑒𝑧), the current is continuous and

it flows parallel to the sharp edges of the slit, resulting in minimal radiation. In the case of

𝐻−polarisation, the only component of the surface current is transverse to the edges of the slit

( ®𝑗 = 𝑗𝜙 ®𝑒𝜙); the current flow is interrupted at the slit edges which leads to significant radiation

into exterior space and, hence, to enhancement of radiation losses.
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Table 4.1: Complex oscillations Ψ𝑐(𝑠)𝑚𝑛 of a slotted circular cylinder with a small slit.

Ψ𝑐(𝑠)𝑚𝑛 𝜙1 = 0◦ 𝜙1 = 2◦ 𝜙1 = 5◦

Ψ𝑐00 0 0.332487 − 𝑖0.0157361 0.372456 − 𝑖0.0229525

Ψ𝑠11 1.841183 1.841417 − 𝑖0.0000002 1.842628 − 𝑖0.0000091
Ψ𝑐11 1.841183 1.944838 − 𝑖0.0197959 1.976698 − 𝑖0.0344412

Ψ𝑠21 3.054236 3.054929 − 𝑖0.0000017 3.058442 − 𝑖0.0000648
Ψ𝑐21 3.054236 3.141488 − 𝑖0.0198596 3.171731 − 𝑖0.0368628

Ψ𝑐01 3.831705 3.850878 − 𝑖0.0042552 3.857797 − 𝑖0.0078444

Ψ𝑠31 4.201188 4.202500 − 𝑖0.0000060 4.208997 − 𝑖0.0002133
Ψ𝑐31 4.201188 4.286133 − 𝑖0.0229348 4.319625 − 𝑖0.0464755

Ψ𝑠41 5.317553 5.319603 − 𝑖0.0000154 𝑠𝑢𝑝.

Ψ𝑐41 5.317553 5.326771 − 𝑖0.0001061 𝑠𝑢𝑝.

Ψ𝑠12 5.331442 5.331509 − 𝑖0.0000010 5.332988 − 𝑖0.0002152
Ψ𝑐12 5.331442 5.436038 − 𝑖0.0324721 5.319625 − 𝑖0.0684192

Ψ𝑠51 6.415616 6.418543 − 𝑖0.0000299 6.432228 − 𝑖0.0009514
Ψ𝑐51 6.415616 6.483909 − 𝑖0.0179212 6.508308 − 𝑖0.0323522

Ψ𝑠22 6.706133 6.706328 − 𝑖0.0000021 6.707324 − 𝑖0.0000768
Ψ𝑐22 6.706133 6.743357 − 𝑖0.0135434 6.764459 − 𝑖0.0336951

Ψ𝑐02 7.015586 7.030840 − 𝑖0.0053676 7.039694 − 𝑖0.0142906

Ψ𝑠61 7.501266 7.505157 − 𝑖0.0000534 7.522850 − 𝑖0.0016170
Ψ𝑐61 7.501266 7.575477 − 𝑖0.0241361 7.605953 − 𝑖0.0524352

Ψ𝑠32 8.015236 8.015620 − 𝑖0.0000059 8.017461 − 𝑖0.0001864
Ψ𝑠32 8.015236 8.045693 − 𝑖0.0104212 8.062563 − 𝑖0.0258332

In acoustics, the velocity of sound flow at the surface of a sound-soft or sound-hard obstacle

serves as an analogue of electromagnetic surface current. At the surface of a sound-hard slotted

cylinder the normal component of the velocity 𝑣𝑛 ≡ 𝑣𝜌 = −𝜕𝑈
𝜕𝜌
is continuous, including the

points on the slit and the screen. At the same time, the azimuthal component of the velocity

𝑣𝜙 = −𝜕𝑈
𝜕𝜙
, being perpendicular to the sharp edges of the slit, becomes discontinuous. In

this case, the edges may be treated as a secondary source of acoustic radiation, which leads to
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an increase in radiation losses. They are substantially higher than those which arise for a sound-

soft slotted cylinder since the sound flow in the sound-soft case is provided by the non-zero

normal component of sound velocity only.

Table 4.2: Complex oscillations Ψ𝑐(𝑠)𝑚𝑛 of a slotted circular cylinder with a large slit.

Ψ𝑐(𝑠)𝑚𝑛 𝜙1 = 0◦ 𝜙1 = 10◦ 𝜙1 = 15◦ 𝜙1 = 30◦

Ψ𝑐00 0 0.414270 − 𝑖0.0329788 0.446178 − 𝑖0.0426394 0.523018 − 𝑖0.0740877

Ψ𝑠11 1.841183 1.846809 − 𝑖0.0001360 1.853482 − 𝑖0.0006306 1.887305 − 𝑖0.0075861
Ψ𝑐11 1.841183 2.016813 − 𝑖0.0588688 2.053178 − 𝑖0.0862410 2.170014 − 𝑖0.1961900

Ψ𝑠21 3.054236 3.070059 − 𝑖0.0008905 3.087733 − 𝑖0.0038033 3.172912 − 𝑖0.0376045
Ψ𝑐21 3.054236 3.210826 − 𝑖0.0671188 3.246292 − 𝑖0.1017330 𝑠𝑢𝑝.

Ψ𝑐01 3.831705 3.868933 − 𝑖0.0148153 3.883423 − 𝑖0.0243156 3.976368 − 𝑖0.0794217

Ψ𝑠31 4.201188 4.229510 − 𝑖0.0026995 4.259327 − 𝑖0.0107286 4.396182 − 𝑖0.0916456
Ψ𝑐31 4.201188 4.363267 − 𝑖0.0937152 4.400263 − 𝑖0.1545040 𝑠𝑢𝑝.

Ψ𝑠51 6.415616 6.470959 − 𝑖0.0100675 6.520301 − 𝑖0.0330158 𝑠𝑢𝑝.

Ψ𝑐51 6.415616 6.533104 − 𝑖0.0477940 𝑠𝑢𝑝. 𝑠𝑢𝑝.

Ψ𝑠22 6.706133 6.711240 − 𝑖0.0011841 6.720196 − 𝑖0.0073419 𝑠𝑢𝑝.

Ψ𝑐22 6.706133 6.808787 − 𝑖0.0821690 6.892990 − 𝑖0.1102620 6.875355 − 𝑖0.2609700

Ψ𝑐02 7.015586 7.056628 − 𝑖0.0485843 𝑠𝑢𝑝. 𝑠𝑢𝑝.

Ψ𝑠61 7.501266 7.570811 − 𝑖0.0161372 7.629342 − 𝑖0.0520732 7.719149 − 𝑖0.1265100
Ψ𝑐61 7.501266 𝑠𝑢𝑝. 𝑠𝑢𝑝. 𝑠𝑢𝑝.

Ψ𝑠32 8.015236 8.023997 − 𝑖0.0022879 8.038230 − 𝑖0.0111522 𝑠𝑢𝑝.

Ψ𝑠32 8.015236 8.095068 − 𝑖0.0684827 8.135462 − 𝑖0.1266600 𝑠𝑢𝑝.

For acoustic waveguides with narrow slits, the wave propagation and modal acoustic field

distribution is expected to be similar to that in a closed waveguide. It can be seen that while

that is true for asymmetric complex modes Ψ𝑠𝑚𝑛, it is not the case for symmetric modes Ψ𝑐𝑚𝑛.

In fact, the notations we use for complex oscillations Ψ𝑠𝑚𝑛 and Ψ𝑐𝑚𝑛 borrowed from the natural

oscillations of closed cylinder, are directly applicable only to asymmetric complex oscillations

Ψ𝑠𝑚𝑛 when the slit width is relatively small. The symmetric oscillations Ψ𝑐𝑚𝑛 are exposed to

such significant distortions that notation Ψ𝑐𝑚𝑛 simply characterise their provenance. This is

especially clear for the complex modes Ψ𝑐𝑚𝑛 with an even number of the radial oscillations

𝑛 = 2𝑝, 𝑝 = 1, 2, . . ., and a non-zero number of azimuthal oscillations 𝑚 ≥ 1. The oscillations



4.1 Complex Eigenvalues of Slotted Circular Cylinder 83

Ψ𝑐12,Ψ𝑐22, andΨ𝑐32 provide concrete examples as can be seen in Table 4.1.

To make the classification of oscillations unambiguous, we used an additional means:

namely, the calculation of the resonance distribution of the velocity jump Δ𝑈 (𝜙) at the sur-

face of the cylinder. The slotted cylinder is excited by an obliquely propagating sound plane

wave characterised by an incidence angle 𝛼. In the idealised problem statement, the sound pres-

sure 𝑝 is proportional to the velocity potential 𝑈 (𝑝 = −𝑖𝜔𝜌0𝑈), where 𝜔 is angular frequency,

𝜌0 is constant fluid density. We calculated the jump of the sound pressure at the surface of cylin-

der using the formula |𝑈 (𝜌, 𝜙) | = 1
𝜔𝜌0
|Δ𝑝 (𝑎, 𝜙) | whereΔ𝑈 (𝑎, 𝜙) = 𝑈 (𝑎 − 0, 𝜙)−𝑈 (𝑎 + 0, 𝜙)

and Δ𝑝 (𝑎, 𝜙) = 𝑝 (𝑎 − 0, 𝜙) − 𝑝 (𝑎 + 0, 𝜙).

As can be seen in Table 4.2, the introduction of a slit leads to a positive shift 𝛿𝑐(𝑠)𝑚𝑛 in

the values 𝑅𝑒𝜒𝑐(𝑠)𝑚𝑛 = 𝜒(0)𝑐(𝑠)𝑚𝑛 + 𝛿𝑐(𝑠)𝑚𝑛. Compared to the distance Δ𝑘𝑎 between neighbouring

eigenvalues 𝜒(0)
𝑐(𝑠)𝑚𝑛 this value is relatively small, especially if they are well separated. As

a result, verifying which complex eigenvalue belongs to which complex oscillation Ψ𝑐(𝑠)𝑚𝑛 is

a straightforward process as it is likely that the complex oscillation Ψ𝑐(𝑠)𝑚𝑛 can be identified

with an appropriate oscillation of the closed cylinder Ψ(0)
𝑐(𝑠)𝑚𝑛.

Nevertheless, we verified the complex oscillations by calculating the function |Δ𝑝 (𝑎, 𝜙) |

at resonances, that is when 𝑘𝑎 = 𝑅𝑒𝜒𝑐(𝑠)𝑚𝑛. The results are presented in Figure 4.1 for

the 9 asymmetric complex oscillations Ψ𝑠𝑚𝑛 emerging in the slotted cylinder with angular

semi-width 𝜙1 = 2◦ under excitation by a plane wave (𝛼 = 20◦). It should be noted that

asymmetrical excitation occurs only when the incidence angle 𝛼 ≠ 0. Furthermore, the interval

for the optimal excitation is found to be 10◦ ≤ 𝛼 ≤ 45◦. Each distribution |Δ𝑝 (𝑎, 𝜙) | displayed

in Figure 4.1 shows the ideal shape and correct number of azimuthal variations characteristic

of the corresponding complex oscillation Ψ𝑠𝑚𝑛. In contrast, a high level of radiation losses

for symmetric oscillations Ψ𝑐𝑚𝑛 occurring even for geometrically small (𝜙1 = 2◦) slits leads

to pronounced distortion of the (un-perturbed) natural oscillations Ψ(0)𝑐𝑚𝑛 which may emerge

in the closed cylindrical cavity. The distortion can be clearly seen in Figure 4.2 for selected

distributions of complex oscillations Ψ𝑐𝑚𝑛, which also leads to suppression of some modes as

the slit width passes a corresponding threshold value; these are denoted as “𝑠𝑢𝑝.” in the tables.

In all cases the excitation is symmetrical (𝛼 = 0◦), since it is the optimal angle for emergence

of high-amplitude symmetrical complex oscillations Ψ𝑐𝑚𝑛.

It is not surprising that the maxima of |Δ𝑝 (𝑎, 𝜙) | in Figure 4.2 are of significantly lower

level. The data for the complex eigenvalues 𝜒𝑐𝑚𝑛, collected in Table 4.1 reveals high values of
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Figure 4.1: Distribution of the jump of the velocity potential function |Δ𝑝 (𝑎, 𝜙) | at the surface of
a slotted cylinder for various complex eigenvalues Ψ𝑠𝑚𝑛 at resonant frequencies (𝑘𝑎 = 𝑅𝑒𝜒𝑠𝑚𝑛)
against observation angle 𝜗, incident angle 𝛼 = 20◦.

the imaginary parts 𝐼𝑚 (𝜒𝑐𝑚𝑛). This makes the unloaded quality factor 𝑄𝑐𝑚𝑛 = − 𝑅𝑒𝜒𝑐𝑚𝑛

2𝐼𝑚 (𝜒𝑐𝑚𝑛)
for symmetric oscillations Ψ𝑐𝑚𝑛 relatively small. For four of the six presented distributions

|Δ𝑝 (𝑎, 𝜙) | one can find the correct number of azimuthal variations (see plots forΨ𝑐00,Ψ𝑐11,Ψ𝑐51
andΨ𝑐61), though the overall shape of distributions |Δ𝑝 (𝑎, 𝜙) | is far from ideal. For distributions

related to complex oscillations Ψ𝑐01 and Ψ𝑐02, neither the number of variations 𝑚 nor shape of

distribution matches the canonical shape of the natural oscillations Ψ(0)
𝑐01 and Ψ

(0)
𝑐02 in the closed

cylindrical cavity.

Next, let us turn to our attention to emergence of the complex oscillations Ψ𝑐41,Ψ𝑠41,Ψ𝑐12
and Ψ𝑠12. This is a non-trivial region as the values 𝜒(0)𝑐(𝑠)41 = 5.317553 and 𝜒

(0)
𝑐(𝑠)12 = 5.331442

lie in very close proximity to each other. The introduction of a slit is expected to lead to
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Figure 4.2: Distribution of the jump of the velocity potential function |Δ𝑝 (𝑎, 𝜙) | at the surface of
a slotted cylinder for various complex eigenvalues Ψ𝑐𝑚𝑛 at resonant frequencies (𝑘𝑎 = 𝑅𝑒𝜒𝑠𝑚𝑛)
against observation angle 𝜗, incident angle 𝛼 = 0◦.

the emergence of four complex oscillations. The preliminary calculation of the frequency

dependence of the condition number ^ (𝐴𝑁 (𝑘𝑎)) inside the interval 0.001◦ ≤ 𝜙1 ≤ 20◦ reveals

the general pattern of the complex mode competition. Considering these preliminary data, it was

found that the most clear picture of the investigated phenomenon is given by the dependencies

𝑅𝑒𝜒𝑐(𝑠)𝑚𝑛 (𝜙1), where 𝑚 = 4, 𝑛 = 1 and 𝑚 = 1, 𝑛 = 2, and the angular semi-width of slit varies

from 𝜙1 = 0.1◦ to 𝜙1 = 20◦. The graphs |Δ𝑝 (𝑎, 𝜙) | for 𝜙1 = 0.1◦ are shown in Figure 4.3.

Two distributions |Δ𝑝 (𝑎, 𝜙) | undoubtedly belong to the asymmetric complex oscillations Ψ𝑠41
and Ψ𝑠12. The other two are of symmetric oscillations and may be identified with a highly

distorted complex oscillation Ψ𝑐41. To distinguish them, we introduce the notation Ψ
(+)
𝑐41 for

the “strong” oscillation (𝜒(+)
𝑐41 = 5.326357 − 𝑖0.000114316) and Ψ

(−)
𝑐41 for the “weak” oscillation

(𝜒(−)
𝑐41 = 5.378501 − 𝑖0.0074323). As a result of the mode competition by the counterpart

of Ψ𝑠12, the complex oscillation Ψ𝑐12 does not emerge at all, even when the angular semi-

width 𝜙1 is as low as 𝜙1 = 0.001◦. It is useful to compare the real parts of the complex

eigenvalues 𝜒𝑠41 = 5.317558 − 𝑖9.7 · 10−11 and 𝜒𝑠12 = 5.331442 − 𝑖2.7 · 10−12. The process

of transformation of the complex oscillations Ψ𝑠41,Ψ(+)𝑐41,Ψ𝑠12 for increasing angular semi-

width 𝜙1 is demonstrated in Figure 4.4. Being separated from the real parts of the complex
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Figure 4.3: Distribution of the jump of the velocity potential function |Δ𝑝 (𝑎, 𝜙) | at the sur-
face of a slotted cylinder with narrow longitudinal slit (𝜙1 = 0.1◦) for complex oscillations
Ψ𝑠41,Ψ

(+)
𝑐41,Ψ𝑠12,Ψ

(−)
𝑐41.

eigenvalues 𝜒𝑠41, 𝜒𝑠12, and 𝜒(+)𝑐41, the oscillation Ψ
(−)
𝑐41 does not pass through the process of

merging oscillations, and hence, the curve 𝑅𝑒𝜒(−)
𝑐41 (𝜙1) is absent in Figure 4.4. Another reason

for the absence of the curve 𝑅𝑒𝜒(−)
𝑐41 (𝜙1) is that it possesses a much higher 𝑄−factor. Let us

illustrate this assertion by a few numerical results: a) 𝜙1 = 1◦, 𝜒(−)𝑐41 = 5.414574 − 𝑖0.0209421(
𝑄
(−)
𝑐41 = 129.2749

)
; b) 𝜙1 = 5◦, 𝜒(−)𝑐41 = 5.483889 − 𝑖0.0684186

(
𝑄
(−)
𝑐41 = 40.0760

)
; and c) 𝜙1 =

10◦, 𝜒(−)
𝑐41 = 5.552421 − 𝑖0.1459716

(
𝑄
(−)
𝑐41 = 19.0188

)
. The mutual interchange of oscillations

Ψ𝑠41 andΨ𝑠12, when the dependencies 𝜒𝑠41 (𝜙1) and 𝜒𝑠12 (𝜙1) approach each other in the interval

4◦ < 𝜙1 < 6◦ whilst the dependence 𝜒
(+)
𝑐41 reveals an independent behaviour within the entire

range 0.1◦ < 𝜙1 ≤ 20◦, can be seen in Figure 4.4.

