
EXTENSION OF PERMUTATION ENTROPY

AND ORDINAL PATTERN ANALYSIS WITH

APPLICATION TO FINANCIAL TIME SERIES

ANALYSIS

Xin Huang

A thesis submitted for the degree of PhD

in the

Macquarie Business School

Department of Actuarial Studies and Business Analytics

November 16, 2021



Contents

Declaration iv

Acknowledgements v

Abstract vi

1 Introduction 1

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature review 4

2.1 Rationale behind permutation entropy (PE) and its previous applications . . 5

2.1.1 Measuring complexity and predictability . . . . . . . . . . . . . . . . 7

2.1.2 Detecting dynamical changes . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Identification of delayed feedback . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Measuring dependence structures for multivariate time series . . . . . 9

2.2 Empirical properties of financial time series . . . . . . . . . . . . . . . . . . . 10

2.2.1 Heavy tailed distribution of returns . . . . . . . . . . . . . . . . . . . 10

2.2.2 Insignificant correlation of returns . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Volatility clustering and long-memory properties . . . . . . . . . . . . 11

2.2.4 Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Non-stationary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.6 Other properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.7 Properties of high-frequency financial returns . . . . . . . . . . . . . 16

2.3 Financial time series models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Conditional heteroscedastic models . . . . . . . . . . . . . . . . . . . 20

2.3.3 Support vector regression . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . 26

3 PE and its variants 28

3.1 Definition of PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Advantages of PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Relation of PE and ACF in a Gaussian process . . . . . . . . . . . . . . . . 31

3.4 PE variant permutation dependence (PD) . . . . . . . . . . . . . . . . . . . 34

3.5 Comparison between PE, PD and ACF . . . . . . . . . . . . . . . . . . . . . 37

3.6 PE, PD and ACF under non-stationarity . . . . . . . . . . . . . . . . . . . . 44

i



3.7 PE, PD and ordinal pattern distribution in ARMA and GARCH models . . 45

3.8 PD visualization plot to reveal the deterministic relation captured by the

forecasting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9 Multivariate PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 The PD model sufficiency test 59

4.1 Conventional model comparison and evaluation approaches . . . . . . . . . . 59

4.2 Limitations of Brock, Dechert and Scheinkman (BDS) test . . . . . . . . . . 63

4.3 Rationale and specification of the PD model sufficiency test . . . . . . . . . 66

4.4 Simulation studies for the new test . . . . . . . . . . . . . . . . . . . . . . . 73

5 Empirical application to high-frequency currency exchange series and sea

surface temperature data 81

5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Modifications on PE and PD for equal entries . . . . . . . . . . . . . . . . . 84

5.3 Temporal dependence of 10-minute EUR/USD returns . . . . . . . . . . . . 85

5.3.1 Preliminary analysis to test against randomness . . . . . . . . . . . . 86

5.3.2 Discretization effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Temporal dependence in returns caused by structures in return magnitudes 95

5.3.4 Signs of returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.5 Bivariate dependence relation between signs of return and return mag-

nitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Temporal dependence of EUR/USD 10-minute squared returns and 1-hour

realized volatilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.1 Preliminary analysis on 10-minute EUR/USD squared returns . . . . 106

5.4.2 Periodicity in squared returns . . . . . . . . . . . . . . . . . . . . . . 107

5.4.3 Discretization effect in squared return dynamics and on deseasonaliza-

tion procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4.4 Temporal dependence structure in deseasonalized squared returns . . 112

5.4.5 Temporal dependence structure in 1-hour realized volatilities . . . . . 115

5.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Modelling and forecasting of 10-minute returns . . . . . . . . . . . . . . . . . 120

5.5.1 The sufficiency of MA(1) model . . . . . . . . . . . . . . . . . . . . . 121

5.5.2 Estimated MA(1) dynamics versus real return dynamics . . . . . . . 122

5.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

ii



5.6 Modelling and forecasting of 10-minute squared returns and 1-hour aggregate

volatilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.1 Evaluation of various models in predicting 10-minute squared returns

and 1-hour realized volatilities . . . . . . . . . . . . . . . . . . . . . 127

5.6.2 Reasons behind the insufficient predicting performance of the employed

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6.3 Main obstacles to predicting return volatilities . . . . . . . . . . . . . 141

5.7 Ordinal analysis on sea surface temperature data . . . . . . . . . . . . . . . 142

6 Conclusion 151

6.1 Methodological contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Main results in empirical analysis . . . . . . . . . . . . . . . . . . . . . . . . 153

iii



Declaration

I hereby declare that this thesis contains no material which has been accepted for the award

of any other degree or diploma in any university or equivalent institution, and that, to the

best of my knowledge and belief, this thesis contains no material previously published or

written by another person, except where due reference is made in the text of the thesis.

Xin Huang

iv



Acknowledgements

I would like to begin by thanking my supervisors, Professor Piet de Jong, Professor Hanlin

Shang, Professor Deb Kane, Professor Paul Smith and Professor David Pitt for their constant

support and academic guidance. Their wisdom, immense knowledge and kindness have guided

me through my PhD journey.

I am grateful for the financial support of the International Macquarie University Research

Excellence Scholarship, a Macquarie PhD Scholarship during my candidature, and the

generous provision of financial data from the Securities Industry Research Centre of Asia-

Pacific (SIRCA).

Most of all, I would like to express my deepest gratitude to my beloved parents for their

constant and unconditional love, encouragement and support.

v



Abstract

This thesis explores and extends the use of Permutation Entropy (PE), a complexity measure

that has been extensively used in the biomedical and physical fields but less so in the area

of financial time series. I make both methodological and empirical contributions to the

literature, specifically in relation to financial time series analysis.

First, I establish the connection of PE with the mainstream financial time series models by

demonstrating the relation of PE with the Autocorrelation Function (ACF) in the Gaussian

process and the parametrizations of the Autoregressive-moving-average (ARMA) and the

Generalized Autoregressive Conditional Heteroskedastic (GARCH) models. Additionally, I

examine the way that PE responds to a number of commonly observed features of financial

data, such as high-kurtosis and non-stationarity, in order to provide appropriate interpretation

of this measure when it is used in empirical applications.

Second, I develop a new temporal dependence measure, Permutation Dependence (PD) by

adjusting the specification of PE. PD is proposed as a remedy to the major drawbacks of

PE, such as its insensitivity to slowly diminishing temporal structures and its non-monotonic

corresponding to the strength of temporal dependence at the chosen delay/lag. I show that

the PD measure indicates the temporal dependence of the observed time series at the selected

delay/lag and it resembles the ACF in linear processes but is not grounded in detecting linear

structures. Just like the ACF, by plotting PD against increasing delays, it can be used to

reflect the evolution of temporal dependence relations as the lag between entries increases.

Additionally, with the help of the new PD measure, I develop a visualization plot for the time

series investigated to reveal the deterministic structures captured by different models. The

visualization plot provides a universal framework to facilitate comparison between different

deterministic relations postulated by both parametric and non-parametric models. Therefore

it helps to explain the superior and suboptimal prediction performance of various models

when applied to data with different properties.

My third methodological contribution is proposing a model sufficiency test using the ordinal

pattern concept in PE to study a given model’s point prediction accuracy. Compared to

some classical model sufficiency tests, such as the Broock et al. (1996) test, our proposal

does not require a sufficient model to eliminate all structures exhibited in the estimated

residuals. When the additive innovations in the investigated data’s underlying dynamics

show a certain structure, such as higher-moment serial dependence, the Broock et al. (1996)

test can lead to erroneous conclusions about the sufficiency of point predictors. Due to the

structured innovations, inconsistency between the model sufficiency tests and prediction
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accuracy criteria can occur. Our proposal overcomes this lack of cohesion between model

and prediction evaluation approaches and remains valid when the underlying process has

non-white additive innovation.

This thesis also provides critical empirical contributions. By making use of PE, PD and the

new model sufficiency test on 10-minute EUR/USD exchange rate return and volatility series,

I successfully apply the ordinal based analysis to real-world financial data. In particular, I

investigate the existence and nature of the temporal dependence underlying the observed

return and volatility dynamics. Additionally, by applying the newly proposed sufficiency

test on high-frequency exchange rate return and volatility series, I study the sufficiency of a

number of commonly used models in point forecasting the real-world financial series. The

model sufficiency evaluation studies also lead me to uncover the main reasons behind each

prediction model’s sufficient/insufficient performance. My empirical results have profound

implications for future studies as they identify the main obstacles to accurate prediction and

replication of the dynamics of financial time series, thereby pointing out how to construct

more capable and better performing models.

I also present a brief analysis using the ordinal pattern based tools on monthly sea surface

temperature data to demonstrate the potential applications of the PE and PD measures in a

wider range of disciplines.

vii



1 Introduction

Permutation Entropy (PE) is a computer intensive tool for analyzing dependence in long

sequences of data, including time series data. It has received little attention in the field of

applied finance despite being widely and successfully used in biomedical and physical fields.

The PE statistic is based on relative ranks within increasingly sparsely spaced out sub-

sequences derived from the original sequence. Using theoretical arguments one can establish

the behaviour of the expected value of the PE statistic if the sequence is “random”. Non-

randomness shows up in defined and potentially informative ways. Converting to ranks implies

the analysis is not grounded in linear or quasi-linear analysis of relationships. Instead, it may

be termed “non–parametric” since it does not require any prior knowledge or assumptions

about the functional form of the system.

PE was originally proposed as a variant entropy measure intended to indicate the complexity

and predictability of the dynamics underlying a time series characterized by a continuous

probability space. By measuring the complexity and predictability of various signals, one

can distinguish between time series generated from a chaotic (low dimensional deterministic)

process and that from a pure random process. Over the past 18 years, since PE was first

introduced, researchers have been exploring and extending the applications of PE. It has

been applied in many fields, including biomedical systems and laser dynamics. The previous

literature documents PE’s properties, such as robustness to noise and the ability to deal with

highly non-linear complex dynamics. These make PE an exceptional tool in capturing the

characteristics of complex systems, such as brain (electrical) activity (Costa et al. 2002) and

heart rate rhythms (Rubinov & Sporns 2010). Among the few existing applications of PE in

economic areas, PE is primarily used as a predictability measure to assess the efficiency of

financial markets and indicate the level of market development (Zunino et al. 2009).

This thesis explores and examines the potential use of PE analysis in financial time series

analysis, and makes both methodological and empirical contributions to the existing literature.

Methodologically, I establish the connection between PE and the mainstream financial time

series models by relating PE with the ACF in the Gaussian process and the parametrization

in the Autoregressive-moving-average (ARMA) model and the Generalized- autoregressive-

conditional-heteroscedastic (GARCH) model. In addition, I investigate how PE responds to

a number of commonly observed properties of financial time series such as high kurtosis and

non-stationarity and identify appropriate interpretations of results in PE analysis conducted

on financial time series by incorporating mainstream financial time series perspectives. Since

PE has a complex relation with the ACF even in a linear process, I develop a new measure,
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Permutation Dependence (PD), by adjusting the specification of PE to directly measure the

temporal dependence structures present in the dynamics underlying the observed time series

at a selected delay/lag. I show that the newly proposed dependence measure PD resembles

the ACF in the linear process but is not grounded in detecting linear structures. By plotting

PE and PD against increasing delays, they can be used together to detect the temporal

dependence structures (both linear and non-linear) underlying the observed time series and

reflect how dependence structures diminish as the entries become further apart. Moreover,

PD can indicate the existence of long-memory and aid in selecting optimal lag in constructing

predicting models.

In addition to these methodological contributions, with the aid of the newly proposed statistic

PD, I invent a visualization plot to reveal the deterministic structures captured by different

models fitted to an observed time series. The newly proposed visualization requires no

prior assumptions and knowledge of the predicting model’s functional form, and provides

a universal framework to facilitate comparison between different deterministic relations

postulated by both parametric and non-parametric models. The visualization technique is of

particular importance in understanding the prediction constructed by the non-parametric

models that have no closed-form formula. Our invention helps to open the “Black Box” as

many non-parametric models, such as machine learning approaches, are often referred to and

sheds light in explaining their superior and suboptimal performance when applied to data

with different properties. Lastly, enlightened by the ordinal pattern concept, I develop a new

approach to evaluate the sufficiency of a model/predictor in terms of its ability to exploit the

point prediction potential of the investigated time series.

Empirically, the most critical contribution of this thesis is in providing detailed demonstrations

of how PE and the related ordinal pattern analysis reveal important information about the

dynamics underlying the real-world financial series. I choose 10-minute interval EUR/USD

exchange rate return series as my object of investigation. EUR/USD is the most heavily traded

bilateral currency pairs, constituting around 24% of global foreign exchange transactions.

Analysis of the exchange return series can be considered a prototype because it has many

features and properties in common with other financial data. Further, the results obtained

can be easily learned and used as references for a wide range of related studies. Past studies,

including Belaire-Franch & Opong (2005) and Chortareas et al. (2011), conducted in the area

of market efficiency strongly indicate the lack of temporal dependence in returns over a longer

period, such as daily, weekly or monthly, thus intraday returns provide greater predicting

and structure exploration potentials (Chordia et al. 2005, Lien & Xiang 2010). With the

aid of PE and our newly proposed measures, I am able to answer a number of fundamental
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questions about the data investigated in this study:

• Do intraday EUR/USD return and volatility follow a purely random process or have

temporal dependence structures?

• If temporal dependence structure is present in observed intraday returns and volatilities,

what is the nature of the detected structure and what contributes to it?

• How predictable (point and density) is intraday return and volatility without using any

exogenous variables as inputs?

• Could conventional models such as the ARMA model and the GARCH-class models fully

replicate the underlying dynamics in the intraday EUR/USD return and volatilities?

• How well do the mainstream models such as the ARMA model, the GARCH model,

Gaussian Process Regression (GPR) and Support Vector Regression (SVR) point

predict EUR/USD intraday returns and volatilities? What is the reason behind their

sufficient/insufficient point forecasting performance?

The answers to the above questions are crucial to understanding the dynamics of high-

frequency financial time series, moreover they develop valuable insight into the high-frequency

trading behaviours and the micro-structures in financial markets. Six non-overlapping 1-year

period EUR/USD return series are used for analysis in order to search for more general and

persistent conclusions about the dynamics of EUR/USD intraday returns across different

time periods.

Additionally, PE and PD measures are also applied on monthly sea surface temperature

(SST) data. The empirical analysis results showed that the ordinal based measures are not

only very informative and insightful in the area of applied finance, but can be easily extended

to a wide range of fields on various types of time series. The empirical analysis reflects the

level of seasonality and predictability of the SST recorded in different Pacific areas, and helps

to identify the maximum time frame in which they can be predicted. Moreover, the bivariate

PE can even quantify the level of dependence between the SST indexes in different regions

thereby aiding in the selection of criteria for identifying and characterizing El Niño and La

Niña events.

1.1 Thesis outline

The thesis is structured as follows.

Chapter 2 summarizes prior studies relevant to the scope of this thesis. The studies
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summarized in chapter 2 include the initial rationale for inventing PE and its previous

applications, the empirical properties of financial time series and the commonly used models

in financial time series analysis.

Chapter 3 focuses on introducing all theoretical aspects of PE, including providing its

definitions and advantages, as well as relating it to the ACF in the Gaussian process.

Additionally, the new temporal dependence measure PD is also proposed in this chapter,

followed by a comparison between statistics PE, PD and ACF. Moreover, simulation studies

of PE and PD in the ARMA and GARCH models are included to examine the way that PE

and PD respond to the change of key features of time series dynamics. PE and PD are also

tested in the presence of non-stationarity. Lastly, I propose a new visualization technique to

reveal the deterministic relation postulated by a given prediction model and provide another

example of extension of PE as a multivariate dependence measure.

Chapter 4 identifies the limitations of the conventional model comparison and evaluation

approaches, and introduces a new model sufficiency test, the PD sufficiency test. I explain

the rationale and incentive behind the new test and how it overcomes the limitations of the

existing methods. Furthermore, I demonstrate its validity by applying it to a number of

simulated examples.

Chapter 5 outlines the empirical application of PE and the relevant ordinal pattern tools

introduced in previous chapters to analyze EUR/USD 10-minute returns, EUR/USD 10-

minute squared returns, aggregated 1-hour volatility series and the monthly SST time series.

For the financial time series, PE and PD are used to detect and investigate the temporal

dependent structures present in the investigated time series. The new model sufficiency test is

used to evaluate the sufficiency of the one-step-ahead prediction performance of the considered

models. In addition, I display the deterministic relation postulated by each prediction model

via the new visualization plot to provide explanations of each forecasting model’s superior

and suboptimal performances. For the SST time series, PE and PD measures are used to

reflect the level of seasonality and predictability. Bivariate PE is employed to quantify the

causality dependence between the SST index in different regions.

Chapter 6 concludes the thesis by summarizing the main findings and results.

2 Literature review

The literature review of this thesis consists of three parts, each covering a different but

important field for our study. The first part provides the rationale behind the initial
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innovation of PE and summarizes its previous applications in various areas for a range of

different purposes. The first part categorizes previous studies and applications of PE in fields

other than financial time series analysis. The second part summarizes the empirical properties

commonly observed in financial time series especially in high-frequency financial time series.

This part is included since the way that the PE measure responds to and is affected by

the characteristic properties of financial data determines the correct interpretation of this

relatively novel technique when conducted on financial time series. In the later chapters

of this thesis, I examine the behaviour of PE in reacting to a number of typical properties

of financial series such as non-stationarity and high-kurtosis. More importantly, it aids in

guiding and interpenetrating the empirical analysis conducted in Section 5. The last part of

the literature review lists some most commonly used parametric and non-parametric models

in financial time series analysis. The overview of various models is needed as PE measures

will be tested later in simulation studies to connect their behaviour with the parametrization

of the most popular ARMA and GARCH models, to establish a link between PE and the

specifications of simulated models. In that way it is possible to better comprehend the type

of information PE reveals and neglects, and relate PE with the mainstream finance literature.

The included models will be used later in empirical analysis as competing models in fitting

and predicting real-world financial data.

2.1 Rationale behind permutation entropy (PE) and its previous

applications

In the field of information theory, entropy is a quantity measuring the level of unpredictability

of the information content of the dynamics of the underlying system. Shannon’s entropy is

often considered as the foundational and most natural measure of entropy. Given a system

governed by a discrete probability distribution P = {pi : i = 1, ...,M}, Shannon’s entropy is

defined as

S(P ) = −
M∑
i=1

pi log pi,

where M represents for the number of possible outcomes, and pi measures the probability of

each outcome. If the dynamic of a process is perfectly predictable, then we have complete

certainty of which outcome will take place, that is,

P =

{
pi = 1;

pi = 0;

i = a,

i 6= a,
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the value of Shannon’s entropy reaches its minimum at 0. In contrast, S(P ) is maximized

at logM if the process follows a uniform distribution so that the process is completely

unpredictable. Therefore entropy can be considered as a measure of predictability, uncertainty

and system complexity.

Shannon’s entropy suffers several drawbacks when applied in empirical time series analysis.

First, this measure neglects temporal dependence relationships between the values in the time

series. For instance, the measure yields the same value for time series X1 = {0, 0, 1, 1} and

the time series X2 = {1, 0, 1, 0}. Second, the definition of Shannon’s entropy is not directly

applicable to empirical data. It requires prior knowledge of the probability space of the

process underlying the observed data, which is impossible to acquire in advance. To obtain

an entropy estimate for discrete time series, the required probability distribution can be

obtained by simply counting the frequencies of every possible outcome. However, “extracting”

the probability distribution from continuous time series is not a trivial task. Many methods

have been proposed to obtain the required probability distribution P for continuous time

series, including binary symbolic-dynamics (Mischaikow et al. 1999), amplitude-statistics

(De Micco et al. 2008), Fourier analysis (Powell & Percival 1979), wavelet transform (Blanco

et al. 1998), partition entropies (Ebeling et al. 2001) and discrete entropies (Amigó et al.

2007). However these methods capture different aspects of the dynamics, and many of them

require the investigated time series to satisfy the assumption of stationarity and low noise

contamination. Hence, Bandt & Pompe (2002) propose PE as a more robust and data-driven

way to construct the probability distribution required for the computation of entropy, while

enhancing the ability to capture the causality dependence relationships.

Bandt & Pompe’s (2002) approach constructs the probability distribution P by considering the

relative magnitudes of the neighbouring entries to symbolize the partitions of the time series.

This is best illustrated with an example: if we choose the first three entries in a given time

series X = {xt : t = 1, ..., N} to form a partition s1 = (x1, x2, x3) where (x1, x2, x3) = (0, 3, 1),

and rank the entries in s1 in ascending order, the first entry is the smallest, the second entry

the biggest and the third entry the second. We have the partition s1 belonging to the ordinal

pattern x2 > x3 > x1. For a three entry length partition, there are total 3! = 6 possible

ordinal patterns, excluding equal value circumstances. If we repeat the same procedures to

map every partition, that is, s2 = (x2, x3, x4), . . . , sN−2 = (xN−2, xN−1, xN), into one of the

six ordinal patterns, we can obtain the required discrete probability distribution by computing

the frequencies of each ordinal patterns. In fact, by considering the ordinal pattern, PE

extracts the information of the relative magnitudes of the entries in the time series, while not

considering the information with regards to their marginal magnitudes. This design provides
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PE with many desirable properties. First, PE is extremely robust to both observational

and dynamical noise (Bandt & Pompe 2002). Second, since the marginal distribution of

time series is not taken into account, PE can deal with time series where variances are

infinite or with heavy tailed distributions, as usually arises in economics and high-frequency

financial time series. Third, PE is extremely fast in computation and can deal with complex

systems with high non-linearity (Zunino et al. 2010). Lastly, PE is invariant to any monotonic

transformations. However, the loss of marginal magnitude may cause some inadequacy of

the PE measure in terms of its abilities to capture the features of certain dynamical system.

Such inadequacy can be remedied by employing weighted PE as supplementary (Fadlallah

et al. 2013).

Just like Shannon’s entropy, the original use of PE is to distinguish a chaotic process from

a random process, and measure the dynamical complexity and the predictability of the

underlying time series. The value of PE is bounded in the range of 0 to 1. If a time series

follows a completely stochastic process, we expect equal probabilities assigned to each possible

ordinal pattern and PE will have a value of 1. But if all the segments in the investigated

time series follow the same permutation pattern, the time series is obviously completely

deterministic and predictable, and the permutation entropy will have a value of 0.

The PE measure requires no prior information or assumptions about the system underlying

the observed time series, but only two pre-chosen parameters: the segment length D and the

delay τ . Segment length D determines the number of entries contained in every constructed

segment, thereby the total number of possible ordinal patterns. Clearly, with more ordinal

patterns, the measure is more capable of capturing the complex dynamics underlying the

observed time series. The choice of delay τ provides PE with the flexibility to investigate the

structure of time series over short-term and long-term dynamics.

Over the past 18 years, since PE was first introduced, an increasing number of studies has

been conducted to explore and extend its applications. The applications of PE are spread

across many fields including biomedical systems and economics. The applications of PE can

be roughly categorized into four branches as summarized below.

2.1.1 Measuring complexity and predictability

PE was originally proposed as an alternative measure of complexity and predictability of

the dynamics underlying an observed time series. By measuring the complexity of various

signals, one can distinguish between time series generated from a chaotic (low dimensional

deterministic) process and time series from a purely random process despite their seemingly
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identical characteristics. In addition, the level of complexity is associated with the level

of disorder and irregularity of the dynamical system. Generally, a lower-level complexity

indicates the system is more likely to be governed by deterministic structures and has

more potential to be captured and predicted, whereas a high-level complexity reflects more

disordered or more complex controlling rule for the underlying dynamics, which might be more

unpredictable and more difficult to comprehend. Thanks to the aforementioned advantages

of PE, such as robustness to noise and the ability to deal with highly non-linear complex

systems, the applications of PE as a complexity and predictability measure have been very

successful in capturing the characteristics of biological systems, such as brain (electrical)

activity and heart rate rhythms.

By investigating brain Electroencephalographic (EEG) data, the studies of PE on brain

activity are mainly conducted in the area of epilepsy research (see Cao et al. 2004, Keller

& Wittfeld 2004, Veisi et al. 2007, Li et al. 2007, Bruzzo et al. 2008, Ouyang et al. 2010,

Bian et al. 2012) and anaesthesiology (see Jordan et al. 2008, Li et al. 2008, Silva et al.

2010, 2011, Olofsen et al. 2008). For instance, Veisi et al. (2007) present PE as a diagnostic

tool to distinguish normal and epileptic EEG recordings. Li et al. (2007) show that PE

can detect pre-seizure state, thereby predicting the occurrence of an upcoming seizure. In

anaesthesiology, PE is used to efficiently discriminate between different levels of consciousness

during anaesthesia, providing an index of the anaesthesia drug effect (Olofsen et al. 2008). In

the field of cardiology, PE can identify different physiological and pathological conditions

when applied to heart rhythm Beat-to-beat Interval (BBI) data, and recognize patients

suffering from congestive heart failure (Parlitz et al. 2012).

Among the few existing applications of PE in economics, PE is primarily used as a predictabil-

ity measure to assess the efficiency of financial markets and indicate the level of market

development (Zunino et al. 2009, Siokis 2018).

In addition to the standard PE, Humeau-Heurtier et al. (2015), Aziz & Arif (2005), Shang

et al. (2019), Yin & Shang (2014) also proposed a multiscale permutation entropy (MPE)

and a number of MPE variants to show structures on multiple spatio-temporal scales. They

applied the MPE and its variants on physiological time series and financial time series, and

demonstrated the added capacity of their measures to standard PE in characterizing the

complexity of time series. Jiang et al. (2017) proposed a Gini-Simpson index PE (GPE) to

better facilitate the complexity measure of financial time series.
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2.1.2 Detecting dynamical changes

Instead of computing PE on the complete data series, recording the variations of PE on

(overlapping or non-overlapping) sliding blocks of investigated time series can detect dynamical

changes in a complex system. Cao et al. (2004) demonstrate that the variation of PE as a

function of time can accurately indicate bifurcations in the simulated transient logistic map

time series and transient Lorenz system. Moreover, by employing the same technique on EEG

data, the change of PE can track dynamical changes in brain activities, thereby indicating

the onset of epileptic seizures. In the finance field, a similar approach has been applied to

a number of financial time series to identify periods of time where noise prevailed over the

deterministic behaviour of the market (Hanias & Curtis 2008). Yan et al. (2012) applied PE

in bearing vibration analysis to detect dynamical changes of the machine working status,

thereby monitoring the working status of rolling bearings.

2.1.3 Identification of delayed feedback

Many dynamical systems involve delayed feedback mechanisms. A typical example of such

systems is the famous Mackey-Glass oscillator, which is presented by the differential-delay

equation
dxt
dt

= β
xt−τ

1 + (xt−τ )n
− γxt, γ, β, n > 0.

From the equation it is clear that the rate of change in the target variable depends on its

lagged historical values. Zunino et al. (2010) apply PE on a time series generated from

the Mackey-Glass oscillator. The rationale of using PE in detecting the time delay of the

system is that the underlying dynamics should be more predictable and simple when the

chosen parameter delay τ in the PE coincides with the characteristic time delay of the system,

resulting in a minimal in the function of PE over varying delays. Furthermore, it is also

shown that this method is capable of revealing multiple time delays if these exist in the

system. Many economic models include delay variables to account for the expectations from

market participants. Hence the identification of the possible delayed iteration present in the

system underlying the observed time series is critical to studies in many scientific areas.

2.1.4 Measuring dependence structures for multivariate time series

The extension of multivariate PE has been used to measure the dependence between two

or more time series. Matilla-Garćıa et al. (2014) extend PE to a bivariate case to study

the causal relationship between trading volume and security prices. They demonstrate that

their dependence test performs well in detecting linear and non-linear causality. In the
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work of Bahraminasab et al. (2008), PE is used with conditional mutual information for the

detection of causal relationships between two time series. Under the simulation of van der

Pol oscillators, their method demonstrates a good tolerance to external noise. Zhao et al.

(2013) proposed the permutation mutual information to achieve the similar purpose as the

two aforementioned measures.

2.2 Empirical properties of financial time series

In this section, I list a set of properties of financial time series, specifically of financial return

time series. These properties have been commonly observed across various financial assets,

markets and sampling periods by independent empirical studies, and are sometimes referred

to as the “stylized facts” of financial time series. Being aware of and understanding these

features is extremely important when conducting financial time series analysis, not only since

a great proportion of the financial time series models are designed to capture one or more

than one of these documented properties, but also some of these properties impose statistical

challenges for certain statistical approaches, hence conclusions and interpretations need to be

drawn with caution. By further organizing and summarizing the review papers composed

by Sewell (2011), Cont (2001) and other relevant literature I briefly characterize the main

empirical features of asset returns, explaining their causes and stating relevant potential

problems that might arise when conducting certain statistical analysis.

2.2.1 Heavy tailed distribution of returns

The distribution of returns is documented as being approximately symmetric and having high

kurtosis. High kurtosis indicates the distribution of asset returns is heavy tailed compared

with the normal distribution, which also means extreme values are more likely to occur in

the asset returns compared to from a normal distribution. Furthermore, the distribution

is increasingly heavy-tailed for higher-frequency (smaller intervals ∆t) returns. Volatility

clustering could explain some proportion of heavy tailed distributions in asset returns, however,

even after correcting returns for volatility clustering, the residual time series still exhibits a

heavy tail, but to a lesser extent.

Even though the heavy tailed distributions of asset returns are widely documented, the precise

form of the tails remains an open question. Cont (2001) points out that the (unconditional)

distribution of returns seems to display a power law or Pareto-like tail, with a tail index

higher than two and less than five for most data set studies. But the precise form of the tails

is difficult to determine.
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2.2.2 Insignificant correlation of returns

Empirical studies suggest that autocorrelations (ACF) of asset returns

C (τ) = corr (rt,∆t, rt+τ×∆t,∆t)

are often insignificant, except that high-frequency (∆t ≤ 20 minutes) returns sometimes

exhibit negative autocorrelations at very short delays τ (normally only at τ = 1). The

insignificance of autocorrelation implies that no linear relations can be found in the dynamics

of asset returns, and the absence of linear relations of asset returns is consistent with

the “efficient market hypothesis”, where arbitrage (profit) can’t be obtained by simply

extrapolating and formulating linear functions of historical returns. Moreover, traditional

tools based on second-order properties, such as ARMA modelling and Fourier analysis, are not

directly applicable to asset returns. Therefore, nonlinear dependence measures are required

to characterize the dependence properties of asset returns. As for the causes of the negative

autocorrelation of high-frequency return, Campbell et al. (1997) point out that the negative

correlation exhibited in the high-frequency return of transaction prices can be attributed to

the bid-ask bounce, where “transaction prices may take place either close to the ask or closer

to the bid price and tend to bounce between these two limits”. One may also observe the

negative correlation in the bid or ask returns at very short delays. This might be due to the

habit of the market makers who tends to set the bid and ask quotes to be mean-reverting

(see Goodhart & O’Hara 1997).

However, the sample ACF of asset returns needs to be interpreted with caution. The

aforementioned heavy tailed marginal distributions of asset returns makes the asymptotic

standard variance of sample ACFs greater than the classical ones, and the situation is even

more difficult for sample ACFs of the squared returns.

2.2.3 Volatility clustering and long-memory properties

Despite the fact that the ACFs of asset returns are often insignificant, the ACFs for the

absolute and squared returns are always positive and significant. This feature supports the

well-known phenomenon in the finance literature, called “volatility clustering”: large price

variations are likely to be followed by large price variations. Not only do empirical studies

find the ACFs of the absolute and squared returns decay slowly for increasing delays, where

ACFs can remain significant for delays of several days, even weeks. Bollerslev & Mikkelsen

(1996), Liu et al. (1997), Andersen & Bollerslev (1997) and Andersen & Bollerslev (1998) have

remarked that the decays of ACFs of the powers of returns are well described by power-law
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decay:

corr (|rt,∆t|α, |rt+τ×∆t,∆t|α) ∼ Aτβ

where A and β are constants, suggesting the existence of long-memory property.

The volatility clustering feature observed in asset returns is the main motivation of ARCH

(GARCH) class models, which estimate the future squared returns as a linear function of the

past squared returns plus innovations. In order to incorporate the long-range dependence

property in volatilities, the Fractionally Integrated Generalized Autoregressive Conditional

Heteroscedastic (FIGARCH) model is constructed by introducing a fractional differencing

operator into the GARCH model to account for the impacts from long-lagged past squared

returns on current volatilities.

However, researchers have shown that the non-stationary short-memory time series (time series

with inconstant mean and/or variances) display many of the same properties as a long-memory

time series, causing the slow decay of ACF and driving the sum of the estimated parameters

α and β under the GARCH(1,1) model very close to one, inducing “spurious long-memory”

effects (see Mikosch & Stărică 2004, Perron & Qu 2010). Tzouras et al. (2015) propose

an alternative test for long-memory that is robust to non-stationarity, concluding that the

S&P500 returns exhibit long-memory structures that are not attributed to non-stationarity.

2.2.4 Non-linearity

A stochastic process Y = {yt|t = 1, ..., T} is said to be linear if it can be written in the form

yt = µ+
∞∑
i=0

ψiat−i, or yt = µ+
∞∑

i=−∞

ψiat−i (1)

where µ is a constant, ψi are real numbers with ψ0 = 1, and {at} is a sequence of independent

and identically distributed (iid) random variables with a well-defined distribution function.

The equation above can be extended to include some exogenous variables in the mean of

yt, such as economic fundamentals and periodic functions to account for exogenous driving

forces and seasonalities. The most commonly used linear model in modelling financial time

series is the ARMA process:

yt = µ+

p∑
i=1

αiyt−i +

q∑
i=1

βiεt−i + εt,

where {εt} is a zero mean iid random variables with finite variance. Any process that violates

the condition defined in (1) belongs to a nonlinear process. However, there is no general form
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of nonlinear process since there are many possible specifications. In the finance literature, it

is generally accepted that there are two main forms of nonlinearity: nonlinearity in the mean

(additive nonlinearity)

yt = f (yt−1, ..., yt−k, εt−1, ..., εt−k) + εt,

where εt is a zero mean error term, and f (·) is a nonlinear function; nonlinearity in the

variance (multiplicative nonlinearity)

yt =
√
h (yt−1, ..., yt−k, εt−1, ..., εt−k)× εt,

where h (·) is nonlinear or time variant. A hybrid process where nonlinearity exists both for

the mean and the variance is also possible. An example of an additive nonlinear model is the

Nonlinear Moving Average model of Robinson (1977):

yt = εt + βεt−1εt−2,

while the GARCH (1,1) model of Bollerslev (1986)

yt = εt × δt,

δ2
t = ω + αε2

t−1 + βδ2
t−1.

is an example of a multiplicative nonlinear model. In the two examples above, εt is a sequence

of iid random variables.

Since both additive and multiplicative nonlinear processes could generate returns that are

correlated with their own lags, in order to distinguish between different forms of nonlinearities,

Hsieh (1989) suggests a test specifically for multiplicative nonlinearity. The null hypothesis

of the test is E (εtεt−iεt−j) = 0 with the test statistics Ê (εtεt−iεt−j) = 1
T

∑
utut−iut−j, where

ut is the filtered residual from the linear regression of its lagged returns, and T is the length

of the time series. The test is based on the property of the multiplicative nonlinearity that

E(εt|yt−1, ..., yt−k, εt−1, ..., εt−k) = 0,

hence by approximating f(·) using a second-order Taylor series expansion around zero and

obtaining terms such as εt−iεt−j , yt−iεt−i and yt−iyt−j , we expect εt is uncorrelated with these

terms.

Ashley et al. (1986) summarize various tests for detecting nonlinearity. The most commonly
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used non-linear test is the BDS test (Brock et al. 1991), the null hypothesis of which is that

the observations are independent and identically distributed, so in order to detect nonlinearity,

other possible sources of validation of iid, such as linear dependencies or non-stationarity,

must first be eliminated. Hinich (1982) proposed the bispectrum test to test nonlinearity.

The bispectrum test is relatively insensitive to many possible forms of nonlinearity, such

as ARCH or GARCH. This is because bispectrum tests use bicorrelations, or third-order

moments, which are zero-valued for GARCH processes. Therefore, any significant results

with this test are a strong indication of a nonlinear temporal dependence structure in a form

that is likely to be more complex than simple ARCH or GARCH dependence. Moreover, as

Ashley et al. (1986) show, the bispectrum test can be used to test for nonlinearity even in

the presence of linear dependencies, with no loss of power.