The oscillation Ψ
(+)
𝑐41 becomes coupled with the oscillation Ψ𝑠12 at two crossing points:

𝜙1 = 4.4883◦ and 𝜙1 = 15.8684◦. The calculated complex eigenvalues 𝜒(1)𝐻 and 𝜒
(2)
𝐻
describing

the emerging complex hybrid oscillations, are equal to 𝜒(1)
𝐻

= 5.326808 − 𝑖0.000104593 (𝜙1 =

4.4883◦) and 𝜒(2)
𝐻

= 5.330893 − 𝑖0.0000258039 (𝜙1 = 15.8684◦). The first hybrid oscillation
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Figure 4.5: Patterns of the velocity jump function |Δ𝑝 (𝑎, 𝜙) | for hybrid oscillations Ψ(1)
𝐻
.

is of symmetrical type: at the incidence angle 𝛼 = 0◦ the function |Δ𝑝 (𝑎, 𝜙) | has the shape

of the distorted oscillation Ψ(+)
𝑐41 (with 3 variations instead of 4). Surprisingly, at the incidence

angles 𝛼 > 0◦ (𝛼 = 45◦, 90◦) we may observe the “revival” of the totally suppressed oscillation

Ψ𝑐12, albeit slightly distorted. It should be observed that the excitation effectiveness of this

so-called “Janus oscillation” is comparable with that at 𝛼 = 0◦ (tentatively, Ψ(+)
𝑐41) and within

the interval 10◦ ≤ 𝛼 < 45◦ (tentatively, Ψ𝑐12). The shape of the function |Δ𝑝 (𝑎, 𝜙) | for

the second hybrid oscillation developing at 𝑘𝑎 = 𝑅𝑒𝜒
(2)
𝐻

= 5.330893(𝜙1 = 15.8684◦) also

depends on excitation angle 𝛼. When 𝛼 = 0◦, the shape |Δ𝑝 (𝑎, 𝜙) | matches that of the distorted

oscillation Ψ
(+)
𝑐41. When 𝛼 lies in the interval 0

◦ < 𝛼 ≤ 90◦, the shape |Δ𝑝 (𝑎, 𝜙) | may be

described as a result of coupling of the oscillations Ψ𝑠12 and Ψ𝑐12 (distorted oscillation Ψ𝑠12 or

distorted oscillation Ψ𝑐12). Irrespective of the interpretation of the shape of this oscillation, it is
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rather tentative since the semi-width of the slit is too wide to maintain the same shape as that

for the cylinder with a narrow slit, for example, 𝜙1 = 0.1◦ (see Figure 4.3, oscillation Ψ𝑠12).

4.2 Complex Oscillations of Sound-hard Elliptic Cylinder

with Variably Placed Slit

Complex oscillations in an elliptic sound-soft cylinders with longitudinal slit have been

studied in [54]. We complete the analysis for sound-hard cylinder, which is possibly more

valuable for acoustic problems. A closed sound-hard cylinder, treated as an acoustic waveguide,

possesses the fundamental (lowest) mode Ψ(0)
𝑐11, the eigenvalue 𝜒

(0)
𝑐11 of which depends on eccen-

tricity 𝑒. For example, 𝜒(0)
𝑐11 = 1.84155996 (𝑒 = 0.1) , 𝜒

(0)
𝑐11 = 1.85100194 (𝑒 = 0.5). As before,
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Figure 4.6: Slotted elliptic cylinders.

we use the dimensionless slit width ratios:
𝑤𝑏

2𝑏
and

𝑤𝑎

2𝑎
for vertical and horizontal slit location,

respectively, as shown in Figure 4.6, where 𝑏 and 𝑎 stand for minor and major semi-axes of

the ellipse. For the calculation of the complex eigenvalues 𝜒𝑐(𝑠)𝑚𝑛 we use three values of eccen-

tricity 𝑒 =
√︁
1 − 𝑞2 (𝑞 = 𝑏

𝑎
) : 𝑒 = 0.1 (𝑞 ' 0.995), 𝑒 = 0.5 (𝑞 ' 0.886), 𝑒 = 0.9 (𝑞 ' 0.436),

and three values of slit width 𝑤𝑏, 𝑤𝑎 = 0.05, 0.1, 0.2. The eigenvalues 𝜒(0)
𝑐(𝑠)𝑚𝑛 of a closed

sound-hard elliptic cylinder have been calculated in [108] by the direct calculation of the roots

of the radial Mathieu function’s derivative with an accuracy of 8 significant decimal places.

Using the MAR based solution, with large truncation system sizes 𝑁 = 4096 we verified these

results and found excellent agreement: see Table 4.3, containing the first 8 eigenvalues (the

expanded list of eigenvalues may be found in [108]).
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Table 4.3: Eigenvalues 𝜒(0)
𝑐(𝑠)𝑚𝑛 of natural oscillations Ψ

(0)
𝑐(𝑠)𝑚𝑛.

Ψ
(0)
𝑐(𝑠)𝑚𝑛 𝑒 = 0.1 Ψ

(0)
𝑐(𝑠)𝑚𝑛 𝑒 = 0.5 Ψ

(0)
𝑐(𝑠)𝑚𝑛 𝑒 = 0.9

Ψ
(0)
𝑐11 1.84155996 Ψ

(0)
𝑐11 1.85100194 Ψ

(0)
𝑐11 1.87658638

Ψ
(0)
𝑠11 1.85007877 Ψ

(0)
𝑠11 2.11236405 Ψ

(0)
𝑐21 3.43585287

Ψ
(0)
𝑐21 3.06184719 Ψ

(0)
𝑐21 3.22266147 Ψ

(0)
𝑠11 4.01493082

Ψ
(0)
𝑠21 3.06193336 Ψ

(0)
𝑠21 3.29315820 Ψ

(0)
𝑐31 4.96528375

Ψ
(0)
𝑐01 3.84143455 Ψ

(0)
𝑐01 4.19049573 Ψ

(0)
𝑠21 5.11153824

Ψ
(0)
𝑐31 4.21172636 Ψ

(0)
𝑐31 4.47916938 Ψ

(0)
𝑠31 6.29196435

Ψ
(0)
𝑠31 4.21172701 Ψ

(0)
𝑠31 4.49470665 Ψ

(0)
𝑐41 6.47912399

Ψ
(0)
𝑐41 5.33089546 Ψ

(0)
𝑐41 5.68162430 Ψ

(0)
𝑠41 7.53400165

Table 4.4: Complex eigenvalues 𝜒𝑐(𝑠)𝑚𝑛 (Elliptic cylinder: 𝑒 = 0.1; vertical slits).

Ψ𝑐(𝑠)𝑚𝑛 𝑤𝑏 = 0.05 𝑤𝑏 = 0.1 𝑤𝑏 = 0.2

Ψ𝑐00 0.347333 − 𝑖0.0180628 0.380538 − 𝑖0.02451743 0.425526 − 𝑖0.0359268
Ψ𝑠11 1.850554 − 𝑖0.0000010 1.851961 − 𝑖0.00001562 1.857446 − 𝑖0.0002332
Ψ𝑐11 1.956127 − 𝑖0.0242096 1.983919 − 𝑖0.03794990 2.028913 − 𝑖0.0668496
Ψ𝑠21 3.063338 − 𝑖0.0000072 3.067399 − 𝑖0.00010935 3.082486 − 𝑖0.0014850
Ψ𝑐21 3.159994 − 𝑖0.0250437 3.186833 − 𝑖0.04144180 3.231214 − 𝑖0.0779270
Ψ𝑐01 3.862053 − 𝑖0.0051049 3.868126 − 𝑖0.00845494 3.881192 − 𝑖0.0168233
Ψ𝑠31 4.214379 − 𝑖0.0000248 4.221843 − 𝑖0.00035614 4.248236 − 𝑖0.0044077
Ψ𝑐31 4.308090 − 𝑖0.0296133 4.337871 − 𝑖0.05277462 4.386733 − 𝑖0.1107514

It should be noted that the data in Table 4.3 is presented in increasing order of 𝜒(0)
𝑐(𝑠)𝑚𝑛 in

each column. In a case of small eccentricity 𝑒 = 0.1 (𝑞 ' 0.995), an elliptic cylinder may

be treated as a slightly deformed circular cylinder. In general, this deformation should lead to

disappearance of degeneracy, and result in the splitting of the eigenvalues. But some oscillations

keep the degeneracy if the deformation is not sufficient. This phenomenon is observed, when

𝑒 = 0.1 (𝑞 ' 0.995), for two pairs of degenerate oscillations:
(
Ψ
(0)
𝑐41,Ψ

(0)
𝑠41

)
and

(
Ψ
(0)
𝑐51,Ψ

(0)
𝑠51

)
for

which 𝜒(0)
𝑐41 = 𝜒

(0)
𝑠41 = 5.33089546 and 𝜒

(0)
𝑐51 = 𝜒

(0)
𝑠51 = 6.43171653, respectively. It is important to

mention that this assertion is based on our calculation of the eigenvalues 𝜒(0)
𝑐(𝑠)𝑚𝑛 with accuracy of

8 significant decimal places. In contrast, introduction of an exceedingly small slit immediately

removes degeneracy. For example, the vertical slit with the relative width 𝑤𝑏 = 0.001 splits

oscillationsΨ𝑐41 andΨ𝑠41: 𝜒𝑠41 = 5.330897−𝑖1.05 ·10−11 and 𝜒𝑐41 = 5.335432−𝑖2.5776 ·10−5.
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Let us explain why we opt for tabulated results instead of more compact graphical forms

such as shown in Figure 4.4. The first reason is the loss of accuracy in presentation since

the high accuracy of computations (8 significant digits) is masked by low graphical accuracy

of 1%. The second reason is convenience in using the accurate tabulated results in practice

and, in addition, to have accurate benchmark data for comparison with those obtained by other

methods.

Table 4.5: Complex eigenvalues 𝜒𝑐(𝑠)𝑚𝑛 (Elliptic cylinder: 𝑒 = 0.5; vertical slits).

Ψ𝑐(𝑠)𝑚𝑛 𝜒0
𝑐(𝑠)𝑚𝑛 𝑤𝑏 = 0.1 𝑤𝑏 = 0.2

Ψ𝑐00 0 0.401569 − 𝑖0.0246131 0.447637 − 𝑖0.0354677
Ψ𝑠11 1.85100194 2.003705 − 𝑖0.0377619 2.050495 − 𝑖0.0652908
Ψ𝑐11 2.11236405 2.113873 − 𝑖0.0000128 2.118307 − 𝑖0.0001921
Ψ𝑠21 3.22266147 3.297815 − 𝑖0.0000850 3.310883 − 𝑖0.0011755
Ψ𝑐21 3.29315820 3.373973 − 𝑖0.0479814 3.428919 − 𝑖0.0903767
Ψ𝑐01 4.19049573 4.197202 − 𝑖0.0017604 4.200457 − 𝑖0.0033164
Ψ𝑠31 4.47916938 4.503750 − 𝑖0.0002845 4.527914 − 𝑖0.0036150
Ψ𝑐31 4.49470665 4.627725 − 𝑖0.0566036 4.686973 − 𝑖0.1146210

Table 4.6: Complex eigenvalues 𝜒𝑐(𝑠)𝑚𝑛 (Elliptic cylinder: 𝑒 = 0.9; vertical slits).

Ψ𝑐(𝑠)𝑚𝑛 𝜒0
𝑐(𝑠)𝑚𝑛 𝑤𝑏 = 0.1 𝑤𝑏 = 0.2

Ψ𝑐00 0 0.504926 − 𝑖0.0230244 0.550138 − 𝑖0.0301307
Ψ𝑐11 1.87658638 2.098288 − 𝑖0.0334506 2.152062 − 𝑖0.0510938
Ψ𝑐21 3.43585287 3.641781 − 𝑖0.0421754 3.704696 − 𝑖0.0699540
Ψ𝑠11 4.01493082 4.015090 − 𝑖0.0000017 4.015601 − 𝑖0.0000267
Ψ𝑠21 4.96528375 5.112319 − 𝑖0.0000119 5.114754 − 𝑖0.0001793
Ψ𝑐31 5.11153824 5.169117 − 𝑖0.0505311 5.241350 − 𝑖0.0891116
Ψ𝑠31 6.29196435 6.294052 − 𝑖0.0000437 6.300383 − 𝑖0.0006243
Ψ𝑐41 6.47912399 6.685584 − 𝑖0.0590294 6.767492 − 𝑖0.1094960

Tables 4.4 – 4.7 contain the complex eigenvalues 𝜒𝑐(𝑠)𝑚𝑛 for various slotted elliptic cylin-

ders created by a selection of the parameters: three values of eccentricity 𝑒 = 0.1 (𝑞 ' 0.995),

𝑒 = 0.5 (𝑞 ' 0.886), 𝑒 = 0.9 (𝑞 ' 0.436), three values of relative slit width 𝑤𝑏 = 0.05, 0.1, 0.2,

and two types of slits: vertical and horizontal. This way we cover a range of options in eccen-

tricity, slit size, and orientation.We conclude that the tendency of suppression of the complex
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Table 4.7: Complex eigenvalues 𝜒𝑐(𝑠)𝑚𝑛 (Elliptic cylinder: 𝑒 = 0.5; horizontal slits).

Ψ𝑐(𝑠)𝑚𝑛 𝜒0
𝑐(𝑠)𝑚𝑛 𝑤𝑎 = 0.1 𝑤𝑎 = 0.2

Ψ𝑐00 0 0.405314 − 𝑖0.0261481 0.452213 − 𝑖0.0382128
Ψ𝑐11 1.85100194 1.852968 − 𝑖1.204 · 10−5 1.858692 − 𝑖1.8196 · 10−4

Ψ𝑠11 2.11236405 2.257540 − 𝑖0.0390177 2.301937 − 𝑖0.0677287
Ψ𝑐21 3.22266147 𝑠𝑢𝑝. 𝑠𝑢𝑝.

Ψ𝑠21 3.29315820 3.298616 − 𝑖9.338 · 10−5 3.313633 − 𝑖1.2788 · 10−3

Ψ𝑐01 4.19049573 4.244796 − 𝑖0.0142567 4.266110 − 𝑖0.0236603
Ψ𝑐31 4.47916938 4.488283 − 𝑖2.720 · 10−4 4.511992 − 𝑖3.4213 · 10−3

Ψ𝑠31 4.49470665 4.619391 − 𝑖0.0556689 4.667695 − 𝑖0.119558

symmetric oscillationsΨ𝑐𝑚𝑛 observed for the slotted circular cylinder is also observed for the el-

liptic cylinder with a longitudinal slit. Moreover, vertical or horizontal placement of the slit

does not change the phenomenon.

4.3 Slotted Rectangular and Polygonal Cylinders

Since the MAR-based approach for calculation of complex eigenvalues is explained in detail

in earlier sections, we focus here on numerical results and only highlight important points and

distinctive aspects in this section. First, we consider a rectangular cavity with aspect ratio

𝑎/𝑏 = 2 and a longitudinal slit symmetrically placed in the wider wall of the waveguide (see

Figure 4.7).

𝑎

𝑥

𝑦

𝑏

𝑤

Figure 4.7: Slotted rectangular cylinder.

For classical rectangular waveguides, the relative cut-off wavenumbers (𝑘𝑐)𝑚𝑛 can be found
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in the exact form, using the slightly rearranged well-known formula

(𝑘𝑐)𝑚𝑛 = 𝜋

√︄(
𝑏

𝑎

)2
𝑚2 + 𝑛2 (4.2)

where the indices𝑚, 𝑛 = 0, 1, 2..., 𝑚2 +𝑛2 ≠ 0, describe the number of variations of the electro-

magneticwaves between the narrow and broadwalls of thewaveguide. According to this formula,

there are two degenerate modes, TE01 and TE20, in the frequency range of our interest charac-

terised by the same cut-off wavenumber: (𝑘𝑐)01 = (𝑘𝑐𝑏)20 = 𝜋. It can be reasonably assumed

that any irregularity in the walls geometry should lead to disappearance of the mode degeneracy,

which is the case when we introduce an infinite longitudinal slit. The first eight complex eigen-

values calculated for a rectangular cavity with parameters 𝑎/𝑏 = 2 and 𝑤/𝑎 = 0.1, 0.25, 0.5,

are collected in Table 4.8. The disappearance of the degeneracy is observed in modes TE01 and

TE20. It should be noted that mode TE01 is significantly less distorted in its electromagnetic

field structure by the slit than mode TE20 which is suppressed rapidly when slit takes values

𝑤/𝑎 > 0.14. In general, suppression of certain complex oscillations occurs when the cylinder is

cut by a slit of a sufficiently large width. This phenomenon is clearly observed in the frequency

dependence of condition number as peaks for certain modes, present for smaller slit widths,

vanish. Depending on the oscillation type, the suppression occurs when the 𝑄−factor drops to

2.5-3.5, as a result of widening the slit.

Table 4.8: Complex eigenvalues in a slotted (𝑤/𝑎 = 0.1, 0.25, 0.5) rectangular (𝑎/𝑏 = 2) cavity.

TE𝑚𝑛 𝑤/𝑎 = 0.1 𝑤/𝑎 = 0.25 𝑤/𝑎 = 0.5

TE00 0.486802 − 𝑖0.0386621 0.566795 − 𝑖0.069984 0.651299 − 𝑖0.127871
TE10 1.576784 − 𝑖0.0000192 1.606806 − 𝑖0.000752 1.698781 − 𝑖0.010946
TE01 3.141727 − 𝑖0.0000001 3.144431 − 𝑖0.000005 3.183191 − 𝑖0.001291
TE20 3.353183 − 𝑖0.0681991 𝑠𝑢𝑝. 𝑠𝑢𝑝.

TE11 3.517790 − 𝑖0.0001287 3.542604 − 𝑖0.003945 3.634609 − 𝑖0.055512
TE21 4.624361 − 𝑖0.0943883 𝑠𝑢𝑝. 𝑠𝑢𝑝.

TE30 4.728786 − 𝑖0.0005732 4.783138 − 𝑖0.012113 4.841085 − 𝑖0.064734
TE31 5.691209 − 𝑖0.0015848 5.793825 − 𝑖0.038782 5.936111 − 𝑖0.239491

Next, we investigate the effect of varying the rectangular cavity ratio 𝑎/𝑏 at

the fixed slit widths 𝑤/𝑏 = 0.1, 0.25, 0.5. We calculate the complex eigenvalues
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𝛾𝑚𝑛 (𝑘𝑏) = 𝛾′𝑚𝑛 (𝑘𝑏) − 𝑖𝛾′′𝑚𝑛 (𝑘𝑏) for the range 1.1 ≤ 𝑎/𝑏 ≤ 2 (𝑏 = 1). The results of the calcu-

lations for complex eigenvalues 𝛾00, 𝛾01, 𝛾10 are plotted in Figures 4.8 - 4.10, for various values

of the slit width. Overall, with growth of the ratio
𝑎

𝑏
the real part of the relevant complex

eigenvalue decreases while the imaginary part increases.

(a) 𝛾00 (b) 𝛾10 (c) 𝛾01

Figure 4.8: Complex eigenvalues 𝛾𝑚𝑛 of the complex natural oscillations TE𝑚𝑛 in a rectangular
cavity with 𝑤/𝑏 = 0.1 and varying ratio 𝑎/𝑏.

(a) 𝛾00 (b) 𝛾10 (c) 𝛾01

Figure 4.9: Complex eigenvalues 𝛾𝑚𝑛 of the complex natural oscillations TE𝑚𝑛 in a rectangular
cavity with 𝑤/𝑏 = 0.25 and varying ratio 𝑎/𝑏.

(a) 𝛾00 (b) 𝛾10 (c) 𝛾01

Figure 4.10: Complex eigenvalues 𝛾𝑚𝑛 of the complex natural oscillations TE𝑚𝑛 in a rectangular
cavity with 𝑤/𝑏 = 0.5 and varying ratio 𝑎/𝑏.
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𝑥

𝑦

𝑎

𝑏

Figure 4.11: Open rectangular cavity formed by the removal of the left narrow wall.

Duct-like systems as shown in Figure 4.11 (that can be modelled by removal of one of the

narrowwalls of a rectangular waveguide, 𝑎 � 𝑏) arewidely used in electromagnetic and acoustic

applications ([109]). We show that the MAR can be used effectively to calculate complex eigen-

values of these rectangular ducts without a limitation on the ratio 𝑎/𝑏. We start our investigation

by presenting the complete spectral portrait in the interval of 0 < 𝑘𝑏 ≤ 10 obtained by calculating

condition number ^ (𝐴𝑁 (𝑘𝑏)) presented in Figure 4.12. This plot reveals an increasing number

of complex natural oscillations as the open rectangular cavity elongates, successively taking

the values 𝑎/𝑏 = 2, 5, 10, 20. From the behaviour of the dependence ^ (𝐴𝑁 (𝑘𝑏)), it can be seen

that the oscillations𝑇𝐸0𝑛, 𝑛 = 1, 2, . . . dominate over the oscillations𝑇𝐸𝑚𝑛, 𝑚 > 0, 𝑛 = 1, 2, . . .

This phenomenon is readily explained: with steady elongation of the open rectangular cavity

the formation of standing waves between the right narrow wall and the edges of the opening

becomes less pronounced in comparison with the transverse oscillations between the upper and

lower wall (of length 𝑎). In other words, the longer an open cylinder is, the closer its spectral

properties are to a resonator composed of two parallel planes which is characterised by a system

of vertical standing waves only. From the complete spectrum of the complex eigenvalues (the

approximate location of their real parts 𝑅𝑒𝛾𝑚𝑛 ≡ 𝛾′𝑚𝑛 can be deduced from Figure 4.12) we

extract those which are relevant to the modes (𝑇𝐸01, 𝑇𝐸11) , (𝑇𝐸02, 𝑇𝐸12) , (𝑇𝐸03, 𝑇𝐸13).

The results of calculation of the complex eigenvalues (𝛾01, 𝛾11) , (𝛾02, 𝛾12) , (𝛾03, 𝛾13) for

steadily elongating open rectangular cylinder with parameter 𝑎/𝑏 = 2, 5, 10, 20, are collected in

Table 4.9. To make the effect of removal of the left narrow wall on eigenvalues more visible,

we have included in the table the real-valued eigenvalues 𝛾 (0)𝑚𝑛 ≡ (𝑘𝑐𝑏)𝑚𝑛 of the corresponding
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Figure 4.12: Condition number ^ (𝐴𝑁 (𝑘𝑏)) against relative wavenumber 𝑘𝑏 for an open rect-
angular resonator with one narrow wall removed for aspect ratios 𝑎/𝑏 = 2, 5, 10, 20.

natural oscillations for the closed rectangular cavity (calculated using equation (4.3)). The nu-

merical data confirm the dominance of standing waves in the space between the broad walls over

the standing waves between the right narrow wall and edges of the cavity entry. As 𝑎/𝑏 → ∞

the complex eigenvalues 𝛾𝑚𝑛 converge to the real-valued eigenvalues 𝛾 (0)𝑚𝑛 , with 𝛾′𝑚𝑛 → 𝛾
(0)
𝑚𝑛

and 𝛾′′𝑚𝑛 → 0.

Having considered a rectangular cross section, we turn our attention to regular polygonal

cylinders formed by 𝑛 straight equilateral sides. Regular (equilateral) polygonal waveguides

(PW) with 𝑛 denoting the number of side walls (3 ≤ 𝑛 ≤ 8), find wide application in microwave

engineering ([110]). In a brief description on applications of PW contained in ([111]), the author

asserts that the least studied shape is the heptagonal waveguide (HPW). Cut-off frequencies of

both fundamental TE- and TM-modes in a regular PW have been obtained in [112] using

the perturbation method. From a variety of polygon shapes, we choose the pentagon (𝑛 = 5),

heptagon (𝑛 = 7) and nonagon (𝑛 = 9). The opening in each of these polygonal cylinders is

formed by removal of one of its sides as shown in Figures 4.13a-4.13c.
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Table 4.9: Complex eigenvalues 𝛾𝑚𝑛 (𝑚 = 0, 1; 𝑛 = 1, 2, 3) of oscillations TE𝑚𝑛 in an open
elongated rectangular cavity.

𝑎/𝑏 𝛾
(0)
01 𝛾01 𝛾

(0)
11 𝛾11

2 3.141592 3.219752 − 𝑖0.006391 3.512407
5 3.141592 3.155113 − 𝑖0.000498 3.203808 3.268287 − 𝑖0.004407
10 3.141592 3.146513 − 𝑖0.000082 3.157261 3.176594 − 𝑖0.000601
20 3.141592 3.142693 − 𝑖0.000011 3.145517 3.150445 − 𝑖0.000080

𝑎/𝑏 𝛾
(0)
02 𝛾02 𝛾

(0)
12 𝛾12

2 6.283185 6.325649 − 𝑖0.003824 6.476559
5 6.283185 6.290767 − 𝑖0.000290 6.314523 6.345881 − 𝑖0.002336
10 6.283185 6.285984 − 𝑖0.000076 6.291034 6.301363 − 𝑖0.000250
20 6.283185 6.282999 − 𝑖0.000026 6.285148 6.287141-i0.000037

𝑎/𝑏 𝛾
(0)
03 𝛾03 𝛾

(0)
13 𝛾13

2 9.424777 9.453659 − 𝑖0.002560 9.554781
5 9.424777 9.430410 − 𝑖0.000193 9.445698 9.470321 − 𝑖0.001241
10 9.424777 9.426178 − 𝑖0.000065 9.430012 9.436832 − 𝑖0.000174
20 9.424777 9.419334 − 𝑖0.000043 9.426086 9.423705 − 𝑖0.000143
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(d) Partially removed side wall

Figure 4.13: Slotted polygonal cylinders.

It is also possible to form an opening by incomplete (or partial) removal of the side, as

shown in Figure 4.13d. We restrict ourselves to spectral studies of the interval 0 < 𝑘𝑎 ≤ 5,

where 𝑎 is the radius of the circle in which the polygons are inscribed. The aperture may be

defined by the indicated angle 𝜙1. First, we calculate the frequency dependence of condition

number ^ (𝐴𝑁 (𝑘𝑎)), 𝑁 = 128, 0 < 𝑘𝑎 ≤ 5 for each of the open polygonal cylinders shown

in Figure 4.13. In case of an incomplete removal of a side wall (for example when 𝜙1 = 5◦),

the dependence ^ (𝐴𝑁 (𝑘𝑎)), 𝑁 = 128, 𝑁 = 5, 7, 9 is shown in Figure 4.14. From the resonance

peaks of the function ^ (𝐴𝑁 (𝑘𝑎)) presented in this figure, we extract five values of 𝑘𝑎 as initial

approximations for further accurate calculation of the complex eigenvalues of the corresponding

complex oscillations 𝑇𝐸𝑚𝑛. It is of interest to compare those complex eigenvalues 𝛾𝑚𝑛 of

the open polygonal cylinders with the corresponding values 𝜒𝑐(𝑠)𝑚𝑛 of the circular cylinder with

a slot of the same angular semi-width 𝜙1. The results for apertures 𝜙1 = 5◦ and 𝜙1 = 10◦ are

collected in Tables 4.10 and 4.11, respectively. We have included the complex eigenvalues for

the slotted circular cylinder in the last columns of both tables (labelled 𝑛→∞ since the circular
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Figure 4.14: Condition number ^ (𝐴𝑁 (𝑘𝑎)) against relative wavenumber 𝑘𝑎 for open (𝜙1 = 5◦)
polygonal cylinders.

cylinder is the limiting case of a polygonal cylinder). It can be seen that the real parts of

the complex eigenvalues 𝑅𝑒𝛾𝑐(𝑠)𝑚𝑛 monotonically approach their circular cylinder counterparts

as the parameter 𝑛 increases. The behaviour of the complex parts 𝐼𝑚𝛾𝑐(𝑠)𝑚𝑛 is not of monotonic

character. The peculiarities in the behaviour of 𝐼𝑚𝛾𝑐(𝑠)𝑚𝑛 may be explained by the different

influence of the structure walls and slit (under increasing 𝑛) on the anti-nodes in the standing

waves which are specific for each complex natural oscillation TE𝑐(𝑠)𝑚𝑛.

If one wall is removed completely, the slit width 𝑤 measured in terms of angular semi-width

𝜙1 is significantly larger: in fact 𝜙1 = 36◦ (𝑛 = 5) , 𝜙1 ' 25.7◦ (𝑛 = 7), 𝜙1 = 20◦ (𝑛 = 9). This

fact makes radiation losses through the slit more significant. As a result, the values of 𝐼𝑚𝛾𝑐(𝑠)𝑚𝑛
increases and unloaded 𝑄−factors significantly decrease. This physically evident phenomenon

is well illustrated by calculations shown in Table 4.12.

Table 4.10: Complex eigenvalues for polygonal cylinders 𝜒𝑐(𝑠)𝑚𝑛, (𝜙1 = 5◦).

𝑇𝐸𝑐(𝑠)𝑚𝑛 𝑛 = 5 𝑛 = 7 𝑛 = 9 𝑛→∞

𝑇𝐸00 0.513528 − 𝑖0.036720 0.458188 − 𝑖0.031238 0.430316 − 𝑖0.028454 0.372457 − 𝑖0.022953
𝑇𝐸 𝑠11 2.086311 − 𝑖3.23 · 10−8 1.965051 − 𝑖4.52 · 10−8 1.915731 − 𝑖1.48 · 10−7 1.841417 − 𝑖2.033 · 10−7

𝑇𝐸 𝑠21 3.341879 − 𝑖7.98 · 10−8 3.242407 − 𝑖1.39 · 10−7 3.172253 − 𝑖4.56 · 10−7 3.058442 − 𝑖6.5 · 10−5

𝑇𝐸𝑐01 4.341781 − 𝑖0.00108 4.112456 − 𝑖0.001918 4.005527 − 𝑖0.001679 3.857797 − 𝑖0.007844
𝑇𝐸 𝑠31 4.903779 − 𝑖5.23 · 10−8 4.391686 − 1.65 · 10−7 4.351629 − 𝑖9.13 · 10−7 4.208996 − 𝑖0.213 · 10−4
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Table 4.11: Complex eigenvalues for polygonal cylinders 𝜒𝑐(𝑠)𝑚𝑛, (𝜙1 = 10◦).

𝑇𝐸𝑐(𝑠)𝑚𝑛 𝑛 = 5 𝑛 = 7 𝑛 = 9 𝑛→∞

𝑇𝐸00 0.560412 − 𝑖0.049869 0.501652 − 𝑖0.042834 0.472653 − 𝑖0.039424 0.414271 − 𝑖0.032979
𝑇𝐸 𝑠11 2.099883 − 𝑖1.94 · 10−4 1.974553 − 𝑖1.63 · 10−4 1.923758 − 𝑖1.5 · 10−4 1.846809 − 𝑖0.000136
𝑇𝐸 𝑠21 3.388374 − 𝑖0.002187 3.270413 − 𝑖0.001019 3.195333 − 𝑖9.59 · 10−4 3.007005 − 𝑖0.000890
𝑇𝐸𝑐01 4.367170 − 𝑖0.012683 4.145138 − 𝑖0.025930 4.035392 − 𝑖0.020587 3.868933 − 𝑖0.014815
𝑇𝐸 𝑠31 4.923339 − 𝑖0.002335 4.455207 − 𝑖0.005152 4.394785 − 𝑖0.002901 4.229510 − 𝑖0.002699

Table 4.12: Complex eigenvalues for polygonal cylinders with one side removed.