Empirical studies (see Hsieh 1989, Brock et al. 1991, Ammermann & Patterson 2003, Lim

et al. 2008) suggest nonlinearity is widely detected in the mean and (especially) the variance of

return dynamics across various financial markets and time intervals. Hsieh (1989) investigates

daily returns in five major exchange rate time series, finding no linear correlation but

substantial multiplicative nonlinearity. They further conclude that the GARCH model can

explain a large part of the nonlinearities detected. Ammermann & Patterson (2003) use

the bispectrum test to test the nonlinearity of the daily return of six different stock market

indices across the world, and the stocks trading on the Taiwan Stock Exchange, which can be

regarded as an isolated market. They show that nonlinear serial dependence is a fundamental

aspect and inherent feature of financial time series. However, by conducting the nonlinear

test on a sliding window of the data set, they find the nonlinearity is not persistent, that

is, nonlinearity dependence showed up at random intervals for a brief period of time but

then seemed to disappear again before it could be exploited. Abhyankar (1995) find clear

evidence of non-linearity in the 1-minute returns on the Financial Times Stock Exchange

(FTSE) index.

2.2.5 Non-stationary

Financial markets are prominent examples of highly non-stationary systems. Sample averaged

observables such as means and variances strongly depend on the time window in which

they are evaluated. This undermines the cornerstone of many conventional approaches that

presume past behaviours will stay unchanged into the future.

Despite widespread acceptance of the existence of non-stationarity, there is no consensus on

the exact form and explanations of the time-varying behaviours. Even though real-world

systems exhibit myriad forms of non-stationarity, the most commonly seen forms of non-
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stationarity in financial time series include upwards, downwards and seasonal trends in the

mean and variance, unit root non-stationarity, piecewise stationary and arbitrary abrupt

change. Unit root non-stationarity is caused by the fact that sometimes the impact from

past shocks does not decay over time, but has a permanent effect on the future series. For

example, a random walk process

xt = xt−1 + εt,

where {εt} is a white noise series. Piecewise stationary refers to the behaviour where although

the time series as a whole exhibits non-stationarity, weak stationarity rules are satisfied in

some local regimes and the transition between those regimes is instantaneous. An example

is a Markov Switching model. The following formulae give a simple example of a Markov

Switching model:

xt =

a1xt−1 + εt, if st = 1,

a2xt−1 + εt, if st = 2,

where st denotes the regime of the system and the transition between two regimes is governed

by a hidden two-state Markov chain with transition probabilities

P (st = 2|st−1 = 1) = p1, P (st = 1|st−1 = 2) = p2.

The innovation series {εt} is a sequence of iid random variables with mean zero and finite vari-

ance. Arbitrary abrupt change non-stationarity is the most complex type of non-stationarity

in a way that the relationship among the intrinsic and exogenous variables can change

arbitrarily and abruptly as opposed in a systematic manner as in the aforementioned forms of

non-stationarity. Among all types of non-stationarity, systematic trends in mean or variance

and unit root non-stationarity in time series are most easily identified and can be treated by

de-trending, deseasonalizing and differencing.

2.2.6 Other properties

• Leverage effect: Another commonly observed feature of asset return is the leverage

effect where the volatility of an asset return is observed to be negatively correlated with

the return of that asset, when prices decrease, volatility increases; when prices increase,

volatility decreases but to a lesser extent. Threshold Generalized Autoregressive

Conditional Heteroscedastic (TGARCH) and Exponential Generalized Autoregressive

Conditional Heteroscedastic (EGARCH) models are typical examples to account for

the leverage effect in the modelling of financial returns. Changes in low-frequency

15



volatility have more impact on subsequent high-frequency volatility than the opposite.

The intensity of this relation depends on the level of volatility at long horizons.

• Scaling effect: Scaling laws describe mean absolute and mean squared returns as

functions of their time intervals (varying from a few minutes to one or more years).

These quantities are proportional to a power of the interval size. The distributions of

return and volatility scale for a range of time intervals, which means the distributions

of return and volatility for various choices of 4t, ranging from 1 minute up to 1 month,

have similar functional forms

• Inconclusive evidence of low dimensional chaos is found in financial returns.

• Intermittency: Return display intermittency, that is, the time series alternates between

periods of seemingly periodic and chaotic fluctuations, evidenced from the presence of

irregular bursts. Intermittency is marked by random switching of system trajectories

between a relatively regular laminar phase and irregular turbulent phase.

• Gain/loss asymmetry: The large drawdowns are more commonly observed in stock

prices than equally large upward movements. But exchange rate exhibits a higher

symmetry in up/down movements.

2.2.7 Properties of high-frequency financial returns

The properties of financial asset returns depend strongly on the selection of time interval

∆t. Research into stylized facts for high-frequency data shows that the accepted empirical

regularities of daily data and weekly data often do not hold for intraday data (Gençay et al.

2001). I summarize four special characteristics of high-frequency returns that generally do

not exist in returns over longer intervals.

1. Negative first-order ACF: High-frequency returns normally display an extremely high

negative first-order ACF. The negative first-order ACF can be attributed to the non-

synchronous trading phenomenon or bid-ask bounce, and they both belong to the

microstructures of market behaviours. The nonsynchronous trading phenomenon refers

to the fact that based on the trading intensities the actual time of the last transac-

tion used to compute the return over fixed time interval can vary from time to time.

Campbell et al. (1997) propose a model to replicate this phenomenon and show that

the actual unequally spaced returns can lead to erroneous conclusions about the asset

returns, including inducing first-order negative autocorrelations.

2. Extremely high kurtosis: The distribution of the high-frequency returns is generally
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more heavy-tailed than lower frequency returns.

3. Intraday seasonality in volatility: For stocks, returns are shown to be more volatile

at the beginning and closing of trading hours, and relatively quiet during lunch hour,

resulting in an U-shape intraday periodicity in its volatility. For the foreign exchange

rate, the seasonal pattern is determined by the differences in trading times in the global

foreign exchange markets.

4. Discretization: The discretization comes from the existence of the smallest possible

price increment unit in the financial markets. This market convention is often referred

to as the tick size in the stock and futures markets, or the pip in the exchange rate

market. Since price can only jump in an integer multiple of a certain unit, the possible

values of each return are subject to a pre-defined range that varies according to the

price at the start of the return interval.

2.3 Financial time series models

In order to characterize the dynamics of a time series process, countless parametric and

non-parametric models have been proposed to capture the deterministic structures (if ex-

ists) underlying the observations and on which future predictions are based. This section

summarizes and revises the most commonly used parametric and non-parametric models in

financial time series analysis. By presenting a review of the most commonly used models, I

aim to reveal the widely accepted benchmark understandings of financial time series dynamics,

and the shared and individual challenges each model encounters in its empirical application.

The stream of parametric models I choose in this section includes the ARMA model, the

GARCH model and its variants: EGARCH, Glosten-Jagannathan-Runkle Generalized Au-

toregressive Conditional Heteroscedastic (GJR-GARCH) and FIGARCH. The representative

non-parametric models I select include the support vector regression (SVR) model and the

Gaussian process regression (GPR) model. They are some of the most commonly used

approaches in financial time series analysis. The selected models demonstrate mainstream

perceptions of modelling financial time series. Linear models focus on capturing the linear

serial dependence in the return or in the price dynamics, GARCH and its variants try to

capture the volatility clustering features commonly observed in the financial time series

dynamics. The FIGARCH model aims to incorporate long-memory properties into the

GARCH models. The non-parametric models, SVR and GPR models, have no close form thus

are more flexible compared to the parametric models. They have the additional capability

of replicating nonlinear structures, but generally involve more parameters to estimate and

require a larger data size to produce accurate predictions. In addition, non-parametric models
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are more likely to over-fit the training data than parametric models, thus leading to poor

generalization when predicting an unseen set of data of interest.

2.3.1 Linear models

A stochastic process Y = {yt|t = 1, ..., T} is said to be linear if it can be written in the form

yt = µ+
∞∑
i=0

ψiat−i, or yt = µ+
∞∑

i=−∞

ψiat−i

where µ is a constant, ψi are real numbers with ψ0 = 1, and {at} is a sequence of independent

and identically distributed (iid) random variables with a well-defined distribution function. A

typical example of a linear model in a time series is the ARMA model. A general ARMA(p, q)

model is in the form

yt = φ0 +

p∑
i=1

φiyt−i + εt −
q∑
i=1

θiεt−i,

where εt is a white noise series with mean zero and variance σ2
ε and p and q are non-negative

integers. Alternatively, the above equation can be written as:

[1− φ(L)]yt = φ0 + [1− θ(L)]εt. (2)

We require that there are no common factors between the polynomial 1− φ(L) and 1− θ(L),

otherwise the order (p, q) of the model can be reduced. For an ARMA(p, q) process to be

weakly stationary, all zeros of 1−φ(L) must lie outside the unit circle. ARMA models can be

written in two other representations, namely AR representation and MA representation. The

alternative representations serve different purposes and can lead to a better understanding of

the model. AR representation:

yt =
φ0

1− θ1 − · · · − θq
+ π1yt−1 + π2yt−2 + · · ·+ εt (3)

shows the dependence of the current entries on the past entries, whereas MA representation:

yt =
φ0

1− φ1 − · · · − φq
+ ψ1εt−1 + ψ2εt−2 + · · ·+ εt
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reflects the impact of past shocks εt−i on the current target observations. The parameter πk

and ψk are determined by equating the coefficients in

φ(L)

θ(L)
= 1− π1L− π2L

2 − · · · ≡ π(L).

and

θ(L)

φL
= 1 + ψ1L+ ψ2L

2 + · · · ≡ ψ(L)

When p = 1 and q = 1, which corresponds to the most used ARMA model ARMA(1,1),

πk = (φ1 − θ1)θk−1
1 , k = 1, 2, . . . ,∞,

ψk = (φ1 − θ1)φk−1
1 , k = 1, 2, . . . ,∞.

For a stationary ARMA(1,1) process (stationary constraint: |φ1| < 1), the unconditional

mean and unconditional variance of the model is given below:

E(yt) =
φ0

1− φ1

,

γ0 =
σ2
ε(1 + θ1 − 2φ1θ1)

1− φ2
1

.

By employing the Yule-Walker equation, it is straightforward to derive the formulae of the

ACFs of the ARMA(1,1) process:

ρ1 = φ1 −
θ1σ

2
ε

γ0

,

ρl = φ1ρ1−1, l = 2, 3, . . . .

(4)

According to the ACF formulae, the ARMA(1,1) model assumes the dependence relation

exhibited in the time series decays exponentially at the rate of φ1. Moreover, since the value

of term (1 + θ1− 2φ1θ1)/(1− φ2
1) is close to one, thereby ρ1 ≈ φ1− θ1. Hence φ1− θ1 roughly

determines the dependence between the adjacent entries.

Linear models are the most used and simplest approach to model and forecast time series.

However, they are only rough approximations of real-world complex systems and often

inadequate in capturing the complex dynamic required to make accurate prediction of a

real-world financial time series due to the non-linearity (see section 2.2.4) and non-stationarity

(see section 2.2.5) of the real-world system.
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2.3.2 Conditional heteroscedastic models

The conditional heteroscedastic model refers to the stream of statistical models that aim

to model the volatility of an asset return. More specifically, they model the volatility of an

asset return as a function of past volatilities and past returns. The main motivation of the

conditional heteroscedastic model is to capture the widely observed stylized fact about the

financial time series called “volatility clustering”, as outlined in section 2.2.3: large price

variations are likely to be followed by large price variations. Empirical evidence of volatility

clustering shows that, while the ACFs of asset returns are often insignificant, the ACFs

for the absolute and squared returns are always positive and significant. The most popular

conditional heteroscedastic models are GARCH and its variances EGRACH, GJR-GARCH

and FIGARCH.

Volatility can be an ambiguous term in the statistics and finance literature. Here volatility is

defined as the conditional standard deviation of the target variable, that is,

σt = s.d.(yt|Ft−1)

where Ft−1 denotes the all available information at time t − 1. Since there is only one

realization at each time t, volatility σt is not directly observable and normally reflected in

squared returns.

The GARCH model estimates future volatility as a linear function of the past volatilities

plus past innovations. Specifically, yt follows a GARCH(p, q) model if

yt = σtzt,

σ2
t = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j

= α0 + α (L) y2
t + β (L)σ2

t ,

(5)

where z′ts are normally distributed uncorrelated random variables with E(zt) = 0 and

Var(zt) = 1. Rearranging (5), an equivalent ARMA type representation of the GARCH(p, q)

model is given by

y2
t = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjy
2
t−j −

p∑
j=1

βjvt−j + vt,

or

[1− α (L)− β (L)]y2
t = α0 + [1− β (L)]vt, (6)
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where vt = y2
t − σ2

t is the “innovation” in the squared returns. α(L) is the ARCH polynomial

Q and β(L) is the GARCH polynomial P. To ensure the non-negativity of the conditional

variance process, the model requires α0 > 0, αi ≥ 0, i = 1, . . . , q, βj ≥ 0, j = 1, . . . p. In order

for the process to be stationary, an additional constraint:
∑q

i=1 αi+
∑p

j=1 βj < 1 must be

satisfied. If
∑q

i=1 αi+
∑p

j=1 βj = 1, the process is an Integrated Generalized Autoregressive

Conditional Heteroscedastic (IGARCH)(p, q) specification, where a shock in the squared

returns will lead to an infinite persistent effect on the conditional variance.

It is worth mentioning that the reason that the GARCH model is not a linear model despite

linear relations being assumed between future and past volatilities is due to the existence

of temporal dependence between the innovations vt. From the ARMA representation of the

GARCH model given in (6), the distribution of the innovation term

vt = y2
t − σ2

t

= σ2
t z

2
t − σ2

t

= σ2
t (z

2
t − 1).

is affected by σ2
t . Since the volatility σ2

t depends on past squared returns y2
t−1, consequently

is affected by vt−1. Therefore, it is easy to deduce that the squared return “innovations” {vt}
are not independent of each other. They are correlated in a way that large past innovations

vt−i in volatility tend to lead to greater variance of the distribution of the current innovation

vt.

Determining the order p and q of a GARCH model is not easy. Common practice includes

estimating all possible subset models of GARCH(p, q) and choosing the best according to an

information criterion (Akaike Information Criterion (AIC), Bayesian Information Criterion

(BIC)), or diagnosing the properties of the post-fitting squared residuals for remaining serial

correlations (Ljung-Box test). In fact only lower order GARCH models are used in most

applications, for instance, GARCH(1,1), GARCH(2,1), and GARCH(1,2) models.

In order to better interpret the implications of GARCH parameters, we transform the

GARCH(1,1) model into an AR-like representation. From equation (6), by treating y2
t in

GARCH(1,1) model as the target variable and υt as the innovation term, the equation of a

GARCH(1,1) model is just like an ARMA(1,1) process with φ1 = α1 +β1 and θ1 = β1 given in

equation (2). Therefore, by replacing φ1 with α1 + β1 and θ1 with β1, the AR representation

of GARCH(1,1) model is given below:

y2
t =

α0

1− β1

+ π1y
2
t−1 + π2y

2
t−2 + · · ·+ vt (7)
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where πk = α1β
k−1
1 , k = 1, 2, ..... Accordingly, the unconditional mean of y2

E[y2
t ] =

α0

1− α1 − β1

,

and the ACF of a GARCH(1,1) model with y2
t as the target variable can be obtained from

the ACF equation of an ARMA(1,1) model given in equation (4). The final results are

ρ1 = (α1 + β1)− β1
[1− (α1 + β1)2]

1− 2α1β1 − β2
1

,

ρl = (α1 + β1)ρl−1, l = 2, 3, ....

Since the value of
[1−(α1+β1)2]
1−2α1β1−β2

1
is close to one, we can make the approximation that

ρ1 ≈ α1,

ρl ≈ (α1 + β1)l−1α1, l = 2, 3, ....

Therefore, for a GARCH(1,1) model, the parameter α1 determines the extent to which a

volatility shock today impacts the next period’s volatility whereas (α1 + β1) measures the

rate that this effect diminishes over time.

The EGARCH model introduced by Nelson (1991) is a GARCH variant that models the

logarithm of the volatility to relax the non-negativity constraints previously required by the

GARCH model on its coefficients. In addition to modelling the logarithm, the EGARCH

model has additional leverage terms to allow for asymmetry effects on volatility between

lagged positive and negative asset returns. The model specification is given below:

yt = σtzt,

log σ2
t = ω +

p∑
i=1

bi log σ2
t−i +

q∑
j=1

aj

[
|yt−j|
σt−j

− E{|yt−j|
σt−j

}
]

+

q∑
j=1

ξj

(
yt−j
σt−j

)
,

where z′ts are uncorrelated with E(zt) = 0 and Var(zt) = 1, and ζ ′js are leverage coefficients,

which are usually negative to reflect the server impact on future volatility from negative returns.

To ensure stationarity, all roots of the GARCH lag operator polynomial (1− b1L− . . .− bpLp)
must lie outside the unit circle. EGARCH suffers from a major drawback in that it produces

biased forecasts, since by Jensen’s inequality

E(σ2
t ) ≥ exp{E(log σ2

t )}.
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Similar to EGARCH, the GJR-GARCH model is another variant of GARCH that includes

an additional term to account for the asymmetry effect. It has the specification:

yt = σtzt,

σ2
t = α0 +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjy
2
t−j +

q∑
j=1

ζjI [yt−j < 0] y2
t−j,

where z′ts are uncorrelated with E(zt) = 0 and Var(zt) = 1. To ensure the positivity of

the conditional variance process, α0 > 0, αi ≥ 0, i = 1, . . . , q, βj ≥ 0, j = 1, . . . p and

αi + ζi ≥ 0, i = 1, . . . , q. In order for the process to be stationary, an additional constraint:∑p
i=1 βi +

∑q
j=1 αj + 1

2

∑q
j=1 ςj < 1 must be met.

The FIGARCH model of Baillie et al. (1996) is an extension of the GARCH model to capture

the long-memory properties observed in the volatility dynamics. The FIGARCH model is

constructed by incorporating a fractional differencing operator (1− L)d with 0 < d < 1 into

the GARCH model given in (2):

[1− α (L)− β (L)] (1− L)d y2
t = α0 + [1− β (L)] vt,

or

φ (L) (1− L)d y2
t = α0 + [1− β (L)] vt, (8)

where vt = ε2
t − σ2

t is the “innovation” in the squared returns, d is a fraction 0 < d < 1, and

all the roots of φ (L) and [1− β (L)] lie outside the unit circle. The degree of persistence

depends on the d parameter. When d gets closer to one the memory of the process increases.

Note that the fractional differencing operator (1− L)d can be written as:

(1− L)d =
∞∑
k=0

Γ (k − d)

Γ (k + 1) Γ (−d)
Lk.

Rearranging (8), an alternative form of the FIGARCH(p, d, q) model can be obtained as

σ2
t = α0 [1− β (1)]−1 + {1− [1− β (L)]−1φ (L) (1− L)d}y2

t

= α0 [1− β (1)]−1 + λ (L) y2
t ,

where λ (L) =
∑∞

k=1 λkL
k. To ensure the non-negativity of the conditional variance process

all the λ′ks must be non-negative, that is, λk ≥ 0 for k = 1, 2, . . . . Take the FIGARCH(1, d, 1)

model as an example: the non-negativity constraint can be derived by expanding the
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coefficients in the λ (L), and set all λ′ks greater or equal to zero. By equating

1− (1− β1L)−1(1− φ1L)(1− L)d =
∞∑
k=1

λkL
k

it is possible to derive

λ1 = φ1 − β1 + d

λ2 = (d− β1)(β1 − φ1) +
d(1− d)

2

λ3 = β1

[
dβ1 − dφ1 − β2

1 + β1φ1 +
d(1− d)

2

]
+ d

1− d
2

(
2− d

3
− φ1)

...

λk = β1λk−1 +

(
k − 1− d

k
− φ1

)
δd,k−1, k = 4, 5, ...,

(9)

where δd,k = δd,k−1(k−1−d)k−1 and δd,0 = 1. Baillie et al. (1996) and Bollerslev & Mikkelsen

(1996) provide the sufficient non-negativity constraint for the FIGARCH(1, d, 1) model:

β1 − d ≤ φ1 ≤
2− d

3
and d

(
φ1 −

1− d
2

)
≤ β1 (d− β1 + φ1) ,

where φ1 = α1 + β1. For the similar lower order models, such parameter restrictions can be

derived similarly, however, for higher order models such restrictions cannot be obtained easily

(Caporin 2003).

2.3.3 Support vector regression

Support vector regression (SVR) is a popular machine learning tool for regression, first

developed by Vladimir Vapnik and his colleagues in 1992 (Vapnik 1998). SVR implements the

structural risk minimization principle as opposed to the empirical risk minimization principle

commonly employed in many traditional artificial neural network models. In essence, SVR

achieves non-linear regression by trying to find the best regression hyperplane of minimum

upper bound of generalization error with the help of the kernel function. One of the most

popular types of SVRs is ε-SVR, which locates the hyperplane with an ε-insensitive loss

function. The SVR function is formulated as follows:

f(xxx) = ωωω>φ(xxx) + b
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where φ(xxx) is a nonlinear function mapping the input vector to the feature space, ωωω is a

vector of weight coefficients and b is a bias constant.

In the case of time series prediction, consider a set of training points {(xxxi, zi) : i = 1, ..., N−d}
in a given time series {xt : t = 1, ..., N}, where xxxi = (xi, ..., xi+d−1) ∈ Rd is the input vector

constructed by d lagged entries and zi = xi+d is the target output. The goal is to find a

function f(xxx) that deviates from zi by a value no greater than ε for each training point xxxi

and at the same time is as flat as possible, that is,

min
ωωω,b

1

2
ωωω>ωωω

subject to ωωω>φ(xixixi) + b− zi ≤ ε,

zi −ωωω>φ(xixixi)− b ≤ ε,

i = 1, ..., N − d.

Frequently no such function f(xxx) exists to satisfy these constraints for all points. Therefore

slack variables ξi and ξ∗i are introduced for each point to deal with potentially infeasible

constraints. The slack variables allow regression error to exist up to the value of ξi and ξ∗i

yet still satisfy the required conditions. Under the given parameter C > 0 and ε > 0, the

standard form of ε-SVR (Vapnik 1998) is

min
ωωω,b,ξξξ,ξ∗ξ∗ξ∗

1

2
ωωω>ωωω + C

N−d∑
i=1

ξi + C
N−d∑
i=1

ξ∗i

subject to ωωω>φ(xixixi) + b− zi ≤ ε+ ξi,

zi −ωωω>φ(xixixi)− b ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i = 1, ..., N − d,

where parameter C determines the trade-off between model complexity and training error.

To find the optimal solutions of the above equation, a dual formula of the above equation is

introduced for simpler computation Vapnik (2013):

min
ααα,ααα∗

1

2
(ααα−ααα∗)>Q(ααα−ααα∗) + ε

N−d∑
i=1

(αi + α∗i ) +
N−d∑
i=1

zi(αi − α∗i )

subject to
N−d∑
i=1

(αi − α∗i ) = 0,

0 ≤ αi, α
∗
i ≤ C, i = 1, ..., N − d,
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where Qi,j = K(xxxi,xxxj) = φ(xxxi)
>φ(xxxj). After taking the Lagrangian and conditions for

optimality, we can find the model solution in the above dual representation,

f(xxx) =
N−d∑
i=1

(αi − α∗i )K(xxxi,xxx) + b

where αi, α
∗
i are non-zero Lagrangian multipliers and the solution for the dual problem.

K(xxxi,xxx) is the kernel function, which represents the inner product 〈φ(xxxi), φ(xxx)〉. A popular

choice of kernel function is the Radial Basis Function (RBF) because of its capacities and

simple implementation (Huang et al. 2010):

K(xxxi,xxxj) = exp(−γ‖xxxi − xxxj‖2) (10)

where γ is the width parameter of RBF kernel. Other popular alternative choices of kernel

functions include

• linear: K(xxxi,xxxj) = 〈xxxi,xxxj〉,

• polynomial: K(xxxi,xxxj) = (γ 〈xxxi,xxxj〉+ r)d,

• sigmoid: K(xxxi,xxxj) = tanh(γ 〈xxxi,xxxj〉+ r).

2.3.4 Gaussian process regression

Gaussian process regression (GPR) is a kernel-based Bayesian approach to regression that

not only provides a point prediction of the target object but also the associated predictive

distribution to indicate the prediction’s uncertainty. Consider a training set {(xxxi, zi) : i =

1, ..., N − d} in a given time series {xt : t = 1, ..., N}, where xxxi = (xi, ..., xi+d−1) ∈ Rd is the

input vector constructed by d lagged entries and zi = xi+d ∈ R is the target output. The

objective is to capture the dependence structures between xixixi and zi by treating them as

N − d jointly Gaussian distributed random variables. Specifically, we want to obtain the

function f(x) such that

zi = f(xxxi) + εi, i = 1, . . . , N − d

where εi is normally distributed with mean zero and variance δ2. DefiningXXX = [xxx1,xxx2, . . . ,xxxN−d]
>

and ZZZ = [z1, z2, . . . , zN−d]
>, we have

ZZZ ∼ N (m(XXX), K(XXX,XXX) + δ2III),
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where m(XXX) = E[f(XXX)] denotes the mean function and K(XXX,XXX) the covariance matrix with

elements Kij = k(xxxi,xxxj). Usually, for notational simplicity we will take the mean function

to be zero since GPRs are flexible enough to model the mean arbitrarily well, although this

need not to be done (see Williams & Rasmussen 2006), thereby a simpler representation of

the distribution of ZZZ is

ZZZ ∼ N (000, K(XXX,XXX) + δ2III).

And similarly

f(XXX) ∼ N (000, K(XXX,XXX)).

The elements in the covariance matrix are often estimated with the aid of kernel functions.

A common choice of kernel function is the radial basis functions given in (10), thereby the

covariance matrix is given by

k(xxxi,xxxj) = δ2
sexp{−γ(xxxi,xxxj)

T (xxxi,xxxj)}

where δ2
s denotes the signal variance and γ is the width parameter of RBF kernel function.

Intuitively, the covariance matrix is constructed by assigning more value to the covariance

entries whose corresponding training input vectors pairs are more alike. Thus, if points xxxi

and xxxj are considered to be similar by the kernel function values, f(xxxi) and f(xxxj) are also

expected to be close.

When we want to make a prediction of z∗ based on an unseen new input vector xxx∗, we assume

function of the new input f(xxx∗) and the observed target output are also jointly Gaussian and

can be represented by[
f(xxx∗)

ZZZ

]
∼ N

(
000,

[
k(xxx∗,xxx∗) k(xxx∗,XXX)

k(XXX,xxx∗) K(XXX,XXX) + δ2III

])
.

We are interested in the conditional distribution of f(xxx∗) given the input vector xxx∗ and

the knowledge learned in the observed training set (XXX,ZZZ). The conditional distribution of

f(xxx∗)|xxx∗, (XXX,ZZZ) can be obtained through the formulae that gives the conditional distribution

of a joint Gaussian distribution using Bayesian Theorem, namely if[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

then

X1|X2 ∼ N
(
µ1 + Σ12Σ−1

22 (X2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
.
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By substituting the above formula, we have

f(xxx∗)|xxx∗, (XXX,ZZZ) ∼ N (µ∗,Σ∗)

where

µ∗ = k(xxx∗,XXX)[K(XXX,XXX) + δ2III]−1ZZZ

Σ∗ = k(xxx∗,xxx∗)− k(xxx∗,XXX)[K(XXX,XXX) + δ2III]−1k(XXX,xxx∗).

The value of µ∗ is in general used as the prediction of the target output z∗, and Σ∗ indicates

the uncertainty on the prediction.

The optimal value of hyper-parameters δ2, δ2
s and the parameters for the kernel function

γ can be estimated by maximizing the log marginal likelihood using common optimization

procedures such as Quasi-Newton methods.

3 PE and its variants

This chapter provides the formal definition of the PE measure and summarizes its properties.

In addition, several variant measures originated from PE are also included in this chapter.

The main objective of this chapter is to explore and extend the use of PE in analyzing

temporal dependence structures in time series, and to propose a new measure, Permutation

Dependence (PD) which tracks and indicates the deterioration of the temporal dependence

between observations at increasing lags.

Concepts based on entropy are closely connected and are well suited for studying temporal

dependencies in time series. Any kind of statistical serial correlation, not only linear correla-

tion, is part of the analysis of temporal dependence structures. Traditionally, linear serial

correlation is quantified by the ACF, and nonlinear correlations have been studied through

higher-order moments. As an example, Hinich (1982) proposed the bispectrum test based on

bicorrelations, or third-order moments to test nonlinear temporal dependence. The entropy

measure investigates the temporal dependence from the aspect of information content. The

strength of the temporal dependence structure is reflected in the measure of entropy so that

for a random process with no temporal dependence structure, the entropy measure should

reach its maximum. On the other hand, processes with strong temporal dependence are

more predictable and thus expected to have a relatively low value of entropy. Compared to

traditional methods, the use of PE in the analysis of the temporal dependence structures

is advantageous since it is not grounded in linear or quasi-linear analysis of relationships.
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Instead, it may be termed non–parametric since it does not require any prior knowledge and

assumptions about the functional form of the system. Additionally, using ordinal patterns as

a symbolic measure is potentially better than using actual time series values in the sense that

it helps to preserve the weak causality dependence structures, especially nonlinear structures

in the presence of highly volatile noise (Bandt & Pompe 2002, Parlitz et al. 2012, Bandt 2005,

Groth 2005).

In light of the relation between PE and the linear correlation function in a Gaussian process

derived by Bandt & Shiha (2007), PE at delay τ is not only determined by the temporal

dependence at the selected delay but also the temporal dependence at 2τ , 3τ , ..., (D − 1)τ ,

where D is the chosen segment length parameter required in the computation of PE. By

modifying the specification of PE, I propose a new measure, Permutation Dependence (PD),

so that PD has one-to-one correspondence to the temporal dependence at the selected delay.

The new measure PD is easier to comprehend and interpret for finance practitioners because

its behaviour is similar to the most commonly used serial dependence measure, ACF, but

not grounded to detecting linear structures as is ACF. In addition, I find that PE tends to

neglect the evidence of determinism in a process in which there is a significant but slowly

varying dependence structure for increasing lags. PD remedies this limitation of PE and is

proven to be an important complementary tool to PE in later empirical analysis.

3.1 Definition of PE

Given a univariate time series X = {xt; t = 1, ..., N}, for chosen segment length D and delay

τ, we compose a vector consisting of the first and the next D-th subsequent entries with

every chosen entry τ interval apart:

xD1,τ = (x1, x1+τ , ..., x1+(D−1)τ ).

Likewise we can construct total N − (D − 1)τ vectors of the same length by sliding the

partition window one step ahead per time along the observed time series:

xDt,τ =
(
xt, xt+τ , ..., xt+(D−1)τ

)
, t = 1, 2, ..., N − (D − 1) τ. (11)

For each constructed vector xDt,τ , by comparing the value of the entries in the vector, each

segment xDt,τ is mapped into one of the D! ordinal patterns {πi; i = 1, ..., D!} excluding equal

entry circumstances (equal entry circumstances are discussed in section 5.2). For instance, if
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D = 3, there are 6 distinct ordinal patterns, which are:

Ordinal Pattern (axbxcx) Condition

π1 (321) xt > xt+τ > xt+2τ ,

π2 (312) xt > xt+2τ > xt+τ ,

π3 (231) xt+τ > xt > xt+2τ ,

π4 (213) xt+2τ > xt > xt+τ ,

π5 (132) xt+τ > xt+2τ > xt,

π6 (123) xt < xt+τ < xt+2τ .

The probability of each ordinal pattern is estimated by the number of the constructed

segments that are mapped into πi, divided by the total number of the segments, that is,

pDτ (πi) =
#{xDt,τ |xDt,τ has ordinal pattern πi}

N − (D − 1) τ
, i = 1, ..., D!.

Inheriting the definition of Shannon’s entropy, the permutation entropy for the univariate

time series X, with chosen vector length D and delay τ is defined as

PED
τ (X) =

D!∑
i=1

−pDτ (πi) ln
(
pDτ (πi)

)
lnD!

.

The value of permutation entropy is bounded between 0 and 1, where 0 indicates a completely

predictable dynamic and 1 indicates completely stochastic dynamic. We use

1− PED
τ (X)

to measure the level of departure from randomness of the dynamics underlying the observed

time series. Matilla-Garćıa & Maŕın (2008) show that under the assumption that the time

series X is iid,

2{[N − (D − 1)τ ] lnD!}[1− PED
τ (X)]

is asymptotically χ2
D!−1 distributed.

Note that the way the PE constructs the segment in X originates from Taken’s theorem, where

a time-delayed version of one generic signal would suffice to embed the n-dimensional manifold.

The segment length D is identical to Takens’s embedding dimension. Taken’s embedding

theorem is particularly used in reconstructing the attractor in the domain of chaos. According

to Bandt & Pompe (2002), D is recommended to be chosen in the range of 3 ≤ D ≤ 7. The

choice of parameter D needs to be subject to the restriction: N − (D − 1) τ � D! (Rosso

30



et al. 2007, Kowalski et al. 2007). The rationale behind the recommended range of D is that,

since we partition the observed time series into numbers of overlapping segments and map

the constructed segments into D! possible ordinal patterns, the constructed number length,

N − τ − 1, should excessively exceed the number of possible pattern categories. If data are

relatively short with a sample size of 1000, we recommend D = 3. If data are relatively

long with a sample size of 10000, we recommend D = 4 or 5. For the sake of simplicity and

computational efficiency, I choose D = 3 to be the default segment length for all the PE

analysis in this paper. I also conduct the analysis for D = 4 with similar results.

3.2 Advantages of PE

The most advantages of PE reside in its two main attributes. First, is its model-free nature

that allows it to be not grounded to any form of relations and requires no prior assumptions

and knowledges about the underlying dynamics of the investigated data. Second, is its ability

to unveil the determinism in the dynamics of a system in the presence of highly volatile noise

and non-stationarity (Kreuzer et al. 2014). As I illustrate later in the thesis, PE can uncover

many structures that other tools are likely to overlook. Using an ordinal pattern as a symbolic

measure is advantageous compared to using actual time series values because it helps preserve

the weak causality dependence structures, especially nonlinear structures, in the presence of

highly volatile noise (Bandt & Pompe 2002, Parlitz et al. 2012, Bandt 2005, Groth 2005).

Moreover, Bandt & Shiha (2007) prove that all stationary ergodic processes can be recovered

from the one-dimensional distribution and the order structure of the time series. Therefore

PE neglects the one-dimensional distribution of the investigated data, but preserves the casual

dependence structures underlying the governing dynamics by only considering the order

structure. Additionally, PE has the advantage of invariance to monotonic transformation.

Accordingly, drifts or scaling artificially introduced by a measurement device will not modify

the quantifiers estimation, a nice property if one deals with experimental data or financial

series where a number of functional forms of the objects of interest are often considered in

conjunction, for example, absolute and squared returns.

3.3 Relation of PE and ACF in a Gaussian process

PE was originally proposed as a measure of complexity. Complexity can be an unfamiliar

and rarely used term by researchers in the finance area. To better comprehend the type of

information that PE reflects, in the section I will illustrate the connection between PE and

ACF in a Gaussian process to establish the link between PE and the most familiar terms in

financial time series analysis.
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Bandt & Shiha (2007) derive the formula that connects the value of PE with the autocor-

relation function in the classical model of time series analysis: Gaussian processes. PE is

computed from the probability of ordinal patterns. For chosen segment length 3 (D = 3), the

probability of ordinal pattern π123 of delay τ in a stationary Gaussian process is given below:

pD=3
τ (π123) =

1

π
arcsin

(
1

2

√
1− ρ2τ

1− ρτ

)
, (12)

where ρτ is its autocorrelation function of Gaussian process at lag τ ,

pD=3
τ (π123) = pD=3

τ (π321), (13)

and the remaining patterns have equal probabilities. Therefore by knowing pD=3
τ (π123), the

probabilities of all ordinal patterns and the value of PE can be determined. According to

equation (12), the value of PE depends on two components: the value of ρτ itself, and the

ratio between the correlation ρτ and ρ2τ . In other words, the ordinal pattern distribution

of a Gaussian process reflects two components: the strength of dependence between the

current and the lag τ period’s entries in a given time series; and the rate that the dependence

structure changes from lag τ to 2τ . Similarly, Bandt & Shiha (2007) also determine the

formula for patterns of length 4 (D = 4). However, for patterns of length longer than 5 there

are no closed formulas.

Based on the results form Bandt & Shiha (2007), for a chosen pattern length of 3, all

stationary Gaussian processes have equally probable monotonic ordinal patterns (π123,π321)

and non-monotonic ordinal patterns (π213,π132,π231,π312) at any arbitrary delay. The reason

behind the equally probable monotonic patterns in a Gaussian process is understandable.