𝑇𝐸𝑐(𝑠)𝑚𝑛 𝑛 = 5 𝑛 = 7 𝑛 = 9

𝑇𝐸00 0.706302 − 𝑖0.114857 0.591198 − 𝑖0.077050 0.531879 − 𝑖0.059942
𝑇𝐸 𝑠11 2.183621 − 𝑖0.012418 2.008343 − 𝑖0.004461 1.940655 − 𝑖0.001826
𝑇𝐸 𝑠21 3.504750 − 𝑖0.216623 3.363242 − 𝑖0.020537 3.241184 − 𝑖0.009959
𝑇𝐸𝑐01 4.669968 − 𝑖0.178820 4.265923 − 𝑖0.091300 4.078391 − 𝑖0.047294
𝑇𝐸 𝑠31 5.075525 − 𝑖0.095449 4.265923 − 𝑖0.091300 4.475217 − 𝑖0.024658

To conclude our investigation of complex eigenvalues of polygonal cylinders, we use the val-

ues 𝑅𝑒(𝛾𝑚𝑛) in Tables 4.10-4.12 to calculate the modal field distribution for a pentagon with

a partially removed wall (\1 = 5◦), a heptagon with a partially removed wall (\1 = 10◦), and

a nonagon with a completely removed wall (\1 = 20◦). The resulting plots are presented in

Figures 4.15 - 4.17. It is evident that the modal structure inside the cavity is similar for all three

polygons.

(a) 𝑇𝐸00 (b) 𝑇𝐸 𝑠11 (c) 𝑇𝐸 𝑠21 (d) 𝑇𝐸𝑐01

Figure 4.15: Modal field distribution for four complex natural oscillations in an open cylinder
(𝑛 = 5, 𝜙1 = 5◦).
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(a) 𝑇𝐸00 (b) 𝑇𝐸 𝑠11 (c) 𝑇𝐸 𝑠21 (d) 𝑇𝐸𝑐01

Figure 4.16: Modal field distribution for four complex natural oscillations in an open cylinder
(𝑛 = 7, 𝜙1 = 10◦).

(a) 𝑇𝐸00 (b) 𝑇𝐸 𝑠11 (c) 𝑇𝐸 𝑠21 (d) 𝑇𝐸𝑐01

Figure 4.17: Modal field distribution for four complex natural oscillations in an open cylinder
(𝑛 = 9, 𝜙1 = 20◦).

4.4 Slotted Cylinders of Arbitrary Cross Section

4.4.1 Sinusoidally Corrugated Circular Cylinder

The term “corrugated waveguide” is usually associated with periodic (or non-periodic) cir-

cumferential corrugation of its walls. Electromagnetic propagation in transversely corrugated

cylindrical waveguides finds application in microwave engineering, in particular, in horn an-

tennas. They are used in radio-astronomy and satellite communications due to their excellent

characteristics such as low side lobe levels, low cross-polarisation, and pattern symmetry ([113]).

Longitudinally corrugated waveguides are utilised as cluster feeds of reflector antennas due to

their high aperture efficiencies. Quasi-TEMmodes with near uniform aperture field distribution

supported by such axially grated hard-walled waveguides have also been proposed as effective

elements in multifunction interlaced arrays and vital components in quasi-optical grid ampli-

fiers ([114–116]). Other applications of hard corrugated waveguides include mode converters,

polarisation transformers, as well as resonant cavities.

Consequently, prior research on these structures may be divided into transversely or longi-

tudinally corrugated waveguides. In this section, we focus on preliminary studies of longitudi-

nally corrugated open 2D circular cavities (waveguides), targeting purely theoretical aspects of
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the modal analysis. Before discussing numerical results, one reservation should be made. Both

sinusoidally and magnetron-type corrugated open circular cavities (cylinders) are characterised

by a number of parameters. Thus, the full examination of such cavities for obtaining the optimal

solution is only practical for strictly defined problems. Therefore, we restrict our attention to

several examples that reveal theMAR’s ability and effectiveness. First, a sinusoidally corrugated

open circular cylinder, parametrised by equation (4.3) and shown in Figure 4.18 is considered.

𝜌 (𝜙) = 𝑎 + 𝑏 sin 𝜙, 𝑥 = 𝜌(𝜙) cos (𝑐𝜙), 𝑦 = 𝜌(𝜙) sin (𝑐𝜙) (4.3)

𝑥

𝑦

𝑎

(a) 𝑏 = 0.05, 𝑐 = 15

𝑥

𝑦

𝑎

(b) 𝑏 = 0.15, 𝑐 = 10

𝑥

𝑦

𝑎
𝜙1

(c) Open

Figure 4.18: Circular cylinders of a mean radius 𝑎 with sinusoidal corrugation (closed and
open).

As usual, our study of spectral features of open corrugated circular cylinders start from

the frequency dependence ^ (𝐴𝑁 (𝑘𝑎)), which immediately clarifies the nature of the spectral

portrait in a given range of variation 𝑘𝑎, set to 0 < 𝑘𝑎 ≤ 5. We investigate two corrugated

cylinders shown in Figure 4.18 with parameters 𝑏 = 0.05, 𝑐 = 15 and 𝑏 = 0.15, 𝑐 = 10, where 𝑏

is the relative amplitude of the sinusoid and 𝑐 is the number of variations along the circle. For

both cylinders the angular semi-width of slot 𝜙1 is set to 𝜙1 = 10◦, and the mean radius 𝑎 = 1.

The frequency dependence of the condition number ^ (𝐴𝑁 (𝑘𝑎)) is presented in Figure 4.19.

Three calculated complex eigenvalues 𝛾00, 𝛾𝑠11, 𝛾𝑠21 of the complex natural oscillations

TE00,TE𝑠11,TE𝑠21, are compared with the non-corrugated (smooth) circular cylinder of equal

slot width ( 𝜙1 = 10◦). The result are collected in Table 4.13. The comparison of the data for

corrugated and non-corrugated slotted cylinders shows that when the depth of corrugation is

small (𝑏 � 𝑎 or 𝑏 = 0.05 � 1), its influence on the complex eigenvalues is insignificant. By

enlarging the modulation parameter 𝑏, one can find a threshold value beyond which the influence
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Figure 4.19: Condition number ^ (𝐴𝑁 (𝑘𝑎)) against relative wavenumber 𝑘𝑎 for sinusoidal
corrugated slotted cylinders (𝜙1 = 10◦).

of corrugation renders unrecognisable the family of complex eigenvalues. The effect of increas-

ing the depth from 𝑏 = 0.05 to 𝑏 = 0.15 can be seen in the data as distortion of the complex

oscillations becomes more visible. Finally, we conclude this section with modal field plots of

the distribution of electromagnetic field |𝐻𝑧 (𝑥, 𝑦) | shown in Figure 4.20, based on the data

provided in Table 4.13.

Table 4.13: Comparison of the first three complex oscillations in a corrugated against non-
corrugated circular cylinder.

TE𝑐(𝑠)𝑚𝑛 Non-corrugated 𝑏=0.05, 𝑐=10 𝑏=0.15, 𝑐=10

TE00 0.446178 − 𝑖0.042639 0.442153 − 𝑖0.041674 0.420014 − 𝑖0.036630
TE𝑠11 1.853482 − 𝑖0.000630 1.841401 − 𝑖0.000548 1.758827 − 𝑖0.000270
TE𝑠21 3.087733 − 𝑖0.003803 3.047906 − 𝑖0.003599 2.902398 − 𝑖0.076619

4.4.2 Magnetron-type Cavity with Longitudinal Slit

Cavity magnetrons are high-power sources of radiation and are commonly used in appli-

cations such as microwave ovens, radar systems, medical line accelerators, and historically, in

lighting systems. Normally, a cavity magnetron is made up of a solid metallic cylinder acting as

anode. Small resonator cavities are placed inside the cylinder, interacting with a source placed



4.4 Slotted Cylinders of Arbitrary Cross Section 103

(a) TE00 (b) TE𝑠11 (c) TE𝑠21

Figure 4.20: Modal field distribution in an open sinusoidally corrugated cylinder 𝑎 = 1, 𝑏 = 0.05,
𝑐 = 10, 𝜙1 = 10◦.

Figure 4.21: Common diagrams of a resonant magnetron cavity.

in the centre as a cathode. Common cross sectional diagrams of a resonant magnetron cavity

are presented in Figure 4.21.

In this section we model a 2D version of a magnetron-type cavity. The parametrisation of

the contour for a magnetron-type cavity is very similar to the parametrisation of the radial ridge

waveguides. We use the number of “ridges” as a parameter which enables us to investigate

dual-ridge, quad-ridge and octo-ridge geometries before proceeding to magnetron-type cavities.

The parametrisation of a ridge waveguide can be created by constructing one quarter of the con-

tour, and then using the symmetry across the 𝑥− and 𝑦−axis, this process allows to obtain the

complete contour. As demonstrated in Figure 4.22, the height and width of the ridge can be

adjusted via parameters ℎ𝑟 and 𝑤𝑟 , respectively.

The main motivation in developing radial ridge waveguides lies in their usage in antenna feed

systems [117]. As stated in the previous sections, irregularities in the waveguide walls result in

the disappearance of degenerate modes. This can affect the bandwidth in varying degrees for



104 Spectral Studies of Slotted Cavities

𝑥

𝑦

𝑎

𝑤𝑟
ℎ𝑟

(a) dual-ridge, 𝑛=2, ℎ𝑟 =0.4, 𝑤𝑟 =0.3

𝑥

𝑦

𝑎

(b) quad-ridge, 𝑛=4, ℎ𝑟 =0.2, 𝑤𝑟 =0.4

𝑥

𝑦

𝑎

(c) octo-ridge, 𝑛=8, ℎ𝑟 =0.3, 𝑤𝑟 =0.2

𝑥

𝑦

𝑎

(d) magnetron, 𝑛=12, ℎ𝑟 =0.4, 𝑤𝑟 =0.1

Figure 4.22: Various ridge and magnetron-type structures.

different modes. For lower modes, where ratio
TE𝑛𝑚
TE11

< 3, degenerate modes and their effect

on bandwidth has been investigated in [118]. Using the MAR, excellent agreement with these

numerical results is obtained.

We use parameters similar to those in [118]: 𝑤𝑟 = 𝑤/𝑟 and ℎ𝑟 = ℎ/𝑟 where 𝑤𝑟 = 0.1 and

ℎ𝑟 = 0.1, 0.2, . . . , 0.8 to analyse the effect of increasing ridge height on the mode characteristics.

Starting with a dual-ridge waveguide in Figure 4.22a, we calculate the cut-off wavenumbers for

varying ℎ𝑟 . The introduction of the ridge removes degeneration of different modes in different

ridge configurations. We will denote a mode with subscripts 𝑅 and 𝑊 as in TE11𝑅, TE11𝑊 .

The subscript𝑊 indicates that the mode is not significantly affected by the ridge and is similar to

the modes of a simple circular waveguide while the subscript 𝑅 denotes that the mode is heavily

affected by the inclusion of ridges. The cut-off wavenumbers, normalised by TE11 mode, are

presented in Figure 4.23: the inclusion of ridge splits the degenerate modes for both TE11and
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TE21. Effect of a degenerate mode splitting is also seen in the modal field representations shown

in Figure 4.24.
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Figure 4.23: Normalised cut-off wavenumbers TE𝑚𝑛/TE11 as functions of ℎ𝑟 for a dual-ridge
cylindrical waveguide (𝑤𝑟 = 0.1).

(a) TE11𝑊 (b) TE11𝑅

Figure 4.24: Normalisedmodal field distribution in a dual-ridgewaveguide (𝑤𝑟 = 0.1, ℎ𝑟 = 0.4).
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Figure 4.25: Normalised cut-off wavenumbers TE𝑚𝑛/TE11 as functions of ℎ𝑟 for a quad-ridge
cylindrical waveguide (𝑤𝑟 = 0.1).

(a) TE21𝑊 (b) TE21𝑅

Figure 4.26: Normalised modal field distribution in quad-ridge waveguide 𝑤𝑟 = 0.1, ℎ𝑟 = 0.4.

Due to 𝑥− and 𝑦−axis symmetry the 𝑇𝐸11 mode is still a degenerate mode in quad-ridge

waveguides, but a split of degenerate mode 𝑇𝐸21 can be observed in Figure 4.25 and 4.26.

Before turning to the magnetron-type cavity, we consider an octo-ridge waveguide. As shown

in Figure 4.27, the first degenerate mode that splits is 𝑇𝐸41 and adding ridges results in the dis-

appearance of 𝑇𝐸21𝑊 . The field plots representing the split degenerate modes are provided in

Figure 4.28.

To summarise, while the introduction of ridges is helpful where broad bandwidth and

high power are required, when the ridge height ℎ approaches the radius of the simple circular

waveguide, the operating bandwidth is dramatically reduced for some modes. As can be seen
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Figure 4.27: Normalised cut-off wavenumbers TE𝑚𝑛/TE11 as functions of ℎ𝑟 for an octo-ridge
cylindrical waveguide (𝑤𝑟 = 0.1).

(a) TE41𝑊 (b) TE41𝑅

Figure 4.28: Normalised Modal field ( |𝐻𝑧 (𝑥, 𝑦) |) in octo-ridge waveguide 𝑤𝑟 = 0.1, ℎ𝑟 = 0.4.

from Figure 4.25 and 4.27, ℎ𝑟 ≈ 0.2 provides an optimum ratio for quad- and octo-ridge

waveguides.

Finally, we turn our attention to magnetron type slotted cavities shown in Figure 4.29 with

an opening that represents the output coupling loop. In cavity magnetrons, the oscillations

around the inner resonator cavities generate radio frequency energy. The slot is then used

for removing the output power from the anode by a probe which is connected to a coupling

waveguide or antenna ([119]. Our brief analysis is limited to the effect of corrugation width and

depth for different slot sizes.
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𝑥

𝑦

𝑎
𝑤𝑠

Figure 4.29: Magnetron type cavity with a longitudinal slit 𝑤.

Employing the frequency dependence of the condition number ^ (𝐴𝑁 (𝑘𝑎)) for 0 < 𝑘𝑎 ≤ 5,

shown in Figure 4.30, we analyse the spectral portrait of selected magnetron-type cavities to

see the influence of parameters ℎ𝑟 , 𝑤𝑟 (height and width of corrugation), and 𝑤𝑠 (width of

slot) on the complex eigenvalues. Two complex eigenvalues 𝛾00, 𝛾𝑠11 of the complex nat-

ural oscillations TE00,TE𝑠11 are calculated and presented in Table 4.14 for structures with

𝑤𝑟 = 0.15, ℎ𝑟 = 0.3, 𝑤𝑠 = 0.2 and 𝑤𝑟 = 0.1, ℎ𝑟 = 0.5, 𝑤𝑠 = 0.2. As explained in [120], mode

conversion should be carefully considered in the design of magnetron cavities, as well as the ef-

fect of corrugation (both in height and width) on bandwidth between operating and competing

modes. The MAR enables one to calculate complex eigenvalues effectively with any chosen

set of parameters, which in turn gives the capability of extended calculations for a deep anal-

ysis of specific structures. TE00 and TE𝑠11 modes are selected for such a further analysis of

the mode dependence on corrugation depth and width. In Tables 4.15 and 4.16, we present

the complex eigenvalues for two sets of parameters: 𝑤𝑟 = 0.15, ℎ𝑟 = 0.3, 0.4, 0.5, 0.6, and

ℎ𝑟 = 0.5, 𝑤𝑟 = 0.1, 0.14, 0.18, 0.2 for a fixed slit width 𝑤𝑠 = 0.2.

Table 4.14: Complex eigenvalues 𝛾00, 𝛾𝑠11, 𝛾𝑠21 of the complex natural oscillations TE00, TE𝑠11,
TE𝑠21 for magnetron-type open cavity.

𝑇𝐸𝑐(𝑠)𝑚𝑛 𝑤𝑟 = 0.15, ℎ𝑟 = 0.3 𝑤𝑟 = 0.1, ℎ𝑟 = 0.5
𝑇𝐸00 0.376418 − 𝑖0.021659 0.239477 − 𝑖0.011731
𝑇𝐸 𝑠11 1.807131 − 𝑖0.000018 1.544956 − 𝑖0.002930
𝑇𝐸 𝑠21 2.633786 − 𝑖0.000010 1.975477 − 𝑖0.009056

As seen in Tables 4.15 and 4.16 increasing the height (ℎ𝑟) of corrugation for fixed width

𝑤𝑟 decreases the real part of the complex eigenvalues for both TE00 and TE𝑠11 modes, while
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Figure 4.30: Condition number ^ (𝐴𝑁 (𝑘𝑎)) against relative wavenumber 𝑘𝑎 for magnetron type
open cavity

Table 4.15: Complex eigenvalues 𝛾00, 𝛾𝑠11 for a magnetron-type open cavity with
𝑤𝑟 = 0.15, 𝑤 = 0.2 and varying ℎ𝑟 .