The equality is governed by two features of the underlying dynamics. First, the symmetrical

distributions of Gaussian process that lead to equal probabilities of positive and negative

increments:

p(Xt −Xt−τ > 0) = p(Xt −Xt−τ < 0).

Second, the deterministic relation that ensures the impartial responds to positive and negative

increments:

p(Xt −Xt−τ > 0|Xt−τ −Xt−2τ > 0) = p(Xt −Xt−τ < 0|Xt−τ −Xt−2τ < 0),

where τ is an arbitrage lag. As a result

p(Xt > Xt−τ > Xt−2τ ) = p(Xt < Xt−τ < Xt−2τ ).
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If the correlation at lag τ is positive, the monotonic ordinal patterns are always more probable

than non-monotonic ordinal patterns.

In fact, not only the Gaussian process, but any stationary time series with a linear structure

and independent symmetrical distributed noise has equally probable monotonic patterns for

any arbitrage delay τ . The proof is given below. For any stationary time series {Xt},

E(Xt −Xt−τ ) = 0.

Suppose every stationary time series Xt can be written in a form of

Xt = c+ g(Xt−1, ..., Xt−d) + εt,

where c is a constant, g(·) is a time-invariant function and εt is the noise term with both

conditional and unconditional mean of zero, we have

Xt −Xt−τ = f(Xt−1, ..., Xt−d−τ ) + εt − εt−τ ,

where

f(Xt−1, ..., Xt−d−τ ) = g(Xt−1, ..., Xt−d)− g(Xt−1−τ , ..., Xt−d−τ ).

Since

E[Xt −Xt−τ ] = E[f(Xt−1, ..., Xt−d−τ ) + εt − εt−τ ] = 0,

and E(εt) = 0, E(εt−τ ) = 0, thereby

E[f(Xt−1, ..., Xt−d−τ )] = 0.

when {Xt} has linear structure and independent symmetric noise,

E[(Xt −Xt−τ )
3] = E[f(Xt−1, ..., Xt−d−τ )

3] + E[(εt − εt−τ )3].

Therefore, the kurtosis of Xt −Xt−τ is zero so that its distribution is symmetric around its

mean 0. If we assume Xt is a continuous time series so that ties are negligible, the symmetrical

distribution and zero mean of Xt −Xt−τ lead to

p(Xt > Xt−τ ) = p(Xt < Xt−τ ).
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Since the response to increments and decrements in linear relation is symmetric, thereby

p(Xt > Xt−τ |Xt−τ > Xt−2τ ) = p(Xt < Xt−τ |Xt−τ < Xt−2τ ).

In addition,

pD=3
τ (π123) = p(Xt > Xt−τ |Xt−τ > Xt−2τ )p(Xt > Xt−τ ),

pD=3
τ (π321) = p(Xt < Xt−τ |Xt−τ < Xt−2τ )p(Xt < Xt−τ )

we have pD=3
τ (π123) = pD=3

τ (π321).

The formulas of ordinal pattern probabilities in time series that are non-stationary, that have

non-linear dependence structures or that have asymmetrical noise are more difficult to derive.

However, as I demonstrate in the later sections, their ordinal pattern distributions show up

in defined and informative ways.

3.4 PE variant permutation dependence (PD)

In the previous section, I demonstrated that for a Gaussian process, the value of PED=3
τ is

positively correlated with the ACF over lag τ , but is offset by the ACF at lag 2τ . The relation

between the ACF and PE in the most classic linear process indicates that PED
τ represents

a composite of multiple temporal dependence relation over (D − 1) integer multiple of the

selected delay. In other words, the value of PED
τ not only reflects the temporal dependence

structure of the selected delay, but is also influenced by, more specifically, negatively related

to the temporal dependence structure over integer multiple of selected delay: 2τ , 3τ up

to (D − 1)τ . The absence of one-to-one correspondence between PED
τ and the temporal

dependence structure at τ complicates its interpretation and implication. Moreover, if a time

series is generated from a process with significant but slowly diminishing dependence structure

for increasing lags, PE might not be able to detect it. In order to fix these limitations of PE, I

propose a new measure, permutation dependence (PD). The new measure PDD
τ indicates the

strength of temporal dependence at the selected delay τ and is not affected by the dependence

structures of other delays.

The new dependence measure PDD
τ is an extension of PE. Unlike PE, the value of which reflects

multiple offsetting components, PDD
τ only reflects the dependence relation at the selected

delay τ . The computation of the new dependence measure PDD
τ requires three steps. First, we

compute the probability of each ordinal pattern by extracting relative ranks of entries within

every constructed segments xDt,τ = (xt, xt+1, ..., xt+D−2, xt+D−2+τ ) , t = 1, 2, ..., N −D + 2− τ
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from the investigated time series X = {xt; t = 1, ..., N}. Then we replace the value of

xt+D−2+τ in every constructed segment with a randomly generated random variable r, which

has the same distribution as the original time series X using kernel functions (see Peter D

(1985), Altman & Leger (1995), Jones (1990) for more details in estimating distribution using

kernel functions), and compute the new ordinal pattern probabilities. Lastly, by repeating

the second step a sufficient number of times (for this study I repeated 500 times), PDD
τ is

equal to the discrepancy between ordinal pattern probabilities in the original time series

and the mean of that in the simulated segments, standardized by the standard deviation of

simulated probabilities. The formal specification of new temporal structure measure PDD
τ is

given below. The new dependence measure PDD
τ is computed by:

PDD
τ (X) =

∑
πi

(
pτ (πi)− E[prand

τ (πi)]

s.d.[prand
τ (πi)]

)2

where (πi : i = 1, ..., D!) represents the collection of D! number of possible distinct ordinal

patterns of length D, and

pτ (πi) =
#{xDt,τ |xDt,τ has ordinal pattern πi}

N − (D − 1) τ
, i = 1, ..., D!,

prand
τ (πi) =

#{xD,rand
t,τ |xD,rand

t,τ has ordinal pattern πi}
N − (D − 1) τ

, i = 1, ..., D!,

and

xDt,τ = (xt, xt+1, ..., xt+D−2, xt+D−2+τ ) , t = 1, 2, ..., N −D + 2− τ,

xD,randt,τ = (xt, xt+1, ..., xt+D−2, rt+D−2+τ ) , t = 1, 2, ..., N −D + 2− τ,

where {rt; t = 1, ..., N} is generated from a purely random process and has the same

distribution as {xt; t = 1, ..., N}.

The rationale behind the new dependence measure PDD
τ is that PDD

τ measures the indication

power of the ordinal patterns in the τ lagged consecutive historical observations in predicting

the upcoming entry. If the time series under study follows completely stochastic dynamics, we

expect no difference can be detected between the ordinal pattern distribution in the partitioned

segments xDt,τ = (xt, xt+1, ..., xt+D−2, xt+D−2+τ ) from the original data and simulated segments

xD,rand
t,τ = (xt, xt+1, ..., xt+D−2, rt+D−2+τ ), since in both cases the ordinal pattern in the past
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entries have no impact and hence no indicating power for the upcoming xt+D−2+τ or randomly

generated entry rt+D−2+τ . Thereby PDD
τ will be close to zero. On the contrary, if the time

series has a temporal dependence structure at delay τ , significant difference will be detected

between the ordinal patterns in the original series and those in the simulations.We are using

sum of squares of the standardised differences to measure the discrepancy between pτ and

prand
τ . By choosing the squared difference rather than absolute difference, the measure may

inflate the large values of standardized differences. However, since the measure is based on

ordinal patterns, such design ensures the measure to be robust to outliers. The squared

function is chosen to enhance the sensitivity of the measure to detect deterministic structures.

It is worth mentioning that the constructed vectors xDt,τ in PD are not exactly the same as

those in PE. The observations in the constructed vectors in PE are τ interval apart, whereas,

in PD, the first D− 1 observations in xDt,τ are consecutive, only the last entry is τ -step ahead.

The purpose of the modifications made into the constructed vectors in PD is to ensure that

PD exclusively accounts for the temporal dependence at the selected delay. Additional, the

temporal structure between the consecutive entries is always the strongest in most real-world

time series. The design of the constructed segment also enhances the sensitivity of PD in

detecting deterministic structures.

By computing and plotting PDD
τ over increasing delay τ , the evolution of the dependence

structure between further sparse entries in a given time series can be revealed, just like the

plot of a sample ACF. PDD
τ is advantageous compared to the sample ACF since the sample

ACF only extracts linear temporal dependence relations, whereas PDD
τ is not restricted by

any form of dependence structures.

The required parameter of statistic PD is identical to that in the computation of PE, namely

the pattern length D and delay τ . For the same reason as the requirements of the parameters

in the PE, segments length D and delay parameter τ needs to be subject to the restriction:

N − (D − 1) τ � D! in measure PD. In general, I recommend to choose D to be 3, 4 or 5

depending on the length of the investigated data.

I generate a time series with a has significant but slowly diminishing dependence structure

to show how the newly proposed measure PDD
τ compensates for the weakness in PE. The

generated time series is from an ARMA(1,1) process

yt = 0.2 + 0.98yt−1 − 0.95εt−1 + εt

where Var(εt) = 1. As shown in the sample and theoretical ACF plot of the simulated process

(Figure 1(a)), the generated time series has significant but slowly diminishing linear temporal
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dependence structures. Figure 1(b) displays the plot of 1− PED=3
τ against increasing delays

of the generated time series. The value of 1 − PED=3
τ fluctuates at an insignificant level,

indicating the PE’s inability to detect a slowly diminishing dependence structure. Figure 1(c)

illustrates the fact that the new dependence measure PDD=3
τ successfully captures the weak

and persistent dependence structure in the simulated ARMA(1,1) time series. Moreover, the

shape of the plot of new dependence measure PDD
τ over increasing delays resembles the plot

of theoretical ACF of the generated ARMA(1,1) time series indicating the consistency of the

proposed measure with the ACF for time series governed by linear dynamics.

In fact, PE and PD are complementary to each other. When PE is insignificant, it is not

possible to tell whether the investigated series is subject to lack of dependence structures or

has slowing varying dependence. The new dependence measure PDD
τ helps to differentiate

between them. However, as I am going to show in the next section, PDD
τ suffers from the

problem of low resolution due to the fact that statistic PDD
τ has relatively large variance. As

a result, two time series having different strength of structures can end up with similar value

of PDD
τ . In that case, PE can provide better resolution for differentiating different levels

of determinism. Besides, the PD measure is susceptible to non-stationarity whereas PE is

relatively robust to it.

3.5 Comparison between PE, PD and ACF

PE, PD and ACF all aim at detecting and capturing temporal dependence structure underlying

an investigated time series, and are all used as preliminary tools to explore and provide

guidance for later modelling and forecasting procedures. However, their implications and

interpretations are quite different when conducted on the same time series. The plots of

PE, PD and ACF over increasing delays/lags place emphasis on different aspects of the

dependence structures underlying the observed time series. In this section, I demonstrate

their similarities and differences with the aid of a number of simulation studies.

The ACF is the most widely used tool in time series analysis to measure the linear dependence

of a process with a delayed copy of itself. The ACF of a given time series X = {xt : t =

1, . . . , n} at delay τ can be estimated by the sample ACF coefficient:

rτ =

∑n−τ
t=1 (xt − x)(xt+τ − x)∑n

t=1(xt − x)2

where x is the sample mean of the given time series. In financial time series analysis, the plot

of ACFs, together with plot of partial autocorrelation function (PACF) on returns and squared

returns, is commonly used in detecting trend and periodicities exhibited in the financial
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Figure 1: (a) Plot of ACF against increasing lags of the simulated series generated from an

ARMA(1,1) model with significant but slowing diminishing linear dependence structures. (b) Plot

of 1−PED=3
τ against increasing delays of the simulated series. (c) Plot of PDD=3

τ against increasing

delays of the simulated series.
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asset dynamics and in choosing the order parameters p, q of ARIMA(p, q) and GARCH(p, q)

models. The simplicity of the tool makes it the most commonly used preliminary exploratory

tool in time series analysis. However, it has several significant shortcomings. First, it only

reflects linear relations, thus may neglect the non-linear structures if they exist. Second,

in order to work properly, ACF requires the investigated time series to be at least weakly

stationary and not too far from normality. Mikosch & Stărică (2004) show that it fails to

distinguish between long-memory time series from non-stationary short-memory time series.

Unlike the ACF that is grounded in detecting linear dynamics, PE and PD measures are

not restricted by any form of temporal dependence structures. They can be considered as

universal structure detectors. As explained in the previous section, PE and PD reveal the

underlying dependence structures differently. PE reflects the joint effect of two contributing

components: the dependence structure at the chosen delay and the dependence varying rate

for increasing delays, whereas PD is designed to modify this drawback of PE so that it only

quantifies the temporal dependence relation at the selected delay.

To visually illustrate how PED
τ , PDD

τ and ACF reveal a time series temporal dependence

structure differently, I simulate 500 time series of length 38160 from two ARMA models,

model 1:

yt = 0.2 + 0.5yt−1 − 0.3εt−1 + εt

where Var(εt) = 0.01, and model 2:

yt = 0.16 + 0.6yt−1 − 0.41εt−1 + εt

where Var(εt) = 0.01, then compute the average of ACF, 1 − PED=3
τ and PDD=3

τ against

increasing lags/delays of the generated times series from the above two models, along with

their respective 2.5% and 97.5% percentiles. The time series governed by the above two

models have the same expected unconditional mean and variance. Moreover, I specifically

select the parameters of the above two ARMA processes so that they have very close ACF at

lag 1 but decay at different rates, resulting in unequal ACFs at longer lags (see Figure 2(a)).

As shown in Figure 2(a) and Figure 2(c), for a linear process, the ACF plot and PDD=3
τ plot

are in close resemblance, except that the ACF has narrower variance. That means for a

linear process, ACF is better at differentiating the small discrepancy between two processes

when compared to the universal dependence detector PD. In contrast with ACF and PD, PE

cannot indicate the temporal dependence structure at individual delays. This weakness of

PE is clearly illustrated in Figure 2(b), which shows that the value of PED=3
τ=1 of a time series

generated from model 1 differs significantly from that from model 2 despite the fact that
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they have similar strength of dependence relation at the corresponding delay. Nevertheless,

the PE plot is advantageous in revealing different serial dependence diminishing rates of the

two simulated models. As illustrated in section 3.3, the value of PE is positively correlated

with two components: the strength of dependence between the current and the lag τ period’s

entries in a given time series; and the rate that the dependence structure changes from lag τ

to 2τ . A rapidly diminishing rate would lead to larger discrepancies in both components that

contributes to the value of PE.

Despite the advantages of higher resolutions, ACF lacks the ability to reveal non-linear

dependence structures. This is best illustrated by comparing the plot of the three temporal

dependence measures on simulations from an ARMA(1,1) model and a GARCH(1,1) model

that share exactly the same linear serial correlations. The ARMA(1,1) model stays the same

as the specification given in equation (3.5), and the simulated GARCH model is specified as

follows:

yt = σtzt,

σ2
t = 0.2 + 0.2y2

t−1 + 0.3σ2
t−1,

where {zt} is a sequence of iid random variables with mean 0 and variance 1. The simulated

GARCH(1,1) model can be arranged in the form of:

y2
t = 0.2 + (0.2 + 0.3)y2

t−1 − 0.3vt−1 + vt,

where vt = y2
t − σ2

t = σ2
t (z

2
t − 1). Unlike the innovation term in the ARMA process, {vt} is

not a sequence of iid random variables. Even though vt has time-invariant zero conditional

mean, its variance depends on the past histories vt−1 in a way that larger previous innovation

is likely to lead to more volatile subsequent innovations. Therefore a GARCH model can

be regarded as an ARMA process with innovations that have dependent structures (see

section 2.3.2 for more detail). Figure 4 compares the sample ACF plot, PE plots and PD

plots for the simulated ARMA and GARCH series over increasing delays/lag. It is clear

that the simulated ARMA and GARCH series share the same ACF plots, but their PE

plots and PD plots significantly differ. The value of PE and PD on the simulated ARMA

series is significantly greater than that on the simulated GARCH series, especially for small

delays, suggesting the simulated ARMA process has an overall stronger temporal dependence

structures, compared to the simulated GARCH process. The reason for the weaker temporal

dependence structures of the GARCH process is that the existence of the nonlinear dynamical

structures in the innovation terms in the GARCH process weakens the determinism of the
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linear serial dependence in the conditional mean of the process. The simulation study shows

while the ACF plot is unable to differentiate the two simulated process, the PE and PD

measures successfully unveil the existence of the additional non-linear temporal dependent

structures exhibited in the innovation term of the GARCH process.
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Figure 2: Comparison between average of sample ACF, 1− PED=3
τ and PDD=3

τ on 500 paths
of simulated time series following ARMA(1,1) model with φ0 = 0.2, φ1 = 0.5, θ1 = 0.3,
σε = 0.1, and following ARMA(1,1) model with φ0 = 0.16, φ1 = 0.6, θ1 = 0.41, σε = 0.1,
along with their respective 2.5% and 97.5% percentiles.

To ensure that the observed strengths and weaknesses of the three dependence measures

persist across a broader set of underlying models, I also examine the behavior of PE, PD and

ACF on simulations generated from a well-known nonlinear time series model, bilinear model.

I simulate 500 paths of time series following the bilinear model specified below

yt = 0.1 + 0.6σt−1σt + σt (15)

where σt is i.i.d. normally distributed innovations with mean 0 and variance 1. Figure 4

provides the average, 2.5 percentile and 97.5 percentile of the sample ACF, 1-PE and PD

computed on the simulated time series. Figure 4 shows that the sample ACFs of the simulated
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Figure 3: Comparison between average of sample ACF, 1− PED=3
τ and PDD=3

τ on 500 paths
simulation generated from ARMA(1,1) model with φ0 = 0.2, φ1 = 0.5, θ1 = 0.3, and from
GARCH(1,1) model with α0 = 0.2, α1 = 0.2, β1 = 0.3, along with their respective 2.5% and
97.5% percentiles.
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time series are very close to zero, suggesting the absence of linear serial correlation in the

simulated process. However, the significant value of 1-PE and PD, especially over the

short-term, indicates that despite the insignificant ACF, the simulated time series is not

independent. There are nonlinear temporal dependent structures present in the dynamics.
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Figure 4: Comparison between average of sample ACF, 1− PED=3
τ and PDD=3

τ on 500 paths
simulation generated from bilinear model given in 15, along with their respective 2.5% and
97.5% percentiles (blue dashed line). The grey line represents the 99% C.I. of each measure
under randomness.

To sum up, for a linear process, the PE and PD measures can both be expressed as a function

of a system’s ACF, with PE capturing the temporal dependence decay rate better than PD,

but PD identifying the individual dependence strength at selected delay better than PE.

However, they both have greater variance compared to ACF. If the given series follows a

non-linear process, PE and PD are advantageous when compared to ACF as they are capable

of characterizing and detecting the existence of non-linear temporal dependence structures.

A summary table is given in Table 1 to display the respective characteristics of PE, PD and

ACF.
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Table 1: Summary of main characteristics of PE, PD and ACF.

PE PD ACF
Detecting nonlinear structures
Robust to nonstationarity
Quantifying the dependence at fixed lag
Moderate uncertainties

3.6 PE, PD and ACF under non-stationarity

This section investigates the behaviours of PE, PD and ACF under non-stationarity. Non-

stationary behaviour refers to the time-varying nature of the underlying dynamics of the

system over time. Most time series display some level of non-stationarity, especially financial

markets are prominent examples of highly non-stationary systems, where sample averaged

moments such as means, variances and correlation coefficients strongly depend on the time

window in which they are evaluated. The non-stationary nature of time series is often

considered as the most challenging obstacle to many forecasting models and conventional

analysis tools. Therefore, it is important to investigate and compare the impacts of non-

stationarity on the PE and PD measures in order to avoid drawing erroneous inferences based

on them.

In order to investigate how PE and PD are affected by non-stationarity, I examine their

respective behaviours on simulated non-stationary time series. Mikosch & Stărică (2004)

simulate a simple case of non-stationarity by concatenating time series generated from

several distinct GARCH models, and test how the ACF responds to the non-stationarity

exhibited in the simulated time series. I employ their approach and compute the values of

PE, PD and ACF over increasing delays on the concatenated series as well as the individual

simulated GARCH series. The strength of the temporal dependence structure underlying the

concatenated series is expected to be equal to, or close to, the average temporal dependence

strength of the individual contributing stationary GARCH process. Accordingly, the impact

of the non-stationarity on the measures of interest is indicated by comparing their value on

the simulated non-stationary time series with their average value on the individual stationary

series generated from the constituting models.

The specification of the four GARCH models I use in the simulations are as follows: model 1:

α0 = 0.2, α1 = 0.2, β1 = 0.3, model 2: α0 = 0.24, α1 = 0.4, β1 = 0.3, model 3: α0 = 0.06,

α1 = 0.3, β1 = 0.5, model 4: α0 = 0.08, α1 = 0.5, β1 = 0.1. The detailed description

of the GARCH model is given in section 2.3.2. Figure 5 displays a single example of the

concatenated time series. To reduce sampling error, I generate 500 GARCH series from each
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specified model, and 500 concatenated series, and take an average of the values of PE, PD

and ACF on the GARCH model simulations and concatenated simulations. All generated

series are of length 38160, which is the the same length as the real-world financial data I

investigate later in the empirical studies. I plot the mean of the 1 − PED=3
τ , PDD=3

τ and

ACF of the individual models and the concatenated series to visually display the impact

of non-stationarity on each temporal dependence measure. The comparison between the

1− PED=3
τ , PDD=3

τ , ACF value on concatenated series and the average 1− PED=3
τ , PDD=3

τ ,

ACF on the respective individual stationary GARCH series is provided in Figure 6.

From the plots, it is clear that PE is the least affected by non-stationarity among the three.

Non-stationarity only deviates PE at delay 1 slightly from the “correct” level. Other than that,

the PE plot of the concatenated series accurately reflects the average temporal dependence

structure of the four distinct GARCH models and successfully indicates the lack of dependence

structure after delay 10. This result coincides with the earlier finding in Kreuzer et al. (2014)

that PE requires minimal stationarity of the underlying process. Sample ACF and PD on

the other hand are severely affected and distorted by non-stationarity. In the presence of

non-stationarity, ACF tends to display “spurious long-memory”. “Spurious long-memory”

refers to the phenomenon in which non-stationarity causes the ACF in the short-memory

times series to decay much more slowly than the actual temporal dependence diminish rate,

and remains positive and significant for larger lags than it should. A similar impact from

non-stationarity also can be found in the PD measure. Non-stationary time series tend to

bring up the value of PD and lead to a spurious significant value of PD at very large delays

for dynamics that do not exhibit long-term dependence structures. Even after I adjust the

PD plot so that the value of PD at very large delays fluctuates around an insignificant level,

the value of PD at short-term delay is still significantly greater than the correct level.

In summary, PE is a much more reliable measure when analyzing a non-stationary time

series when compared to ACF and PD. In the presence of non-stationarity, the ACF and PD

plots can lead to inaccurate inferences. Therefore additional caution needs to be paid when

drawing inferences based on them, especially when the value of ACF or PD remains positive

and significant for very large lags/delays.

3.7 PE, PD and ordinal pattern distribution in ARMA and GARCH

models

In this section, I investigate the behaviour of the PE and PD measures on simulations from

ARMA and GARCH models with different parametrizations to exam how PE and PD respond
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Figure 5: Plot of a single path of concatenated non-stationary time series

to a number of key characteristics in a dynamical process. By changing the parameters in the

specified models, I test how PE and PD are affected by the strength of the postulated serial

dependence relations, the noise to signal ratio of the process and the dynamical structures

and distributions of the innovations. The ARMA and GARCH models are the most used

models for practitioners in the field of financial time series analysis. The link between PE and

PD measures and the parametrization of the most familiar models is important in building

bridges between the relatively novel measures and the mainstream finance literature.

Before we move to the simulation studies, I make an assumption for the general form of time

series dynamics. I assume any stationary time series {xt : t = 1, 2, ..., N} can be represented

or be transformed into the form

xt = c+ g(xt−1, xt−2, ..., xt−τT ) + εt (16)

where τT is the furthest lag in which past entries affect the current entries, g(·) is the

deterministic function that connects past observations to the expected value of the current

entry, and εt is the innovation term with E(εt) = 0 and E(εt|Ft−1) = 0. Both the ARMA

model and GARCH model, and many other financial time series models, can be written in

this form. The differences between various dynamics and models reside in the constant term

c, the form of g(·) function, the distribution of innovation εt and the dependence structures

within εt (if exists).

The ARMA model (see equation (3)) assumes linear deterministic relations g(·) and iid
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Figure 6: (a) Plot of ACF of four individual GARCH model simulated series. (b) Plot of ACF of

the concatenated GARCH Series. (c) Plot of 1−PED=3
τ of four individual GARCH model simulated

series. (d) Plot of 1 − PED=3
τ of the concatenated GARCH Series. (e) Plot of PDD=3

τ of four

individual GARCH model simulated series. (f) Plot of PDD=3
τ of the concatenated GARCH Series.
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innovations with Gaussian or Student’s t distribution, whereas in the GARCH model, past

observations still affect the current entry xt according to a linear governing function g(·),
but innovations εt are right skewed distributed and are dependent on each other. More

specifically, the GARCH model, as illustrated in section 2.3.2, assumes positive linear serial

relations between current and past squared returns (see equation (7)) and the innovation

term is dependent in such a way that large lagged innovations tend to lead to large dispersion

of the distribution of future innovation and vice versa. In the most complicated cases, a time

series dynamic can have a non-linear deterministic relation and dynamical innovations.

The simulation study includes 500 time series generated from 12 different ARMA(1,1) models

and 12 different GARCH(1,1) models with various parameter specifications. I specifically

choose the parameters of simulated models to cover different level of linear serial dependence,

and different dependence decaying rate while satisfying the stationary constraints. All the

ARMA and GARCH simulations have the same constant parameter θ0 = 0.2. All ARMA

simulations have the innovation variance σ2
ε = 0.01. The length of the simulated series is

38160 which is the length of the real-world empirical data that I analyze in chapter 5 so that

the results in the simulation can be used as inference and for comparison afterwards. The

plots of average values of 1−PED=3
τ , PDD=3

τ and the sample ACF of the 500 simulated series

of length N = 38160 and the corresponding ordinal pattern probabilities at delay 1 of the 12

different parametrization of ARMA models and GARCH models are given in Figures 7 and

8. In addition to the standard ARMA(1,1) and GARCH(1,1), I also generate simulations

from another 12 ARMA(1,1)/ GARCH(1,1) models with Student’s t distribution of various

degrees of freedom to demonstrate how heavy tail distributed innovations affect the value of

PE and PD. The simulation studies reveal how the constant c, the strength of deterministic

relation g(·), the distribution of innovations and the structures within innovations (if exists)

affect the ordinal pattern distributions, thus the value of PE and PD.

Obviously, the value of constant parameter φ0 in the ARMA model or α0 in the GARCH

model do not affect the value of PE and PD since they only affect the unconditional mean of

the simulated process. PE and PD are based on ordinal patterns and therefore only consider

the relative magnitude of the entries and are invariant to monotonic transformation. As

for the innovation variance σ2
ε of the ARMA processes, even though it does not alter the

expected value of PE and PD for the simulated series, they are positively related to the

variance of PE and PD. It is worth noting that the fact that the expected value of measure

PE and PD are invariant to the variance of innovations in the ARMA and GARCH model

simulations further supports one of the most desired property of PE. Since processes with

the same specifications except the different noise to signal ratios are expected to generate the
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Figure 7: (a) Plot of average of 1− PED=3
τ as function of delay on 500 simulated series from 12

different parameter combinations of ARMA model. (b) Plot of the average of each ordinal pattern

probability on each simulated ARMA model contributing to 1− PED=3
τ at delay τ = 1. (c) Plot of

average of ACF on each simulated ARMA model. (d) Plot of average of PDD=3
τ on each simulated

ARMA model.
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Figure 8: (a) Plot of average of 1− PED=3
τ as a function of delay on 500 simulated series from 12

different parameter combinations of GARCH model. (b) Plot of the average of each ordinal pattern

probability on each simulated GARCH model contributing to 1− PED=3
τ at delay τ = 1. (c) Plot

of average sample ACF on each simulated GARCH model. (d) Plot of average of PDD=3
τ on each

simulated GARCH model.
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same value of PE and PD, the PE and PD measures are robust to volatile noise.

Additionally, the ARMA simulations with Guassian innovations are, in fact, an empirical

replication and verification of the results described in section 3.3. In section 3.3 I illustrated

the link between PE with ACF in a Gaussian process. Since the ARMA model with Gaussian

innovation is a special case of Gaussian process, the conclusions from section 3.3 are also

applicable here. Consistent with the demonstration in section 3.3, all generated ARMA time

series display similar ordinal pattern probability ranks of

pτ (π123) = pτ (π321),

and

pτ (π213) = pτ (π132) = pτ (π231) = pτ (π312).

This is a common feature throughout all ARMA simulations with Gaussian innovations

regardless of the chosen parametrizations. As explained previously, the equal occurrence of

all monotonic ordinal patterns and equal probabilities of all non-monotonic ordinal patterns

reflect two fundamental characteristics of the ARMA model: the symmetrical probability

of positive and negative increments and the linear deterministic relation that ensures the

impartial response to positive and negative increments. Due to the existence of these

universal features in the ordinal pattern distribution, they can be used as an indicator of the

appropriateness of ARMA models to model observed time series even without the need to

actually fit them. Additionally, section 3.3 shows that the value of 1−PED=3
τ is determined by

ACF at τ and at 2τ . Moreover, ACFs at τ and at 2τ are offsetting components in determining

the value of PE. This explains why, while the ARMA model has strictly diminishing temporal

dependence structures for increasing delays, the plot of 1 − PED=3
τ on simulations from

ARMA dynamics sometimes exhibit a bell shape as delay increases. This is because the

value of 1− PED=3
τ is maximized at the delays τ where the corresponding autocorrelation ρτ

and the structure diminishing rate reflected by the ratio between ρ2τ and ρτ is maximized

collectively. On the contrary, measure PDD=3
τ is strictly decreasing as a function of delay

just like ACF since statistic PDD=3
τ is specially designed to eliminate the influence from

the temporal dependence structures other than the selected delay. Moreover, by comparing

Figure 7(c) and 7(d), PDD=3
τ is shown to closely resemble the sample ACF in all ARMA

simulations. It successfully distinguishes various levels of serial dependence structure and

diminishing rates specified in the simulated processes.

For GARCH simulations, the GARCH model can be regarded as an ARMA model with

right-skewed and dynamical innovations if the target objectives are squared returns. Section
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3.5 shows that the value of 1−PED=3
τ and PDD=3

τ in GARCH models are significantly smaller

than that in ARMA models with the same ACFs. The discrepancy in the value of PE and

PD between ARMA and GARCH processes with the exact same theoretical linear serial

dependence relation suggest that beside the deterministic function g(·) in equation (16), the

distribution and structures within innovation can affect the value of PD and PE. The distinct

reduction of PDD=3
τ and 1− PED=3

τ in the GARCH process compared to that in the ARMA

process is sensible as it implies that the temporal dependence structure in the innovations

reduces the level of predictability and the strength of the deterministic structures in the

underlying dynamics compared to the original simple process with independent innovations.

Another observation of the GARCH simulation studies is that for all simulated GARCH

models, the ordinal pattern distributions are strikingly similar regardless of the chosen

parameters. The most prominent feature in the ordinal pattern in GARCH simulations is the

extra likelihood of the monotonic increasing patterns over the monotonic decreasing patterns.

In the case of pattern length 3, the ordinal pattern π123 is more likely to occur than the

ordinal pattern π321 as opposed to the equal likelihood of π123 and π321 in the ARMA model.

The discrepancy between the monotonic increasing pattern and the monotonic decreasing

pattern in Xt : t = 1, . . . , N where Xt represents the squared returns in GARCH models, is

caused by the unconditional right-skewed distribution of the increments in Xt , that is,

µ̃3(Xt −Xt−1) > 0,

and asymmetry responds to decrements and increments. Proving all GARCH(1,1) models

have right-skewed distribution of 5Xt = Xt −Xt−1 is straightforward. Due to the additional

likelihood of positive increments over negative increments, that is,

p(5Xt > 0) > p(5Xt < 0)

the probability of ordinal pattern π12 is more likely to occur than ordinal pattern π21.

Additionally, an increment in Xt would lead to increased dispersion in the distribution of

future squared return Xt+1. In contrast, a decrease in Xt would cause a reduction of variance

in Xt+1|Ft where Ft denotes all available information at time t, thus resulting in a more

concentrated distribution of Xt+1|Ft. Therefore, an increment in the historical squared returns

is more like to lead to an increase in future volatility than vice versa, and hence, altogether

resulting in the extra likelihood of ordinal pattern π123 over π321.

Other than the deterministic function g(·) in the generalized form of time series dynamics

given in equation (16), the symmetry/asymmetry, the dependence structures and the kurtosis
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of the innovations εt can also alter the probability distribution of the ordinal patterns, and

consequently the value of PE and PD. By comparing the value of 1 − PED=3
τ , the ordinal

pattern probabilities, the value of ACF and PDD=3
τ on ARMA model and GARCH model

simulations with Student’s t innovation for various level of degree of freedom, we can track

the way PE and PD respond to increasingly fatter tails in the innovations of a process. The

simulation study suggests that the kurtosis of innovations can affect all the above mentioned

measures, but the extent and the form of its influence varies depending on the strength and

nature of the temporal dependence structures exhibited in the time series dynamics. The

simulation results summarized in plot 9 suggest that in ARMA models, increasing kurtosis

in the innovation does not alter the value of ACF, but can cause increments in 1− PED=3
τ

and PDD=3
τ . In the GARCH model, as indicated in Figure 10, increasing kurtosis in the

innovation reduces the value of 1− PED=3
τ , PDD=3

τ and ACF.

From the simulation studies, I find that the distribution of ordinal pattern required in the

computation of PE, as well as the plot of 1−PED
τ and PDD

τ against increasing delays, has the

ability to reflect many important features of the underlying dynamics of a given time series,

such as the functional form of the governing deterministic relation, the asymmetry, kurtosis and

the existence of dynamic structures present in the innovations. Moreover, systems with similar

characteristics shares similar features in their ordinal pattern probability ranks regardless

of the parametrizations. For example, time series following a linear process with Gaussian

innovations are expected to have equal probabilities of monotonic and non-monotonic ordinal

patterns, whereas GARCH class models with Gaussian innovations are expected to exhibit

an extra likelihood of a monotonic increasing ordinal pattern over a monotonic decreasing

ordinal pattern. The invariant features in similar time series dynamics aid in distinguishing

different processes. Additionally, by comparing the ordinal pattern distributions, PE and PD

plot of the observed time series and that from fitted models, one might be able to identify

the reasons behind the insufficiency of the selected model. For instance, if we fit an observed

time series to an ARMA or GARCH model, and observe significant discrepancies between the

1-PE and PD in the observed time series and that in simulations from the fitted ARMA or

GARCH models. A number of possible sources might contribute to it. The fitted model might

misspecified the deterministic relation g(·), neglect/overestimate of the dependence in the

innovation dynamics or overlook/overestimate the heavy tail in the innovation distributions.

The ordinal pattern distribution can help identify which of the above reasons is a more likely

contributor, and the excess/insufficient value of PE or PD aids in identifying whether the

potential misspecified factor is underestimated or overstated. To sum up, the value of PE

and PD, and the ordinal pattern probability rank, can aid in identifying the most suitable

parametric models to be applied to a time series, and point out any possible inadequacy in
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the selected model’s specification.

3.8 PD visualization plot to reveal the deterministic relation cap-

tured by the forecasting model

With the aid of the newly proposed statistic PD, I develop a new approach to visually show

the deterministic relation captured by the estimated model. The new visual representation

is critical in model interoperation and providing explanations as to why certain models

outperform others, and suggests of promising improvements.

All forecasting models can be written in a generalized form:

x̂t = ĉ+ ĝ(xt−1, xt−2, ..., xt−τT )

where ĉ is a constant, and ĝ(·) is the deterministic function captured by the employed model

in its effort to connect past observations to future unseen entries.

Different models assume different functional forms for ĝ(·) in their effort to fulfil a prediction

task. Without a universally applicable standard, it is hard to compare various models

in terms of their respective estimated deterministic relations, especially when comparing

parametric models with defined functions and non-parametric models with no closed-form

formula. Conventionally, when evaluating and comparing the performance of a number of

candidate forecasting models, practitioners establish which one produces better forecasting

accuracy, but not understand why.

In order to construct a clear summary that extracts the essence of every estimated deterministic

function ĝ(·) postulated by each model, I employ the previously proposed PD measure to

reflect the importance or the level of relevance of a lagged observation xt−τ in the postulate

function ĝ(·).

Specifically, in order to visually show the deterministic relation captured by any prediction

model, I first generate simulated time series X = {xt} following the relation

xt = c+ ĝ(xt−1, xt−2, ..., xt−τT ) + εt

where ĝ(·) is the estimated function postulated by the considered model, and {εt} is a series

of randomly generated innovations that follows normal distribution εt v N (0, δε). Due to

the invariance to monotonic transformation property of the ordinal pattern measure, the
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Figure 9: (a) Plot of average 1− PED=3
τ as a function of delay on 500 simulated series of length

N = 38160 from 16 ARMA models for various level of kurtosis in the innovation. (b) Plot of the

corresponding ordinal pattern probability of simulated series contributing to 1− PED=3
τ at delay

τ = 1. (c) Plot of average sample ACF as a function of lag on each simulated models. (d) Plot of

average PDD=3
τ as a function of delay on each simulated models.
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Figure 10: (a) Plot of average 1− PED=3
τ as a function of delay on 500 simulated series of length

N = 38160 from 16 GARCH models for various level of kurtosis in the innovation. (b) Plot of the

corresponding ordinal pattern probability of simulated series contributing to 1− PED=3
τ at delay

τ = 1. (c) Plot of average sample ACF as a function of lag on each simulated models. (d) Plot of

average PDD=3
τ as a function of delay on each simulated models.
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variance of the innovations δε and the constant c do not affect the expected value of the

statistic PD, so choosing them relies on personal judgment. However, in many non-linear

functions, the “weight” of xt−τ in ĝ(·) varies depending on the domain of xt−τ . Therefore,

we can intentionally select c and δε to match the domain of the simulated series to that

of the investigated series. In order to reduce the simulation error, I generate 100 paths of

simulations X following the same procedures, and plot the average value of PDD
τ (X) against

increasing delays to reflect the “weight” of lagged observations in the postulated function

ĝ(·).

The empirical applications of the PD visualization plot can be found in section 4.4 and section

5.6.2. It is used in the prediction model comparison studies to explain why some models

produce better prediction accuracy than others.

3.9 Multivariate PE

The concept of PE can also be extended to measure the bivariate dependence between two

distinct time series.

Given two equal length time series X = {xt; t = 1, ..., N} and Y = {yt; t = 1, ..., N}, for a

chosen pattern length D and delay τ , we construct N − (D − 1) τ segment pairs
(
xDt,τ , y

D
t,τ

)′
:(

xDt,τ

yDt,τ

)
=

(
xt, xt+τ , ..., xt+(D−1)τ

yt, yt+τ , ..., yt+(D−1)τ

)
: t = 1, 2, ..., N − (D − 1)τ.

Vector xDt,τ and yDt,τ are mapped into one of the D! ordinal patterns {πi; i = 1, ..., D!} , then each

segment pair is categorized into one of the (D!)2 joint ordinal patterns {πi,j ; i = 1, ..., D!; j =

1, ..., D!}. For D = 3, the joint ordinal patterns are defined as follow:

Ordinal Pattern (ax, bx, cx; ay, by, cy) Condition

π11 (3, 2, 1; 3, 2, 1) If xt > xt+τ > xt+2τ and yt > yt+τ > yt+2τ ,

π21 (3, 1, 2; 3, 2, 1) if xt > xt+2τ > xt+τ and yt > yt+τ > yt+2τ ,

π31 (2, 3, 1; 3, 2, 1) if xt+τ > xt > xt+2τ and yt > yt+τ > yt+2τ ,

π41 (2, 1, 3; 3, 2, 1) if xt+2τ > xt > xt+τ and yt > yt+τ > yt+2τ ,

π51 (1, 2, 3; 3, 2, 1) if xt+2τ > xt+τ > xt and yt > yt+τ > yt+2τ ,

π61 (1, 3, 2; 3, 2, 1) if xt+τ > xt+2τ > xt and yt > yt+τ > yt+2τ ,
...

...
...

The probability of the joint ordinal patterns πi,j is then estimated by the number of segment
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pairs
(
xDt,τ , y

D
t,τ

)′
that are mapped to πi,j, divided by the total number of constructed pairs:

pDτ (πi,j) =
#
{(
xDt,τ , y

D
t,τ

)′ | (xDt,τ , yDt,τ)′ has joint ordinal pattern πij

}
N − (D − 1)τ

, i = 1, ..., D!; j = 1, ..., D!.

Hence, the Bivariate Permutation Entropy (BIPE) of time series X and Y, with chosen

segment length D and delay τ is defined by

BIPED
τ (X, Y ) =

D!∑
i=1

D!∑
j=1

−pDτ (πi,j) log pDτ (πi,j)

log (D!)2 .

If time series X and Y are independent,

BIPED
τ (X, Y ) =

1

2

[
PED

τ (X) + PED
τ (Y )

]
.

Therefore the dependence between time series X and Y is measured by the departure from

independence, and is defined to be:

hDτ (X, Y ) =
[
PED

τ (X) + PED
τ (Y )

]
− 2BIPED

τ (X, Y ) .

In light of Joe’s (1989) work, I standardized the above dependence measure to be:

HD
τ (X, Y ) =

[
PED

τ (X) + PED
τ (Y )

]
− 2BIPED

τ (X, Y )

min
{

PED
τ (X) ,PED

τ (Y )
} ,

so that 0 ≤ HD
τ (X, Y ) ≤ 1, with HD

τ (X, Y ) = 0 iff time series X and Y are independent, and

HD
τ (X, Y ) = 1 iff yt is a fixed function of xt for all t.

The measure HD
τ (X, Y ) quantifies the bivariate dependence between time series X and Y .

From its specification, we can see that the value of HD
τ (X, Y ) is free of the influence of

the temporal dependence structure of each of the series involved. No matter by how much

the ordinal pattern frequencies in any of X and Y deviate from the even distribution, only

the co-movement of the ordinal patterns from both X and Y contributes to the value of

HD
τ (X, Y ). Additionally, due to the use of ordinal pattern, the measure is also invariant to

the marginal distributions of the time series involved.

The Permutation Distribution Matrix containing the probability of all joint ordinal patterns
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is defined below:

PD
τ (X, Y ) =

(
pDτ (π1,1) pDτ (π1,2) · · · pDτ (πD!,D!)

)>
.

Since high joint probability pDτ (πij) does not necessarily indicate strong dependence between

pattern i in X and pattern j in Y , it might just be a result of high marginal probability

pDτ (πi) or pDτ (πj).To eliminate the effect of marginal probability, I define a quantity dDτ (πij)

as the ratio of the joint probability of any joint ordinal pattern πij to the product of their

respective marginal probabilities, in order to reflect the relation between pattern i in time

series X and pattern j in time series Y , that is,

dDτ (πij) =
pDτ (πij)

pDτ (πi) pDτ (πj)
, i = 1, ..., D!, j = 1, ..., D!.

If the pattern i in X and pattern j in Y are independent, d(πij) = 1; if the pattern i in X

and pattern j in Y are negatively correlated, d(πij) < 1; if the pattern i in X and pattern j

in Y are positively correlated, d(πij) > 1.

4 The PD model sufficiency test

In the previous chapter, I proposed a new statistic PD to measure the temporal dependence

relations in a given univariate time series. In this chapter, I use PD and an extension of

PD in a bivariate time series to construct a new prediction sufficiency test, inheriting the

ordinal pattern concept. I name it the PD model sufficiency test. Compared to conventional

approaches, the PD model sufficiency test evaluates the sufficiency of a model/predictor

in terms of its ability to exploit the point prediction potential in the investigated time

series. Additionally, the newly proposed test overcomes the limitation of the existing model

sufficiency test which generally requires iid innovations of the investigated series.

4.1 Conventional model comparison and evaluation approaches

Model selection and evaluation is a necessary step in empirical time series analysis. After fitting

and constructing forecasts using a number of competing models/approaches, practitioners need

to find out how well the models they employ capture and replicate the dynamics underlying

the observed data and how closely the constructed forecast predicts future movements. A

lot of criteria have been proposed to compare and evaluate forecasting models. I roughly

categorize them into four groups.
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The first and most used approaches are based on measures that reflect the departure of the

model fitting/estimated values from the realization with or without an additional term for

parsimonious control. Typical examples include goodness of fit measures R-square, AIC,

BIC, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), and the Theil Inequality Coefficient. Given an observed time

series {yi : i = 1, 2, ..., n}, and ŷi denotes the forecast/fitted value, these measures are defined

as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)2,

RMSE =

√∑n
i=1(yi − ŷi)2

n
,

MAE =
1

n

n∑
i=1

|yi − ŷi|,

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi
|,

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

and

AIC = log(MSE) + 2k/n,

BIC = log(MSE) + log(n)k/n,

where k is the number of parameters in the model, and Theil Inequality Coefficient

U =

√
1
n

∑n
i=1(yi − ŷi)2√

1
n

∑n
i=1 y

2
i +

√
1
n

∑n
i=1 ŷ

2
i

The second group of approaches incorporate a loss function and test whether two or more

competing models have equal loss differentials, such as the Diebold-Mariano (DM) test. For

a pre-specified loss function g(·), the DM test is constructed on the null hypothesis that two

forecasts have the same prediction accuracy:

H0 : E(dt) = 0 ∀t
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versus the alternative hypothesis

H1 : E(dt) 6= 0

where dt = g(e1t)− g(e2t) and e1t, e2t are residuals from the two competing models at index

t. Under H0 and assuming the loss differential series {dt; t = 1, ..., T} is covariance stationary

and short-memory, the test statistics of the DM test is

d̄√
2πf̂d(0)

T

−→ N(0, 1)

where

f̂d(0) =
1

2π

T−1∑
k=−(T−1)

l(
k

h− 1
)γ̂d(k),

γ̂d(k) =
1

T

T∑
t=|k|+1

(dt − d̄)(dt−|k| − d̄)

and

l
k

h− 1
=

1, for | k
h−1
| ≤ 1

0, otherwise.

The third group of approaches is based on economic criteria that use a simple trading strategy

guided by forecasting to test relative pay-offs generated by different forecasting models. For

instance, a simple investment rule can be constructed based on the out-of-sample one-ahead-

period return forecast. For an initial endowment of fixed monetary unit, an investor must

decide whether to maintain this wealth in cash or in assets, depending on whether the return

predicted for the next period exceeds a threshold given by the transaction cost. In the end,

the final portfolio value will be compared between competing models.

The last group of approaches does not involve comparing the models under consideration

and setting them in competition against each other. Instead, tests are conducted in the

residual to search for any remaining structures that indicate the sufficiency/insufficiency of

the models. The most popular test used for residual analysis is the BDS test. The BDS test,

developed by Broock et al. (1996), is the most used test on residuals to check whether the

residuals are independent, and hence the estimated predictors are sufficient. The BDS test is,

in fact, a portmanteau test for temporal dependence in a series, and can be used for testing

against a variety of possible deviations from independence, including linear and non-linear

dependence, or chaos. The test statistic in the BDS test is derived from the correlation

integral and has its origins in deterministic non-linear dynamics and chaos theory. According
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to Packard et al. (1980) and Takens (1981), the method of delays can embed a scalar time

series {xi : i = 1, 2, ..., N} into a m-dimensional space as follows

~xi = (xi, xi+τ , ..., xi+(m−1)τ ), ~xi ∈ Rm

where τ is the pre-chosen lag. Accordingly, Grassberger & Procaccia (1983) propose correlation

integral as a measure of fractal dimension of deterministic data as it records the frequency

with which temporal patterns are repeated in the data. The correlation integral at the

embedding dimension m is given by

C(m,N, r) =
2

M(M − 1)

∑
1≤i<j≤M

Θ(r − ‖~xi − ~xj‖), r > 0

Θ(a) = 0, if a ≤ 0

Θ(a) = 1, if a > 0

where N is the size of the data sets, M = N − (m− 1)τ is the number of embedded points in

m-dimensional space, r is the distance used for testing proximity of the data points and ‖ · ‖
denotes the sup-norm. In essence, C(m,N, r) measures the fraction of the pairs of points

~xi, i = 1, 2, . . . ,M , the sup-norm separation of which is not greater than r. If the data is

generated by a strictly stationary stochastic process, then there exists a limit of C(m,N, r)

as N → ∞ for each r, and we write the limit as C(m, r) = limN→∞C(m,N, r). Following

Broock et al. (1996), the BDS statistic for m > 1 is defined as

BDS(m, r) =

√
M

σ
[C(m, r)− Cm(1, r)] (17)

where M = N − (m− 1)τ , the standard deviation σ and

C(m, r) =

∫ ∫
Θ(r − ‖u− v‖)dFm(u)dFm(v),

and Fm() is the joint distribution of x1 to xm. Under the iid hypothesis BDS(m,M, r) has

a limiting standard normal distribution as M → ∞. In order to ensure the BDS statistic

is well approximated by the asymptotic distribution, Brock et al. (1991) suggest the data

sets of interest need to have 500 or more observations, and the common choice of embedding

dimension m is in the range of 2 ≤ m ≤ 5. Then, the value of r is generally selected as

a fraction of the standard deviation of the data sets, for instance: 0.25s.d.(x), 0.5s.d.(x),

0.75s.d.(x), s.d.(x) and 1.25s.d.(x).
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Every model evaluation approach has its emphasis in addition to its own pros and cons, and

there is no universally accepted criteria for evaluating a model/forecast. The first group of

approaches focuses on the accuracy of point prediction where interest is only in the accuracy

of the prediction of conditional mean of the target object. The second group of approaches

considers the entire probability density of the prediction. Depending on the selected loss

function, tests such as the DM test account for the misspecification of the prediction model

not only in the conditional mean but also in its higher moments. The third group examines

whether and by how much the prediction generates arbitrage profit. All three categories

of methods are sensible comparison criteria to differentiate model performance. However,

they share a common weakness in not considering the maximum prediction potential of the

investigated series. Without knowing the prediction ceiling, a model that is significantly

superior to other competing models can still actually be an unsatisfactory selection as its

performance can be far away from the optimal level. On the other hand, for a series with

minimal predictability, a model that cannot beat or be close to a random process might be

the best prediction one can construct.

The last approach, the independence test on residuals, can indicate the sufficiency of individual

models. However, it suffers a major limitation in evaluating point forecasts as it presumes

that a sufficient model is expected to generate independent innovations. For a series of

innovations that exhibit higher-moment dependent structures, the residuals formed by the

difference between the actual realizations and their oracle point predictors can violate white

noise.

4.2 Limitations of Brock, Dechert and Scheinkman (BDS) test

As mentioned above, the BDS test is a non-parametric test which needs minimal assumptions

and previous knowledge about the investigated data sets. When the BDS test is applied to

model residuals, the asymptotic distribution of its statistic given in (17) is independent of

estimation errors under certain sufficient conditions. Specifically, de Lima (1996) shows that

for linear additive models or models that can be transformed into that form, the BDS test is

nuisance parameter free and does not require any adjustment when applied to fitted model

residuals.

Despite its popularity, the BDS test suffers a number of limitations as a model sufficiency test.

First, as mentioned in the previous section, it tests the null hypothesis that the residuals are

independent and identically distributed against an unspecified alternative. If the governing

process of the investigated series originally has non-white innovations, the rejection of the

BDS test on residuals is not necessarily affirmative evidence of an insufficient predictor,
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especially in evaluating the sufficiency of non-parametric models where only point forecasting

accuracy matters. Second, the BDS statistic requires the assumed model to be in a linear

additive format or able to be transformed into that format. Otherwise, adjustment is needed

to ensure the BDS statistics have the right size under the null hypothesis. For example, when

evaluating the sufficiency of the GARCH model, if the BDS test is applied directly to the

standardized residuals Yt/σ̂t, earlier studies (see Brock et al. 1991) suggest the BDS statistic

needs to be adjusted to have the right size. An easier approach is to apply the test on natural

logarithms of squared standardized residuals ln(Yt/σ̂t) so that the logarithmic transformation

casts the GARCH model into a linear additive model (Fernandes & Preumont 2012). However,

as I demonstrate subsequently, the logarithm transformation may deteriorate the uncaptured

structures left in standardized residuals and mislead the BDS test to incorrectly accept an

insufficient predictor/model.

The following simulation provides an example of how and why the BDS test on a logarithm

transformed standardized residuals fails to reject an inadequate predictor/model, especially

when the investigated time series has a relatively low signal to noise ratio. I generate a

time series from a GARCH(1,1) model with the parametrization α0 = 0.18, α1 = 0.16 and

β1 = 0.74. Figure 11 plots the generated time series and its optimal predictor computed

from the governing formulas of the GARCH model. In addition, in the same graph, I plot

an inadequate predictor based on the deterministic relation of a GARCH model α0 = 0.18,

α1 = 0.03 and β1 = 0.87. Apparently, the inadequate predictor underestimates the linear

series correlations in the simulated time series under study and differs significantly from the

optimal predictor. Table 2 provides the value of the BDS statistics for the logarithm of a

squared standardized residual of the inadequate predictor for varying embedding dimension m

from 2 to 10 and various distance r: 0.25s.d.(x), 0.5s.d.(x), 0.75s.d.(x), s.d.(x) and 1.25s.d.(x).

Under the iid null hypothesis, the BDS statistic has a limiting standard normal distribution.

From the table, it is clear that except for M = 10 and r = 0.25s.d.(x), none of the BDS

statistics are significant enough to reject the hypothesis of iid residuals. The reason that the

logarithm transformation tends to mislead the BDS test is that the logarithm on residuals

would convert a small value that is close to zero to a significant negative valued entry, and

in the meanwhile shrink the relatively distinct gaps between the predictions and the actual

realizations. Consequently, the uncaptured structure becomes less evident after the logarithm

transformation. Figure 12 compares the standardized residuals versus the logarithm of the

standardized residuals of a randomly selected sub-period of the target simulation series so as

to display the effect of the logarithm transformation on the standardized residuals.

Due to the above limitations, the acceptance and rejection of the BDS test can lead to an
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Figure 11: Plot of simulated squared return time series generated from GARCH(1,1) model
with parameter α0 = 0.18, α1 = 0.16, β1 = 0.74, its optimal predictor and an inadequate
predictor based on GARCH(1,1) model with parameter α0 = 0.18, α1 = 0.03, β1 = 0.87.

Table 2: The BDS statistics on ln(y2
t /ŷ

2
t ) of embedding dimension M with distance of r. Under

null hypothesis of iid, the BDS statistic is expected to follow standard normal distribution. *
indicates the iid hypothesis is rejected at 5% significance, and ** indicates the iid hypothesis
is rejected at 1% significance.

r
M 0.25s.d.(X) 0.5s.d.(X) 0.75s.d.(X) s.d.(X) 1.25s.d.(X)

2 0.43 0.24 -0.06 -0.26 -0.27
3 -0.08 -0.18 -0.54 -0.69 -0.75
4 -0.34 -0.40 -0.66 -0.88 -1.00
5 -0.24 -0.32 -0.46 -0.70 -0.84
6 0.38 -0.38 -0.31 -0.58 -0.72
7 -1.67 -0.53 -0.22 -0.52 -0.65
8 -0.46 -0.56 -0.15 -0.51 -0.64
9 -2.32* -0.61 -0.18 -0.51 -0.69
10 -9.95** -0.29 -0.34 -0.55 -0.73
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Figure 12: (a) Plot of a randomly selected sub-period of the simulated GARCH squared return

series y2
t , and the corresponding optimal predictors σ2

t and inadequate predictors ŷ2
t . (b) Plot of the

corresponding squared standardized residuals of inadequate predictors y2
t /ŷ

2
t and the logarithm of

squared standardized residual of inadequate predictors ln(y2
t /ŷ

2
t ).

incorrect conclusion in relation to a sufficient or an inadequate model fitted to a given time

series. Therefore, I develop a new model sufficiency test that can remedy the limitations of

the existing tools.

4.3 Rationale and specification of the PD model sufficiency test

Before we move to the construction and introduction of the new model sufficiency indicators,

I make an assumption of the general form of time series dynamics. Assume any stationary

time series {xt : t = 1, 2, ..., N} can be represented or be transformed into the form

xt = c+ g(xt−1, xt−2, ..., xt−τT ) + εt (18)
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where τT is the furthest lag in which past entries affect the current entry xt, g(·) is a

deterministic function that connects past observations to the expected value of the current

entry, E(εt) = 0 and E(εt|Ft−1) = 0 so that innovations cannot be further exploited to

improve the forecasting accuracy in conditional mean of the current entry and Ft−1 denotes

the data set available at time t − 1. The representative additive form of time series in

(18) separates the first-moment structures from the higher-moment structures exhibited in

the underlying dynamics. More specifically, the deterministic function g(·) determines the

maximum potential of the point prediction capacity of the underlying process. Accordingly,

the oracle one-step-ahead point predictions of the future variable xt is

x̂oracle
t = E(xt|Ft−1) = c+ g(xt−1, xt−2, ..., xt−τT ).

The optimal point predictor of xt is required to perfectly replicate g(·), but it does not need

to correctly specify the structures (if existing) within εt term. The additive innovation term

εt can violate from white noise when there exists higher-order dependence structures that

do not have impacts on E(xt|Ft−1) but affect the higher-moment of the distribution of the

response.

To be able to assess the sufficiency of a given model in fulfilling the point prediction task,

particularly for time series with innovations with dynamical structures, I propose a new

method for model sufficiency evaluation by extending the ordinal pattern concept used in the

computation of PE.

The rationale behind the proposed test is built on the indicative relation between the strength

of dependence within residuals to that between residuals and lagged observations under

the oracle and sub-optimal point predictors. Given a univariate time series X = {xt; t =

1, · · · , N}, I create two statistics PDD
τ (ε̂t) and PD∗,D(xt−τ , ε̂t) to measure the temporal

dependence structures within residuals and the bivariate dependence between the residuals

and the lagged observations, respectively. Segment length D and delay τ are pre-chosen

parameters. ε̂t represents the residual at time t formed by the difference between the

observation xt and the constructed point predictor x̂t from any model, that is ε̂t = xt − x̂t.

The permutation dependence measure PDD
τ defined in section 3.4 quantifies the strength

of temporal dependence in univariate time series under study. Its specification records the

predictability of an upcoming entry based on the ordinal pattern in the τ lagged consecutive

observations. The predictability of an upcoming entry is reflected by the level of disparity of

the ordinal patterns’ distribution between the segments ε̂Dt,τ partitioned in the original data

with segments ε̂D,randt,τ which contain an independent random variable as the last entry. If
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the time series under study follows a purely random process, no difference can be detected

between segments ε̂Dt,τ ’s and ε̂D,randt,τ ’s ordinal pattern distribution. In both cases the ordinal

pattern in the past entries have no impact, thus no indicating power for the upcoming

ε̂t+D−2+τ or randomly generated entry r. Thereby the value of PDD
τ will be insignificant.

However, if the time series has deterministic temporal dependence structure at delay τ , there

will be a significant discrepancy between the level of regularities of ordinal patterns in the

segments partitioned in the original series and that involving independent random variables.

Following the similar rationale, PD∗,D(xt−τ , ε̂t) is specified to measure the bivariate dependence

between two separate time series. The bivariate dependence is quantified through the

discrepancy of the ordinal regularity in segments formed by (xt−(D−2), . . . , xt−τ−1, xt−τ , ε̂t)

with that in the same segments except replacing ε̂t in every segment with an independent

random variable r. Similarly, the random variable r is specified to have the same empirical

distribution as the residual series {ε̂t}. The formal definition of PD∗,D(xt−τ , ε̂t) is given

below:

PD∗,D(xt−τ , ε̂t) =
∑
πi

(∣∣∣∣pτ (πi)− E(pRτ (πi))

s.d.(pRτ (πi))

∣∣∣∣2
)

where

pτ (πi) =
#{sDt,τ |sDt,τ has ordinal pattern πi}

N −D + 2− τ
, i = 1, ..., D!, (19)

pRτ (πi) =
#{sD,Rt,τ |s

D,R
t,τ has ordinal pattern πi}
N −D + 2− τ

, i = 1, ..., D!,

and

sDt,τ =
(
xt−τ−(D−2) − x̄, . . . , xt−τ−1 − x̄, xt−τ − x̄, ε̂t − ¯̂ε

)
, t = D − 1 + τ, . . . , N,

sD,Rt,τ =
(
xt−τ−(D−2) − x̄, . . . , xt−τ−1 − x̄, xt−τ − x̄, r − r̄

)
, t = D − 1 + τ, . . . , N.

The reason I subtract the mean of the time series in the constructed segments is to ensure

the comparability of the entries from the two distinct series. Both of the measures PDD
τ (ε̂t)

and PD∗,D(xt−τ , ε̂t) are strictly positive. The greater their value the stronger dependence

they indicate.

The PDD
τ (ε̂t) and PD∗,D(xt−τ , ε̂t) statistics approximate the value of

Dependence(ε̂D−1
t−τ , ε̂t) ≡

∫
y

∫
x

[
p(ε̂D−1

t−τ ,ε̂t)
(x, y)− pε̂D−1

t−τ
(x)pε̂t(y)

]2

dxdy, (20)
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and

Dependence(xD−1
t−τ , ε̂t) ≡

∫
y

∫
x

[
p(xD−1

t−τ ,ε̂t)
(x, y)− pxD−1

t−τ
(x)pε̂t(y)

]2

dxdy, (21)

respectively, where ε̂D−1
t−τ = (ε̂t−τ−(D−2), . . . , ε̂t−τ−1, ε̂t−τ ) and xD−1

t−τ = (xt−τ−(D−2), . . . , xt−τ−1, xt−τ ).

p(ε̂D−1
t−τ ,ε̂t)

and p(xD−1
t−τ ,ε̂t)

represent the joint probability distribution between ε̂D−1
t−τ and ε̂t, and

between xD−1
t−τ and ε̂t. pε̂D−1

t−τ
and pxD−1

t
are the marginal probability distributions of ε̂D−1

t−τ

and xD−1
t−τ . pε̂t is the marginal probability distribution of ε̂t. The term dependence refers

to the more general definition of dependence that is not limited to linear dependence like

the correlation coefficient. More specifically, the overall level of dependence between two

variables is measured by the disparity between their joint distribution and the product of

their respective marginal distributions.

One might be confused about the difference between the bivariate dependence measure

HD
τ (·, ·) specified in section 3.9 and the newly proposed bivariate measure PD∗,D(·, ·), as they

both measure the bivariate dependence. Given a pair of time series X = {xt}, Y = {yt}, it is

worth clarifying that HD
τ (·, ·) measures the level of co-movement between (xt, xt+τ , xt+2τ ) and

(yt, yt+τ , yt+2τ ), whereas, PD∗,D(·, ·) quantifies how the patterns of (xt, xt+1) affects yt+1+τ .

The reason that we propose PD∗,D(·, ·) and not use HD
τ (·, ·) for the model sufficiency test is

that the test requires the employed bivariate dependence measure to be comparable to the

PD measure. In particular, the employed bivariate measure on independent time series pair

is required to have identical statistical property to PD computed on random series. HD
τ (·, ·)

does not meet such requirement. That is why we need to propose a new measure as a part of

the test statistics of the hypothesis test.

The values of the expressions given in (20) and (21) are hard to obtain, especially in empirical

analysis where the underlying process of {xt : t = 1, 2, . . . , N} and {ε̂t : t = 1, 2, . . . , N}
are unknown. PDD

τ (ε̂t) and PD∗,D(xt−τ , ε̂t) provide a way to approximate them by using

the ordinal pattern. By symbolizing the constructed segments according to their ordinal

patterns, we convert the complex expression given in (20) and (21) which involve integrals

and comparisons between unknown continuous joint distributions and products of continuous

marginal distributions into simple comparisons of easily accessible discrete distributions.

By grouping the constructed segments by their ordinal patterns, I only extract the information

relating to the relative magnitudes of the involved entries. By considering the relative

magnitudes instead of the actual observed values, I lose some information relating to time

series under consideration, such as its marginal distribution. But the essential features of the

dynamics are kept, such as the temporal dependence structure of the data generating process.

The primary advantages of the ordinal-pattern based measures reside in their flexibilities
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of accounting for any form of structures, minimal requirement of prior assumptions and

knowledges, and the robustness to both dynamical and stochastic noises.

From the generalized form of time series dynamics in (18), the residual generated from a

predictor ŷt = ĉ+ ĝ(xt−1, xt−2, ..., xt−τp) can be presented in the form of

ε̂t = cr + gr(xt−1, xt−2, ..., xt−τ∗) + εt. (22)

where τp is the furthest lag used in the prediction, τT is the furthest lag in which past

entries affects the current entry xt, τ
∗ = max(τT , τp), c

r = c − ĉ and gr(xt−1, ..., xt−τ∗) =

g(xt−1, ..., xt−τ∗)− ĝ(xt−1, ..., xt−τ∗). If the estimated predictor is oracle, the resulting residuals

are equal to the “true” additive innovations, that is,

ε̂t = εt. (23)

Otherwise, the estimated residual contains three components, which are the remaining

constant term, the residual deterministic function and the “true” additive innovation term as

specified in (22).

Consequently, by substituting ε̂t with the generalized form of residual in (22) and (23), and

neglecting the constant term, under the condition that the estimated residuals are generated

from an optimal point predictor,

PDD
τ (ε̂t) ≡ Dependence(εD−1

t−τ , εt)

PD∗,D(xt−τ , ε̂t) ≡ Dependence(xD−1
t−τ , εt).

Otherwise

PDD
τ (ε̂t) ≡ Dependence{[gr(xτ∗t−D+1) + εt−D+2, . . . , g

r(xτ
∗

t−1) + εt], g
r(xτ

∗

t+τ−1) + εt+τ},

PD∗,D(xt−τ , ε̂t) ≡ Dependence[xD−1
t , gr(xτ

∗

t+τ−1) + εt+τ ],

where xτ
∗
t−1 = (xt−1, xt−2, ..., xt−τ∗), τp is the furthest lag used in the prediction, τT is the

furthest lag in which past entries xt−τ affects the current entry xt, τ
∗ = max(τT , τp). Assuming

the temporal dependence within innovation process {εt} deteriorates for increasing lags, the

expected value and the relation between PDD
τ (ε̂t) and PD∗,D(xt−τ , ε̂t) under different scenarios

are summarized in Table 3.

Under the oracle point forecast there are two possible scenarios. When the innovation terms

are independent of each other, both PDD
τ (ε̂t) and PD∗,D(xt−τ , ε̂t) will be insignificant. This
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Table 3: Expected behaviours of statistic PDD
τ (ε̂t) and PD∗,D(xt−τ , ε̂t) when the evaluated

point forecast is oracle and inadequate, in the presence of independent and dependent
innovations.

Point forecast εt is independent εt is dependent

Oracle PDD
τ (ε̂t) = 0 and

PD∗,D(xt−τ , ε̂t) = 0
PDD

τ (ε̂t) > 0, PD∗,D(xt−τ , ε̂t) > 0 and
PDD

τ (ε̂t) ≥ PD∗,D(xt−τ , ε̂t)

Inadequate PDD
τ (ε̂t) > 0,

PD∗,D(xt−τ , ε̂t) > 0 and
PD∗,D(xt−τ , ε̂t) > PDD

τ (ε̂t)

PDD
τ (ε̂t) > 0, PD∗,D(xt−τ , ε̂t) > 0 and

PDD
τ (ε̂t) can be less or greater than

PD∗,D(xt−τ , ε̂t)

is due to the fact that no dependence structure exist between past and current innovations

or between any historical observation in {xt} and the current innovation. However, when

the innovation is dependent, both statistics PDD
τ (ε̂t) and PD∗,D(xt−τ , ε̂t) will be significant.

Their significance arises from the temporal dependence within {εt}. Besides, the value of

PD∗,D(xt−τ , ε̂t) will be smaller than PDD
τ (ε̂t) since the only connection between xD−1

t and

εt+τ is through the intermediate of the temporal dependence of {εt} quantified by PDD
τ (ε̂t).

I name the newly proposed test the PD model sufficiency test. Suppose the data generating

process of an observed time series {xt; t = 1, 2, . . . , N} can be written in the form

xt = c+ g(xt−τ , xt−τ−1, . . .) + εt,

where E(εt) = 0, E(εt|Ft−τ ) = 0 and Ft−τ denotes the information set available at time t− τ .

Therefore c+ g(xt−τ , xt−τ−1, . . .) constitutes the oracle τ -step-ahead point forecast of xt. A

given model provides a τ -step-ahead point forecast x̂τ,t to predict xt, and x̂τ,t can be written

in the form

x̂τ,t = ĉ+ ĝ(xt−τ , xt−τ−1, . . .).

The null hypothesis of the PE model sufficiency test is

H0 : ĝ(·) = g(·),

versus the alternative hypothesis that

H1 : ĝ(·) 6= g(·).

The test shows whether the deterministic relation postulated by the predictor coincides with

the “true” deterministic function governing the first-order moment of the investigated process.
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The acceptance condition of H0 is

PDD
τ (ε̂t) = 0 and PD∗,D(ε̂, xt−τ ) = 0, (24)

and the rejection criteria of H0 is

PD∗,D(ε̂t, xt−τ ) > 0 and PD∗,D(ε̂t, xt−τ )− PDD
τ (ε̂t) > 0. (25)

The acceptance condition specified in (24) corresponds to the case summarized in Table 3 when

εt is independent, and the point forecast is equal to the oracle point forecast. The rejection

criteria in (25) eliminates the two possible scenarios of oracle point forecast summarized in

Table 3 when εt is independent or dependent.

To determine whether PDD
τ (ε̂t) and PD∗,D(ε̂t, xt−τ ) are significantly greater than zero, I need

to compare their values with the critical value of PDD
τ (PD∗,D) under independence. Since

both of the measures PDD
τ and PD∗,D are ordinal-based, they neglect and are invariant to the

empirical distribution of the investigated series. The statistical property of PDD
τ or PD∗,D

is identical for all random processes with any form of continuous univariate distribution.

Therefore, an estimate of the 95% C.I. of PDD
τ (or PD∗,D) can be obtained by taking the

average of the 95th percentile of the measure computed on a sufficient number of paths of

simulated iid series. The generated series needs to be of the same length as the investigated

time series, and can be specified to follow any arbitrage continuous distribution.

Apart from assessing the significance of PDD
τ (ε̂t) and PD∗,D(ε̂t, xt−τ ), the test needs to

determine whether the measure PD∗,D(ε̂t, xt−τ ) is significantly greater than PDD
τ (ε̂t) when

PD∗,D(ε̂t, xt−τ ) shows significant value. However, when the independence assumptions cannot

be met, the distribution of PDD
τ (ε̂t) and PD∗,D(ε̂t, xt−τ ), especially their variance, vary

depending on the data generating process of {ε̂t} and {xt}. Therefore I choose to use the block

bootstrapping method to estimate the critical values of the test statistics PD∗,D(ε̂t, xt−τ )−
PDD

τ (ε̂t) when PD∗,D(ε̂t, xt−τ ) exceed its critical value under independence assumptions.

One might notice, the acceptance and rejection conditions given in (24) and (25) do not

exhaustively cover all possible scenarios. There is one particular scenario in which the new

test cannot ascertain whether the constructed predictor is sufficient or not. That is when

PDD(ε̂t, xt−τ ) > 0 and PD∗,D(ε̂t, xt−τ )− PDD
τ (ε̂t) < 0.

Such a scenario can arise either the prediction is oracle but the innovation exhibits strong

structures, or the prediction is inadequate but the dependence structure within the innovations
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is too strong and overweights the strength of uncaptured deterministic relations in the original

dynamics. In that case, our test cannot make an affirmative conclusion of the sufficiency of

the constructed predictor. This is a major weakness of our proposed test and an opportunity

of future studies.

As for the selection of the segment length and delay parameter D and τ , following the

guidelines of common choice of D in computing PE, I recommend the required segment length

parameter D to be chosen in the range of 3 ≤ D ≤ 7 so the number of total partitioned

segments is excessively greater than the number of possible ordinal patterns D! (Rosso et al.

2007, Kowalski et al. 2007). The choice of delay τ provides practitioners the flexibility to

investigate the structure of time series over short-term and long-term dynamics. For most

financial dynamics, the temporal dependence structure is generally strongest between entries

that are closest to each other, therefore in the later applications of the PD model sufficiency

test, I mainly evaluate the test statistics at τ = 1 to draw inferences about the sufficiency of

the employed models.

4.4 Simulation studies for the new test

I conduct simulation studies to demonstrate several applications of our newly proposed test.