ℎ𝑟 𝑇𝐸00 𝑇𝐸 𝑠11

0.3 0.376418 − 𝑖0.021659 1.807131 − 𝑖0.000018
0.4 0.369609 − 𝑖0.019509 1.722889 − 𝑖0.000021
0.5 0.347186 − 𝑖0.017181 1.587197 − 𝑖0.000087
0.6 0.262625 − 𝑖0.010494 1.409153 − 𝑖0.000291

the imaginary part of the eigenvalues are affected in different ways. As addressed in earlier

sections, this may be explained by the differing influence of the corrugations of the structure on

the anti-nodes of the standing waves, which are specific for each complex natural oscillation.

We see similar behaviour on the imaginary part of complex eigenvalues when 𝑤𝑟 increases for

a fixed value of ℎ𝑟 . In contrast, the real parts of complex eigenvalues gradually increase for

both complex modes. In Figure 4.31, the modal field distribution of the magnetron-type cavity

for selected degenerate modes is presented. The plots reveals different levels of field intensity

between the directions radial and normal to the slit.
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Table 4.16: Complex eigenvalues 𝛾00, 𝛾𝑠11 for a magnetron-type open cavity with
ℎ𝑟 = 0.5, 𝑤 = 0.2 and varying 𝑤𝑟 .

𝑤𝑟 𝑇𝐸00 𝑇𝐸 𝑠11

0.1 0.239477 − 𝑖0.011731 1.544956 − 𝑖0.002930
0.14 0.341705 − 𝑖0.018821 1.581022 − 𝑖0.000177
0.18 0.396849 − 𝑖0.021145 1.605345 − 𝑖0.000006
0.2 0.428533 − 𝑖0.023943 1.623482 − 𝑖0.000013

(a) TE𝑠11 (b) TE𝑐11

(c) TE𝑠21 (d) TE𝑐21

Figure 4.31: Modal field distribution in magnetron-type open cavity (𝑤𝑟 = 0.15, ℎ𝑟 = 0.3).



5
Resonance Wave Scattering and Radiation

from Slotted Cylinders

In this chapter, we present far field analysis of resonance wave scattering for open cylinders

at frequencies close to the real parts of complex eigenvalues. When a scatterer is illuminated

by a plane wave, three quantities are mainly employed to characterise far field: a) radiation

pattern, 𝑆 (𝜗); b) bistatic cross section (properly normalised value of |𝑆 (𝜗) |2); and c) radar (or

sonar) cross section, 𝜎𝐵, which is the properly normalised value of |𝑆 (𝜋 + 𝛼) |2. In practice 𝜎𝐵
is often called the monostatic cross section and the radiation pattern and bistatic cross section

are presented in the decibel-scaled normalised form.

The Neumann problem for open cylinders, being equally applicable to electromagnetic or

acoustic wave scattering, requires us to make choice between these two wave processes. In this

chapter, we consider electromagnetic scattering of the 𝐻−polarised waves; all obtained results

can be used in acoustics by a simple redefinition of the physical characteristics.

The chapter is organised as follows. Section 5.1 is of introductory character in which

the characteristics of the scattered field in the far-field zone and formulas obtained in terms

of the MAR solution are presented. We also verify the correctness of computational formulas

by using known results for circular cylinders. In Section 5.2, the investigation of resonance

scattering of an obliquely incident 𝐻−polarised plane wave by slotted PEC cylinders of classical
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shape is presented. Numerical results are provided for circular, elliptic, and rectangular cylinders

in a wide frequency band, which covers the Rayleigh scattering (_ � 𝑎), resonance scattering

(_ ∼ 𝑎) and the quasi-optics regime (_ � 𝑎). In Section 5.3, we briefly examine three examples

of planewave scattering by elongated, open, duct-like structures: semi-elliptical, rectangular,and

rectangular bent cavities.

5.1 Definition of Basic Characteristics of the Scattered Field

in the Far-field Zone

Let us recall that the scattered field 𝐻𝑠𝑐
𝑧 (𝑞) is given by the following relation (see equa-

tion (2.6)):

𝑈𝑠𝑐 (𝑞) ≡ 𝐻𝑠𝑐
𝑧 (𝑞) = −

𝑖

4

∫
𝐿

𝜕

𝜕𝑛𝑝
𝐻
(1)
0 (𝑘 |𝑞 − 𝑝 |) · 𝑍 (𝑝) 𝑑𝑙𝑝, 𝑞 ∈ 𝑅2. (5.1)

Using the parametrisation
(
𝑑𝑙𝑝 = 𝑙 (𝜏) 𝑑𝜏, 𝑅 = |𝑝 − 𝑞 | =

√︃
[𝑥 (𝜏) − 𝑥 (𝜗)]2 + [𝑦 (𝜏) − 𝑦 (𝜗)]2

)
and the unknown function

𝑧 (𝜏) =


𝑍 (𝜏) , 𝜏 ∈ [−𝜗0, 𝜗0] ,

0 , 𝜏 ∈ [−𝜋,−𝜗0] ∪ [𝜗0, 𝜋] ,
(5.2)

we transform equation (5.1) to

𝐻𝑠𝑐
𝑧 = − 𝑖

4

𝜋∫
−𝜋

𝜕

𝜕𝑛 (𝜏)𝐻
(1)
0

(
𝑘

√︃
[𝑥 (𝜏) − 𝑥 (𝜗)]2 + [𝑦 (𝜏) − 𝑦 (𝜗)]2

)
𝑧 (𝜏)𝑙 (𝜏) 𝑑𝜏. (5.3)

If the distance between the points 𝑝 and 𝑞 is significant, 𝑅 can be rewritten:

𝑅 =

√︃
𝜌2 − 2𝜌

[
𝑥 (𝜏) cos 𝜗 + 𝑦 (𝜏) sin 𝜗 + 𝑥2 (𝜏) +𝑦2 (𝜏)

]
' 𝜌 − [𝑥 (𝜏) cos 𝜗 + 𝑦 (𝜏) sin 𝜗] ,

(5.4)
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as 𝜌 → ∞ where we expressed point 𝜌 = 𝜌(𝜗), 𝑥 (𝜗) = 𝜌 cos 𝜗, 𝑦 (𝜗) = 𝜌 sin 𝜗. As a result,

equation ((5.3)) is simplified to

𝐻𝑠𝑐
𝑧 (𝜌, 𝜗) = −

𝑖

4

𝜋∫
−𝜋

𝜕

𝜕𝑛 (𝜏)𝐻
(1)
0 (𝑘𝜌 − 𝑘 [𝑥 (𝜏) cos 𝜗 + 𝑦 (𝜏) sin 𝜗]) · 𝑧 (𝜏)𝑙 (𝜏) 𝑑𝜏. (5.5)

Taking advantage of the asymptotic behaviour of the Hankel function 𝐻 (1)0 (𝑧)

𝐻
(1)
0 (𝑧) ∼

√︂
2
𝜋𝑧
𝑒𝑖𝑧 · 𝑒−𝑖 𝜋4 , as 𝑧 →∞

we obtain the expression for the longitudinal component of the magnetic field 𝐻𝑠𝑐
𝑧 in the far-field

zone as 𝜌 →∞

𝐻∞𝑧 ∼
𝑒𝑖𝑘 𝜌

√
𝜌

{
− 𝑖
4

√︂
2
𝜋𝑘

𝑒−𝑖
𝜋
4

} 𝜋∫
−𝜋

𝜕

𝜕𝑛 (𝜏)

{
𝑒−𝑖𝑘 [𝑥(𝜏) cos 𝜗+𝑦(𝜏) sin 𝜗]

}
· 𝑧 (𝜏) 𝑙 (𝜏) 𝑑𝜏. (5.6)

Recalling that the unknown function 𝑧(𝜏) is expressed in Fourier coefficients by

𝑧 (𝜏) =
∞∑︁

𝑛=−∞
b𝑛𝑒

𝑖𝑛𝜏,

and defining [
𝜕 𝑓

𝜕𝑥
· 𝑦′ (𝜏) − 𝜕 𝑓

𝜕𝑦
𝑥′ (𝜏)

]
=

∞∑︁
𝑚=−∞

𝛽𝑚 (𝜗) 𝑒𝑖𝑚𝜏

where

𝑓 (𝑥, 𝑦) = 𝑒−𝑖𝑘 [𝑥(𝜏) cos 𝜗+𝑦(𝜏) sin 𝜗] ,

equation (5.6) transforms to

𝐻∞𝑧 =
𝑒𝑖𝑘 𝜌

√
𝜌

{
− 𝑘
4

√︂
2
𝜋𝑘

𝑒−𝑖
𝜋
4

} ∞∑︁
𝑚=−∞

𝛽𝑚 (𝜗)
∞∑︁

𝑛=−∞
b𝑛

𝜋∫
−𝜋

𝑒𝑖(𝑚+𝑛)𝜏𝑑𝜏 (5.7)

which can be re-arranged as

𝐻∞𝑧 =
𝑒𝑖𝑘 𝜌

√
𝜌

{
𝑖

√︂
𝜋𝑘

2
𝑒−𝑖

𝜋
4

∞∑︁
𝑛=−∞

𝛽−𝑛 (𝜗) b𝑛

}
. (5.8)



114 Resonance Wave Scattering and Radiation from Slotted Cylinders

Consequently, the radiation pattern 𝑆 (𝜗) is defined as

𝑆 (𝜗) =
����� ∞∑︁
𝑛=−∞

𝛽−𝑛 (𝜗) b𝑛

����� , (5.9)

the radar cross section (RCS) 𝜎𝐵

𝜎𝐵 = 𝑘𝜋𝑎2

����� ∞∑︁
𝑛=−∞

𝛽−𝑛 (𝜋 + 𝛼) b𝑛

�����2 .
Here 𝜗 denotes the observation angle. When normalised by the factor 𝜋𝑎, it takes the form

𝜎𝐵

𝜋𝑎
= 𝑘𝑎

����� ∞∑︁
𝑛=−∞

𝛽−𝑛 (𝜋 + 𝛼) b𝑛

�����2 . (5.10)

We use the dB scaled representation of the normalised radiation pattern 𝑆(𝑛) (𝜗):

𝑆(𝑛) (𝜗) = 20 log10
|𝑆 (𝜗) |

𝑚𝑎𝑥 |𝑆 (𝜗) | , 𝑑𝐵 (5.11)

Verification of formula (5.10) is done by comparison of the frequency dependence 𝜎𝐵 (𝑘𝑎) of

a truncated system presented in Figure 5.1 with known results for the closed circular cylinder.
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Figure 5.1: Frequency dependence of the normalised radar cross section for a closed circle.
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5.2 Resonance Scattering by Slotted PEC Cylinders of Clas-

sical Shape

In this section, we study the resonance scattering of an obliquely incident 𝐻−polarised

plane wave by various slotted cylinders. We limit our numerical investigation to calculations of

frequency dependencies of the normalised radar cross section 𝜎𝐵 (𝑘𝑎) and normalised radiation

pattern
��𝑆(𝑛) (𝜗)��. The parameter 𝑎 stands for themaximum characteristic size of each considered

cavity. For a circular cylinder, 𝑎 is its radius; for an elliptic and rectangular cylinder, 𝑎 is

the major semi-axis as shown in Figure 5.2. The frequency dependence of the normalised radar

𝑎

𝑥

𝑦

𝑏𝑤𝑎

𝑦

𝜙1 𝑥

𝑦

𝑤𝑎 𝑏

𝑎

𝛼
𝐻
(0)
𝑧

®𝑘

Figure 5.2: Excitation of slotted cylinders by obliquely incident 𝐻−polarised plane wave.

cross section is calculated for slotted-circular cylinders in the low frequency and resonance

region of scattering. The plots are shown for various slot widths (𝜙1 = 5◦, 30◦) and different

plane wave incident angles (𝛼 = 0◦, 45◦, 90◦, 180◦) in Figures 5.3 and 5.4.

Observing the behaviour in these normalised radar cross section plots, it can be noted that

the most effective excitation of the natural oscillations occurs at the incidence angle 𝛼 = 0◦, i.e.

when the plane wave strikes the slit normally. As the incident angle 𝛼 increases, the effectiveness

of excitation steadily weakens, completely vanishing at 𝛼 = 180◦. In other words, the oscillations

are excited with varying levels of effectiveness when slit the is directly illuminated by the plane

wave (0◦ ≤ 𝛼 ≤ 90◦). When the slit is in shadowed zone (90◦ < 𝛼 ≤ 180◦), the level of

excitation dramatically drops, almost vanishing at 𝛼 = 180◦.

We have previously asserted that the MAR-based numerical approach is universally ap-

plicable for arbitrary shapes in a wide frequency range. Figure 5.5 presents the normalised

radar cross section in the high-frequency region for a semi-cylindrical cavity (𝜙1 = 90◦) illu-

minated by a plane wave at 𝛼 = 0 where the radius 𝑎 varies from a fraction of wavelength _ to

𝑎 = 50_ (𝑘𝑎 = 100𝜋).
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(a) 𝛼 = 0◦
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(b) 𝛼 = 45◦
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(c) 𝛼 = 90◦
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(d) 𝛼 = 180◦

Figure 5.3: Frequency dependence of the normalised radar cross section of a slotted circular
cylinder (𝜙1 = 5◦).

Returning to Figures 5.3 and 5.4, one can observe that the main distinctive feature of

backscattering from slotted cylindrical cavities, which possesses a spectrum of high 𝑄−factor

complex oscillations, is the emergence of the so-called “resonance duplet” in the frequency

dependence 𝜎𝐵 (𝑘𝑎). This phenomenon is well-known in general theory of oscillations ([121])

and it appears in diverse areas of science and technology. In the context of resonance wave

scattering, a detailed study can be found in [43].

For a detailed analysis of the resonance duplet, we have calculated and plotted magnified

views of the normalised radar cross section 𝜎𝐵 in Figure 5.6. We have selected two reso-

nance frequencies (𝑘𝑎 = 𝑅𝑒𝛾𝑐01 and 𝑘𝑎 = 𝑅𝑒𝛾𝑐11) and narrowed the frequency range in order

to observe the local minimum and maximum of the normalised radar cross section at these

frequencies.

It is also useful to investigate how a small change in frequency affects the normalised radiation

pattern
��𝑆(𝑛) (𝜗)�� for values when the incidence frequency (defined by relative wavenumber
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(a) 𝛼 = 0◦
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(b) 𝛼 = 45◦
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(c) 𝛼 = 90◦
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(d) 𝛼 = 180◦

Figure 5.4: Frequency dependence of the normalised radar cross section of a slotted circular
cylinder (𝜙1 = 30◦).

𝑘𝑎) matches the values 𝑘𝑎 = (𝑘𝑎)𝑚𝑎𝑥 , 𝑘𝑎 = 𝑅𝑒𝛾𝑐𝑚1 (𝑚 = 0, 1), and 𝑘𝑎 = (𝑘𝑎)𝑚𝑖𝑛. This

gives characteristic information for backscattering. The results of calculations are shown in

Figure 5.7. In the plots, all radiation patterns are normalised by the largest value of
��𝑆(𝑛) (𝜗)��

across three frequencies. Analysing
��𝑆(𝑛) (𝜗)�� in these two figures, one can observe a significant

influence of the excited oscillations on the level of backscattering (𝜗 = 𝜋), and its near absence

in forward (𝜗 = 0) scattering. A small negative shift of the incident frequency 𝑘𝑎 from 𝑅𝑒𝛾𝑐𝑚1
to (𝑘𝑎)𝑚𝑎𝑥 leads to a dramatic increase in the backscattering level. At the same time, a small

positive shift from 𝑘𝑎 = 𝑅𝑒𝛾𝑐𝑚1 to 𝑘𝑎 = (𝑘𝑎)𝑚𝑖𝑛 delivers the minimum level of backscattering.

The difference between backscattering at these frequencies exceeds ∼ 10𝑑𝐵 in both of these

narrow frequencies ranges where TE𝑐01 and TE𝑐11 oscillations are excited. The sharpness of

the resonance duplets at each natural oscillation and its effect on the normalised radar cross

section depends on the 𝑄−factor.

The resonance duplet seen in the frequency dependence of the normalised radar cross section

𝜎𝐵 for slotted circular cylinders is universal and occurs for all possible shapes of slotted cylinders
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Figure 5.5: Frequency dependence of the normalised radar cross section of a semi-circular
cavity (𝜙1 = 90◦) in extended frequency range (0 < 𝑘𝑎 ≤ 100𝜋), incident angle 𝛼 = 0.

in which the complex oscillations possess sufficiently high 𝑄−factors. Considering slotted

cylinders of elliptical and rectangular shapes, we do not specifically focus on this phenomenon,

but rather provide numerical results for selected sets of parameters which highlight the main

distinctive features of resonance scattering. For slotted elliptic cylinders with 𝑏/𝑎 = 0.5, we

examine both vertical and horizontal slits (Figure 5.8) with the following setups: for incident

angles 𝛼 = 0◦, 90◦, we examine the slit widths of 𝑤/𝑎 = 0.1, 0.5, 1 and 𝑤/𝑏 = 0.1, 0.5, 1. This

covers a variety of possible configurations related to the slit orientation and size.