The PD model sufficiency test will be applied to six different simulated time series that

correspond to different time series dynamics all transformed into the general additive form

of time series process given in (18). An overview of the six forms of simulating time-series

dynamics is given below.

• X1: linear deterministic function g(·) with iid normally distributed innovations εt

(ARMA)

• X2: linear deterministic function g(·) with iid asymmetrically distributed innovations

εt

• X3: linear deterministic function g(·) with asymmetrically distributed structural

innovations εt (GARCH)

• X4: nonlinear deterministic function g(·) with iid normally distributed innovations εt

• X5: nonlinear deterministic function g(·) with iid asymmetrically distributed innovations

εt

• X6: nonlinear deterministic function g(·) with asymmetrically distributed structural

innovations εt.
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In the simulation studies, the PD model sufficiency test is used to indicate the sufficiency of

various point forecasts constructed by different models. The prediction models considered

include the ARMA model, GARCH model, Gaussian Process regression (GPR) and support

vector regression (SVR). The specifications of the employed models are covered in section 2.3.

Each simulated series is of length 6360, which corresponds to the number of 1-hour intervals

of a one-year financial time series excluding weekends. The selected data length coincides

with the length of the empirical realized volatility data that will be investigated later in

this thesis. The first 5160 observations (around 80% of total length) are used to estimate

the model parameters, and the last 1200 observations are used in assessing out-of-sample

prediction accuracy. The non-parametric approaches, namely GPR and SVR, require the

pre-chosen hyperparameters. For non-parametric models, the first 4000 observations are used

to train the prediction model. The subsequent 1160 observations are used to compare and

select the optimal hyperparameters and determine the number of lagged observations d used

as input variables. The last 1200 observations are used in assessing out-of-sample prediction

accuracies.

The validity and credibility of our proposed test are verified by contrasting the inferences

drawn from the PD model sufficiency test with the prediction error rate of each model under

consideration. The prediction error rate reflects the “true” point forecasting performance, and

is measured by the distance between the constructed predictor x̂t from the oracle predictor

x̂oracle
t of xt relative to x̂oracle

t ’s variance, that is,

prediction error rate =

1
N

∑N
t=1

[(
x̂t − x̂oracle

t

)
− 1

N

∑N
t=1

(
x̂t − x̂oracle

t

)]2

var
(
x̂oracle
t

) .

I subtract the systematic bias 1
N

∑N
t=1(x̂t− x̂oracle

t ) in evaluating point forecasting performance

because our ordinal-based sufficiency test cannot unveil the derivation in the estimation of

the constant term. In other words, the systematic bias introduced by the predictor cannot be

captured by the dependence measures used in our test. Due to the nature of the simulation

study, the data generating process of the simulated series is known in advance, unlike in the

empirical analysis. Therefore we can acquire the oracle point predictor for every simulated

series. Based on the general form of time series given in (18)

x̂oracle
t = E(xt|Ft−1) = xt − εt,

where Ft−1 denotes the information set available at time t− 1, E(εt) = 0 and E(εt|Ft−1) = 0.

x̂oracle
t is the best one-step-ahead forecast one can construct of xt.
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Due to the inevitable uncertainties in the model estimation procedures, even the most

optimal model would not eliminate prediction error. I divide the prediction error rate into

three categories to indicate the cases, namely: (1) when the postulated point predictions

are reasonably close; (2) within a moderate distance; (3) and significantly away from the

oracle predictor relative to the overall variations of the underlying dynamics. Based on

the value of the prediction error rate, we classify the point prediction performance of the

considered models into three categories: sufficient (prediction error rate ≤ 5%); acceptable

(5% < prediction error rate ≤ 15%); and inadequate (prediction error rate > 15%).

In addition to examining our new test’s validity, the objective of the simulation study is to

investigate the point forecasting capability of the models in response to various potentially

challenging properties commonly observed in financial time series, such as non-normality,

non-linearity and dynamical innovations. The specifications of the data generating process of

the six simulated time series are given below, all transformed into the additive form given

in (18).

• X1: simulated ARMA(1,1) series with parameter (φ0, φ1, θ1, δ
2) = (0.18, 0.9, 0.74, 9) .

The deterministic function of the data generating process is g(xt−1, xt−2, ..., xt−τT ) =

0.69 +
∑∞

i=1 0.16× 0.74i−1xt−i. Innovation terms εt are iid with normal distribution of

mean 0 and variance 9.

• X2: simulated ARMA(1,1) series with the same g(·) as in X1. However, the innovation

terms εt are not following a normal distribution. Instead, εt follows the empirical

asymmetric distribution as the unconditional distribution of the innovation of the

simulated GARCH(1,1) series X3.

• X3: simulated GARCH(1,1) series where the squared returns is the target objective,

with parameter (α0, α1, β1) = (0.18, 0.16, 0.74). The parameters of the GARCH model

is specially selected so that the deterministic function g(·) in X3 is identical to that

in X1 and X2. The innovation terms εt are asymmetric distributed and dependent to

each other.

• X4: a kernel function formed nonlinear g(·) with the same innovation term as in X1.

• X5: same nonlinear g(·) as in X4 with the same innovation term as in X2.

• X6: same nonlinear g(·) as in X4 with the innovation term as in X3.

The specifications of the six simulated time series are motivated by the estimated models fitted

to empirical data in section 5.6 so that the simulated time series have similar characteristics

as the real-world financial time series. Figure 13 plots the simulated series X1 to X6 and their
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respective oracle one-step-ahead point forecast x̂oracle
t . Figure 14 provides a scatter plot to

display the relation between the oracle point forecast x̂oracle
t and the nearest lagged observation

xt−1. Additionally, the distances between the prediction x̂t made from the considered models

and the oracle point forecast are revealed. I also employ the new visualization plot introduced

in section 3.8 to reveal the deterministic structures ĝ(·) captured by each considered model

and compare it with the “true” deterministic relations governing the first-order structure of

the simulated time series. The true g(·) and the estimated functions ĝ(·) of each estimated

models using the PD visualization plot is given in Figure 15.
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Figure 13: Plot of simulated series X1 to X6 and the conditional mean (oracle prediction) of
every observation in each simulated series.

All relevant statistics reflecting the point forecast performance of the models are summarized

in Table 4. The first row records the signal-to-noise ratio of the simulated series to reflect

their noise contamination level, that is,

signal-to-noise ratio =

∑N
t=1(x̂oracle

t )2∑N
t=1(ε2

t )
.

Subsequently, the value of the prediction error rate is given to reflect the “true” level of the

point forecasting performance of the competing models.

In addition, Table 4 provides several forecasting performance metrics that do not require

knowledge of the underlying data generating process and thus can be computed in the

empirical analysis. I split the widely-used prediction accuracy metric mean squared error

(MSE) into two components, namely the adjMSEratio and the bias ratio. The adjMSEratio
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Figure 14: Scatter plot of the oracle one-step-ahead predictions x̂oracle
t and prediction con-

structed by ARMA, GARCH, GPR and SVR models fitted to each simulated series X1 to
X6 against the nearest lagged observations xt−1
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Figure 15: PD visualization plot of the estimated function ĝ(·) postulated by each considered
models fitted to the six simulated series X1 to X6.

77



and bias ratio are specified as follows

adjMSEratio =

1
N

∑N
t=1

[
(xt − x̂t)− 1

N

∑N
t=1 (xt − x̂t)

]2

var(xt)
,

bias ratio =

[
1
N

∑N
t=1 (xt − x̂t)

]2

var(xt)
.

The former indicates how well the model replicates the deterministic function governing

the investigated data, whereas the latter accounts for the systematic bias in estimating the

constant term. The denominator, namely var(xt), is included to make the statistics more

informative. The metric adjMSEratio indicates the proportion of unexplained variation in the

investigated data left by the postulate predictor. Similarly, the metric bias ratio reflects the

systematic bias introduced by the considered model relative to the investigated data variance.

The PD model sufficiency test is based on the value of statistics PDD
τ (ε̂t) and PD∗,D(ε̂t, xt−τ ).

Table 4 records the value of PDD
τ (ε̂t) and PD∗,D(ε̂t, xt−τ ) of the competing models fitted

to each simulated series with segment length D = 4 and delay τ = 1. Using Monte Carlo

simulations, we construct an estimate of the 95% C.I. of PDD
τ (ε̂t) (PD∗,D(ε̂t, xt−τ )) under

independence. The simulation indicates the 95% C.I. of PDD
τ (ε̂t) (PD∗,D(ε̂t, xt−τ )) with D = 4

under independence around 40. Therefore, if

PDD
τ (ε̂t) < 40 and PD∗,D(ε̂t, xt−τ ) < 40,

we conclude the point forecast is sufficient. When PD∗,D(ε̂t, xt−τ ) is greater than 40, we use

the block bootstrapping method to estimate a critical value of PD∗,D(ε̂t, xt−τ )− PDD
τ (ε̂t) to

determine whether PD∗,D(ε̂t, xt−τ ) is significantly greater than PDD
τ (ε̂t). If that is the case,

we reject the null hypothesis and conclude the point forecast is inadequate. Elsewhere, no

affirmative conclusions can be drawn. To contrast our proposed test with the BDS test, the

inferences of the BDS test are also included in the table as a comparison.

According to the results provided in Table 4, several conclusions can be drawn. Firstly,

around 80% of the time, the PD model sufficiency test can successfully indicate the suf-

ficiency/insufficiency of the employed model. Around 20% of the time, we find that no

confirmatory inferences can be drawn. The proposed test can be inconclusive when the

dependence relation within innovations is too strong, which excessively overweights the

residual deterministic relation gr(·) left by the predictor. Additionally, by comparing the

in-sample and out-of-sample inferences drawn from the PD model sufficiency test, the result

implies that the credibility of our proposed test increases with the data size. Consequently,
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the sufficiency test conducted on training data with longer data length is more capable of

distinguishing sufficient and inadequate predicting models compared to that conducted on the

test set. Lastly, by contrasting the inferences made from the conventional BDS test with that

from our proposed test, as we expected, the BDS test conclusions are valid when the additive

innovations of the underlying dynamics are iid. However, when the additive innovations are

non-white, the BDS test can erroneously reject the model that generates the oracle point

forecast.

In terms of the point forecasting ability of the ARMA, GARCH, GPR, and SVR models,

each model has its strengths and weaknesses. Linear models, ARMA and GARCH, cannot

replicate nonlinear deterministic relations as evidenced by their poor performance in predicting

X4, X5 and X6, which are governed by nonlinear deterministic function g(·). However,

the more complex and non-parametric model SVR can be susceptible to the asymmetric

distribution of additive innovations. In the SVR model’s attempt to predict simulated series

with asymmetrically distributed innovations (X2 and X6), the asymmetry leads to substantial

derivations in estimating the constant term. More importantly, both GPR and SVR models

are severely undermined by the dynamical structures present in the innovations (shown in

their poor performance in predicting X3), especially when the investigated series has high

noise contamination ratios. In contrast, the simpler models, such as ARMA and GARCH,

are robust to dynamic innovations.

Table 4: Prediction performance ARMA, GARCH, GPR and SVR models on six simulated time

series generated through linear and nonlinear deterministic relation and with different form of in-

novations. Prediction error rate indicates the “true” predictor accuracy: prediction error rate =

1
N

∑N
t=1

[
(x̂t − x̂oraclet )− 1

N

∑N
t=1(x̂t − x̂oraclet )

]2
/var(x̂oraclet ). Based on the value of prediction error rate, the

performance of various models is classified into three categories: sufficient (prediction error rate ≤ 5%) blue

cell; acceptable (5% < prediction error rate ≤ 15%) yellow cell and inadequate (prediction error rate >

15%) red cell. adjMSEratio measures the prediction accuracy without the knowledge of generating pro-

cess: adjMSEratio = 1
N

∑N
t=1

[
(xt − x̂t)− 1

N

∑N
t=1(xt − x̂t)

]2
/var(xt). bias ratio indicates the bias of

each model introduces to the prediction relative to the variance of the investigated data: bias ratio =[
1
N

∑N
t=1(xt − x̂t)

]2
/var(xt). d denotes the optimized number of lagged observations used as input variables

in constructing GPR and SVR. PDD
τ (ε̂t) and PD∗,D(ε̂t, xt−τ ) with D = 4 and τ = 1 are the statistics required

in the PD model sufficient test. They are computed in both training set and test set. The inferences drawn

from the BDS test are also included to compared with that from the PD model sufficiency test.

X1 X2 X3 X4 X5 X6

signal-to-noise ratio 55.12% 43.91% 45.02% 97.00% 89.16% 79.17%

Oracle

Continued on next page

79



X1 X2 X3 X4 X5 X6

prediction error rate 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

adjMSEratio 92.86% 89.28% 95.58% 74.23% 74.41% 73.24%

bias ratio 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

PDD
τ (ε̂t) in-sample 22.77 31.60 342.16 28.83 26.85 307.90

PD∗,D(ε̂t, xt−τ ) in-sample 21.80 28.89 179.55 29.44 25.79 89.98

PD sufficient test Accept Accept Inconclusive Accept Accept Inconclusive

PDD
τ (ε̂t) out-of-sample 30.31 29.97 78.00 29.55 21.34 90.40

PD∗,D(ε̂t, xt−τ ) out-of-sample 30.64 18.96 36.11 19.67 22.39 45.85

PD sufficiency test Accept Accept Accept Accept Accept Inconclusive

BDS test Accept Accept Reject Accept Accept Reject

ARMA

prediction error rate 1.47% 0.52% 0.80% 32.17% 17.90% 16.48%

adjMSEratio 93.00% 89.26% 95.15% 83.12% 78.45% 79.75%

bias ratio 0.00% 0.12% 0.00% 0.00% 0.04% 0.00%

PDD
τ (ε̂t) in-sample 22.71 27.31 305.43 48.22 135.00 404.59

PD∗,D(ε̂t, xt−τ ) in-sample 25.61 26.81 174.23 80.81 155.13 288.11

PD sufficiency test Accept Accept Inconclusive Reject Inconclusive Inconclusive

PDD
τ (ε̂t) out-of-sample 34.26 28.13 69.49 22.75 47.05 121.88

PD∗,D(ε̂t, xt−τ ) out-of-sample 33.11 22.88 41.44 27.74 70.20 120.70

PD sufficiency test Accept Accept Inconclusive Accept Inconclusive Inconclusive

BDS test Accept Accept Reject Reject Reject Reject

GARCH

prediction error rate 1.37% 0.48% 0.59% 34.73% 18.34% 16.49%

adjMSEratio 92.98% 89.26% 95.31% 83.62% 78.73% 80.16%

bias ratio 0.00% 0.11% 0.00% 0.00% 0.04% 0.01%

PDD
τ (ε̂t) in-sample 22.12 25.86 308.66 77.40 128.25 127.59

PD∗,D(ε̂t, xt−τ ) in-sample 27.47 25.85 183.12 110.17 154.34 148.01

PD sufficiency test Accept Accept Inconclusive Reject Inconclusive Inconclusive

PDD
τ (ε̂t) out-of-sample 33.44 28.36 69.80 33.82 43.24 112.87

PD∗,D(ε̂t, xt−τ ) out-of-sample 32.07 22.31 44.07 34.83 64.29 105.93

PD sufficiency test Accept Accept Inconclusive Accept Reject Inconclusive

BDS test Accept Accept Reject Reject Reject Reject

GPR

d 9 8 12 4 1 1

Continued on next page
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X1 X2 X3 X4 X5 X6

prediction error rate 2.62% 11.09% 73.26% 8.24% 2.66% 1.43%

adjMSEratio 93.12% 90.95% 105.29% 75.94% 75.49% 73.69%

bias ratio 0.00% 0.20% 0.00% 0.01% 0.11% 0.00%

PDD
τ (ε̂t) in-sample 19.77 24.23 114.51 37.35 23.98 361.2

PD∗,D(ε̂t, xt−τ ) in-sample 18.76 28.84 162.46 25.39 21.66 87.77

PD sufficiency test Accept Accept Reject Accept Accept Inconclusive

PDD
τ (ε̂t) out-of-sample 31.56 31.77 44.08 18.09 17.77 97.37

PD∗,D(ε̂t, xt−τ ) out-of-sample 32.82 23.44 48.32 21.14 20.14 41.49

PD sufficiency test Accept Accept Inconclusive Accept Accept Inconclusive

BDS test Accept Accept Reject Reject Reject Reject

SVR

d 8 8 8 4 1 1

prediction error rate 4% 1.26% 43.12% 11.58% 0.25% 5.35%

adjMSEratio 93.04% 89.38% 96.51% 76.87% 74.51% 74.15%

bias ratio 0.00% 2.95% 10.58% 0.00% 4.44% 6.48%

PDD
τ (ε̂t) in-sample 22.92 24.24 156.90 29.36 29.87 203.73

PD∗,D(ε̂t, xt−τ ) in-sample 22.97 26.88 135.99 28.84 19.43 32.20

PD sufficiency test Accept Accept Inclusive Accept Accept Accept

PDD
τ (ε̂t) out-of-sample 39.12 27.43 43.51 22.43 20.74 80.20

PD∗,D(ε̂t, xt−τ ) out-of-sample 38.13 22.56 51.87 31.19 23.45 50.23

PD sufficiency test Accept Accept Inconclusive Accept Accept Inconclusive

BDS test Accept Accept Reject Reject Reject Reject

5 Empirical application to high-frequency currency ex-

change series and sea surface temperature data

In this chapter, I conduct an empirical analysis on real-world financial time series using all

the ordinal pattern based tools covered in the previous chapters. The time series I choose

is the 10-minute interval EUR/USD exchange rate return. There are a number of reasons

for my choice. First, unlike other financial markets, the foreign exchange market is a 24

hour over the counter (OTC) market, and it is only closed during the weekend: from 10:00

pm GMT Friday (New York) to 10:00 pm GMT Sunday (Sydney). Therefore exchange rate

returns suffer less discontinuity issues compared to other financial assets which stop trading

81



at the end of each day. Second, EUR/USD is the most heavily traded bilateral currency

pairs constituting around 24% of the global foreign exchange transactions. The analysis

conducted on it can be considered a prototype, where the series under study exhibit many

shared features and properties of other financial data. Also, the results obtained can be

easily learned and used as references for a wide range of related studies. Lastly, I choose a

10-minute interval as the return frequency since PE analysis is advantageous for data with

relatively large size and requires a certain length of data to produce valid results. However,

return series of higher frequencies have lower signal-to-noise ratios and a higher proportion of

zero returns. I consider a 10-minute interval to be the optimal balance between sufficient

data size and the drawbacks caused by a shorter extracting return interval. In addition, past

studies conducted in the area of market efficiency strongly indicate the lack of dependence in

returns over a longer interval, such as daily, weekly or monthly, thus intraday returns provide

more prediction and structure exploration potentials (Reboredo et al. 2013).

In addition to empirical financial time series analysis, I also include a brief section about

the empirical application of PE and PD measures on sea surface temperature time series to

demonstrate the varied applicability of the investigated measures on various types of data

from different disciplines.

5.1 Data description

The return series of interest is obtained from computing the simple return of close bid of

EUR/USD exchange rate in every 10-minute interval. Let X = {xt; t = 1, ..., N} denote the

close bid rate of EUR/USD, the return series R = {rt; t = 1, ..., N − 1} is computed through

rt =
xt+1

xt
− 1,

and the squared returns are denoted by Rsq = {r2
t ; t = 1, ..., N − 1}. The close bid price of

the EUR/USD exchange rate is provided by Thomson Reuters Tick History (TRTH). I choose

to compile data over a six year period, dividing the data set into six non-overlapping 1-year

periods. The data set is recorded from 21:00 GMT 16/06/2013 to 20:50 GMT 21/06/2019

with the weekend entries removed (from 21:00 GMT Friday to 20:50 GMT Sunday inclusive).

Each period’s data starts from the 3rd Sunday of June and ends at the 3rd Friday of June

the next year. There are 38160 entries in each price series X, and 38159 entries in each

return and squared return series. Every price series X contains missing values, which are

public holidays that are not during weekends. On average, missing entries constitute 0.2%

of the total series so they can be considered negligible. Figures 16 and 17 show the plots
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of time series X and R for the six investigated 1-year periods. For the sake of convenience,

X2013-14, X2014-15, X2015-16, X2016-17, X2017-18 and X2018-19 represent the 1-year period

EUR/USD rate recorded between the specified consecutive years, and R2013-14, R2014-15,

R2015-16, R2016-17, R2017-18 and R2018-19 denote the corresponding 10-minute returns.

Similarly, Rsq2013-14, Rsq2014-15, Rsq2015-16, Rsq2016-17, Rsq2017-18 and Rsq2018-19

represent the corresponding 10-minute squared return series. I demonstrated earlier in section

3.6 that the PE, PD and ACF measures can be misled by non-stationarity. By observing

the six return series plots under study, only R2014-15 displays pronounced non-stationarity

of increasing variance along with the indexed time. Therefore, in order to avoid possible

distortion, I de-trend the increasing variance in R2014-15 prior to further analysis.

I use simple return instead of log-return because in high-frequency returns equal absolute

magnitude entries, especially equal absolute magnitude adjacent entries, are more likely to

occur in the log-return than simple returns. For instance, if the three consecutive prices of the

target asset are xt = 1.3347, xt+1 = 1.3349 and xt+2 = 1.3348, the recorded prices will result

in two close but different valued simple returns, or two opposite signed equal magnitude

logarithm returns. Note that it is a convention to record most of the exchange rate to four

decimal places. When computing the value of PE or other ordinal pattern based measures

on squared return series, the occurrence of equal entries will lead to ties in the constructed

segments, thus reducing the number of contributing segments and potentially introducing

bias into PE and PD. If using logarithm returns in the computation of PED=3
τ=1 on Rsq2013-14,

there will be 9732 segments that have equal entries out of 38158 constructed segments, which

accounts for nearly 1/3 of the total segments. In contrast, simple returns only have a total of

3786 tie segments out of 37149, which accounts for just 10% of overall segments. Among all

tie segments, 3240 are caused by the occurrence of zero returns. Other than the difference in

the number of ties segments, all the results in this thesis for the investigated simple series

are also applicable to log-returns, since for short-intervals the value of simple return and

log-return is very close.

It is worth noting that the absolute price changes during the weekends are on average around

three times the weekday 10-minute price changes. Hence, the cross-weekend returns might

distort the continuity in the return dynamic underlying the observed time series. Therefore,

I choose to convert them into missing values in the original time series. Nevertheless, due to

the limited number of cross-weekend returns compared to the whole data size, the inclusion

or removal of cross-weekend returns has minimal effect on the analysis conducted in this

thesis.
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Figure 16: Plots of six non-overlapping 1-year period EUR/USD close bid rate at the end of
each 10-minutes interval.

5.2 Modifications on PE and PD for equal entries

The definition of PE originally proposed by Bandt & Pompe (2002) neglected the segments

with equal entries, probably because the probability of equal entries is negligible for a

continuous time series. In the case of segments with equal entries, Bandt & Pompe (2002)

proposed to rank equalities in the constructed segments according to their order of occurrence

or to eliminate them by adding small random perturbations to the original time series.

However, due to the existence of tick size, that is, the minimum price movement unit of a

financial instrument, and the low resolution of financial asset recorded price, the probability

of equal values in the financial returns, especially in the high-frequency financial returns, can

be very high. Besides, the occurrence of equal returns and absolute returns is sometimes

structural due to the micro-structure exhibited in the high-frequency financial returns. When

the segments with ties are not randomly distributed, the aforementioned approaches of dealing

with ties introduces bias into the PE measure. Therefore the computation of PE and PD

used in this paper excludes the segments sDt,τ that have equal entries to prevent possible bias
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Figure 17: Plots of six non-overlapping 1-year period EUR/USD close bid 10-minutes returns.

caused by the ties in the constructed segments.

It is worth mentioning that Bian et al. (2012) have proposed a modified PE (mPE) for

improving the symbolization of constructed segments with equal entries. They showed that

the mPE better characterizes the heart rate systems and provides clearer discrimination

between heart rate observed in young, elderly and congestive heart failure groups. An

interesting future study would be applying mPE as an alternative to treat equal entries on

our empirical financial time series under study. However, it is out of the scope of the current

thesis.

5.3 Temporal dependence of 10-minute EUR/USD returns

This section applies the ordinal pattern based analysis on 10-minute EUR/USD returns to

provide an illustrative example of empirical financial time series analysis.

The main tools I use is the PE and PD measures covered in sections 3.1 and 3.4. Additionally,

the associated ordinal pattern distribution of fixed length segments partitioned in the observed

time series is also informative in identifying the nature of the detected temporal dependence

structures.
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An overview of the specific procedures of the subsequent empirical analysis is as follows. I first

examine the existence of dependence structures in the investigated return series by comparing

the value of 1-PE and PD with their respective 99% C.I. under randomness and search for the

dominant contributor to the detected temporal dependence structures in 10-minute returns.

I find the discretization caused by the existence of the smallest increments and decrement

units in financial prices is the dominant source of temporal dependence structures in the

investigated return series. Since the discretization effect is the dominant source of dependence

in returns, I make some adjustments to the original return series to break the discretion and

search for the remaining structures in intraday return dynamics. For the adjusted return

series, I decompose the return series into two separate components: sign of return; and the

absolute magnitude of return. I investigate the temporal dependence structures exhibited in

the binary return sign, in the magnitude of return as separating univariate time series and

their bivariate dependence relations, in order to isolate their respective contributions to the

temporal structures in return dynamics.

From the real-world application of ordinal pattern analysis on high-frequency exchange rate

return, I show that the relative novel PE and PD measures and the associated ordinal pattern

analysis not only can detect the existence of temporal dependence structures exhibited in the

investigated time series, which is that overlooked by the conventional approaches, but can

also indicate of the strength and nature of the detected temporal dependence structures.

5.3.1 Preliminary analysis to test against randomness

Both PE and PD have defined asymptotic distributions of zero mean under the assumption

that the investigated process is purely random. By plotting 1 − PED=3
τ and PDD=3

τ over

increasing lags/delays on a 10-minute intraday EUR/USD return series, one can construct

randomness hypothesis tests to find evidence in the investigated data against pure randomness.

The constructed hypothesis tests are one-tail tests, since both measures 1 − PED=3
τ and

PDD=3
τ are strictly positive. The greater their values, the stronger the temporal dependence

structure. The null hypothesis is

H0 : time seriesX = {xt : t = 1, ..., N} follows a purely random process

versus the alternative hypothesis that

H1 : time seriesX = {xt : t = 1, ..., N} have temporal dependent structures
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Figure 18: (a) Plot of 1−PED=3
τ as a function of delay τ in conjunction with its 99% C.I.. (b) Plot

of PDD=3
τ as a function of delay τ in conjunction with its 99% C.I.. (c) Probability of each ordinal

pattern contributing to 1− PED=3
τ that is significant. (d) Sample ACF plot in conjunction with its

99% C.I.. All measures are computed on six none-overlapping 1-year-long EUR/USD 10-minutes

return series.
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The randomness test can be constructed on both 1− PED=3
τ and PDD=3

τ . Under H0, based

on the result obtained by Matilla-Garćıa & Maŕın (2008)

2{[N − (D − 1)τ ] lnD!}[1− PED
τ (X)] −→ χ2

D!−1

Accordingly, for our choice of pattern length D = 3 and investigated data size N = 38160,

the 99% C.I. of 1 − PED=3
τ under H0 is around 1.1033e-04 for τ = 1, and will increase by

a negligible amount for larger delays since the data size N excessively exceeds (D − 1)τ

for our choice of D and the considered delays τ . As for the 99% C.I. of PDD
τ under H0,

since I have not derived its theoretical asymptotic distribution under randomness, we use

Monte Carlo simulations to construct an estimate of the 99% C.I. of PDD=3
τ on random series.

The simulation indicates the 99% C.I. of PDD=3
τ under randomness is around 22. Note that

the ordinal based measures neglect and are invariant to the marginal distribution of the

investigated series, hence the statistical property of PDD
τ or PED

τ are identical for all random

process with any form of univariate distribution. Therefore, an estimate of the 99% C.I. of

PDD=3
τ can be obtained by taking the average of the 99th percentile of 500 generated iid series

each of length 38160 following any arbitrary distribution. In our simulation, we choose the

simplest standard uniform distribution. The plot of 1−PED=3
τ , PDD=3

τ and sample ACF over

increasing delays for the six period’ return series is shown in Figure 18 in conjunction with

the 99% confidence interval under randomness. In addition, the ordinal pattern probabilities

associated with delays indicating non-randomness are also provided in Figure 18.

The contrast between the plots of PE, PD and ACF as functions of delay/lag on the same

investigated series can be quite informative since they all reflect the temporal dependence

structures of the underlying dynamics under study, but place emphasis on different aspects. By

observing the PE, PD and ACF plots and the ordinal patterns distributions on the 10-minute

EUR/USD return series, a number of inferences can be drawn. First of all, the significant

value of 1− PED=3
τ and PDD=3

τ at short-term delays confirms the existence of the temporal

dependence structure in the EUR/USD 10-minute return dynamics. In fact, it can seen from

Figure 18 that values of 1−PED=3
τ and PDD=3

τ drop rapidly from τ = 1 to τ = 2 and are only

significant before τ = 5, suggesting the temporal dependence structure in intraday return

mainly exists over the short-term. In addition, the ACF plot only records significant negative

correlations at delay 1, which coincides with the stylized fact that high-frequency financial

returns normally display extremely high negative first-order autocorrelation. However, if

the intraday returns under study only exhibit linear serial correlation, the ordinal pattern

associated with the PE should have approximately equal probabilities of ordinal pattern π123

and π321, as the result shown in equation 13 proven by Bandt & Shiha (2007). Therefore
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we conjecture that the detected temporal dependence structures have a rather significant

non-linear component where the negative first order linear serial relation detected by the

ACF is not the only, or the dominant structures in the intraday return dynamics. Lastly,

despite the varied values of PE and PD for different investigated periods, the distributions of

the ordinal pattern that correspond significant PE are surprisingly similar, indicating the

nature of the temporal dependence structures in EUR/USD returns are time invariant.

5.3.2 Discretization effect

In the preliminary analysis of the intraday returns series, I confirm the existence of short-term

dependence structures underlying the governing process. Further, I exclude the negative linear

serial correlation as a possible main contributor to the detected structures. The previous

preliminary analysis leaves us an unanswered question of what is the dominant source of the

temporal dependence structures within intraday returns.

As guided by the summary of the properties of high-frequency financial returns given in

section 2.2, other than the negative first-order correlation, the other three empirical properties

of high-frequency returns are: extremely high kurtosis; intraday seasonality in volatility;

and discretization. Since the former two properties are either only related to the empirical

marginal distribution of the investigated data that is overlooked by ordinal analysis, or are

expected to have a pronounced effect only on squared returns over long-term structures, this

section focuses on investigating whether and how discretization brings temporal dependence

relations into the return dynamics. If so, how strong is this structure compared to the overall

temporal dependence structures exhibited in the observed return series? By simulating the

discretization effect and comparing it with the original return series, the analysis leads to

a striking conclusion that the discretization effect caused by limited decimal places price

rounding conventions in financial asset price recording is the dominant contributor to the

temporal dependence detected in the 10-minute EUR/USD returns under study.

The prices of all financial instruments are discretized. The discretization comes from the

existence of the smallest possible price increment unit in the financial markets. The smallest

possible price increment unit is often referred to as the tick-size in the stock and futures

market or the pip in the exchange rate market. For instance, the tick-size for the stock

and exchange rate is 1/1000th, except for the JPY related foreign exchange rates, which

are normally quoted to three decimal places, and the US Government securities, which are

quoted in 1/32nds of a dollar. Since the asset price can only jump in an integer multiple of

a certain unit, the possible value of every corresponding return is subject to a pre-defined

range that varies according to the price at the start of the return interval.
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Discretization is an important feature of high-frequency (intraday) financial time series that

is not generally an issue in lower frequency series (daily or longer than daily intervals). The

discretization affects many fields in quantitative finance. Münnix et al. (2010) indicate that

tick-size alters the distribution of financial return, especially for small return intervals, and

distorts the calculation of correlations. Onnela et al. (2009) conclude that investors do not

use all price fractions uniformly as allowed for by tick size, leading to a clustering of prices on

certain fractions. Moreover, when the tick-to-price ratio is high, we expect more occurrence

of zero returns. Chaos and the compass rose suggests price discreteness seriously distorts

BDS test, thereby the evidence for chaos that has been found in stock returns might be due

to price discreteness. Other than the above studies, existing studies about discretization on

high-frequency returns are scarce and the issue has not been sufficiently addressed.

Discretization in price series imposes a non-linear temporal dependence structure in high-

frequency return dynamics. Let X = {xt; t = 1, ..., T} denote the price series with tick size a

and R = {rt; t = 1, ..., T − 1} represents the corresponding returns, that is, rt = xt+1/xt − 1.

Since price xt can only jump in an integer multiple of a certain unit, the domain that restricts

the possible values that the random variable rt can take is not continuous, but restricted in

the range R ∈ {(xt + I × a)/xt − 1 : I = {0, 1, 2, . . . ,∞}}. I call the discretization in returns

caused by the existence of tick size in price the discretization effect. Due to the discretization

effect, the starting price xt affects the distribution of its corresponding return rt. Also, price

xt as the closing price of the previous period determines the value of return rt−1. Since both

current return and the lagged return are dependent on xt, rt is dependent on rt−1 as well.

The strength of the dependence structure caused by the discretization effect differs for

different return series even with the same tick size. Apart from the tick size, the strength

of the discretization effect is also affected by the empirical distribution of the return series.

Obviously, if the investigated returns are overall of relatively large values or there are more

substantial returns (both positive or negative) in the time series compared to small ones, the

effect from discretization will be more negligible. This is also the reason why discretization is

less an issue in returns with longer-intervals such as daily returns, since in daily returns the

ratio between the tick size and the price increments is too small to be influential.

Due to the varied level of discretization effect in each empirical return series, the discretiza-

tion effect is best investigated through simulations so we can replicate the same level of

discretization effect present in individual observed return series. I create a time series

Rd = {rdt ; t = 1, ..., T − 1} that replicates the empirical distribution of the original return

series. Simulated series Rd has the same level of discretization effect as in the original return

series R but does not have any other temporal dependence structures, if these exist. The
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time series Rd is generated by randomly shuffling the entries in the original return series

R = {rt; t = 1, ..., T − 1} so that we destroy the temporal dependence structures in the

return series (if existing), while conserving its empirical distribution. The shuffled return

series is then converted back to a price series Xd = {xdt ; t = 1, ..., T} by following the relation

xdt+1 = (rshuffled
t + 1)× xdt , using the same initial price xd1 = x1. I round all the entries in the

new price series Xd to four decimal places to simulate the discretization effect, and generate

the simulated return series Rd = {rdt ; t = 1, ..., T − 1}, which replicates the discretization

effect in the original data. To reduce the uncertainty and errors arising in the simulations, I

repeat the process 500 times and generate 500 Rd series for each year’s return series. Figure

19(a) compares the average value of 1−PED=3
τ of the 500 simulated return series and that of

the original returns for each investigated period, both as functions of delays.

Figure 19(b) plots the average ordinal pattern probabilities for the simulated series at delays

up to τ = 5. From Figure 19(a), we can see that the value of 1− PED=3
τ in the simulated

discretized series Rd is significant at delays τ = 1 to τ = 5 and is very close to that in

the original return series. This suggests the discretization effect cause a rather significant

temporal dependence structure in the short-term dynamics of intraday return. Moreover, the

striking close value of 1− PED=3
τ and similar ordinal pattern distributions in Rd and that

in the original returns suggests the discretization effect could be the primary contributor to

the dependence structure detected in the return series, and this is true for all investigated

periods.

One may wonder, if the average of bid and ask quotes is used to compute returns, would the

discretization effect vanish? To resolve this question, I undertook the same analysis for the

EUR/USD 10-minute returns using the average of bid and ask quote as the price series. The

discretization effect is slightly weakened in this case, but is still significant and the dominant

component of the temporal dependence structures in the resulting return series.

Our analysis suggests the discretization effect is the primary source of temporal dependence

structures in the intraday return dynamics. An important implication of this discovery is

that, in the study of high-frequency time series, more attention and caution is needed in

treating and considering the existence of the discretization effect. More specifically, I believe

there are at least two possible ways in which the discretization effect can distort or mislead

standard analysis. First, discretization can lead to affirmative results in a non-linearity test

and an independence test. Therefore, any model that eliminates the non-linearity or temporal

dependence structure detected in the investigated high-frequency return series is not sufficient

to prove that it is a good representation of the data under study. It may only be due to

the fact that the fitting process distorts the discretization in the return series. Second, with
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Figure 19: (a) Comparison between 1 − PED=3
τ as a function of delay on original EUR/USD

10-minutes return series and that on the simulated discrete return series Rd. (b) Probability of each

ordinal pattern corresponding to 1− PED=3
τ at delays where 1− PED=3

τ is significant on simulated

discrete return series Rd.

discretization as the dominating structure in the return series, other deterministic structures

that may have exploitation potential for prediction can be hardly identified.

Since the discretization effect constitutes the primary component in the temporal dependence

structures detected in the return series, the remaining question is whether there is any other

determinism left in the intraday returns besides the discretization effect. One possible way to

tackle this question is by converting the originally discrete return series to a continuously

distributed one, and search for remaining structures. This can be done by adding a uniformly

distributed drift that fluctuates within the range [−5× 10−5, 5× 10−5] to the original price

series so that the price is no longer restricted to four decimal places. Then the new returns,

continuous-adjusted return (RC), can be computed by the continuously-adjusted price series.

Figure 20 compares the distribution of the original return series versus the continuous-adjusted

returns for the six non-overlapping 1-year periods. It is clear in the histogram that after the

conversion the originally discrete distributed intraday return series now has a continuous

distribution. Figure 21 displays the plot of 1− PED=3
τ , PDD=3

τ , sample ACF and the ordinal

pattern distribution at delay 1 for RC of each investigated period against increasing delays.

The significant value of 1 − PE and PD suggest that apart from the discretization effect,

the investigated intraday return series has other temporal dependence structures. The
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Figure 20: Comparison of distributions of original EUR/USD 10-minutes return versus after
continuous-adjusted returns for the six none-overlapping 1 year periods.

plot of 1− PED=3
τ indicates the existence of temporal dependence structures only at delay

τ = 1, whereas PDD=3
τ displays its superior capabilities to PE in unveiling the relatively

weak but persistent temporal dependence. The PD plot on RC detected slowly diminishing

dependence structures over delays up to τ = 30. Additionally, based on the approximately

equal probabilities of monotonic patterns and non-monotonic patterns shown in Figure

20 (c), the temporal structures within intraday returns after adjustments to continuous

distribution can be characterized by the linear relation with negative autocorrelations, which

seems to coincide with the first-order negative autocorrelation detected in the ACF plot.

In the following sections, I will uncover the cause and the nature of the detected temporal

structures within continuous-adjusted returns, and verify whether the detected structures

can be sufficiently replicated by a linear process.
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Figure 21: (a) Plot of 1 − PED=3
τ as a function of delay along with the 99% C.I. of 1 − PED=3

τ

under randomness. (b) Plot of PDD=3
τ as a function of delay along with the 99% C.I. of PDD=3

τ

under randomness. (c) Probability of each ordinal pattern in the computation of PED=3
τ at τ = 1

(d) Plot of sample ACF as a function of lag along with the 99% C.I. of ACF under randomness. All

measures are computed on six non-overlapping 1-year period continuous-adjusted return RC.
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5.3.3 Temporal dependence in returns caused by structures in return magni-

tudes

The previous analysis indicates that while the discretization effect constitutes the primary

component of the temporal dependence structures in the investigated intraday return dynamics,

there are other remaining short-term and long-term dependence structures.

To search for the cause and nature of the detected structures within the intraday returns in

addition to the aforementioned discretization effect, I adopt a novel approach that to the

best of my knowledge has not previously been undertaken. In contrast to the conventional

practice of analyzing return as an univariate series, I treat return as a product of its sign

and its magnitude. I decompose the temporal dependence structures in return series into

three separate components: structures in the sign of return; structures in the magnitude of

return; and the bivariate dependence between sign and the magnitude of return. I investigate

the contribution from each component respectively. Hopefully, by doing so we can uncover

additional information about the dynamics underlying the complex process, and provide a

more complete picture of the information by treating return as a whole.

This section briefly summarizes the dependence structures within return magnitude/volatility,

and how they are reflected in return dynamics. The detailed analysis of the volatility dynamic

is outlined in section 5.4. This section only briefly demonstrates the role of the temporal

dependence structures within return magnitude(volatility) as a constituting component in

return dynamics.

A simple simulation can indicate how temporal dependence structures within return magni-

tude/volatility are reflected within return dynamics. We generate a time series by assigning

a random sign to the absolute magnitude of each RC series. The generated series denoted by

randsignRC conserves the dynamics in the return absolute magnitudes/volatility and has the

same number of negative and positive returns as the original observed returns, but loses any

dependence structure within the sign of return or the interaction between the sign and the

magnitude of returns. We generate 500 such time series for the six investigated periods, and

compute the value of 1 − PED=3
τ and PDD=3

τ against increasing delays τ on the simulated

data. Figure 22 plots the average of 1− PED=3
τ and PDD=3

τ of the 500 simulations for each

investigated period, and compares it with that on the original RC series.

The plot given in Figure 22 shows that the simulated series randsignRC almost replicates the

behaviour of 1−PED=3
τ and PDD=3

τ on the original RC series for all considered delays except

for τ = 1. The similarity of 1− PED=3
τ and PDD=3

τ plot on RC and randsignRC suggests the

long-term dependence structure within time series RC is mainly attributed to the temporal
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Figure 22: (a) Comparison between 1 − PED=3
τ on continuous-adjusted return RC and that on

shuffled sign continuous-adjusted return randsignRC. (b) Comparison between PDD=3
τ on continuous-

adjusted return RC and that on shuffled sign continuous-adjusted return randsignRC.

dependence structures present in the return magnitude/volatility dynamics. However, there is

significant disparity in the PDD=3
τ and 1− PED=3

τ measures at delay 1, especially prominent

in 1 − PED=3
τ=1 , between RC and that in randsignRC, indicating that the structure within

return magnitude/volatility cannot explain the short-term temporal dependence structures

in RC.

5.3.4 Signs of returns

This subsection studies temporal dependence solely in the signs of the return series. My

main objective is to assess the predictability of the direction of price movements and the

contribution from the determinism (if existing) within the sign of return into the temporal

dependence structures in return as a whole. I will analyze the bivariate dependence relation

between return signs and return magnitudes in the subsequent subsections.

In order to investigate the temporal dependence structures in the sign of returns, I construct

a return sign series S = {st} by converting the continuously-adjusted return series RC into a

binary series with two possible outcomes: - and +, where - indicates negative return and +

indicates positive returns. Since the sign series is derived from continuous-adjusted return,

there is no zero return.
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In the original definition of PE, the investigated time series are partitioned into D-length

segments and map into D! possible ordinal patterns so that we can obtain a discrete probability

distribution. However, since the sign series is already a discrete time series, there is no need

to compare the relative ranks of the entries in the constructed segments. Therefore we can

compute its entropy directly. For instance, if the segment length is chosen to be 3, there are

8 possible patterns associated with the return sign series:

Pattern Condition

πs1 {st = −, st+τ = −, st+2τ = −},
πs2 {st = +, st+τ = +, st+2τ = +},
πs3 {st = −, st+τ = −, st+2τ = +},
πs4 {st = +, st+τ = +, st+2τ = −},
πs5 {st = −, st+τ = +, st+2τ = +},
πs6 {st = +, st+τ = −, st+2τ = −},
πs7 {st = −, st+τ = +, st+2τ = −},
πs8 {st = +, st+τ = −, st+2τ = +}.

The normalized entropy for the return sign series S = {st : t = 1, . . . , T} with chosen vector

length D and delay τ is computed by

ED
τ (S) =

2D∑
i=1

−pDτ (πsi ) log
(
pDτ (πsi )

)
ln 2D

,

where

pDτ (πsi ) =
#{sDt,τ |sDt,τ has pattern πsi }

N − (D − 1) τ
, i = 1, ..., 2D,

and

sDt,τ =
(
st, st+τ , ..., st+(D−1)τ

)
, t = 1, 2, ..., N − (D − 1) τ.

ED
τ (S) share similar statistical properties with PE, with its value also bounded between 0 and

1, where 0 indicates a completely predictable dynamic, and 1 indicates completely stochastic

dynamic. I use

1− ED
τ (S)

to measure the level of departure from randomness of the dynamics underlying the observed

sign series. Under the assumption that the time series S is iid,

2{[N − (D − 1)τ ] ln 2D}[1− ED
τ (S)]
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Figure 23: (a) Plot of 1− ED=3
τ (S) where S is the binary sign series of continuous-adjusted return

of each six non-overlapping 1-year periods. (b) The plot of the probability distributions of the eight

sign patterns corresponding to 1− ED=3
τ=1 (S).

is asymptotically χ2
2D−1 distributed.

Figure 23(a) plots the standardized entropy on return sign series for increasing delays of each

investigated period, along with the 99% C.I. under pure randomness. All the investigated

periods display significant value of 1 − ED=3
τ at and only at delay 1. Furthermore, Figure

23 (b) provides the probability distributions of the eight sign patterns for each investigated

period that contribute to the value of ED=3
τ=1 (S). I find that the reason behind the significant

1 − ED=3
τ=1 (S) is the distinct disparities between the likelihood of persistent sign patterns

(πs1 = {−,−,−}, πs2 = {+,+,+}), patterns that alter sign once and the patterns that are

constantly switching signs (πs1 = {−,+,−}, πs2 = {+,−,+}). With the switching sign

patterns being the most likely one and the persistent sign patterns being the least likely

one, the result suggests the EUR/USD intraday returns tend to alter signs. In other words,

positive returns are likely to be followed by negative returns, and vice versa. Even though

the strength of sign dependence differs for different periods, the same rule applies to all

investigated periods.
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5.3.5 Bivariate dependence relation between signs of return and return magni-

tude

This section investigates the bivariate dependence relation between return signs and return

magnitudes using the bivariate PE. I test the existence of the interaction between return

sign and return magnitude. In addition, the positively dependent and negatively dependent

combinations of sign and magnitude of returns reveal the likely and unlikely price movement

habits of the high-frequency exchange rate.

To compute the bivariate PE between signs and the magnitude of returns we need to adjust the

definition of original bivariate PE given in section 3.9. The reason is one of our investigated

series returns, sign series S, is a categorical time series, but the original bivariate PE is

designed for two continuous time series. In line with the definition of return sign’s entropy

given in the previous section, the joint patterns between return signs and return magnitude

are adjusted to be the combination of sign patterns and ordinal patterns as follows if we

choose D = 3:

Joint Pattern (as, bs, cs; ay, by, cy) Condition

πs1,1 (−,−,−; 3, 2, 1) if st = −, st+τ = −, st+2τ = − and yt > yt+τ > yt+2τ ,

πs2,1 (+,+,+; 3, 2, 1) if st = +, st+2τ = +, st+τ = + and yt > yt+τ > yt+2τ ,

πs3,1 (−,−,+; 3, 2, 1) if st+τ = −, st = −, st+2τ = + and yt > yt+τ > yt+2τ ,
...

...
...

πs8,6 (+,−,+; 1, 3, 2) if st+τ = +, st = −, st+2τ = + and yt+τ > yt+2τ > yt.

There are total 2D ×D! joint patterns. With the changed number of possible joint patterns,

the bivariate PE between return sign and return magnitude is modified into:

BIPEs
τ
D(S, Y ) =

D!∑
i=1

D!∑
j=1

−pDτ (πsi,j) log pDτ (πsi,j)

log (2D) log (D!)
,

where

pDτ (πi,j) =
#
{(
sDt,τ , y

D
t,τ

)′ | (sDt,τ , yDt,τ)′ has joint ordinal pattern πsij

}
N − (D − 1)τ

, i = 1, ..., 2D; j = 1, ..., D!,

and (
sDt,τ

yDt,τ

)
=

(
st, st+τ , ..., st+(D−1)τ

yt, yt+τ , ..., yt+(D−1)τ

)
: t = 1, 2, ..., N − (D − 1)τ

are the segment pairs derived from two equal length time series S = {st; t = 1, ..., N} and
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Y = {yt; t = 1, ..., N}. The statistic measuring the dependence between return sign and

squared return is

HSDτ (S, Y ) =

[
ED
τ (S) + PED

τ (Y )
]
− 2BIPEsD

τ (S, Y )

min
{
ED
τ (S) ,PED

τ (Y )
} ,

so that 0 ≤ HSDτ (S, Y ) ≤ 1, with HSDτ (S, Y ) = 0 iff time series S and Y are independent,

and HSDτ (S, Y ) = 1 iff Y is a fixed function of S. The individual joint pattern’s contribution

to dependence is measured by quantity dDτ (πsij), which is the ratio between the probability of

any joint pattern πsij and the product of their respective marginal probabilities, that is,

dDτ (πsi,j) =
pDτ (πsi,j)

pDτ (πsi ) p
D
τ (πj)

, i = 1, ..., 2D, j = 1, ..., D!.

Figure 24 plots the value of dependence measure HSD=3
τ between continuous-adjusted return

signs S and return magnitude |RC| over increasing delays for the six investigated years, and

the individual joint pattern correlation ratio quantified by dD=3
τ (πsi,j) for all 48 possible joint

patterns at delays in which HSD=3
τ is most significant. Figure 24(a) indicates that there exists

a bivariate dependence relation between return signs and magnitudes which is only significant

at short-term dynamics, that is, τ = 1. Moreover, the close resemblance of the plot of the

correlation factor dD=3
τ=1 (πsi,j) of each joint pattern for the returns recorded in the six different

investigation periods suggests, despite the varied dependence strength, the nature and the

form of the dependence relation between return sign and magnitude remains the same in

time. Table 5 lists the top six positively and negatively dependent joint patterns contributing

to the bivariate dependence relations.

To better demonstrate the implication of the bivariate dependence between return sign and

magnitude, Figure 25 visually displays the most dependent joint return patterns and the

associated resulting price movement patterns. By observing the plots given in Figure 25,

the relation between return sign and magnitude reveals the micro-structure underlying the

intraday exchange rate dynamics. The most positively dependent joint pattern π7,1, π5,1,

π8,1 and π6,1 have a typical habit of price movement of the micro-structure of exchange rate

market: after a relatively large price rise or drop, the exchange rate is likely to experience

a reverse centre conversion movement over the next interval, followed by an even smaller

adjustment. In addition, the subsequent smaller adjustment is more likely to be in the

opposite direction to the first centre conversion movement as evidenced by the higher strength

of dependence factor in joint pattern π7,1, π8,1, compared to that in joint pattern π5,1 and
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Figure 24: (a) Plot of dependence measure HSD=3
τ (S, Y ) against delays, where S denotes the sign

and Y is the magnitude of continuous-adjusted EUR/USD 10-minutes return for the six investigated

1-year periods. (b) Plot of the measure dDτ (πsi,j) indicating the contribution to the overall dependence

at delay 1 of each joint patterns between sign and magnitude of continuous-adjusted EUR/USD

10-minutes return for the six investigated 1-year periods.

π6,1. Moreover, such price patterns happen more often in price drop than in price rise as

overall joint patterns π7,1, π5,1 are more positively dependent than π8,1 and π6,1. The other

two top positively dependent joint patterns π8,5 and π7,5 unveil another customary price

movement pattern: before a relatively large price rise or drop, the exchange rate market is

likely to prepare a big price movement with two prior reverse price movements of increasing

magnitude and in opposite directions. In contrast, such market preparation happens more

often before a large price increment than prior to a significant price decrement. From the

most negatively dependent joint patterns plotted in the bottom two rows of Figure 25 (b),

the least probable price movement pattern is to increase or decrease persistently for three

consecutive intervals, especially if the significant price movement is in the middle.

Conclusively, I find the bivariate dependence relation between signs of return and return

magnitude only exist over short-terms. Moreover, the detected dependence relations are

persistent across different investigated periods. Some return sign and return magnitude

ordinal pattern combinations are more likely to occur than others even after considering their

marginal probabilities.
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Table 5: The top six most positively dependent joint patterns and the top six most positively
dependent joint patterns associated with the computation of the bivariate dependence measure
HSD=3

τ=1 (S, Y ) where S is the sign and Y is the absolute magnitude of the continously-adjusted
EUR/USD 10-minutes return for six non-overlapping 1-year periods.

Top six most positively dependent joint patterns (dD=3
τ=1 (πsij))

RC2013-14 RC2014-15 RC2015-16 RC2016-17 RC2017-18 RC2018-19
πs7,1 (1.78) πs7,1 (1.48) πs8,1 (1.41) πs7,1 (1.53) πs5,1 (1.46) πs7,1 (1.72)
πs5,1 (1.70) πs5,1 (1.47) πs8,5 (1.37) πs8,5 (1.50) πs8,1 (1.39) πs8,5 (1.66)
πs8,1 (1.68) πs6,1 (1.46) πs7,1 (1.37) πs8,1 (1.48) πs7,1 (1.36) πs7,5 (1.64)
πs8,5 (1.67) πs7,5 (1.42) πs7,5 (1.35) πs5,1 (1.44) πs8,5 (1.32) πs8,1 (1.63)
πs7,5 (1.59) πs8,5 (1.41) πs5,1 (1.33) πs7,5 (1.42) πs7,5 (1.31) πs6,1 (1.61)
πs6,1 (1.58) πs8,1 (1.40) πs6,1 (1.31) πs6,1 (1.39) πs6,1 (1.28) πs4,5 (1.56)

Top six most negatively dependent joint patterns (dD=3
τ=1 (πsij))

RC2013-14 RC2014-15 RC2015-16 RC2016-17 RC2017-18 RC2018-19
πs1,3 (0.61) πs2,3 (0.67) πs1,3 (0.73) πs1,3 (0.68) πs1,3 (0.70) πs1,3 (0.59)
πs1,6 (0.62) πs1,3 (0.69) πs1,6 (0.74) πs1,6 (0.69) πs1,6 (0.75) πs2,2 (0.65)
πs2,2 (0.64) πs2,2 (0.72) πs2,2 (0.74) πs2,3 (0.71) πs2,3 (0.81) πs1,6 (0.65)
πs5,6 (0.66) πs5,6 (0.72) πs2,4 (0.76) πs2,2 (0.72) πs5,6 (0.81) πs5,6 (0.66)
πs3,3 (0.68) πs1,6 (0.73) πs2,1 (0.78) πs5,6 (0.72) πs1,5 (0.82) πs3,3 (0.67)
πs2,3 (0.71) πs2,1 (0.77) πs3,3 (0.79) πs3,3 (0.77) πs2,4 (0.82) πs2,3 (0.70)

5.3.6 Summary

This section investigated the temporal dependence exhibited in the 10-minute EUR/USD

return as an illustrative example of the ordinal pattern based analysis on real-world financial

time series.

I used the PE and PD measures introduced in chapter 3 to detect and decompose the temporal

dependence structure in the EUR/USD 10-minute returns dynamics. I found the discretization

effect is the primary source of short-term temporal dependence structures in 10-minute return

dynamics. The existence of tick-size, the smallest unit of increments and decrements in

a financial instrument, leads high-frequency returns to follow a discrete distribution. The

discretization imposes a non-linear dependence structure between adjacent returns. I found

that the temporal dependence caused by the discretization is the most significant source

contributing to the non-randomness detected in the high-frequency EUR/USD return series

over short-term dynamics.

Such non-linear structure cannot be detected by conventional tools, such as the ACF,
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Figure 25: (a) Top 6 positive and negative dependent return sign and magnitude joint patterns.

(b) Price movement patterns associated with the top 6 positive and negative dependent sign and

magnitude joint patterns.

since the ACF is mainly aimed at capturing linear relations. However, measures based on

ordinal patterns are not restricted by any pre-defined functional forms of structures and can

successfully detect this nonlinear structure that ACF neglects. The superior robustness in

detecting non-linear structures is the most important reason why PE and PD measures are

important supplements to the existing tool kit in the analysis of financial time series.

Empirically, the discovery of the discretization effect as a dominant source of temporal

dependence structure in high-frequency returns has significant implications. The analysis

results stress the importance of considering discritization in studying the dynamic underlying

high-frequency financial returns, and calls for extra caution when using high-frequency

returns in many types of analysis, including but not limited to assessing market predictability,

detecting the existence of chaos dynamics or investigating the sufficiency of modelling

procedures. This is because some statistics and hypothesis tests used in the above areas

might be seriously distorted by the discretization effect, or be erroneously treated as evidence

of something that creates predictability.

Besides dicretization, there are other sources contributing to the temporal dependence

structures within our investigated intraday returns. However, compared to the structure

caused by the discretization effect, the strength of the remaining structure in returns is

relatively weak. This explains why intraday returns display a non-random and non-linear

nature but have marginal predictability. By treating return as a compound product of

collective structures within return sign, return magnitudes and the bivariate interaction

between return sign and return magnitude, ordinal analysis reveal many interesting findings.
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I found that the detected relatively weak long-term dependence present within the investigated

returns are attributed to the structures exhibited in the volatility. Moreover, the high-

frequency returns have a tendency to alter signs. In other words, positive return is likely

be followed by negative return and vice versa. Consecutive positive returns and negative

returns are unlikely to occur. The switching return sign tendency is the cause of the negative

first-order autocorrelations that appeared in the ACF plot of investigated returns. Since

positive returns are likely to be followed by negative returns and vice versa, ACF reflects

these negative autocorrelations in returns. According to my findings, the switching return

sign tendency is a persistent feature for every investigated period. However, the strength

varies from time to time.

In addition, I also discovered a bivariate dependence relation between sign of return and return

magnitude. Bivariate PE analysis reveals the interaction between return sign and return

magnitude exists and only exists over the short-term. The various degrees of dependence

between different return sign and return magnitude pattern combinations reveals that certain

price movement patterns are more likely to occur than others. These results shed light on the

micro-structures of financial market behaviours. The likely and unlikely price patterns reflect

currency market customary trading habits. More specifically, after a relatively large price rise

or drop, the exchange rate is likely to experience a reverse centre conversion movement over

the next interval and then an even smaller adjustment. In addition, the smaller adjustment

is more likely to be in the opposite direction to the first centre conversion movement, and

such price pattern happens more often in price drop than in price rise. Before a relatively

large price rise or drop, the exchange rate market is likely to prepare a major price movement

by starting with two prior reverse price movements of increasing magnitude and opposite

directions. This likely price pattern happens more often before a large price increment than

a large price decrement. In contrast, the intraday exchange rate is very unlikely to increase

or decrease persistently for three consecutive intervals, especially when there is a relative

significant price movement in the middle.

5.4 Temporal dependence of EUR/USD 10-minute squared re-

turns and 1-hour realized volatilities

The term volatility generally represents the level of variation of return for a given financial

asset and is considered as a measure of risk for the associated asset. In the area of financial

time series analysis, volatility is often termed to as the conditional variance of returns of the

target asset, formally denoted as Var(rt|Ft−1) where Ft represents all historical information

available prior to time t. Volatility is very important for portfolio selection, option pricing

104



and risk management. However Var(rt|Ft−1) is a latent variable that cannot be directly

observed. Practitioners normally use the squared returns as the approximation of the true

unobservable volatility. Alternatively, for return over a relatively long interval, such as the

daily interval, the realized return that aggregates the squared returns with higher frequencies

within the given intervals can also be employed as the proxy for volatility.

Since volatility is an unobservable quantity, I adopt the conventional practice of using

squared returns and realized returns as its proxy. I conduct ordinal analysis on the 10-

minute squared returns and 1-hour realized returns to investigate their respective temporal

dependence structures. Similar to the ordinal analysis procedures carried out in the previous

section on return series, I first detect the existence of temporal dependence structures in

our investigated series by plotting 1 − PED=3
τ as a function of delay τ . As seasonality in

volatility is a well-documented property in high-frequency financial returns, as covered in

section 2.2.7, as well as the most distinctive features exhibited in the PE plot and ACF plot

on our investigated volatility series given in Figure 26, in order to search for other temporal

dependence structures and avoid possible distortion of seasonal patterns on our analytical

tools, I employ two commonly-used seasonal filters to remove the seasonality. I choose

to consider more than one seasonal filters because seasonal filters may introduce artificial

structures while removing periodicities. The usage of two completely different functional form

seasonal filters helps to verify that the detected structures are not caused by the effect of

deseasonalizing procedures but are intrinsic features underlying the dynamics of the original

data. I compare the performance of the two seasonal filters and discover a possible reason for

their imperfect removal of periodicities. After removing seasonality, I conduct ordinal analysis

on deseasonalized 10-minute squared returns and deseasonalized 1-hour realized volatility to

investigate the temporal dependence structures in squared returns besides seasonality. The

PE and the associated ordinal analysis reveal the strength of temporal dependence in the

deseasonalized squared returns and the deseasonalized realized volatility, how their temporal

dependence structures diminish over increasing delays/lags and promising models to replicate

their structure.

Note that in ordinal pattern based analysis such as PE computation and PD computation,

squared returns and absolute returns are equivalent. Therefore in the subsequent analysis,

the plots of PE and PD on squared returns are compared with the ACF plot of absolute

returns in some instances. In fact, all monotonic transformation of the data set under study

has no impact on the PE and PD measures.
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Figure 26: (a) Plot of 1− PED=3
τ over delays τ for six non-overlapping 1-year period 10-minutes

EUR/USD squared returns. (b) Plot of sample ACF on six non-overlapping 1-year period 10-minutes

EUR/USD absolute return series.

5.4.1 Preliminary analysis on 10-minute EUR/USD squared returns

I conduct the preliminary analysis on 10-minute intraday EUR/USD squared returns by

plotting 1− PED=3
τ and sample ACF over increasing delays/lags on the investigated data,

along with the 99% C.I. of statistic 1 − PED=3
τ and ACF under randomness. Unlike the

return dynamic that mainly exhibits short-term structure, the temporal dependence structure

in squared returns shows relative weak dependence structures in short delays but strong

periodicities over long-term delays. For the six different considered periods, the strength of

the periodicities varies significantly for different investigated periods.

The reason I did not compute PD measure on squared returns is shown in section 3.6, which

demonstrate that the PD measure is susceptible to non-stationarity. The PD plot on squared

returns exhibits strong periodicities and can therefore be very unreliable. But PE is more

robust to the effect of non-stationarity, especially at short-term delay. Therefore, prior to

the removal of the seasonality in the squared return, the preliminary analysis on 10-minute

EUR/USD squared returns is mainly based on the PE measure.
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5.4.2 Periodicity in squared returns

As mentioned in section 2.2.7, intraday periodicity in volatility is a commonly observed

feature in high-frequency financial returns. The periodicity in intraday foreign exchange rate

returns is a 24 hours pattern mainly attributed to the differences in trading times in the global

foreign exchange markets. Also, certain financial news, such as interest rate announcements,

are regularly released at the same time, which may cause some periodicity in the intraday

volatility.

Since periodicity is the most distinct feature observed in our investigated squared return

dynamics, without removing the periodicity, we cannot further investigate the existence and

the nature of other deterministic structure in the squared returns besides seasonality. The

most direct way of dealing with periodicities is to use seasonal adjustment filters. There are

a number of candidate seasonal adjustment filters that are commonly used in the analysis of

financial time series.

Andersen & Bollerslev (1998) provide a robust methodology, namely the Flexible Fourier

Form (FFF) method, for capturing the distinct seasonal volatility components. This involves

formulating a deterministic intraday volatility pattern to capture high-frequency volatility

periodicity, and imposing a predetermined volatility response pattern associated with calendar

and other effects. The FFF method is parsimonious and allows for smooth volatility dynamics.

It is rigid in functional form, and imposes a smooth cyclical pattern in the characterization

of intraday periodicity.

A second way to estimate the seasonal pattern is advocated by Taylor & Xu (1997). They

use the averages of squared returns to estimate the seasonality patterns for different time of

the week. Andersen & Bollerslev (1997) adjust their method by using the logarithm of the

squared returns to help estimate seasonal patterns.

I use the above mentioned two deseasonalizing procedures: the Averages of Squared Returns

(ASR) method and the FFF method of Andersen & Bollerslev (1997) to construct the seasonal

adjustment filters and remove the periodicities exhibited in our investigated series.

Since our return series is recorded in Greenwich Mean Time (GMT) and does not reflect the

daylight saving schemes followed by most of the major financial markets, I adjust the recorded

time of the observed returns to adapt to the US daylight saving period in the estimation of

seasonal adjustment filters. I choose to follow the US daylight saving period mainly because

our investigated exchange rate pair EUR/USD is most heavily traded in the US and UK

markets, and the daylight saving period in the UK almost overlaps with that in the US.

Hence there is little difference between them.
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The simplest and most intuitive way of removing periodicities is to use the averages of squared

returns to estimate the seasonality patterns for different time of the week advocated by Taylor

& Xu (1997). Let Rd,n denote the nth intraday return on day d in a week. The intraday

seasonality for the nth intraday interval on day d (d = 1 represents Monday, d = 2 represents

Tuesday...) is estimated by

(sASRd,n )2 =
1

Sd

Sd∑
s=1

(Rs,n −R)2,

where Sd is the number of weeks in the investigated periods and R is the sample mean of the

intraday returns. Similarly, the deseasonalized return is obtained by

DRASR
d,n =

Rd,n

sASRd,n

.

Andersen & Bollerslev (1997) suggest estimating the seasonalities in the intraday volatilities

by using different frequencies of sine and cosine functions, namely, the Flexible Fourier Form

(FFF) method. FFF method is the most commonly used approach for deseasonalizing periodic

financial time series. They assume

Rd,n −Rd,n =
σd

N
1/2
d

× sd,n × Zd,n,

where Rd,n denotes the nth intraday return on day d in a week (d = 1 represents Monday,

d = 2 represents Tuesday...), Rd,n are the expected intraday return and Zd,n is an iid random

variable with mean zero and variance one, Nd is the number of intraday returns in one day,

σd represents daily volatility and sd,n is intraday seasonality. By squaring both sides of the

above equation, taking logs, approximating Rt,n by the sample mean R, and replacing σt by

a daily volatility estimate σ̂t, we have the following expression

2 log
|Rd,n −R|
σ̂d/N

1/2
d

= log(s2
d,n) + log(Z2

d,n).

Then Andersen & Bollerslev (1997) construct a FFF regression model to estimate the intraday

seasonality factor:

fd,n = α + δ1n+ δ2n
2 +

L∑
l=1

λlIl;d,n +
P∑
p=1

[
δc,p cos

(
p2π

Nd

n

)
+ δs,p sin

(
p2π

Nd

n

)]
+ εd,n,
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where fd,n = 2 log{|Rd,n − R|} + log(Nd) − 2 log(σ̂d). The regression model includes the

intercept α, the linear and the quadratic function of the time of a day n, the indicator

variables Il;d,n, which are used to control the outliers, and an error term. The choice of P

generally ranges from 3 to 6, I choose P to be 5, although all specifications lead to a similar

smooth fit. To avoid using future information that is needed to construct estimation of daily

volatility σ̂d, I assume there is no interaction between the daily volatility and the seasonal

volatility pattern. Hence, the term 2 log(σ̂d) is removed from the definition of fd,n. The

estimate of intraday seasonality ŝFFFd,n is obtained by exp(f̂d,n/2). To filter the periodicities of

the intraday return, I simply divide the returns by the corresponding seasonality factor

DRFFF
d,n =

Rd,n

sFFFd,n

,

where DRFFF
d,n denotes the deseasonalized return using the FFF filtering method.

Since I am going to investigate the forecasting performance of various methods in predicting

squared returns and realized volatility in the subsequent sections, I only use the prior 43

weeks data for the estimation of seasonality in each investigation period to prevent using the

data in the evaluation subsets.

Figure 27 records the estimated weekly seasonal pattern of the two seasonal adjustment filters,

and the ACF plot of the original squared returns and the deseasonalized squared returns. It

can be seen from the estimated seasonal patterns that the FFF approaches forms a smooth

function of the seasonality, whereas the seasonal pattern constructed from ASR displays

more irregular sharp peaks and troughs. Despite the differences in the functional form of

the seasonal filter, it can be seen in the ACF plot that the performance of the two selected

seasonal filters is very similar. They both remove most of the seasonality exhibited in the

squared returns, but for some investigation periods there is still some remaining periodicity

left in the deseasonalized squared returns, including in the year 2013-14, 2017-18 and 2018-19.

5.4.3 Discretization effect in squared return dynamics and on deseasonalization

procedures

Section 5.3.2 demonstrated that the discretization effect is the dominant source of the

temporal dependence structure detected in the return series. It makes us wonder whether the

discretization effect also imposes a dependence structure in squared return dynamics. Prior

to further analysis of the temporal dependence structures in squared returns in addition to

seasonality, this section addresses the issues related to the discretization effect in the squared

return dynamics. I find that price discretization introduces a significant but weaker dependence
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Figure 27: (a) Estimated weekly seasonal filters using ASR and FFF methods applied on six

non-overlapping 1-year period 10-minute EUR/USD squared returns. (b) Comparison of sample

ACF plot on original absolute return and deseasonalized returns after ASR and FFF seasonal filter

respectively.

structure in squared return dynamics compared to return dynamics. In addition, the non-

linear temporal dependence structure caused by the discretization creates an obstruction

for the seasonal adjustment filter to work properly, especially when the time series have

relatively strong temporal dependence structures. Moreover, despite seemingly weak strength

of the discritization effect in squared returns, even after deseasonalizing procedures, the

impact from it cannot be fully eliminated and may distort the PE and the other related

ordinal pattern analysis. For that reason, I need to eliminate the discretization in the squared

return dynamic before investigating the temporal dependence structures underlying the

deseasonalized squared returns.

Figure 28 (a) plots the empirical distribution of the absolute value of investigated return |R|
and the distribution of the absolute return after adjusting to follow a continuous distribution

according to the procedures I proposed in section 5.3.2. The histogram clearly shows that

the distribution of the return magnitude is discrete. In order to investigate the impact of

discretization effect on squared returns, I adopt the approach proposed in section 5.3.2 to

replicate the same level of discretization in the observed return. The simulated discretized

return series is denoted by Rd. I compute the value of 1− PED=3
τ on the squared of the Rd

to reveal the contribution of discretization effect into the temporal dependence structure
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Figure 28: (a) Distribution of absolute Return versus continuous-adjusted absolute return. (b)

Comparison between 1− PED=3
τ on squared returns and simulated discretized squared returns. It

worth noting that absolute return and squared return are equivalent to PE.

on squared return dynamics. Figure 28 (b) displays the PE plot on Rsqd = (Rd)2 and that

on original 10-minutes squared returns, and suggests the discretization effect introduces a

significant but much weaker temporal dependence structure in squared returns dynamics

compared to that in the return dynamics.

The discretization effect not only constitutes a small portion of the temporal dependence

structures in the squared return dynamics, but can also can hamper the deseasonalization

procedures. In order to illustrate how the discretization effect hampers the proper performance

of the deseasonlization procedures, I generate four periodic return time series Rsim1, Rsim2,

Rsim3 and Rsim4, where Rsim1 and Rsim3 follow continuous distributions and Rsim2 and

Rsim4 exhibit discretization. The FFF seasonal filter is employed to deseasonalize the

simulated series. The detailed specifications of the four simulated series are as follows.

• Rsim1 (random return×seasonality): Rsim1 is constructed by multiplying the formerly

estimated seasonal pattern sFFF on squared returns Rsq2013-14, with a random series

r generated from the empirical distribution of the corresponding DRFFF.

• Rsim2 (random return×seasonality with discretization): Rsim2 follows the same gener-

ating procedures as in Rsim1, except I incorporate the discretization into the simulated
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series by converting Rsim1 back to a price series and round all prices to four decimal

places, then convert back to simple return.

• Rsim3 (GARCH return×seasonality): Rsim3 is generated by multiplying the same

seasonal pattern sFFF with a GARCH(1,1) modelled return series rGARCH.

• Rsim4 (GARCH return×seasonality with discretization): In Rsim4, discretization effect

is incorporated to the generating procedures of series Rsim3.

The performance of the seasonal filters is assessed by (a) the existence of remaining periodicities

in the ACF plots in the generated series after deseasonalization, and (b) how closely the

estimated seasonal filters coincide with the “true” seasonal patterns I incorporate into the

simulations. The distortion from the discretization effect on the dependence structures is

measured by comparing the PE and PD plots on the temporal dependence structure on the

deseasonalized series and those on the original simulations prior to the inclusion of seasonality.

Figure 29 (a) provides the ACF plot comparing simulated series and deseasonalized series of

the above four designed scenarios. By comparing the performance of the seasonal filters on

Rsim1 and Rsim2, as well as on Rsim3 and Rsim4, it is clear that seasonal filters perform

worse in the simulated return series with discretization. Subplot (b) in Figure 29 indicates

that the estimated seasonal filter on series with the discretization effect tends to overestimate

the peaks and underestimate the local minimals of the periodic patterns. This distortion

effect on the seasonal filter is especially severe in the time series with significant baseline

serial dependence structures as shown in Rsim4. Moreover, from subplot (c) and (d) in Figure

29, we can see that despite the marginal remaining periodicity in the deseasonalized series in

the ACF plot, the remaining periodicities are distinctly captured and reflected on the PE and

PD plots. Even after the deseasonalization procedures, the discretization effect is still not

fully diminished, evidenced from the significant disparity in 1− PED=3
τ and PDD=3

τ between

deseasonalized |Rsim1| and deseasonalized |Rsim2|, and between deseasonalized |Rsim3| and

deseasonalized |Rsim4|, especially at delay 1.