We focus on one striking effect, which is present in many plots 𝜎𝐵 (𝑘𝑎), but is especially

pronounced for a slotted elliptic cylinder with relative slit width 𝑤/𝑎 = 0.1, which is excited by

the normally incident (𝛼 = 90◦) plane wave (see 5.9a). This figure demonstrates the pronounced

effect of the resonance duplet resulting in large fluctuations in the normalised radar cross

section 𝜎𝐵 (𝑘𝑎). In fact, at 𝑘𝑎 = (𝑘𝑎)𝑚𝑎𝑥 = 3.4451 the value 𝜎𝐵 ((𝑘𝑎)𝑚𝑎𝑥) = 3.21 while at

𝑘𝑎 = (𝑘𝑎)𝑚𝑖𝑛 = 3.4498 the value 𝜎𝐵 ((𝑘𝑎)𝑚𝑎𝑥) = 0.32.

Next, in a similar fashion, we consider resonance scattering from rectangular cavities of

aspect ratio 𝑎/𝑏 = 2 with a small slit size 𝑤/𝑎 = 0.1, and large slit size 𝑤/𝑎 = 1 which is

obtained by removing the broad wall 𝑎 of the cavity completely. Resulting plots for incident

angles 𝛼 = 0◦, 30◦, 90◦ are collected in Figure 5.11.

We conclude the results for rectangular cylinders and this section by pointing out that



5.2 Resonance Scattering by Slotted PEC Cylinders of Classical Shape 119

1.9 1.95 2 2.05 2.1

Relative wavenumber, ka

0

0.5

1

1.5

2

2.5

N
o
rm

a
li
se

d
ra

d
a
r
cr

o
ss

se
ct

io
n
,
<

B

(a) 𝑅𝑒𝛾𝑐01 = 1.9766
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(b) 𝑅𝑒𝛾𝑐11 = 3.8577

Figure 5.6: The normalised radar cross section for a slotted circular cylinder (𝜙1 = 5◦) near
the resonance frequency (blue dashed lines).

-200 -150 -100 -50 0 50 100 150 200

Observation angle, 3

-35

-30

-25

-20

-15

-10

-5

0

N
or

m
al

is
ed

sc
at

te
ri
n
g

p
at

te
rn

,
d
B

ka = 1:9574
ka = 1:9766
ka = 2:0350

(a) TE𝑐01
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Figure 5.7: The normalised radiation pattern for a slotted circular cylinder (𝜙1 = 5◦) at 𝑅𝑒𝛾𝑐𝑚1
and at a local minimum and maximum of radar cross section.

the qualitative behaviour of the normalised cross section is similar to that of circular and elliptic

cavities. As shown in Figure 5.11 resonance response occurs at frequencies close to the real

parts of the complex eigenvalues, and the response strength depends on the value of 𝑄−factor

and the incidence angle 𝛼.
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Figure 5.8: Elliptic slotted cylinders with variable slit placement.

5.3 Plane Wave Scattering from Duct-like Structures

In this section, we consider some examples of wave scattering problems for duct-like struc-

tures which are effectively solvable by the MAR. As a rule, studies of such type of structures are

focused on specific geometries simulating for example, real shape of components in jet engine

intakes. The ducts, abstracted from real geometries, are usually considered for testing, mostly

with approximation techniques, to ensure their reliability for further application in studies of

more complicated structures, the shape of which approaches that of a real duct. This explains

the terminology “duct-like structures”. In the context of this thesis, there is no practical reason

to conduct an exhaustive spectral study for such duct-like structures, but rather to demonstrate

the capability of the MAR to cope with such spectral and scattering problems. This has been

partly shown in the earlier chapters of the thesis. Here, we focus on study of backscattering via

computation of the normalised radar cross section for duct-like structures in a wide frequency

band. The geometry and parameters of considered structures are shown in Figure 5.12.

In our systematic analysis of backscattering, we take a fixed geometrical size of the entry in

each cavity. The other geometrical parameters may vary. Thus, the radar cross section 𝜎𝐵 in all

cases is normalised by the same value 𝜋𝑏, with 𝑏 denoting the entry size. For an elliptic cavity

entry 𝑏 = 2𝑏1 is used, where 𝑏1 is the minor semi-axis of the ellipse. The characteristics of

scattering for semi-elliptic and rectangular ducts together with the normalised radar cross section

and radiation patterns have already been considered using the MAR, when these structures

are illuminated by 𝐸−polarised plane wave ([53, 55]). Open elongated semi-elliptical and

rectangular cavities have a lot of similarities in the electromagnetic or acoustic sense. Let us

recall the standard formula for rectangular cavities of sides 𝑎 and 𝑏: the eigenfrequencies in
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Figure 5.9: Frequency dependence of the normalised radar cross section of an elliptic cylinder
with various vertical slit sizes and incident angles.
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Figure 5.10: Frequency dependence of the normalised radar cross section of elliptic cylinder
with various horizontal slit sizes and incident angles.
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Figure 5.11: Frequency dependence of the normalised radar cross section of a slotted rectangular
(𝑎/𝑏 = 2) cylinder with slit sizes 𝑤/𝑎 = 0.1, 1 with various incident angles.
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Figure 5.12: Geometry of duct-like cavities.

the form of relative wavenumbers 𝛾𝑛𝑚 = 𝑘𝑛𝑚𝑏 are

𝛾𝑛𝑚 = 𝑛𝜋

√︄
1 +

(𝑚
𝑛

)2 (
𝑏

𝑎

)2
' 𝑛𝜋

{
1 + 1
2

(𝑚
𝑛

)2 (
𝑏

𝑎

)2
,
𝑏

𝑎
� 1

}
(5.12)

where indexes 𝑚, 𝑛 = 0, 1, 2..., 𝑚2 + 𝑛2 ≠ 0 describe the number of variations in the elec-

tromagnetic waves between narrow and broad walls of the waveguide, correspondingly. For

an infinitely long resonator with parallel plates, when 𝑏/𝑎 → 0, 𝛾𝑛𝑚 → 𝛾𝑛 = 𝑛𝜋, 𝑛 = 1, 2, . . ..



5.3 Plane Wave Scattering from Duct-like Structures 123

0 2 4 6 8 10 12

Relative wavenumber, kb

101

102

103

104

105

C
on
d
it
io
n
n
u
m
b
er
,
5
(A

N
)

elliptic cavity - a=b = 10
rectangular cavity - a=b = 2:857
rectangular cavity - a=b = 3:480
rectangular cavity - a=b = 4:841

Figure 5.13: Combined condition number as a function of relative wavenumber for elliptic and
rectangular ducts.

From a geometrical viewpoint, the semi-elliptic cavity inscribed into the open rectangular

cavity is close to the shape of the rectangular cavity in the part adjoining the common entry

of both cavities. In the electromagnetic sense, the part of the semi-elliptic cavity occupying

the region bounded by the cavity entry (𝑥 = 0, 𝑦 = ±𝑏) and the plane defined by the choice of

some “critical” parameters
(
𝑥𝑐, 𝑦𝑐 =

√︃
1 − (𝑥𝑐/𝑎)2

)
cannot be distinguished from a rectangular

cavity (0 ≤ 𝑥 ≤ 𝑥𝑐, |𝑦 | ≤ 𝑦𝑐). Total deviation of the elliptical shape from the rectangular one

may be quantified by

2Δ (𝑥𝑐) = 𝑏
(
1 −

√︁
1 − (𝑥𝑐/𝑎)

)
. (5.13)

In antenna techniques, it is well known that, if a reflector surface deviates from ideal shape by

a value of less than _/16, then both surfaces (ideal and “deviated”) are practically indistinguish-

able in an electrical sense. Fulfilment of the condition 2Δ (𝑥𝑐) ≤ _/16, defines the critical value

𝑥𝑐/𝑎:
𝑥𝑐

𝑎
=

( 𝜋

2𝑘𝑏

) √︂
𝑘𝑏

𝜋
− 1
16
. (5.14)

Using a simple estimate 𝑘𝑏 ≈ 𝛾𝑛 ' 𝑛𝜋 for the resonance value 𝑘𝑏 in the highly elongated

semi-elliptic cavities (𝑏/𝑎 → 0) we obtain the following approximate formula for the critical

parameter: (𝑥𝑐/𝑎) '
(
1
2𝑛

) √︃
𝑛 − 1

16 . For 𝑛 = 1, 2, 3, we obtain 𝑥𝑐/𝑎 = 4.841, 3.480, 2.857,

respectively.

It can be assumed that the part of semi-elliptic cavity defined by 0 < 𝑥 < 𝑥𝑐 is the region
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where the dominant complex oscillations are formed. The fragments of the spectral maps the for

semi-elliptical cavity (𝑎/𝑏 = 10) and three sizes of rectangular cavity obtained by multiplication

of the aspect ratio 𝑎/𝑏 = 10 by the parameter 𝑥𝑐/𝑎 shown in Figure 5.13 reveal, in general,

the consistency of our arguments. Due to the similarity in spectral maps of these two open

cavities, a similar behaviour of the radar cross section𝜎𝐵 (𝑘𝑏) is expected at the resonance points

when the variable 𝑘𝑏 matches the real part of one of the complex eigenvalues of the dominant

oscillations. However, it is not the decisive factor in formation of the main backscattering

mechanism. The nature of backscattering is defined bymerely interference phenomenon between

the field (or rays) reflected from the edges of cavities and the field which passes into the cavity,

reflects from the cavity wall and returns to the entry with a certain phase change. Whether these

two fields are in-phase or anti-phase determines the maximum or minimum of the normalised

radar cross section 𝜎𝐵 (𝑘𝑏), respectively.
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Figure 5.14: The frequency dependence of the normalised radar cross section for deep rectan-
gular cavities, incident angle 𝛼 = 0◦.

This qualitative prediction is confirmed by the computed dependence 𝜎𝐵 (𝑘𝑏) for an open

rectangular cavity at the normal (𝛼 = 0◦) incidence for 𝑎/𝑏1 = 2, 10, 20, as shown in Figure 5.14.

The plot 𝜎𝐵 (𝑘𝑏) is of oscillatory character, where the wave distance between neighbouring

maxima (and minima) Δ𝑎 tends to _/2 as the wave size 𝑎/_ of the cavity increases.

A different situation arises when a plane wave is normally incident on an elongated semi-

elliptical cavity. Again, using the simplified geometrical optics (GO) concept, onemay argue that

the reflected field (array) from the edges is the same as for a rectangular cavity, but reflection from

the terminating region is completely different. Ideally, at high frequencies the flat termination

of the rectangular cavity reflects incoming rays normal to its surface and the reflected rays

pass way back to the entry of cavity without repeated reflections. By contrast, reflection from

the terminating surface of the semi-elliptical cavity occurs at various angles along the 𝑥−axis.
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This leads to numerous repeated reflections from the walls of cavity before the rays finally reach

the entry. Such complexity might be expected to be clearly seen in the dependence 𝜎𝐵 (𝑘𝑏) for

the semi-elliptical cavity. However, it is known that the GO approximation works surprisingly

well even when the usual criteria for its use are not fulfilled. At least, the wavelength _ should

be much smaller than the characteristic size 𝐷 of the scatterer (_ � 𝐷) in order to use the ray

tracing technique. Nevertheless, the computed plots 𝜎𝐵 (𝑘𝑏) for deep semi-elliptical cavities

confirm this practical observation. In Figure 5.15, where the plots 𝜎𝐵 (𝑘𝑏) are presented for

semi-elliptical cavities with the values of parameter 𝑎/𝑏 = 2, 10, 20, the transition of regular

oscillations 𝜎𝐵 (𝑘𝑏) to their complex pulsations occur after a threshold value 𝑘𝑏 ≈ 2𝜋 (𝑏 ≈ _)

is observed for all values 𝑎/𝑏.
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Figure 5.15: The frequency dependence of the normalised radar cross section for deep semi-
elliptic cavities, incident angle 𝛼 = 0◦.
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Figure 5.16: The frequency dependence of the normalised radar cross section for semi-elliptic
cavity 𝑎/𝑏 = 10 with various incident angles.

We should comment on the high level of backscattering which is revealed in the normalised

radar cross section plot for the deep semi-elliptic deep cavity with 𝑎/𝑏 = 10 and the incident

angle 𝛼 = 90◦ in Figure 5.16b. This is due to the normalisation of the radar cross section

by 𝜋𝑏 which can be recalculated as follows: 𝜎𝐵/𝜋𝑎 = 0.1𝜎𝐵/𝜋𝑏 since 𝑎/𝑏 = 10. In fact,
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the backscattering should be close to that of a plane strip when the incident angle is 𝛼 = 90◦ or

𝛼 = 270◦. The numerical results for 𝜎𝐵/𝜋𝑎 (a plane wave incident on broad wall) and 𝜎𝐵/𝜋𝑏

(plane wave incident on narrow wall) are in good agreement with asymptotic value (𝑘𝑎𝑠 � 1)

of the radar cross section for a strip of width 𝑎𝑠, since 𝜎𝐵/𝜋𝑎𝑠 ' 𝑘𝑎𝑠.

In the final part of this chapter, we briefly analyse backscattering from bent duct cavities. In

our parametrisation of this shape the bend angle is the variable shown in Figure 5.17.
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Figure 5.17: Excitation of slotted cylinders with a bend by obliquely incident 𝐻−polarised plane
wave.

We limit ourselves to computation of the normalised radar cross section and compare

backscattering for non-bent (𝜙 = 0◦) and slightly bent (𝜙 = 10◦) ducts. The non-bent duct is

of course the already studied open straight rectangular cavity. The plots 𝜎𝐵 (𝑘𝑏) for values

𝐿1 = 2, 𝐿2 = 2, 𝑏 = 1, 𝜙 = 0◦ and 𝜙 = 10◦ are shown in Figure 5.18. For bigger ducts

𝐿1 = 5, 𝐿2 = 5 and, keeping rest of parameters the same (𝑏 = 1, 𝜙 = 0◦ and 𝜙 = 10◦),

the dependence 𝜎𝐵 (𝑘𝑏) is shown in Figure 5.19.



5.3 Plane Wave Scattering from Duct-like Structures 127

0 1 2 3 4 5 6 7 8 9 10

Relative wavenumber, kb

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
o
rm

al
is
ed

ra
d
ar

cr
o
ss

se
ct

io
n
,
<

B

? = 00

? = 100

Figure 5.18: Frequency dependence of the normalised radar cross section for bend ducts,
𝐿1 = 2, 𝐿2 = 2, 𝑏 = 1, 𝜙 = 0◦ and 𝜙 = 10◦, incident angle 𝛼 = 0◦.
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Figure 5.19: The frequency dependence of the normalised radar cross section for bend ducts,
𝐿1 = 5, 𝐿2 = 5, 𝑏 = 1, 𝜙 = 0◦ and 𝜙 = 10◦, incident angle 𝛼 = 0◦.
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It can be clearly seen in both figures that for the first part of the frequency range the normalised

radar cross section 𝜎𝐵 (𝑘𝑏) for both bend angles 𝜙 = 0◦ and 𝜙 = 10◦ are quite similar.

The divergence between the two plots starts to appear after the relative 𝑘𝑏 wavenumber passes

a threshold value 𝑘𝑏 ∼ 𝜋, i.e., when 𝑏 ∼ _/2. When the bend angle 𝜙 = 90◦, the bent duct

resembles a corner reflector of thickness 𝑏. One may expect that a plane wave striking the bent

duct at incident angle 𝛼 = 45◦ will initiate a very strong backscattering that is characteristic of

a right-angled corner reflector. To confirm this assertion, we provide normalised radar cross
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(b) 𝛼 = 45◦

Figure 5.20: Frequency dependence of the normalised radar cross section for a bend duct with
parameters 𝐿1 = 5, 𝐿2 = 5, 𝑏 = 1, 𝜙 = 90◦, incident angles 𝛼 = 0◦ and 𝛼 = 45◦ .

section plots for a bent duct with 𝐿1 = 5, 𝐿2 = 5, 𝑏 = 1, 𝜙 = 90◦ and with incident plane wave

angles 𝛼 = 0◦ and 𝛼 = 45◦ (Figure 5.20). The high level of back scattering 𝜎𝐵 (𝑘𝑏) can easily

be seen in the plot of 𝜎𝐵 (𝑘𝑏) .