5.4.4 Temporal dependence structure in deseasonalized squared returns

In this section, I implement PE and ordinal analysis on the deseasonalized squared returns

to uncover the temporal dependence structures in return magnitude/volatility in addition to

seasonality.

I showed in the previous section that the discretization effect can lead to imperfect per-

formance of seasonal filters and distortions on PE and PD analysis. To avoid unwanted
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Figure 29: (a) Sample ACF on simulated periodic return series Rsim1, Rsim2, Rsim3 and Rsim4,

and that on deseasonzalied Rsim1, Rsim2, Rsim3 and Rsim4 after the FFF seasonal filtering

procedure. (b) The comparison of estimated seasonal pattern and the “true” seasonal pattern

incorporated into the simulation. (c) Plot of 1− PED=3
τ over increasing delays on deseasonalized

Rsim1, Rsim2, Rsim3 and Rsim4. (d) Plot of PDD=3
τ over increasing delays on deseasonalized

Rsim1, Rsim2, Rsim3 and Rsim4.
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influences from the discretization effect, I choose to conduct the temporal dependence in-

vestigation on deseasonalized continuous-adjusted squared returns, denoted by DRsqC. The

deseasonalized continuous-adjusted squared returns are obtained by applying the seasonal

filters on continuous-adjusted returns following the continuous conversion procedure provided

in section 5.3.2. In fact, the deseasonalized continuous-adjusted squared returns are very

close to those on deseasonalized original returns. On average, their difference is only around

0.1%.

In order to investigate the temporal dependence structures in continuous-adjusted desea-

sonalized squared returns, I compute the measures 1− PED=3
τ , PDD=3

τ and sample ACF as

functions of increasing delays, and the ordinal pattern distribution at delay one on DRsqC for

the six individual investigated periods. They are all plotted in Figure 30. Since the PE plots

and PD plots of the deseasonalzied squared returns after the two seasonal filters are very

similar, the choice of the FFF and ASR seasonal adjustment methods makes little difference

in the dynamics of deseasonalized intraday volatilities. The plots show that the value of

1− PED=3
τ fluctuates around a marginal significant level from small delays to large delays,

but PDD=3
τ is clearly far from the insignificant level and diminishes slowly from short-term

to long-term. The slow diminishing rate of PDD=3
τ suggests there are long-range temporal

dependence structures in the the deseasonalized squared return. The seemingly contradictory

inferences from the PE and PD plots is due to the fact that the temporal dependence structure

of the deseasonalized squared returns are weak but gradually diminishing. As mentioned in

section 3.7, the value of PE is determined by the strength of the temporal dependence at

the selected delay and the rate at which the dependence changes. If the dynamics under-

lying the observed data have relatively weak but persistent temporal structures, this may

not be detected by PE. That is why the PE plot suggests a random process, but the PD

measure indicates the existence of long-range temporal dependence structures in the observed

deseasonalized squared returns. According to the PD plot displayed in Figure 30 (b), the

temporal dependence structures within the deseasonalized squared returns remain significant

until τ = 25 to 30, suggesting that the impact from historical 10-minute squared returns

recorded around 4 to 5 hours ago can still affect the volatility of current 10-minute returns.

The delays at which the dependence structures fully diminished are determined by the delays

at which the PD plot stopped declining, instead of the delays at which the PD measure is

insignificant. This is because, as covered in section 3.6, non-stationarity can lead measure

PD to stay significant for large delays. In particular, the steady level of significant value of

measure PD is a typical indication of non-stationarity exhibited in the investigated series.

By contrasting the PD plot and the sample ACF plot for deseasonalized squared returns,
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the slopes of diminishing rate of the newly-proposed PD measure and the measure ACF of

increasing delays are similar, suggesting linear serial correlation might be the main form of

the temporal dependence present in the intraday deseasonalized squared return series. Figure

30 (c) displays the ordinal pattern distribution of deseasonalized squared returns at delay

one, with the solid line corresponding to the ordinal pattern probabilities associated with

significant PE, whereas the ordinal pattern probabilities resulting in insignificant PE are

plotted in the dashed line. Only the ordinal pattern probabilities associated with significant

PE are informative. For all ordinal pattern distribution associated with significant PE, ordinal

pattern π321 is more probable than pattern π123. Referencing the ordinal pattern distribution

features I extracted for various mainstream models in section 3.7, the ARMA model would not

be an appropriate choice for modelling the investigated deseasonalized squared return series

since realizations from any ARMA model are expected to display equal probability of ordinal

pattern π123 and π321. For the same reason, the GARCH model with Gaussian innovations can

also be excluded for consideration as GARCH model with Gaussian innovations is expected to

exhibit p(π123) > p(π321), which is opposite to the features observed in our investigated data.

However, the GARCH model with student’s t innovations can replicate the observed features

of p(π123) < p(π321), and hence can be considered as a promising candidate for modelling

intraday deseasonalized squared returns.

5.4.5 Temporal dependence structure in 1-hour realized volatilities

Using the same deseasonalization procedures, I also deseasonalized the realized volatility

(RV) of an interval of 1-hour.

RV1hi =
6i∑

t=1+6(i−1)

r2
t

I choose an interval of 1-hour because 1-hour consists of six sub-intervals of the original time

series frequency of 10-minutes, so that the sum of an aggregate volatility quantity eliminates

a considerable amount of noise exhibited in the original intraday time series, whilst we still

have a acceptable length of data for the PE analysis that requires a certain amount of data

size to produce reliable results. The deseasonalized 1-hour realized volatility series is denoted

by DRV1h. Note that, for the realized volatilities, there is no need to consider the effect

of discretization as for shorter-interval squared returns. The influence from discretization

will become negligible when aggregating the squared returns that originally follow discrete

distribution.

The purpose of analyzing the 1-hour interval volatility dynamics is first to investigate how
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Figure 30: (a) Plot of 1− PED=3
τ against delays on deseasonalized 10-minutes EUR/USD squared

returns after continuous adjustment. (b) Plot of PDD=3
τ against delays on deseasonalized 10-minutes

EUR/USD squared returns after continuous adjustment. (c) Distribution of ordinal patterns

associated with PED=3
τ at delay τ = 1. (d) Plot of sample ACF on deseasonalized 10-minutes

EUR/USD squared returns after continuous adjustment.
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the dependence structures of volatilities change over different choices of time interval 4t.
Additionally, empirical studies suggest that the mean absolute and mean squared returns are

proportional to a power of the interval size, thus the distributions of return and volatility

scale for a range of time intervals. The contrast between the dependence structures within

10-minutes interval volatilities and within 1-hour aggregated volatilities might help answer

the question of how and whether the functional form of deterministic relations change for

different choices of time interval 4t.

To investigate the temporal dependence structures underlying DRV1h, I plot the 1− PED=3
τ ,

PDD=3
τ and sample ACF as functions of delay and the ordinal pattern probability associated

with PE at τ = 1 for the series under investigation in the six non-overlapping periods, after

employing the two different seasonal filters. Similar to our observation in section 5.4.4 of the

analysis on DRsqC, the PE plot of DRV1h displays significant value at delay 1 for all periods

and occasionally marginal significant values at longer delays for some periods. In contrast,

the PD plot indicates the significant but gradually diminishing dependence relations from

delay τ = 1 to around τ = 13 suggesting the influence from historical aggregated volatilities

within 1-hour intervals can last around 13 hours. From Figure 31 (c) we can see that the

feature of the ordinal pattern distribution on DRV1h at delay 1 across the six investigated

periods is very similar, with p(π321) > p(π123), and minimal difference between p(π213) and

p(π231). The invariant ordinal pattern probability rank across different choices of investigation

periods suggests that, although the strength of the temporal dependence structures varies,

the functional form of the dynamics governing the 1-hour realized volatility do not change

over time.

By contrasting the PD plot and the ordinal pattern distributions on DRsqC and DRV1h, I

find that the strength of temporal dependence structures in the 1-hour aggregated volatilities

is stronger than that in DRsqC. I also find that despite the increased dispersion of ordinal

pattern distributions in DRV1h, the rank of ordinal pattern probabilities in DRV1h is very

similar to that in the 10-minute squared returns, indicating the main characteristics of

volatility dynamics might be invariant regardless of the choice of time interval 4t. In other

words, volatilities over various intervals can be represented and modelled through the same

stream of parametric models.

Based on the results and insights from section 3.7, the rank of ordinal pattern probabilities

can help identify the functional form of the time series under study. The observed feature of

ordinal pattern probability rank in DRV1h and DRsqC series can be potentially replicated by

a GARCH or GARCH variant model with lepkurtosis innovations. In the following sections,

I further investigate how well GARCH models characterize the dynamics underlying the
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Figure 31: (a) Plot of 1− PED=3
τ against delays on deseasonalized 1-hour realized volatilities. (b)

Plot of PDD=3
τ against delays on deseasonalized 1-hour realized volatilities. (c) Distribution of

ordinal patterns associated with PE at delay τ = 1. (d) Plot of sample ACF on deseasonalized

1-hour realized volatilities.
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10-minute squared returns and the 1-hour aggregated volatilities of the EUR/USD rate.

5.4.6 Summary

This section analyzed the temporal dependence structures exhibited in EUR/USD 10-minutes

squared returns and 1-hour realized volatilities.

Consistent with the literature, I found that high-frequency financial returns display pronounced

intraday seasonality. Two seasonal adjustment filters Flexible Fourier Form (FFF) and average

squared returns (ASR) were employed to remove seasonality in the squared returns and

realized volatilities. Despite their completely different functional form, performance of the

filters was shown to be very similar. Both can remove most of the periodicities but not

exhaustively.

In addition to seasonality, discretization imposes a nonlinear structure on intraday squared

return dynamics but to a much lesser extent when compared to that in the return itself.

Moreover, even after applying seasonal filters, the temporal dependent structures in the

squared returns introduced by discretization cannot be fully diminished. Discretization was

also found to hamper the performance of the deseasonalization procedures, especially when

the investigated time series have strong baseline deterministic structures.

Compared to the temporal dependence structure present in the high-frequency returns,

which mainly exhibited determinism over the short-term, the PD measure detected slowly

diminishing dependence in squared returns, consistent with the “long-memory” property of

financial returns recorded in subsection 2.2.3. Our empirical analysis suggested the temporal

dependence structure in deseasonalized squared returns does not fully diminish until delay

τ = 50, which is around eight hours.

By comparing the values of PE and PD in 10-minute squared returns and 1-hour realized

volatilities, I found aggregated volatilities within longer intervals are more structural than

squared returns recorded in shorter intervals. Additionally, realized volatilities also exhibited

“long-memory” property. The PD plot, as a function of delay, suggests the temporal depen-

dence structures in deseasonalized 1-hour aggregated volatilities gradually decay and vanish

after delay τ = 13, indicating the impact from a historical realized volatility can last 13

hours. Despite the varied strength and diminishing rate of the temporal structures exhibited

in deseasonalized squared returns and aggregated volatilities, the similar rank in their ordinal

pattern probabilities suggests the process governing their dynamics share similar functional

form. Hence, they have the potential to be characterized through similar models. Based on

the feature of their ordinal pattern distributions, I exclude the ARMA model and standard

119



GARCH class model for replicating the dynamics of the deseasonlized squared returns and

deseasonalized realized volatilities, but identify the GARCH class model with lepkurtosis

innovations as a promising candidate for replicating their underlying dynamics.

Lastly, by comparing the temporal dependence analysis results on different investigation

periods, I found the overall strength and the diminishing rate of the deterministic structure

underlying squared returns and aggregated volatilities vary over time. Nevertheless, the

similarity of the ordinal pattern distributions indicates that the functional form governing

the process does not vary regardless of which investigation period is chosen.

5.5 Modelling and forecasting of 10-minute returns

In section 5.3 I analyzed the temporal dependence structures underlying the EUR/USD 10-

minute returns in detail and decomposed the detected dependence structures within observed

returns into multiple component. In this section I investigate how well the mainstream

models capture and exploit the temporal dependence structures underlying the intraday

EUR/USD deseasonalized returns for the purpose of point prediction. The sufficiency of a

predicting model will be evaluated based on a number of criterion. First, the newly proposed

PD sufficiency test will be carried out to detect any remaining structures in the residuals and

the dependence structures between residuals and past observations to assess the ability of the

models to exploit the potential of point predicting one-step-ahead returns. Second, I expect

a sufficient model to replicate the temporal dependence structures as in the deseasonalized

return series. Therefore I compare the value of PE, PD, ACF and ordinal pattern distribution

in the simulation generated from the estimated models and that in the observed deseasonalized

returns to see whether they are alike.

I choose to consider the simplest MA(1) model to fit and forecast deseasonalized returns. This

choice is motivated by the observation that all six years’ investigated return series only exhibit

negative first order autocorrelations, and the ordinal pattern rank in the continuous-adjusted

return is similar to that of linear models. In fact, fitting the high-frequency returns to a MA(1)

model first to eliminate the negative first-order autocorrelation, then fitting the squared

residuals to a GARCH-class model is a standard procedure in modelling high-frequency

returns. In most cases, after fitting to the MA(1) model, intraday return series no longer

exhibit negative first ACF. However, whether the MA(1) model is able to replicate all the

temporal dependence structures in the deseasonalized return series remains an open question.

In the remainder of this section I aim to answer this question.
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5.5.1 The sufficiency of MA(1) model

In the previous section, I showed that intraday squared returns exhibit strong periodicities.

Therefore, the fitting process will be conducted on deseasonalized returns to eliminate the

known periodicities exhibited in the return magnitude. In section 5.4.2, two seasonal filters.

ASR and FFF, were employed to remove the seasonalities in the return volatilities. Despite

the differences in their functional form, the two selected seasonal filters performed similarly.

Hence in this analysis, I choose to only investigate the deseasonalized return/deseasonalized

squared returns using the more regular functional form FFF seasonal filters.

The deseasonalized return used in this section for prediction is after the continuous adjustment,

denoted by deseasonalized continuous-adjusted return (DRC). The DRC is obtained by

applying the seasonal filtering procedures on continuous adjusted returns. The continuous

convention procedure is described in section 5.3.2. The reason we convert to the original

returns into a continuously distributed series prior to the deseasonalization procedures it

is that in section 5.3.2, I showed that the discreteness in intraday returns is the primary

source contributing to the temporal dependence structures in the intraday return series. As

evidenced in section 5.4.3, even the deseasonalizing procedures cannot entirely eliminate its

effect. To avoid the distortion of the remaining discretization effect, I choose to predict DRC

instead of the original deseasonalized returns. Despite the data adjustments, the magnitudes

of DRC are very close to that without any adjustments. On average their difference is around

1.32%. Therefore the adjustments procedures will not introduce any significant change to the

results of the following analysis.

Among the total length of 38160 entries of return series for each investigated period, the former

30960 observations are used for estimating the parameters and the latter 7200 observations

are for out-of-sample evaluation purposes. In order to assess the sufficiency of the point

prediction performance of the fitted MA(1) model, I apply the newly-proposed PD sufficiency

test on both the in-sample subsets and out-of-sample subsets of the investigated data.

Table 6 summarizes the statistics used to evaluate the performance of the fitted MA(1) model

in its attempt to exploit the predictability of EUR/USD 10-minute deseasonalized returns.

Table 6 records the estimated parameter θ1, the in-sample and out-of-sample forecasting

accuracy measure adjMSEratio and the PDD=4
τ=1 (ε̂t) and PD∗,D=4(ε̂t, xt−1) statistics required
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by the newly proposed PD model sufficiency test. adjMSEratio is computed by

m =
1

N

N∑
t=1

(yt − ŷt),

adjMSEratio =
1
N

∑N
t=1(yt − ŷt −m)2

V ar(yt)
.

I use adjMSEratio to indicate the forecasting accuracy because it quantifies the proportion

of variations unexplained by the estimated model. Additionally, it omits the systematic

bias in the estimation of the constant term of the proposed model, which our PD sufficiency

test cannot identify. The statistic PDD=4
τ=1 (ε̂t) in the sufficiency test indicates the strength

of dependence between past residuals and current residual after fitting the MA(1) model,

whereas statistic PD∗,D=4(ε̂t, xt−1) quantifies the dependence between the lagged observations

and current residual of the data under study. By comparing the values of the PDD=4
τ=1 (ε̂t)

and PD∗,D=4(ε̂t, xt−1) with their 95% C.I. under independence, they all show insignificant or

marginally significant values. The results suggest the fitted MA(1) models are able to exploit

most of the point prediction potentials in the deseasonalized return dynamics, despite the

fact that the predicted returns can only explain an average of 1% variations in the observed

returns. In addition, Figure 32 plots the 1− PED=3
τ plot, PDD=3

τ plot, sample ACF plot and

ordinal pattern distribution on the deseasonalized returns and their residuals after fitting the

MA(1) model. The comparison between before and after fitting the MA(1) model suggests

the estimated MA(1) model manages to eliminate almost all short-term temporal dependence

structures in the original data. The sufficiency evaluation of the simple MA(1) model on

deseasonalized returns indicates the intraday returns have minimal point prediction potential

where noise constitutes around 99% of the magnitude of the observed returns.

5.5.2 Estimated MA(1) dynamics versus real return dynamics

In this section, I compare the expected behaviour of the PE and PD measures applied to the

simulated time series from the fitted MA(1) model with that applied to original data. The

analysis carried out in this section aims to further verify the sufficiency of the MA(1) model

in characterizing the dynamics underlying the intraday return.

I showed earlier that the distribution of the innovations can affect the ordinal pattern

distributions, thus the values of PE and PD. For that reason I choose to simulate the time

series from the estimated model with innovations following the empirical distribution of the

residuals using kernel functions instead of the standard normal distribution with estimated

standard deviations from fitting the MA(1) model. I generate 500 paths of simulations to
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Figure 32: Comparison of (a) plot of 1 − PED=3
τ over delays (b) plot of PDD=3

τ over delays (c)

probabilities of ordinal patterns associated with PED=3
τ=1 (d) plot of sample ACF on continuous

adjusted deseasonalized returns and residuals after fitting MA(1) model.
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Table 6: The estimated parameter θ̂1, the in-sample and out-of-sample forecasting accuracy
measure adjMSEratio and the statistics PDD=4

τ=1 (ε̂t) and PD∗,D=4(ε̂t, xt−1) required by the PD
sufficiency test used to evaluate the one-step-ahead point prediction of the fitted MA(1) on
10-minutes EUR/USD continuous adjusted deseasonalized returns. The one-tail 95% C.I. of
statistics PDD=4

τ=1 (ε̂t) and PD∗,D=4(ε̂t, xt−1) under randomness is 40.

Investigation period 2013-14 2014-15 2015-16 2016-17 2017-18 2018-19

Fitted MA(1) model on DRC

θ̂1 -0.056 -0.069 -0.057 -0.078 -0.074 -0.102
adjMSEratio (in sample) 99.25% 99.40% 99.10% 99.21% 98.89% 98.96%
adjMSEratio (out of sample) 98.98% 99.64% 99.73% 99.61% 99.46% 98.03%

PDD=4
τ=1 (ε̂t) (in-sample) 65.66 45.23 12.44 37.93 21.17 44.14

PD∗,D=4(ε̂t, xt−1) (in-sample) 60.23 54.45 18.88 42.99 20.73 36.05

PDD=4
τ=1 (ε̂t) (out-of-sample) 27.81 30.57 16.20 11.52 25.03 34.02

PD∗,D=4(ε̂t, xt−1) (out-of-sample) 25.02 31.39 19.03 7.51 22.95 32.05

construct an estimate of the 95% confidence interval of the expected level of PE and PD of

the simulations. The comparisons of 1− PED=3
τ , PDD=3

τ , sample ACF and ordinal pattern

distribution at delay 1 between the simulations and the original deseasonalized return are

shown in Figure 33. The plots suggest all employed temporal dependence measures in the

simulation are not distinctively different from that computed on the original data, indicating

the simple linear correlation specified by the MA(1) model is sufficient or at least very close

to sufficiency in capturing the deterministic structures exhibited in return dynamics.

5.5.3 Summary

In this section, I evaluated the sufficiency of MA(1) in replicating the dynamics underlying the

EUR/USD intraday deseasonalized returns using a number of different techniques introduced

earlier in this thesis.

I concluded that the MA(1) model is sufficient or at least very close to sufficiency in replicating

the structure embedded in the 10-minute EUR/USD returns. The PD sufficiency test indicates

that predictions constructed from the MA(1) model exploit most of the forecasting potential

embedded in the intraday return dynamics, as evidenced by the insignificant or marginally

significant values of PDD=4
τ=1 (ε̂t) and PD∗,D=4(ε̂t, xt−1). In addition, the simulations generated

from the estimated MA(1) model closely replicate the PE plot, PD plot and ordinal pattern

distribution computed on the real intraday return series. Moreover, the estimated residuals

after fitting the prediction model showed no significant remaining structures throughout

all considered delays. All the above evidence supports the conclusion that the prediction

generated from the MA(1) model is very close to the best prediction one can possibly construct
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Figure 33: Comparison between (a) plot of 1− PED=3
τ over delay, (b) plot of PDD=3

τ over delay,

(c) probabilities of ordinal patterns associated with PED=3
τ=1 , (d) plot of sample ACF over lag,

on investigated continuous adjusted deaseasonalized returns and the average value of considered

measures computed on MA(1) simulations, along with their respective 95% percentile computed in

the generated MA(1) simulations.
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Figure 34: Plot of deseasonalized continuous-adjusted return and the fitted/foretasted value
generated from the MA(1) model.

in predicting future intraday returns based on past returns, despite the fact it only improves

the prediction accuracy by 0.3% to 2% over random guesses. The sufficient but marginal

improvement of prediction accuracy implies that 10-minute EUR/USD returns are very noisy

where error is the dominant component of the process, constituting 99% of the observed

return. Therefore there is minimal potential for forecasting high-frequency return solely using

its historical trajectories.

5.6 Modelling and forecasting of 10-minute squared returns and

1-hour aggregate volatilities

In this section, I evaluate the performance of various models in forecasting 10-minute squared

returns and 1-hour aggregate volatility. More importantly, I investigate the reasons for their

respective superior and suboptimal performances. My ultimate objective is to uncover the
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main obstacles associated with each model in dealing with the properties of high-frequency

financial data and provide promising directions for constructing better forecasting models.

The considered models include three parametric models, ARMA, GARCH and FIGARCH,

and two non-parametric approaches, SVR and GPR. The detailed description and specification

of these models are provided in section 2.3. All five models are widely used in the area of

financial time series analysis and are often used as the benchmark for comparison when

practitioners evaluate the prediction performance of new models.

There are a number of reasons behind our choice of competing models. The ARMA and

GARCH models presume linear relations between the object of interest and its past realizations.

Even though the GARCH model is normally classified as non-linear, the deterministic

relation postulated by it is still in linear form. GARCH model takes into account the

volatility clustering feature in estimating the linear relation between squared returns. The

comparison between the performance of the ARMA model and the GARCH model reveals the

importance of incorporating the volatility clustering feature in predicting return volatilities.

The FIGARCH model is a GARCH model variant. It relieves the fixed exponentially decaying

constrain specified in the standard GARCH model by introducing an additional parameter

d. From the comparison between the prediction accuracy of the standard GARCH model

and the FIGARCH model, we can identify whether more flexibility in the form of the linear

deterministic relationship enables the GARCH-class models to exploit the predictability

underneath the intraday exchange rate volatility dynamics sufficiently. The non-parametric

models GPR and SVR, compensate for the limitations of the above three parametric models

by introducing the capability to capture non-linear deterministic relations. As described in

section 2.3, that GPR and SVR models capture the behaviour of past movement of observed

data through completely different mechanisms, which can result in quite different predictions

on data with different properties. The comparison of the prediction accuracy between the

popular non-parametric models and the classical parametric models reveals the usefulness of

non-linear models in predicting intraday volatilities of the EUR/USD exchange rates.

5.6.1 Evaluation of various models in predicting 10-minute squared returns and

1-hour realized volatilities

As for the previous section, in which I evaluate models’ capacity to predict future returns, in

this section I employ similar procedures to evaluate the performance of models in predicting

squared returns. There are two criteria I am basing on to assess the sufficiency of the

considered models.

1. The newly proposed PD model sufficiency test is used to assess the sufficiency of the
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constructed predictions proposed by the considered models. The PD test is based on the

comparison of the strength of temporal dependence within the estimated residuals and the

strength of dependence between the estimated residuals and past observations.

2. When the PD model sufficiency test is unable to generate an affirmative conclusion, we

will use the DM test with quadratic loss function (MSE) to compare the models with the one

that generate least MSE or are considered inadequate. Any inferior model concluded by the

DM test is also concluded insufficient.

Note that our evaluation studies focus on determining whether the considered models generate

sufficient one-step-ahead point predictors of squared returns rather than the latent volatility.

Namely, the competing models are evaluated in terms of their abilities to predict E(r2
t |Ft−1)

instead of Var(rt|Ft−1). It is important to distinguish the difference between these two to

ensure the validity of the evaluation criteria listed above. The reasons are as follows. First,

recall section 4.3, in which the design and construction of the PD sufficiency test aims to

assess how the employed models capture and replicate the deterministic relation governing

the first-order moment structures underlying the observed time series. Therefore the proposed

test distinguishes whether the predictions are close or significantly depart from the oracle

point forecast x̂oracle
t = E(xt|Ft−1). With squared returns as our data, a sufficient prediction

is defined in the PD sufficiency test as close to E(r2
t |Ft−1). If E(r2

t |Ft−1) and Var(rt|Ft−1) are

equal or equivalent, then the conclusion drawn from the PD sufficiency test can be extended

to evaluate the performance of various models in prediction the latent volatility. However,

E(r2
t |Ft−1) and Var(rt|Ft−1) are not always equal or equivalent especially in the presence of

high kurtosis.

Under certain circumstances, for instance, if

rt|Ft−1 ∼ σt ×N (0, 1)

then

E(r2
t |Ft−1) = Var(rt|Ft−1).

However, the above equality does not necessarily always hold. For example, if

rt|Ft−1 ∼ σt × Student’s t(0, ν)
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then

E(r2
t |Ft−1) =

ν

ν − 2
Var(rt|Ft−1). (26)

In that case, the optimal point prediction of squared returns is not equivalent to that of the

latent volatility, especially when the degree of freedom of the t-distribution that is negatively

related to the level of lepkurtosis is of relative small value. As noted in section 2.2.1, a

heavy tail is a widely documented empirical property of financial returns. Additionally,

the distribution is increasingly heavy-tailed for higher frequency returns. In fact, all of our

investigated 10-minute returns exhibit high levels of lepkurtosis. Compared to Gaussianity,

the Student’s t distribution with a relatively small degree of freedom parameter is a more

realistic assumption of the distribution of the conditional return rt|Ft−1, which corresponds

to the latter case of the example listed above. Therefore the sufficient/insufficient conclusions

drawn from the PD sufficiency test cannot be extended to evaluating the performance of

various models in predicting the latent volatility for our data.

For the second evaluation criteria, if the quantity of interest is Var(rt|Ft−1), the MSE metric

and the DM test based on MSE functions can lead to erroneous ranking of the performance

of competing models. Patton (2011) indicates that the MSE is a “robust” loss function for

correctly ranking competing volatility forecasts. Therefore even the “true” volatility is a

latent variable, the MSE is a robust function for comparing volatility forecasts when using

squared returns as a noisy proxy. However, in order for the above argument to be true,

E(r2
t |Ft−1) needs to be equal to Var(rt|Ft−1). The proof is simple and is given below.

Let h∗t denote the optimal forecasts for the MSE loss function using squared returns as a

proxy for latent volatility:

h∗t = argmin
h

E[(r2
t − h)2|Ft−1].

The search for the optimal forecast defined above is equivalent to the search for h that makes

the derivative of E[(r2
t − h)2|Ft−1] equal to zero. We have

∂

∂h
E[(r2

t − h)2|Ft−1] = E[2(r2
t − h)|Ft−1]

= 2E(r2
t |Ft−1)− 2h

= 0

129



Therefore,

h∗t = E(r2
t |Ft−1).

I show in equation (26) that E(r2
t |Ft−1) is not always equal to the latent volatility. As a result,

the predictions that minimize the MSE of the observed squared returns are not necessarily

the optimal prediction of the population latent volatilities of returns. Hence MSE or any

prediction comparison test, such as the DM test based on MSE using squared returns as a

volatility proxy, can be misleading if the objective is to compare the performance of competing

models in predicting Var(rt|Ft−1).

In addition to the PD sufficiency test and DM model comparison test, there are four other

metrics I use to reflect the performance of the competing models. They are out-of-sample

MSEratio, out-of-sample adjMSEratio, out-of-sample mean error (m) and the out-of-sample

mean error contribution in MSE. The four statistics are defined as follows:

MSEratio =
1
N

∑N
t=1(yt − ŷt)2

1
N

∑N
t=1(yt)2

,

m =
1

N

N∑
t=1

(yt − ŷt),

adjMSEratio =
1
N

∑N
t=1[yt − ŷt − 1

N

∑N
t=1(yt − ŷt)]2

1
N

∑N
t=1(yt − ȳt)2

,

m ratio in MSE =
m2

1
N

∑N
t=1(yt − ŷt)2

.

MSEratio measures the mean squared error of the estimated prediction relative to that if

we assume all ŷt = 0. ŷt = 0 represents the prediction one can construct with no knowledge

about the future or the underlying dynamics at all, and thus can act as a benchmark to

be compared with the predictions estimated by the competing models. MSEratio > 1 is a

clear indication that the prediction estimated by the considered model is even worse than a

random guess. Additionally, in order to separate the error in estimating the constant term

and that in estimating the deterministic function, I split the most widely-used prediction

accuracy metric MSE into two components. If the one-step-ahead predictor of xt can be

written in the following form

x̂t = ĉ+ ĝ(xt−1, xt−2, ..., xt−τT )

where τT is the furthest lag in which past entries affect the current entries, adjMSEratio
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measures how well the predictor replicates the deterministic function g(·) governing the

investigated data. m accounts for the error in estimating the constant term c. More specifically,

adjMSEratio measures the proportion of un-explained variations in the investigated data by

each estimated predictor after adjusting for systematic bias. The m ratio in MSE indicates

the proportion to which the misspecification of constant term contributes to the overall MSE.

The reason I modify the conventional MSE and isolate the contributions of constant estimation

error is to ensure comparability of model performance across different periods in the presence

of nonstatisonarity. It is clear from Figure 35 that the our investigated deseasonalized squared

return series displays pronounced non-stationarity, especially inconstant mean. Since our

selected models, both parametric and non-parametric, are designed for stationary or at least

weakly stationary time series, they are unable to flexibly adjust themselves to adapt the

varying baseline volatilities of the investigated volatility series. Even though a number of

novel or hybrid models, such as MS-GARCH and so on are proposed to model and forecast

non-stationary time series, assessing their performance is beyond the scope of this thesis. It

is anticipated that the out-of-sample forecasting performance of our selected models will be

better on the series where the baseline mean of the test set is closer to that of the training

set. Since our primary objective is to investigate among all of our selected models, which

mimics the function form of the volatility dynamic most closely, and try to explain why is so.

For parametric models ARMA and GARCH, around 80% of data (30960) is used for estimation

and 20% (7200) is used to evaluate out-of-sample forecasting performance. For non-parametric

models GPR and SVR, around 60% of data (24000) is used for the training set, 20% (6960)

is used for optimal lag selection and hyper-parameter tuning, and 20% (7200) is used to

evaluate out-of-sample forecasting performance. For non-parametric models, a number of

kernel functions, including linear and rbf functions, have been considered, and a wide range

of possible values of hyper-parameters has been compared based on the MSE in the 20% of

hyper-parameter tuning subset.

Table 7 records the statistics I use to evaluate the performance of the models considered in

this study in predicting 10-minute EUR/USD volatilities, including the estimated parameters

in each employed model, the out-of-sample MSEratio, adjMSEratio, mean error out-of-

sample mean error contribution in MSE defined above, and the statistics PDD=4
τ=1 (ε̂t) and

PD∗,D=4(ε̂t, xt−1) required in the PD model sufficiency test. The orange cell corresponds to

the models that are concluded to be insufficient according to the two criteria. Note that the

models that are not orange in the table are not necessarily the oracle model for predicting

the investigation data, rather we do not have enough evidence to reject their sufficiency.

Additionally, I also highlight the model with the best prediction accuracy in each investigation
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period by showing the smallest out-of-sample adjMSEratio in each DRsq series with red

underscore.

From the table consisting of the out-of-sample forecasting evaluation merits of the five

competing models for all investigated periods 10-minute EUR/USD deseasonalized squared

returns, a number of conclusions can be drawn. First, I confirm the existence of prediction

potential for intraday exchange rate volatility. Except for 2016-17, in which none of the

considered models can beat random guesses, the best performing model of the rest of

investigating periods’ are able to provide significant reduction in uncertainty about future

volatility compared to if we made no effort into forecasting. The increment of accuracy ranges

from 6% to 19% in forecasting deseasonalized intraday squared returns. Second, the results

suggest there is no single model that outperforms its competitors in terms of prediction

accuracy across all periods of the study. For instance, the GARCH(1,1) model provides much

better prediction accuracy compared to its competitors in predicting DRsq2015-16, whereas

predictions generated from the SVR model are superior to those made from the ARMA model

in predicting DRsq2013-14. In other words, the prediction performance of the employed

models varies significantly across different investigated time periods. Additionally, almost all

constructed predictors are not sufficient to exploit the maximum prediction potential.

Using the same set of competing models and evaluation criteria, I also assess the sufficiency

of the one-step-ahead prediction performance of the deseasonalized realized volatility DRV1h,

the temporal dependence structures of which are analyzed in section 5.4.5. The statistics

summarizing the forecasting performance of the models in relation to DRV1h are given in

Table 8. Overall 1-hour aggregated volatilities are more predictable compared to 10-minute

squared returns, as the best performing model can increase the prediction accuracy of the

investigated data by 10% on average over random guesses and up to 42% in DRV1h2015-16.

However, despite the vast potential of predictability of aggregated volatilities, similar to that

found in the DRsq series, almost all of the constructed predictors are not sufficient to exploit

the maximum prediction potential. Additionally, there is no single model that outperforms

the rest of its competitors across all periods. The ranking of prediction accuracies of the

models largely depends on the selected investigation period.
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Figure 35: (a) Plot of the six non-overlapping 1-year period EUR/USD 10-minutes deseasonalized

squared returns. (b) Plot of the six non-overlapping 1-year period EUR/USD 1-hour deseasonalized

aggregated volatilities.
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Table 7: Comparison of prediction performances of various models on deseasonalized EUR/USD 10-minutes squared returns

recorded in six non-overlapping 1-year investigation periods. MSEratio measures the MSE of the estimated prediction relative

to that if we assume all ŷt = 0: MSEratio = [ 1
N

∑N
t=1(yt − ŷt)2]/ 1

N

∑N
t=1(yt)2. adjMSEratio and m measure how well the

predictor replicates the deterministic function g(·) governing the investigated data and the error in estimating the constant

term c: adjMSEratio = [ 1
N

∑N
t=1(yt − ŷt − m)2]/[ 1

N

∑N
t=1(yt − ȳt)2]; m = 1

N

∑N
t=1(yt − ŷt). m ratio in MSE records the

proportion that the misspecification of constant term contributing to the overall MSE: m ratio in MSE = m/ 1
N

∑N
t=1(yt− ŷt)2.

PDD=4
τ=1 (ε̂t) and PD∗,D=4(ε̂t, xt−1) are the statistics required in the PD model sufficient test. The orange cells correspond to

the models that are concluded to be insufficient. The model with smallest out-of-sample adjMSEratio is highlighted in red

underscore, and termed “Function Estimation Winner”. The model with smallest out-of-sample MSEratio is termed “Overall

Winner”. All the model evaluation metrics and statistics are computed in the out-of-sample test set that is not used for training

the model.