6
A Selective Overview of Advanced

Applications of the MAR

In this chapter, we further demonstrate the potential of the MAR for diverse advanced

applications of wave scattering which are free from limitations on frequency range and geometry

of the open structures often encountered by other methods. The demonstration is introductory

and illustrative, since each problem listed in this chapter of necessity deserves investigations

on a large scale and might be a subject of numerous publications or a separate thesis. It is

our contention that the results presented here provides a clear guide on using the MAR for

comprehensive studies of numerous problems arising in practice. In using the term diverse, we

mean problems of a rather contrasting nature.

We start our analysis with two problems related to reflector antennas and usually considered

in high-frequency region. First, we investigate the classical cylindrical parabolic antenna and its

modified version with attached flanges. Then we move to another well-known type of reflector,

the corner reflector. Both types of reflectors operate at such frequencies that the aperture size

𝐷 significantly exceeds the wavelength _ of incident electromagnetic (or acoustic) field, i.e.

𝐷/_ � 1.

The next problem concerns finite sinusoidal gratings. Keeping in mind the multi-aspect

nature of the considered problems and the illustrative character of this chapter, we concentrate
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on two most important aspects that always arise in investigations of finite periodic structures.

The first is the applicability of theoretical results obtained for infinite periodic structures to their

finite counterparts. The second is to answer the question: to what extent is the grating formula,

defining the radiating angles of the diffraction beams, accurate for finite gratings?

We conclude this chapter by demonstrating the application of the developed method for

studies of the radar response of targets with complex shape. As an example, we consider

simplified contours of a plane and a submarine. The calculations cover a wide frequency range

with the target wave size 𝐿/_ where characteristic size 𝐿 varying from low (𝐿/_ � 1) to high

(𝐿/_ � 1) values. Calculations are carried out for both near- and far-field regions.

Before finishing this introduction, we note that fast convergence of the MAR allowed us to

use truncation number 𝑁 = 512 for calculations in this chapter, irrespective of their complex

geometry and the frequency region we investigate. We have also performed some calculations

with bigger system sizes to demonstrate high efficiency of the developed numerical algorithms

along with the computation time. We must also note that the references made in this chapter

do not necessarily reflect the paramount significance of the investigations presented in these

sources but were chosen simply to help describe the-state-of-the-art of theoretical analysis.

6.1 Cylindrical Parabolic Reflector Antennas

We consider two types of cylindrical antennas of parabolic shape operating in the receiving

regime: the classical parabolic cylindrical reflector (flange width 𝑤 𝑓 = 0) and a reflector with

attached flanges (𝑤 𝑓 > 0) shown in Figure 6.1. The cylindrical parabolic reflector in reduced

Cartesian coordinates 𝑥𝐹 , 𝑦𝐹 , (𝑥𝐹 = 𝑥/𝐹, 𝑦𝐹 = 𝑦/𝐹), where 𝐹 is the focal distance, is described

by the parabola

𝑦𝐹 = −1
4
𝑥2𝐹 + 1.

The reflector is characterised by the focal distance𝐹 and the aperture size𝐷. In practice, there

are twowidely used parameters for describing parabolic antennas: The first is 𝑝 = 𝐹/𝐷, the ratio

of the focal distance 𝐹 and size of aperture 𝐷 which defines the geometrical configuration of

reflector. The second one is the ratio 𝐷/_ which defines the wave size of reflector. If an infinite

parabola is excited by a plane wave, operating at extremely high frequencies, the reflected

radiation is focussed to one single point: the focal point. The theory predicting such behaviour

of reflected radiation is based on geometrical optics (GO) concepts, where the plane wave may
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𝑥

𝑦

𝑤 𝑓

900

𝐷

𝐹

Figure 6.1: Parabolic reflector: classical (𝑤 𝑓 = 0), with attached flanges (𝑤 𝑓 > 0).

be presented as a bundle of parallel rays. In practise, antennas have a shape of a finite parabola,

operating with finite values of wavelength. Therefore, the reflected wave is not focused in

a single point, but in a focal region, the characteristic size of which is equal to roughly one

wavelength _. The formation of focal spot or region slightly shifts the location of the intensity

maximum from the idealized GO focal line. Let us illustrate this concept by a few examples for

parabolic reflectors (𝑤 𝑓 = 0) with parameters 𝑝 = 0.5, 1 and 𝐷/_ = 40, 80. For visualisation

of the focusing effect, it is convenient to use our computation of the spatial distribution of

the magnetic field density
��𝐻𝑡𝑜𝑡𝑧 ��, considering the “deep” (𝑝 = 0.5) and “shallow” (𝑝 = 1)

reflectors with wave sizes 𝐷/_ = 40 and 80. The results for these two reflectors are shown in

Figure 6.2.

The formation of the focal region can easily be observed in the distribution of
��𝐻𝑡𝑜𝑡𝑧 ��, presented

in these figures. A distinctive feature of the distribution of the electromagnetic field in the focal

region is the train of maxima instead of a single focused focal point. Despite that the geometrical

size of focal region decreases as wave size of the reflector 𝐷/_ increases, the size of this region,

measured in wavelengths, remains constant. A rough estimate for the area of the focal region

is _2. For all values of parameters 𝐹/𝐷, the longitudinal size of the focal region exceeds

the value of wavelength _, while the transverse size is smaller than _. Knowledge of the fine

structure of the field distribution in focal region is quite necessary for the design of effective

line feeds often used in antenna techniques. A suitably designed line feed provides a source

with distributed parameters which (ideally) should match the amplitude-phase distribution of

the focused field in the focal region of the receiving reflector antenna. Its use significantly

improves the effectiveness of transmission. More detail of the structure of the magnetic field
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(a) 𝐷/_ = 40, 𝐹/𝐷 = 0.5 (b) 𝐷/_ = 80, 𝐹/𝐷 = 0.5

(c) 𝐷/_ = 40, 𝐹/𝐷 = 1 (d) 𝐷/_ = 80, 𝐹/𝐷 = 1

Figure 6.2: Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for a parabolic reflector deep (𝐹/𝐷 = 0.5), and shallow

(𝐹/𝐷 = 1), incident angle 𝛼 = 90◦.��𝐻𝑡𝑜𝑡𝑧 �� in the focal region may be seen in the plots of ��𝐻𝑡𝑜𝑡𝑧 (𝑦𝐹)�� shown in Figure 6.2. Before
turning to parabolic reflector antennas with attached flanges, it is worth noting that effective

control of the off-axis and backward radiation of reflector antennas is a relevant problem in many

applications in radio astronomy, radars, and telecommunications. Two techniques that are widely

used to address this problem are considered: modifying the geometry of the reflector rim, and

loading the reflector rim with absorbers. It was shown in [122] and [123] that the best behaviour

is obtained by using a right-angled flange (i.e., a flange forming a right angle with the reflector

surface), and that a significant field level reduction can be obtained in a wide angular sector at

the rear without affecting the field radiated in the forward half-space. For theoretical analysis,

the geometrical theory of diffraction (GTD), equivalent edge currents, and physical optics (PO)

have been used in proper angular sectors. All of these well-established methods are widely used

inmodelling practical reflector antennas, but inmany cases their accuracy is uncertain, especially

when the operating frequency range is far from the high-frequency region. On the other hand,

the MAR approach extended for analysis of arbitrary 2D configurations is valid over the full

range of angular frequencies and electrical sizes of reflectors, delivering a predefined accuracy
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(a) 𝐷/_ = 20, 𝐹/𝐷 = 0.5
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(b) 𝐷/_ = 40, 𝐹/𝐷 = 0.5
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(c) 𝐷/_ = 20, 𝐹/𝐷 = 1
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(d) 𝐷/_ = 40, 𝐹/𝐷 = 1

Figure 6.3: Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for a parabolic reflectors (𝐹/𝐷 = 0.5and1) as a function of 𝑦 𝑓

at 𝑥 𝑓 = 0, incident angle 𝛼 = 90◦.

of computation. Although we do not conduct an exhaustive investigation for the operation of

flanged antennas nor a critical analysis of the results contained in [122], we present illustrative

results which clearly demonstrate the applicability of the MAR to the considered problem.

One convenient way to analyse the behaviour of reflector antennas with and without flanges is

through the distribution of the total field
��𝐻𝑡𝑜𝑡𝑧 ��. An example for a flanged parabolic reflector

with parameters 𝐹/𝐷 = 1, 𝐷_ = 20, 𝑤 𝑓 /𝐷 = 0.1 is shown in Figure 6.4.

Let us now we focus on the field density behind the reflector (the shadowed region) and

compare the density levels for parabolic reflectors with and without flanges attached in Figures

6.5 and 6.6. To emphasise the difference, we use very large flanges (𝑤 𝑓 = 0.2𝐷). One can

observe the weak appearance of the Poisson’s spot emerging behind the reflector in Figure 6.6,

the difference between the two configuration can be seen clearly in Figures 6.5b and 6.6b by

comparing the level of
��𝐻𝑡𝑜𝑡𝑧 �� in the region 𝑥 𝑓 = 0, 𝑦 𝑓 = 1to𝑦 𝑓 = 1.05. This phenomenon,

also known as Arago’s spot, explains the bright spot at the centre of the parabolic reflector



134 A Selective Overview of Advanced Applications of the MAR

Figure 6.4: Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for a parabolic reflector (𝐹/𝐷 = 1, 𝐷/_ = 20) with flanges

𝑤 𝑓 /𝐷 = 0.1, incident angle 𝛼 = 90◦
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Figure 6.5: a) Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for a parabolic reflector (𝐹/𝐷 = 1, 𝐷/_ = 10, 𝑤 𝑓 = 0) and

b) as a function of 𝑦 𝑓 at 𝑥 𝑓 = 0, incident angle 𝛼 = 90◦.
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Figure 6.6: a) Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for a parabolic reflector (𝐹/𝐷 = 1, 𝐷/_ = 10, 𝑤 𝑓 = 0.2)

and b) as a function of 𝑦 𝑓 at 𝑥 𝑓 = 0, incident angle 𝛼 = 90◦
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Figure 6.7: Radiation pattern for a parabolic reflector antenna (𝐷/_ = 10, 𝐹/𝐷 = 0.5), incident
angle 𝛼 = 90◦.
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Figure 6.8: Radiation pattern for a parabolic reflector antenna (𝐷/_ = 40, 𝐹/𝐷 = 0.5), incident
angle 𝛼 = 90◦.

shadow, which becomes nearly as bright as if the obstacle were absent. Without seeking

the truly optimal choice of the wave size of the flanges, let us calculate the radiation patterns

of reflector antennas for various sizes of flanges. In these calculations, we use the settings:

𝐷/_ = 10, 40, and 𝑤 𝑓 = 0, _/4, _/2, _. So, from the initial illustrative example involving large

flanges (𝑤 𝑓 = 0.2𝐷), we turn to more realistic values of 𝐷/_ = 10 (with 𝑤 𝑓 = 0.025, 0.05, 0.1),

and 𝐷/_ = 40 (with 𝑤 𝑓 ' 0.0062, 0.0125, 0.025). The radiation patterns presented in Figures

6.7 and 6.8 reveal notable influence of the flanges on the decrease of the side-lobe level in the far-

field. The level of decrease strongly related to size of the flanges. The most pronounced effect in

reduction of the side-lobe level is revealed in Figure 6.8c (for 𝑤 𝑓 = _, 𝐷/_ = 40, 𝐹/𝐷 = 0.5).

The drops in the pattern are observed in the angular sectors 65◦ < \ < 75◦ and 105◦ < \ < 115◦,

where a drop from 0.5𝑑𝐵 to 8𝑑𝐵 across the observation angles can be seen. The parametrisation

of the parabolic reflector and flexibility to analyse any desired frequency range makes the MAR

a suitable tool to conduct further studies on optimisation of parabolic reflectors and on the effect

of flanges, in terms of their size and orientation.
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6.2 Right-angled Corner Reflectors

Corner reflectors are standard passive radar targets which offer one of the best solutions for

SAR (synthetic aperture radar) calibration. Radar cross section (RCS) of corner reflectors plays

a vital role for estimation of the calibration parameters and, hence, of the back-scatter coefficient

for airborne and spaceborne SAR images ([124]). Backscattering studies of corner reflectors

have been successfully conducted by approximate asymptotic high-frequency techniques and

various well-known methods of computational electromagnetics have been intensively used.

In many cases, the RCS analysis of corner reflectors is based on physical optics (PO) which

produces results sufficient for practical needs. In this section, we illustrate how the MAR

approach may contribute to the theory of corner reflectors, focusing on the 90◦-dihedral corner

reflector. The geometry of this structure is shown in Figure 6.9.

𝑥

𝑦

𝐷 =
√
2𝐿

𝐿

𝐶

𝐿

𝛼

𝐻
(0)
𝑧

®𝑘

Figure 6.9: 90◦−dihedral (right angle) corner reflector.

The 90◦−dihedral corner reflector is formed by two equilateral PEC strips of length 𝐿meeting

at the point 𝐶 at the right angle. The aperture size of the reflector is 𝐷 =
√
2𝐿. According

to basic GO, under a normally incident plane wave (𝛼 = 90◦) the incoming rays (through

the aperture), after reflecting from both sides of the corner reflector return to aperture plane as

a bundle of parallel rays. As a result, strong backscattering is expected to be generated. With an

increase in the electrical size of the aperture (𝐷/_ � 1), this phenomenon should become more

pronounced. Plots of the distribution of
��𝐻𝑡𝑜𝑡𝑧 �� calculated by employing the MAR confirm this

obvious assumption. Figure 6.10 contains the distribution for increasing values of 𝐷/_ ranging
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(a) 𝐷/_ = 2 (b) 𝐷/_ = 5 (c) 𝐷/_ = 10

(d) 𝐷/_ = 20 (e) 𝐷/_ = 40 (f) 𝐷/_ = 80

Figure 6.10: Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for a 90◦−dihedral corner reflector, incident angle 𝛼 = 90◦.

from 𝐷/_ = 2 to 𝐷/_ = 80 . In Figure 6.11, magnified view of the near-field distribution for

interior region of the corner reflector is provided for 𝐷/_ = 80.

The evolution of the field distribution
��𝐻𝑡𝑜𝑡𝑧 �� (as the relative wave size of aperture ranges

through the values 𝐷/_ = 2, 5, 10, 20, 40, 80) presents an instructive picture describing the wave

interference in its classical form. This interference phenomenon is especially pronounced in

Figure 6.11, where one can distinguish the nodes and anti-nodes of standing waves separated

by a half-wavelength _/2, forming a regular grid inside the corner reflector. Except near

the narrow “transition” zone in the close vicinity of the aperture, the reflected field outside

the reflector transforms into a well-collimated wave beam, propagating back to the source. This

leads to the steady increase of RCS with the growth of the aperture wave size (𝐷/_). As usual,

we present RCS plots in the normalised form and use relative wavenumber 𝑘𝐷 = 2𝜋 (𝐷/_).

The frequency dependence of the normalised RCS, 𝜎𝐵, is given in Figure 6.12a for the incident

angles 𝛼 = 90◦, 85◦ and in Figure 6.12b for the incident angles 𝛼 = 75◦, 60◦.
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Figure 6.11: Magnified view of the near-field for a corner reflector with the relative wave size
of aperture 𝐷/_ = 80.
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Figure 6.12: Frequency dependence of the normalised radar cross section of a 90◦−dihedral
corner reflector, various incident angles.

6.3 Finite Sinusoidal Gratings

There are various analytical and numerical methods devoted to the analysis of diffraction

by finite gratings in electromagnetic theory and optics. Gratings play an important role in

several applications: for example, they are used as parts of corrugated reflector antennas and

in optical instruments such as spectroscopes. Full wave analysis of diffraction by sinusoidal

gratings of an obliquely incident 𝐸−polarised plane wave was conducted using the MAR in

[125],[126]. In general, the MAR approach is characterised by its capability to analyse wave

scattering problems without any limitations imposed on the parameters of scatterers, and finite

sinusoidal gratings are not an exception: the problem may be analysed in a wide frequency band
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without limitations on depth of the sinusoidal corrugation and wave size of the gratings. Since

our goal is to conduct only a preliminary investigations of sinusoidal gratings illuminated by

an 𝐻−polarised plane wave, we leave aside an extended preliminary discussion about merits and

demerits of the various methods applied for analysis of finite gratings. All such methods possess

different kind of limitations discussed in numerous surveys on this subject (see, for example,

[127] and [128]). A clear picture of the state-of-the-art in this area is given in [125]. We extract

two principal points from these investigation. The first and, possibly, the main point is finding

the correlation between a realistic finite grating and its mathematical idealisation (the infinite

grating); in other words, to what extent are the theoretical results for infinite gratings applicable

for their finite counterparts. The second point is emergence of diffraction beams (Floquet modes)

in finite gratings and the correspondence of the angular directions of diffraction beams to those

given by the well-known grating formula. The most effective way of finding the correlation

between properties of finite and infinite gratings is a comparison of the surface current density

induced by an incident plane wave under sequential increase of the number of periods. The idea

behind such comparison is the tendency of the magnitude of the induced current to stabilise,

tending to its limiting value which is characteristic for an infinite grating (see, for example,

[129]).

𝑥 = −𝐿 𝑇

𝑥 = +𝐿

𝑥

𝑦

𝛼

𝐻
(0)
𝑧

2ℎ

Figure 6.13: Excitation of a finite sinusoidal grating by an obliquely incident 𝐻−polarised plane
wave.

Let us start with a description of geometry of a finite sinusoidal grating shown in Figure 6.13.

The grating surface is assumed to be infinitely thin, perfectly conducting, and uniform in the z-

direction, and it is defined by 𝑦 (𝑥) = ℎ sin𝑚𝑥 for |𝑥 | ≤ 1. Thus, the depth of the grating is

2ℎ and the period is 𝑇 = 2𝜋/𝑚, where 𝑚 is some positive constant; the number of periods on

the grating is chosen as 𝑛𝑇 = 𝑛 + 1/2, where 𝑛 = 1, 2, . . .. The grating width can then be found
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Figure 6.14: Surface current density distribution |𝐽 (𝑥) | for a finite sinusoidal grating ℎ = 0.25_,
𝑇 = 0.25_, 𝑛𝑇 = 6.5, 12.5, 18.5, incident angle 𝛼 = −90◦.

as 𝑤 = 2𝐿 = 𝑛𝑇𝑇 . Although it contrasts with the rest of this thesis, a non-standard definition

(shifted by 𝜋) of the incidence angle 𝛼 is chosen for the ease of comparison with the results

obtained in [122].

Not repeating in detail all the arguments presented in [122], when investigating the influence

of edge effects on the distribution of surface current density |𝐽 (𝜙) |, we concentrate on the main

points only. The surface current does not depend on polarisation of the incident plane wave.

First, the distortion of the electromagnetic field over one period in a finite grating (in comparison

with an infinite grating) is due to its finiteness. It can be predicted that distortion along the central

part of the finite grating should be significantly smaller than the distortion at its peripheral parts,

neighbouring the grating edges. The presence of the edges should have a notable impact only

on the terminating sections of the finite grating. As the frequency increases the “edge effects”

should diminish since at a high frequency the interaction of an electromagnetic wave with

the metallic surface has a local character and the scattering from one part of the surface does

not strongly affect scattering from more distant parts of that surface. These assumptions are of

general character. Roughly, the edge effects, independently of the polarisation of an incident

field, substantially influence the distribution of the surface current density at a distance of

approximately one wavelength _ from the ends of the finite grating.

The surface current density |𝐽 (𝑥) | plots in Figures 6.14 and 6.15 reveal reasonable adherence
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Figure 6.15: Surface current density distribution |𝐽 (𝑥) | for a finite sinusoidal grating ℎ = 0.1_,
𝑇 = 0.25_, 𝑛𝑇 = 6.5, 12.5, 18.5, incident angle 𝛼 = −90◦.

to periodicity of this function on the finite sinusoidal grating of the fixed depth as the number 𝑛𝑇

of periods increases from 6.5 to 18.5. Perceptible distortion of the function is observed only near

to edges, though the edge distortion for the deeper grating in Figure 6.15 is more pronounced

than for the shallower grating in Figure 6.14. Magnified views of the surface current density

|𝐽 (𝑥) | examined close to the left edges of the gratings are shown in Figures 6.16a and 6.16b.

Comparison of the values of |𝐽 (𝑥) | for the larger grating (𝑛𝑇 = 18.5) clearly reveals the scale

of distortion caused by the sharp edges compared to smaller gratings. Another observation is

that the scale of distortion and stabilisation of the currents for gratings excited by 𝐻−polarised

waves differ insignificantly from that of observed in case of 𝐸−polarisation ([122]).

The normalised radiation patterns presented for finite gratings in Figure 6.17 (𝑛𝑇 = 8.5)

and Figure 6.18 (𝑛𝑇 = 100.5), show the emergence of the diffraction beams even for the grating

with small (𝑛𝑇 = 8.5) number of periods. While keeping the rest of parameters the same,

namely, (2ℎ = 0.5_, 𝑇 = 5_, and 𝛼 = 60◦), the normalised radar cross section for a substantially

larger multi-period grating (𝑛𝑇 = 105.5) reveals the same diffraction beams but more tightly

collimated. In grating theory, the emergence of these well-collimated beams is explained by

the grating formula

cos 𝜙𝑚 = −
(
cos𝛼 + 𝑚_

𝑇

)
, 𝑚 = 0,±1,±2, . . . (6.1)
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(a) 𝑥 = −3.25 for 𝑛𝑇 = 6.5
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(b) 𝑥 = −6.25 for 𝑛𝑇 = 12.5

Figure 6.16: The magnified view of the surface current density |𝐽 (𝑥) | for ℎ = 0.25_, 𝑇 = 0.25_,
𝑛𝑇 = 6.5, 12.5, 18.5 near the left edge.

Equation (6.1) governs the angular locations 𝜙𝑚 of the principal intensity maxima when a plane

wave of wavelength _ is diffracted from a grating of spacing 𝑇 . Here, 𝑚 is the diffraction order

(or spectral order). Equation (6.1) is applicable to the infinite gratings while in this section

we examine finite gratings. It can be reasonably anticipated that approximate agreement of the

direction in the computed data and those directions 𝜙𝑚 of the emerging diffraction beams (or

Floquet space harmonics) calculated by the infinite gratings formula be observed for a finite

grating with a sufficient number of periods. Ideally, for an infinite grating with 𝛼 = 60◦ and

_/𝑇 = 0.2, the grating formula predicts the emergence of diffractions beams with ten values

of the diffraction order: 𝑚 = −7,−6,−5,−4,−3,−2,−1, 0, 1, 2. In practice, for a finite grating

with the number of periods 𝑛𝑇 = 8.5, the diffraction beam of order 𝑚 = −7 does not emerge, as

shown in Figure 6.17. This result along with the rest of calculations collected in the Table 6.1

are in excellent agreement with those obtained in [122] for case of 𝐸−polarisation. Moreover,

the data in Table 6.1 reveals the excellent agreement between angular locations 𝜙𝑚, defined by

the grating formula in equation (6.1) and calculated values for lower Floquet space harmonics

(𝑚 = −3,−2,−1, 0, 1, 2) even for gratings with a small number of periods (e.g. 𝑛𝑇 = 8.5).

For higher Floquet space harmonics (𝑚 = −7,−6,−5,−4), the agreement may be described as

satisfactory.

In conclusion, it is worth noting the very large wave size of the grating of 100.5 periods:

2𝐿 = 502.5_. Also we note that the truncation system size 𝑁 = 2048 used for the normalised

scattering pattern calculation of the large grating has a computation time of 90 seconds. This

size indicates the advance into the quasi-optical frequency region, demonstrating the usefulness
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Figure 6.17: Normalised radiation pattern for a sinusoidal grating ℎ = 0.25_, 𝑇 = 5_, 𝑛𝑇 = 8.5,
𝛼 = 60◦.
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Figure 6.18: Normalised radiation pattern for a sinusoidal grating ℎ = 0.25_, 𝑇 = 5_,
𝑛𝑇 = 100.5, 𝛼 = 60◦.
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Table 6.1: Angular locations 𝜙𝑚 of Floquet space harmonics for finite sinusoidal grating
(2ℎ = 0.5_, 𝑇 = 5_).

𝑚 Eq. (6.1) 𝑛𝑇 = 8.5 𝑛𝑇 = 100.5

-7 25.84◦ − 26.63◦

-6 45.57◦ 44.55◦ 46.28◦

-5 60.00◦ 59.71◦ 60.54◦

-4 72.54◦ 72.70◦ 72.56◦

-3 84.26◦ 84.23◦ 84.26◦

-2 95.73◦ 95.57◦ 95.75◦

-1 107.45◦ 107.41◦ 107.45◦

0 120.00◦ 119.98◦ 120.01◦

1 134.42◦ 134.52◦ 134.41◦

2 154.15◦ 154.32◦ 154.16◦

of the MAR for modelling optical diffraction gratings.

6.4 A Short Investigation of Backscattering from Targets with

Complex Shape

Prediction of the radar cross section of targets with complex shape is a problem that usually

requires utilisation of multiple methods of computational electromagnetics (or acoustics). Con-

tributions to the backscattering from different parts of such targets (which, in general possess

distinctively different wave sizes) should be carefully modelled by different techniques. Without

going deeply into technical detail, it is relevant to note that the main constructive elements of

complex targets possess relatively big wave sizes. Thus, asymptotic, high-frequency methods

dominate over other techniques in modelling backscattering response of such targets.

Currently, the design of computational software for calculating the radar cross section

of complex targets is mostly concentrated in the big companies for which this problem is

a part of their general engineering activity. As an example, [130] presents the development

and verification of RECOTA (return from complex target), created at Boeing Aerospace for

calculating the radar cross section of complex targets. The software utilises a computer-aided
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(a) 𝐿/_ ' 0.016 (b) 𝐿/_ = 1 (c) 𝐿/_ = 25

Figure 6.19: Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for an airplane, incident angle 𝛼 = 90◦.
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Figure 6.20: Frequency dependence of the normalised radar cross section of an airplane.

design package for modelling target geometry in terms of facets and wedges. It is based on

physical optics, physical theory of diffraction, ray tracing, and semi empirical formulations, and

it accounts for shadowing, multiple scattering, and discontinuities in the radar cross section

calculations. An example of the RCS analysis by extracting a part from a complex target is

demonstrated in [131]. In particular, high frequency calculations for a metallic cavity with

realistic dimensions where the combination of radar returns from the cavity interior and from

the rest of the complex target are considered. The solution for the re-radiation from the cavity

interior involves the usage of a normal-mode technique in conjunction with the Stratton-Chu

integral.

A study of further relevant publications leads to the following conclusion: there is no unique

and universal method capable of tackling the discussed problem by itself, especially, in case

of realistic 3D wave scattering. For 2D scattering, the situation is different: the MAR, for

example, allows one to predict the RCS of 2D targets without any restrictions on their shape and

complexity.
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(a) 𝐿/_ ' 0.016 (b) 𝐿/_ = 1 (c) 𝐿/_ = 25

Figure 6.21: Distribution of
��𝐻𝑡𝑜𝑡𝑧 �� for a submarine, incident angle 𝛼 = 90◦.
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Figure 6.22: Frequency dependence of the normalised radar cross section of a submarine.

To illustrate this assertion, we conduct calculations of the near-field distribution and nor-

malised RCS for an airplane and submarine of simplified shape. For the near-field calculations,

the maximum relative wave size 𝐿/_ of the targets (𝐿 is maximum size) is chosen to characterise

wave scattering in Rayleigh scattering region (𝐿/_ ' 0.016), diffraction region (𝐿/_ = 1)

and high-frequency region (𝐿/_ = 25). We note that the truncation number 𝑁 = 512 is used

resulting in an average computation time of 40 seconds for calculation of near-field distribution

and an average of 800 seconds for calculation of RCS across the selected frequency range.

The results for the “airplane” and “submarine” shapes are presented in figures 6.19-6.20 and

6.21-6.22, respectively.

Though the presented calculations are merely of illustrative character, they are performed

with the high accuracy the MAR provides. However, the results for 2D scattering cannot be used

directly for prediction of backscattering of realistic 3D targets. 2Dmodellingmaybe used inmore

accurate modelling of the elongated parts of complex targets. Possibly, the main significance of

the accurate simulation of the backscattering from complex 2D targets is the establishment of
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benchmark results which may be used for further revision of existing numerical codes developed

for RCS calculation of 3D targets. Since the currently used numerical methods and software

contain not only well-established algorithms, but plenty of empirical formulas, such comparison

may lead to their revision and, hence, to improvement in the accuracy of computation for 3D

targets.
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7
Conclusions

In this thesis a mathematically rigorous, numerically accurate method has been developed

for analysis of diverse wave scattering problems for open sound-hard cavities in acoustics, and

open slotted arbitrary PEC cylinders excited by 𝐻−polarised radiation in electromagnetics.

From the mathematical point of view, both problems are described by the Neumann boundary

value problem for the Helmholtz equation in two-dimensional arbitrarily shaped open domains.

Employing the Method of Analytical Regularisation (MAR), the surface integral equation in

the form of double-layer potential with a hyper-singular kernel is separated into singular and

regular parts, then regularised and transformed into a coupled, well-conditioned infinite system

of linear algebraic equations of the second kind. The compactness of thematrix operators allowed

us to solve the coupled equations effectively by the truncation method. Numerical experiments

confirmed the established theoretical convergence of the solution of the truncated system to

the exact solution, as well as the fast convergence rate. Another aspect of the numerical solution

effectiveness derives from the ease of matrix filling as the computation of matrix elements

is mostly accomplished using Fast Fourier Transforms and recurrence formulas. As a result,

solutions with predefined accuracy can be obtained with a proper choice of the truncation

number.

One of the key outcomes of the thesis is the generalisation of the solution to arbitrary domains,

including those of polygonal nature, such as ridge waveguides, coupled rectangular resonators,
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magnetron type cavities, etc. Parametrisation of bounding contours of the scatterers using

Piecewise Cubic Interpolation Polynomials is the first step in modelling arbitrary non-canonical

cross-sections. This parametrisation is then further treated by employing the Frederich’smollifier

in the Sobolev’s approximation, resulting in smooth contours with continuous third derivative.

Considering the numerous steps in realisation of the computational codes (implemented using

MATLAB), it was of paramount significance to validate the obtained numerical results against

those available in literature. An exhaustive validation has been done for analytical, polygonal and

arbitrary cross sections which revealed an excellent agreement with the available results as well

as demonstrating the characteristics of the second kind Fredholm equations and the truncation

method, including fast convergence of the system condition number to its limiting value.

The analytical-numerical method based on the MAR was applied to the analysis of various

problems of practical interest in acoustics and electromagnetics. Spectral characteristics of

slotted cavities were studied in Chapters 3 and 4. Helmholtz resonators with attached necks, and

arrays of them (consisting of two identical resonators) widely use in application are analysed in

detail. The effects of parameters defining the structures are presented in terms of the unloaded

𝑄−factors of respective resonators. Taking advantage of the highly effective computational

algorithms, the spectrum of circular, elliptic, and rectangular slotted cavities were comprehen-

sively investigated; the complex eigenvalues are calculated with an accuracy of 5 or 6 significant

decimal places.

In Chapter 5, resonance wave scattering and radiation from various structures were anal-

ysed using complex oscillations and calculations of radar cross section and scattering patterns.

We also discussed distinctive aspects of resonance scattering, in particular, the occurrence of

resonance duplets arising when the relative wavenumber approaches the real part of a complex

eigenvalue.

The capabilities of the developed method are further demonstrated in Chapter 6, where

the MAR was applied to the analysis of the classical parabolic cylindrical reflectors, concen-

trating on finding the fine details in the distribution of the reflected electromagnetic field in

the neighbourhood of the geometric optics focal line. In addition, parabolic reflectors with

attached flanges were also considered. For this type of reflector, we performed calculations

of illustrative character that clearly demonstrated the method’s capability for further accurate

analysis. The analysis of these reflectors can easily be extended to more complicated shapes,

such as an approximate parabolic shape, or a parabolic reflector with an arbitrary shaped feed.
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Analogous results are also presented for corner reflectors. High efficiency of the MAR was

beneficial in the investigation of finite sinusoidal gratings: the computations revealed that space

harmonics (the Floquet modes) are observed for both small and large size of gratings ranging

from a few to a half a thousand wavelengths. Finally, the capability of the MAR for compre-

hensive analysis of backscattering from complex 2D targets was briefly explained. Because the

high-frequency regime is the most challenging for all the methods currently employed in the

scientific literature, it is of strong interest to explore these and other applications in that regime.

Although a wide range of applications in acoustics and electromagnetics are investigated in

the thesis, the list of other practical problems, acoustic and electromagnetic, to which the MAR

can be applied is far from exhausted. Some of the possible research directions include: analysis

of finite reflective gratings with arbitrary profile, excited by plane waves and compact sources;

narrow band resonant microwave antennas; accurate modelling of corrugated horns; studies

of approximate parabolic (and other) reflector antennas; and finding the complex spectrum of

Fabry-Perot resonators with arbitrarily corrugated mirrors.

Other directions for future studies concern theoretical aspects of the rigorous solution and

its extension to the Neumann problem for 2D open arbitrary cavities with multiple slits, the

formulation and solution of the Neumann problem for ensembles of 2D open and closed cavities,

and the study of the third kind (impedance) boundary value problems for the Helmholtz equation

in 2D open domains.
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