Overall Winner SVR SVR GARCH GPR ARMA FIGARCH
Function Estimation Winner SVR SVR GARCH GPR ARMA ARMA

DRsq2013-14 DRsq2014-15 DRsq2015-16 DRsq2016-17 DRsq2017-18 DRsq2018-19
ARMA

φ̂1,θ̂1 0.62,0.42 0.92,0.84 0.88,0.80 0.98,0.87 0.89,0.84 0.84,0.78
MSEratio out-of-sample 99.95% 92.38% 83.62% 102.89% 85.28% 93.70%
adjMSEratio out-of-sample 100.40% 100.40% 84.38% 103.47% 98.75% 98.61%
m out-of-sample -4.25 -0.31 1.21 -0.58 0.32 -1.98
m ratio in MSE out-of-sample 9.70% 0.37% 0.02% 0.01% 0.04% 1.57%
PDD=4

τ=1 (ε̂t) out-of-sample 627.18 550.53 543.17 953.31 414.69 349.43
PD∗,D=4(ε̂t, xt−1) out-of-sample 449.86 109.87 174.60 237.90 119.10 143.42
PD sufficiency test out-of-sample Inconclusive Inconclusive Inconclusive Inconclusive Unsure Unsure

GARCH

α̂1,β̂1 0.12,0.80 0.10,0.84 0.10,0.82 0.1,0.85 0.1,0.81 0.11,0.67
MSEratio out-of-sample 94.54% 93.44% 80.47% 102.03% 86.11% 93.57%
adjMSEratio out-of-sample 99.53% 101.64% 81.20% 102.60% 99.74% 98.77%
m out-of-sample -3.07 -0.27 0.76 -0.63 0.03 -1.78
m ratio in MSE out-of-sample 5.36% 0.27% 0.01% 0.01% 0.00% 1.27%
PDD=4

τ=1 (ε̂t) out-of-sample 920.13 770.05 829.35 841.23 659.82 421.84
PD∗,D=4(ε̂t, xt−1) out-of-sample 293.17 149.71 167.74 225.24 201.77 236.87
PD sufficiency test out-of-sample Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive

FIGARCH

φ̂1,d,β̂1 0.06,0.15,1.4e-05 0.38,0.22,0.44 0.40,0.20,0.44 0.40,0.20,0.45 0.07,0.20,0.16 0.07,0.09,6.7e-04
MSEratio out-of-sample 91.99% 93.19% 82.67% 101.42% 86.14% 92.91%
adjMSEratio out-of-sample 100.68% 101.50% 83.41% 102.00% 99.47% 99.07%
m out-of-sample -1.66 0.20 1.71 0.41 0.94 -0.80
m ratio in MSE out-of-sample 1.60% 0.15% 0.04% 0.00% 0.31% 0.26%
PDD=4

τ=1 (ε̂t) out-of-sample 715.27 939.43 739.83 784.58 611.77 525.50
PD∗,D=4(ε̂t, xt−1) out-of-sample 376.59 196.53 223.72 280.59 221.78 334.99
PD sufficiency test out-of-sample Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive

GPR
Selected lag for input 8 5 8 8 7 3
MSEratio out-of-sample 95.95% 100.16% 93.27% 99.78% 85.66% 112.80%
adjMSEratio out-of-sample 103.34% 108.70% 94.09% 100.34% 99.21% 118.09%
m out-of-sample -2.38 -0.38 1.83 -0.79 0.13 -2.50
m ratio in MSE out-of-sample 3.18% 0.50% 0.04% 0.02% 0.01% 2.08%
PDD=4

τ=1 (ε̂t) out-of-sample 947.07 259.31 498.59 150.38 426.90 370.88
PD∗,D=4(ε̂t, xt−1) out-of-sample 349.95 145.78 413.19 199.52 181.27 345.96
PD sufficiency test out-of-sample Inconclusive Inconclusive Inconclusive Reject Inconclusive Inconclusive

SVR
Selected lag for input 2 7 1 1 1 1
MSEratio out-of-sample 91.52% 92.26% 96.31% 100.00% 98.31% 93.13%
adjMSEratio out-of-sample 99.36% 99.66% 96.50% 100.35% 105.81% 99.48%
m out-of-sample 2.02 -0.51 7.29 2.93 4.79 0.47
m ratio in MSE out-of-sample 2.40% 0.96% 0.56% 0.22% 7.08% 0.09%
PDD=4

τ=1 (ε̂t) out-of-sample 464.17 96.17 425.38 352.60 282.67 255.65
PD∗,D=4(ε̂t, xt−1) out-of-sample 326.03 116.66 317.33 333.05 303.37 218.05
PD sufficiency test out-of-sample Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive
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Table 8: Comparison of prediction performances of various models on deseasonalized EUR/USD 1-hour aggregated volatilities

recorded in six non-overlapping 1-year investigation periods. MSEratio measures the MSE of the estimated prediction relative

to that if we assume all ŷt = 0: MSEratio = [ 1
N

∑N
t=1(yt − ŷt)2]/ 1

N

∑N
t=1(yt)2. adjMSEratio and m measure how well the

predictor replicates the deterministic function g(·) governing the investigated data and the error in estimating the constant term

c: adjMSEratio = [ 1
N

∑N
t=1(yt− ŷt−m)2]/[ 1

N

∑N
t=1(yt− ȳt)2]; m = 1

N

∑N
t=1(yt− ŷt). m ratio in MSE records the proportion

that the misspecification of constant term contributes to the overall MSE: m ratio in MSE = m/ 1
N

∑N
t=1(yt− ŷt)2. PDD=4

τ=1 (ε̂t)

and PD∗,D=4(ε̂t, xt−1) are the statistics required in the PD sufficiency model sufficient test. The orange cells correspond to

the models that are concluded to be insufficient. The model with smallest out-of-sample adjMSEratio is highlighted with red

underscore, and is termed “Function Estimation Winner”. The model with smallest out-of-sample MSEratio is termed “Overall

Winner”. They are computed in the training set due to the inadequate data length of the investigated data in the test set.

Overall Winner SVR ARMA GARCH SVR ARMA SVR
Relation Estimation Winner FIGARCH SVR GARCH SVR SVR SVR

DRV1h2013-14 DRV1h2014-15 DRV1h2015-16 DRV1h2016-17 DRV1h2017-18 DRV1h2018-19
ARMA

φ̂1,θ̂1 0.79,0.63 0.76,0.55 0.87,0.75 0.86,0.41 0.88,0.77 0.57,0.39
MSEratio out-of-sample 81.70% 69.03% 63.71% 117.85% 56.40% 78.92%
adjMSEratio out-of-sample 94.53% 100.95% 65.17% 120.61% 96.64% 99.11%
m out-of-sample -0.61 -0.12 0.34 -0.19 0.11 -0.44
m ratio in MSE out-of-sample 18.11% 0.50% 0.07% 0.04% 0.23% 5.91%
PDD=4

τ=1 (ε̂t) in sample 161.44 104.37 123.46 222.50 119.96 122.23
PD∗,D=4(ε̂t, xt−1) in sample 107.04 150.36 119.60 289.53 103.21 121.19
PD sufficiency test in sample Inconclusive Reject Inconclusive Reject Inconclusive Inconclusive

GARCH

α̂1,β̂1 0.23,0.43 0.26,0.55 0.16,0.74 0.35,0.49 0.05,0.94 0.20,0.29
MSEratio out-of-sample 83.13% 70.88% 56.77% 110.81% 56.45% 79.14%
adjMSEratio out-of-sample 93.33% 103.67% 58.10% 113.39% 96.91% 99.17%
m out-of-sample -0.66 -0.12 0.22 -0.20 0.05 -0.45
m ratio in MSE out-of-sample 20.55% 0.50% 0.03% 0.05% 0.05% 6.12%
PDD=4

τ=1 (ε̂t) in sample 141.19 138.49 160.25 181.49 223.13 140.33
PD∗,D=4(ε̂t, xt−1) in sample 129.38 204.21 134.79 191.99 86.58 144.54
PD sufficiency test in sample Inconclusive Reject Unsure Inconclusive Inconclusive Inconclusive

FIGARCH

φ̂1,d,β̂1 0.46,0.08,0.32 0.37,0.19,0.28 1.36e-05,0.24,0.06 0.43,0.15,0.23 0.38,0.24,0.50 0.08,0.11,0.0012
MSEratio out-of-sample 71.76% 69.83% 57.69% 107.50% 56.93% 74.46%
adjMSEratio out-of-sample 92.87% 102.44% 58.91% 110.05% 95.70% 98.88%
m out-of-sample -0.39 0.07 0.61 0.08 0.32 -0.12
m ratio in MSE out-of-sample 8.4% 0.18% 0.25% 0.01% 2.12% 0.50%
PDD=4

τ=1 (ε̂t) in sample 125.60 199.57 140.84 237.69 108.24 120.80
PD∗,D=4(ε̂t, xt−1) in sample 145.72 200.12 104.20 212.10 102.62 114.41
PD sufficiency test in sample Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive Inconclusive

GPR
Selected lag for input 6 1 1 3 4 10
MSEratio out-of-sample 84.38% 69.04% 86.62% 98.29% 56.48% 81.05%
adjMSEratio out-of-sample 102.75% 100.68% 88.55% 100.61% 96.92% 99.14%
m out-of-sample -0.54 -0.15 0.55 -0.1 0.06 -0.53
m ratio in MSE out-of-sample 13.82% 0.77% 0.14% 0.01% 0.08% 8.36%
PDD=4

τ=1 (ε̂t) in sample 323.98 366.58 178.35 135.92 132.87 138.54
PD∗,D=4(ε̂t, xt−1) in sample 304.35 408.39 243.73 126.84 132.64 150.56
PD sufficiency test in sample Inconclusive Inconclusive Reject Inconclusive Inconclusive Inconclusive

SVR
Selected lag for input 3 1 1 1 4 2
MSEratio out-of-sample 69.37% 69.72% 93.32% 97.70% 60.56% 73.09%
adjMSEratio out-of-sample 96.24% 98.58% 94.85% 100.02% 95.54% 97.52%
m out-of-sample -0.18 0.33 1.30 0.03 0.64 0.03
m ratio in MSE out-of-sample 1.81% 3.79% 0.72% 0.00% 7.79% 0.03%
PDD=4

τ=1 (ε̂t) in sample 73.47 221.47 152.23 258.70 59.21 83.70
PD∗,D=4(ε̂t, xt−1) in sample 62.34 272.96 177.22 369.19 81.11 74.98
PD sufficiency test in sample Inconclusive Inconclusive Inconclusive Reject Inconclusive Inconclusive
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5.6.2 Reasons behind the insufficient predicting performance of the employed

models

Why is the prediction performance of our selected models largely dependent on the choice of

investigation period? And why are the considered models unable to construct a sufficient

one-step-ahead predictor of future squared returns? The prediction evaluation conducted in

the previous section leaves those questions unanswered.

To answer those questions, I deploy the PD visualization plot I proposed in section 3.8 to reveal

the deterministic relation ĝ(·) captured by each forecasting model. The PD visualization

graphs of the five competing models used in predicting DRsq and DRV1h are given in

Figures 36 and 37. In the PD visualization plots, the competing models that are found to

be inadequate are plotted in dashed lines, and * indicates the model that provides the best

prediction accuracy amongst its competitors. Note that the models that are plotted in solid

lines are not necessarily the oracle prediction model for the investigation data, rather we do

not have enough evidence to reject its sufficiency.

The newly-proposed temporal dependence measure PDD=3
τ on the simulations generated

from the fitted prediction model reflects the “weight” that the estimated function ĝ(·) of the

considered model assigns to the lagged input variable xt−τ . For instance, from Figure 36 we

can see that, for DRsq2013-14 series, the deterministic relation estimated by the GPR model

is much stronger than its competitors as it assigns heavier “weights” to all relevant lagged

input variables. In other words, the prediction made from the GPR model is more reliant on

the value of lagged squared returns compared to that generated from its competitors. On the

contrary, the SVR model provides the most conservative predictions amongst all competing

models where the estimated deterministic relation presumes minimal impact from historical

observations onto the prediction of future realizations. As a result, the deterministic function

estimated by the SVR model is close to a steady constant line that does not vary, regardless

of the value of input variables. The parametric ARMA, GARCH and FIGARCH models

estimate very close deterministic relations in predicting DRsq2014-15 as evidenced by their

similar values of PDD=3
τ over various delays.

Among the three parametric models, the GARCH model postulates a more gradually decaying

rate of the linear serial correlation in constructing its predictor. The remark from the PD

visualization plot perfectly coincides with the estimated parameters in the fitted ARMA(1,1),

GARCH(1,1) and FIGARCH(1,d,1) models. In section 2.3 the serial correlation decaying

rate in GARCH(1,1) model is discussed, establishing that it is controlled by its parameter

α1 + β1 = 0.92, whereas the decaying rate of ACF is determined by φ1 = 0.62 in ARMA(1,1).
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FIGARCH(1,d,1) model does not assume a constant exponentially decaying rate of its linear

serial correlation like the ARMA and GARCH models, following the formulation provided

in equation (9), the average ACF decaying rate for the first five lags is around 0.75. As

suggested by the estimated parameters, the fitted GARCH(1,1) of DRsq2014-15 series has

the slowest diminishing rate of its linear serial relation, compared to that proposed by the

fitted ARMA(1,1) and FIGARCH(1,d,1) models.

Since none of the above models is able to outperform its competitors in predicting DRsq or

DRV1h across all considered investigation periods, additionally almost all of the constructed

predictors from our selected models are not sufficient to exploit the maximum prediction

potential, hence there must be some obstacles that prevent the making of optimal predictions.

The simulation studies in section 4.4 show that the forecasting performance of the SVR and

GPR models can be undetermined by dynamical innovations, especially when the investigated

data has a relatively small signal to noise ratio. Unfortunately our investigated DRsq and

DRV1h series happen to meet both characteristics. First, high-frequency exchange rate return

is a prominent example of noisy data. In DRsq series across all investigated periods, even in

the most successful predictions, noise constitutes 81.2% of the observed data. Second, past

empirical studies summarized in section 2.2.3 suggest that volatility clustering is a widely

observed feature of financial returns. Since large price variations are likely to be followed by

large price variations, large past return shocks are likely to lead to large dispersion of future

returns. This feature causes a secondary-moment dependence structure in the squared returns.

As a result, by transforming the dynamics governing the behaviour of squared returns into

the following form:

xt = c+ g(xt−1, xt−2, ..., xt−τT ) + εt, (27)

the innovation term εt is dependent on each other in a way that large past εt−τ tends to lead

to more volatile future εt.

Further evidence supporting the existence of dependence structures within the innovations in

time series DRsq and DRV1h is that the PD measure capturing the temporal dependence

structures within the residuals after fitting the prediction models are all far in excess of the

insignificant level for all considered models across all investigated periods. Therefore, there

is a high likelihood that the innovations of the original dynamics of DRsq and DRV1h are

dependent on each other. By combining the former simulation study results for the GPR

and SVR models and the empirical results obtained here, I conclude that the SVR and

GPR models generally produce poor predictions of intraday squared returns and volatilities

because the existence of dependence structures presented in the innovation undermined their

forecasting performance. The extent that the dependence structure in innovation affects the

137



prediction performance of the GPR and SVR models is determined by the strength of the

innovations’ structures and the magnitude of innovations relative to signals.

I have outlined the reasons for the suboptimal performance of the non-parametric SVR and

GPR models, but what is the cause of the inadequate performance of the parametric ARMA,

GARCH and FIGARCH models? As indicated by the simulation study carried out in section

4.4, the ARMA and GARCH models are robust to dynamical innovations. I suspect their

inadequacy might be due to their incapacity to formulate non-linear deterministic relations.

However, this suspicion appears to be unfounded because the deterministic relation captured

by the non-parametric models are not very nonlinear, even in the investigation period in which

non-parametric models outperform the parametric models that presume linear serial relations.

The estimated ĝ(·) from the SVR and GPR models with superior prediction accuracy is

actually very close to linear form. By ruling out a number of potential factors that can

lead to inadequate performance of the ARMA and GARCH models, I finally identify the

primary cause behind the unsatisfactory performances of the ARMA, GARCH and FIGARCH

models. That is non-stationarity. More specifically, the form of non-stationarity where the

deterministic relations governing the process are time-varying.

The non-stationarity present in our investigated DRsq and DRV1h series can be illustrated by

splitting the investigation data into several sub-periods. We plot the sample ACF of DRsq and

DRV1h in each sub-period in Figures 38 and 39. The first five sub-periods correspond to the

data used in the training set and the last sub-period in the testing set. In addition, I also plot

the sample ACF of simulations generated from the estimated ARMA(1,1), GARCH(1,1) and

FIGARCH(1, d, 1) models to display the departure of the deterministic structure postulated

by the estimated model from that in the actual data in the testing set. Figures 38 and 39

indicate the deterministic structure underneath our targeted squared return and aggregated

volatility series varies considerably over time. Also, the deterministic structure seems to

change abruptly and in an unsystematic and irregular manner. From the sample ACF from

the estimated model simulations we can see, under this type of non-stationarity, the ARMA

and GARCH models try to estimate the average level of the linear dependence relation

underlying the investigated data, thereby overestimating the relation in the sub-period of

relatively weaker deterministic dependence structures, and underestimating the relation in

the sub-period of stronger than average deterministic dependence structures. Even though

the SVR and GPR models are also affected by non-stationarity, they (especially SVR) tend

to construct a smoother function compared to the ARMA and GARCH model, thus are more

conservative in approximating temporal dependence structures.
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Figure 36: PD visualization plot of the estimated function ĝ(·) postulated by each considered models

fitted to the deseasonalized EUR/USD 10-minutes squared returns in every 1-year investigation

period. The dashed line corresponds to the model that is concluded insufficient. * indicates the

model with the best prediction accuracy amongst its competitors.
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Figure 37: PD visualization plot of the estimated function ĝ(·) postulated by each considered models

fitted to the deseasonalized EUR/USD 1-hour aggregated volatilities in every 1-year investigation

period. The dashed line corresponds to the model that is concluded insufficient. * indicates the

model with the best prediction accuracy amongst its competitors.
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Figure 38: The plot of sample ACF of the deseasonalized EUR/USD 10-minutes squared returns in

the six split sub-period of the original investigation period. The first five sub-periods correspond to

the data used in the training set and the last sub-period in the testing set. The sample ACF of

simulations generated from the estimated ARMA(1,1), GARCH(1,1) and FIGARCH(1,d,1) models

are also included in conjunction to show the departure of the linear deterministic structure postulated

by the estimated model to that in the actual data in the testing set.
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Figure 39: The plot of sample ACF of the deseasonalized EUR/USD 1-hour aggregated volatilities

in the six split sub-periods of the original investigation period. The first five sub-periods correspond

to the data used in the training set and the last sub-period in the testing set. The sample ACF of

simulations generated from the estimated ARMA(1,1),GARCH(1,1) and FIGARCH(1,d,1) models

are also included in conjunction to show the departure of the linear deterministic structure postulated

by the estimated model to that in the actual data in the testing set.
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5.6.3 Main obstacles to predicting return volatilities

By investigating the temporal dependence structures exhibited in intraday squared return

series, and evaluating the performance of a number of mainstream models, I am able to

identify the main obstacles in predicting and modelling high-frequency financial volatilities

and provide promising directions for constructing and selecting better forecasting models. I

believe there are three primary challenges in predicting financial asset volatilities:

• high level of noise contamination;

• structural innovation;

• non-stationarity.

The first two properties of asset returns severely undermine the proper estimation mechanism

of more complex non-parametric models such as GPR and SVR. Even though simpler

parametric models are robust to structural innovation, the sufficiency of the simple linear

models such as ARMA and GARCH models in replicating the dynamics of real-world asset

returns remains an open question. Among them, non-stationarity is the greatest challenge to

constructing accurate predictions of future volatilities. Our analysis indicates that the form

of non-stationarity exhibited in the financial volatility series is not a simple one, such as unit

root non-stationarity which can be easily removed by taking the difference, or systematic

time-varying mean or variance that can be eliminated by de-trending the systematic pattern

in the mean or the variance of the investigated data as a function of time. The form of

non-stationarity exhibited in the financial volatility series is more like a piecewise stationarity

where although the time series as a whole exhibits non-stationarity, weak stationarity rules

are satisfied in some local regimes and the transition between those regimes is instantaneous.

To model piecewise stationarity, a Markov switching model can be employed to account for

time-varying temporal dependence relations exhibited in the dynamics. However, it seems

that the transition happens arbitrarily and abruptly rather than in a systematic manner.

If so, even non-stationary models cannot construct an accurate forecast of such a process

since no information can be indicative of when the transition is going to happen and how

it is going to change. In that case, even though volatilities series are proven to have strong

temporal dependence structures and prediction potential, the arbitrarily abrupt transition

between different temporal dependence structures undermines the ergodicity prerequisite

for most forecasting models to work properly. From the analysis conducted in this thesis, I

cannot ascertain whether the investigated volatility series switches the regions in a systematic

manner or arbitrarily and abruptly. There is another possibility that the volatility series

switches the regions systematically but not according to its historical movement patterns
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instead determined by some exogenous factors.

To overcome these obstacles, a promising prediction model of asset volatilities is expected

to have the following properties. First, it needs to be robust to structural innovations or

equivalently not misled by higher-moment structures, and has relatively low estimation error

if the dynamic displays a high level of noise contamination. Favorably, this model has the

flexibility to capture any form of deterministic relation, both linear and nonlinear structures.

Most importantly, the desired model needs to detect and adapt swiftly to the abruptly varying

dependence relations exhibited in the observed data and identify the right subset of historical

observations to estimate the deterministic relation required to construct predictions.

5.7 Ordinal analysis on sea surface temperature data

Previous empirical studies have focused on the application of the ordinal analysis in high-

frequency financial time series. In this section, I will provide an example of PE, PD and

bivariate PE analysis on empirical time series from a completely different field, sampled at a

relatively low frequency. Doing so is essential as it demonstrates the potential of the tools I

have studied and proposed in this thesis to a much wider range of disciplines in addition to

the financial area.

The empirical time series under study is monthly sea surface temperature (SST) data.

The SST data is obtained from https://www.cpc.ncep.noaa.gov/data/indices/ersst5.

nino.mth.81-10.ascii published by the National Oceanic and Atmospheric Administration

(NOAA), a scientific agency within the U.S. Department of Commerce. The data records the

level of the average monthly SSTs in four different regions: Niño 1+2, Niño 3, Niño 3.4 and

Niño 4, from January 1982 to November 2020. Among the four univariate time series, each

corresponds to one defined region, and all are of length 851. The Niño 1+2, Niño 3, Niño 3.4

and Niño 4 regions correspond to the ship tracks that crossed the ocean area specified as

follows.

• Niño 1+2 (0-10°South)(90°West-80°West): The Niño 1+2 region is located at the

Eastern Tropical Pacific, which is the smallest and most eastern of the Niño SST

regions. The SST index in this region tends to have the largest variance among of all

SST regions.

• Niño 3 (5°North-5°South)(150°West-90°West): The Niño 3 region is located at the

eastern tropical Pacific. This region was once the primary focus for monitoring and

predicting El Niño, but researchers later learned that the key region for coupled

ocean-atmosphere interactions for ENSO lies further west (Trenberth 1997).
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Figure 40: The ocean areas that belongs to each Niño Regions.

• Niño 3.4 (5°North-5°South)(170-120°West): The Niño 3.4 SST records the central

tropical Pacific El Niño conditions. The Niño 3.4 SST represents the average equatorial

SSTs across the Pacific from about the dateline to the South American coast.

• Niño 4 (5°North-5°South) (160°East-150°West): The Niño 4 region is located at the

western tropical Pacific. This region tends to have less variance compared to other Niño

regions.

Figure 40, created by Trenberth (2020), visually identifies the four regions that correspond

to each SST data. The four univariate SST time series plots are provided in Figure 41.

SST is one of the key variables associated with the global ocean-atmosphere system. Many

efforts have been made to predict SST, as the accurate prediction of SST enables the forecasting

of extreme climate events (Chowdary et al. 2010, 2011, Kang & Shukla 2006). Additionally,

anomalies of SST are often used to identify and characterize El Niño or La Niña events.

El Niño and La Niña are the coupled phase of the El Niño-Southern Oscillation (ENSO)

phenomenon, where El Niño corresponds to the warming phase of the sea temperature and

La Niña the cooling phase. The Anomalies of Sea Surface Temperature Index (SSTA) takes

the difference between the observed SST and the climatological SST, where the climatological

SST is created by fitting the time series of SST data to a cosine function, to capture the

annual and semi-annual seasonality:

SST = A cos(2π ∗ t+B) + C cos(4π ∗ t+D) + E (28)

The constants A and B capture the magnitude of the annual and semi-annual seasonality,

and constants C and D correspond to the annual and semi-annual phase. The constant E

denotes the long-term mean at the time of each observation. It is worth mentioning that the

last constant term E can also be specified as E ∗ t to account for the global warming effect.

Since the resultant SSTA series doesn’t exhibit prominent nonstationarity, there would be

little difference in using either of the specifications.
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Figure 41: The plot of monthly average SST (in Celsius) in each Niño region.

Generally, an El Niño or La Niña event is identified when the SSTAs in one region or several

regions exceed a defined threshold in one or in several consecutive months. For example,

Trenberth (1997) suggests El Niño events can be declared if 5-month running means of SSTAs

in the Niño 3.4 region exceed 0.4°C for six months or more. Trenberth & Stepaniak (2001)

argue that the Niño 3.4 index should be used in combination with an index they introduce,

called the Trans-Niño Index (TNI). The TNI is defined as the difference in normalized SST

anomalies between the Niño 1+2 and Niño 4 regions. The Japan Meteorological Agency

declares an El Niño event when the average five-month NINO 3 SSTA is over 0.5°C for six

consecutive months or longer. However, there is no consensus on what constitutes an El Niño

or La Niña event.

In the context of existing literature relating to SST and SSTA analysis, I apply the PE and

PD measures on the SST data and SSTA data in the four specified regions, to measure their

level of predictability and show the temporal dependence structures governing the dynamics of

SST in each region. Our analysis uncovers the SST predictable limits in different ocean areas

and indicates the maximum time frame that SST or SSTA can be predicted. Additionally,

by making use of bivariate PE, I measure the bivariate dependence relation between the

SSTA index in different regions. My analysis shows the similarity and difference between

the dynamics of the SSTA index in different regions. With such information, insights can be

provided regarding the informative and effective use of the SSTA index in various regions in

characterizing the features of each El Niño or La Niña event.

The plots of 1− PED=3
τ , PDD=3

τ and sample ACF as functions of delay(lag) on each region’s

SST data are provided in Figure 42. It shows clearly in the plots that the SST time series

exhibits strong yearly and half-yearly seasonality, as evidenced by the regular pattern that
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repeats itself every 12 delays in the plots of both measures. The seasonality in the SST data

coincides with our expectations as the SST are affected by the seasonal weather in an annual

cycle. What is more interesting is that the strength of the seasonality in the SST index varies

significantly for different regions. From the magnitudes of the regular peaks of the PE and

PD measures shown in the plots of different regions, the seasonality is most prominent in the

SST of region Niño 1+2 and is weakened in Niño 3 and least displayed in Niño 3.4 and Niño

4.

The level of seasonality of the SST time series in each Niño regions suggested by the PE

and PD plot is also verified by the monthly plot of SST data shown in Figure 43. In order

to compute the SSTA, I fit the SST time series to a seasonal cosine function formulated

as in (28), and take the difference between the original SST observations and the fitted

smoothed periodic function. We can see from the plot that the seasonality constitutes the

most dominating components in the SST in Niño 1+2 region, and is least evident and

influential in the SST index of region Niño 3.4 and Niño 4.

After removing the seasonal components, the SSTA of each region is plotted in Figure

44. By computing the value of 1 − PED=3
τ , PDD=3

τ and sample ACF on SSTA in the four

Niño regions on various delays, we can see that the SSTA indexes are highly predictable.

The value of 1− PED=3
τ and PDD=3

τ are far from the insignificant level, especially in short

delays. The PE and PD plots indicate the predictability of SSTA index are rather persistent

where the temporal dependence between monthly SSTA index decays gradually and does not

fully diminish until around delay 10. That means even though the accuracy and credibility

deteriorate as the forecast horizon increases, the SSTA index can be predicted at most

10-months ahead. Additionally, the value of the PD measure shows that the SSTA in Niño 4

regions has the strongest temporal dependence structures among all Niño regions, whereas

the SSTA index in region Niño 1+2 is least deterministic. The result indicates that the

onset of El Niño and La Niña declared based on the SSTA index in Niño 4 or Niño 3 will be

more regular and predictable compared to that based on the SSTA index in region Niño 1+2.

An additional insight from the analysis is that the similar trend of PD and sample ACF as

delay/lag increases suggests the form of temporal structure exhibited in SSTA is likely to be

in linear form.

In addition to the investigation of the univariate dynamics of each SST and SSTA time

series, we also employ the dependence measure HD=3
τ defined in section 3.9 to measure the

dependence relation between the SSTA index in different regions. The dependence measure

HD=3
τ stems from the multivariate PE and can detect any form of dependence relations

between two or more individual time series. The dependence measure plots on the SSTA
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Figure 42: (a) Plot of 1− PED=3
τ as a function of delay τ on the monthly average SST time

series in the four Niño regions. (b) Plot of PDD=3
τ as a function of delay τ on the monthly

average SST time series in the four Niño regions. (c) Plot of the sample ACF as a function
of lag on the monthly average SST time series in the four Niño regions.
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Figure 43: The plot of monthly average SST of each year in the four Niño regions. The
yellow dashed line represents the fitted cosine function that captures the annual and the
semi-annual seasonality exhibited in the SST index.
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Figure 44: The plot of SSTA in each Niño region.
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index from the six pairs of distinct ocean regions as functions of delay are shown in Figure 46.

We also provide the cross-correlation plot of the pair of SSTA in different region in Figure 47

as a comparison. The plot of dependence measure indicates that the level of causality relation

between the SSTA index from different regions is weaker at smaller delays and gradually

increases to a steady level for longer delays. This observation implies that the overall trend of

the SSTA indexes of the four regions are alike, but the short-term fluctuations of each region

are distinct. Additionally, the strength of dependence between the SSTA in different regions

is shown to accord with their distances. Among all combinations, the dependence relation

between SSTA in Niño 1+2 with Niño 4 is the weakest as they are the furthest apart Niño

areas and the dependence between SSTA in Niño 3 and Niño 3.4 regions are the strongest,

and they share the largest common areas.

On the other hand, the cross-correlation plot reveals the dependence relation between the

SSTA and the lagged or future SSTA in different regions. Since cross-correlation measures

the correlation of two series as a function of the displacement of one relative to the other,

the implication of cross-correlation is completely different from dependence measure HD
τ .

The cross-correlation plot suggests the correlation between the SSTAs in different regions is

strongest when there is no displacement of time. The level of correlation diminishes as the

displacement of time increases. However, due to the specification of the cross-correlation, it

is unable to reflect the evolution of the bivariate dependence between the investigated series

from the short-term to long-term dynamics.

In summary, this section extends the application of PE and PD measures to SST time series.

The empirical studies demonstrate the potential for the PE and PD measures to be used for

a wide range of time series from different disciplines not only in applied finance. I showed

that the PE and PD measures indicate that SST time series in different Niño regions exhibit

different levels of seasonality and predictability, where SST in Niño 1+2 displays the most

prominent seasonality and weakest predictability and SST in Niño 4 the opposite. This

result is consistent with the general perception in the literature that the SST index in Niño

1+2 region tends to have the largest variation and the SST in Niño 4 tends to have more

stable behaviour. Moreover, we found that all SSTA indexes are highly predictable and the

predictability is rather persistent where the SST anomaly can be predicted up to around two

seasons in advance. Additionally, the bivariate PE analysis suggests the long-term trends of

SSTA index of all regions are alike, their distinctions reside in the short-term fluctuations.

Their level of similarity is determined by the distance between the restricted areas in which

they are recorded. Therefore in terms of efficiency, it is better to use the combination of

SSTA index in further apart regions instead of adjacent regions to characterize the features
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Figure 45: (a) Plot of 1−PED=3
τ as a function of delay τ on the SSTA time series in the four

Niño regions. (b) Plot of PDD=3
τ as a function of delay τ on the SSTA time series in the four

Niño regions. (c) Plot of the sample ACF as a function of delay τ on the SSTA time series in
the four Niño regions.

of either El Niño or La Niña events.
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Figure 46: Plot of dependence measure HD=3
τ as function of delay on sea surface temperature

anomaly (SSTA) recorded in two different regions.
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Figure 47: Plot of cross-correlation against lag on sea surface temperature anomaly (SSTA)
recorded in two different regions.
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6 Conclusion

The aim of this thesis is to extend the application of PE and the concept of ordinal pattern

analysis in the area of financial time series analysis, and present an empirical example of the

PE and ordinal pattern analysis on real-world financial time series.

6.1 Methodological contributions

Methodologically, I related the concept of PE with the ACF in a Gaussian process and the

parametrization in the ARMA and GARCH models. In addition, I investigated the way

that PE responds to the number of commonly observed properties of financial time series

such as high kurtosis and non-stationarity. By doing so, I established a close connection

between PE and the related ordinal pattern based analysis and the existing mainstream

literature, and provided appropriate interpretations of the results obtained from the PE

analysis tailored to the widely recognized characteristics of financial time series. In addition,

the novel tools studies and developed in this thesis can be used as independent checks of the

general proposition of the dynamics of high-frequency financial assets perceived by the existing

literature. In particular, I extended these relatively novel techniques and ordinal pattern

concepts in the following areas relating to financial time series analysis: temporal dependence

detection; model selection; model interoperation; and prediction sufficiency evaluation.

For temporal dependence detection, a hypothesis test can be constructed based on the value

of PE to distinguish between processes with temporal dependence structures against purely

random processes. Moreover, statistic 1−PED
τ is often plotted as a function of its pre-chosen

parameter delay τ to track the temporal dependence evolution between increasingly sparsely

spaced out entries, thus providing insight into the underlying dynamics. However, I showed

that the value of PED
τ is not only determined by the strength of temporal dependence over

the selected delay, but also the temporal dependence structures over D − 1 multiples of the

chosen delay, where D is the segment length parameter required in the computation of PE.

The absence of one-to-one correspondence between PE and the temporal dependence at the

selected delay complicates its interoperation and implication, and weakens its sensitivity in

detecting determinism in a process that has significant but slowly varying temporal dependence

structures for increasing lags. By adjusting the specification of PE, I created a new statistic

PD so that PD is exempted from the influences of the temporal dependence relation over

other delays besides the selected delay. Therefore, the new statistic PD exclusively measures

the temporal dependence relation over the selected delay in an observed time series.

Statistic PD can be regarded as a non-linear alternative to the ACF. In fact, I showed that
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the PD measure resembles the behaviour of the most widely used linear dependence measure

ACF when the observed series follows a linear dynamic. Furthermore, it has an additional

capability to reveal non-linear temporal dependence relations that ACF overlooks. I found

that by plotting 1−PED
τ and PDD

τ against increasing delays τ , the PE plot and PD plot can

be used together to detect the temporal dependence structures (both linear and non-linear)

underlying the observed time series and reflect how temporal dependence relations diminish

as the lag between the observations increases.

For model selection, I found that the probabilities of the ordinal patterns used in the

computation of PE has the capability to reflect many fundamental features of the underlying

dynamical system of a given time series, such as the functional form of the governing

deterministic relation, the asymmetry, kurtosis and the existence of dynamic structures

present in the innovations. As a result, systems with similar characteristics also share

similar features in their ordinal pattern probability distribution. Therefore the ordinal

pattern probability ranking can help suggest the promising parametric models to apply when

investigating observed time series, and point out possible inadequacy in a selected model’s

specifications.

Additionally, I invented a visualization plot to reveal the deterministic structures captured by

different models fitted to the investigated time series. The invented visualization technique

dose not require any knowledge of the functional form of the models employed and provides

a universal framework to facilitate comparison between different deterministic relations

postulated by both parametric and non-parametric models. By employing the statistic PD,

the visualization graph tracks the level of relevance of the increasingly lagged observations

in the prediction function postulated by different models. The visualization technique is

particularly critical in understanding the prediction constructed by the non-parametric

models that have no closed-form formula. Despite the wide-ranging success of non-parametric

approaches in many applications, interpreting the results and comprehending the way they

approximate the behaviour of the past observations dynamic are always the greatest challenge

for many practitioners. Our invention helps to open the “Black Box”, as many non-parametric

models, such as machine learning approaches, are often described, and sheds new light on

explaining their superior and suboptimal performance when applied to data with different

properties. With the help of the newly proposed visualization technique, named the PD

visualization plot, I found that non-parametric models SVR and GPR can be distorted by

higher-moment temporal dependence structures present in the time series, especially when

the observed data has relatively low signal to noise ratio. Additionally, in the presence of

non-stationarity, SVR tends to generate conservative predictors and underestimate the “true”
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deterministic relation.

This thesis also proposed a point forecast sufficiency test that fills the lack of conceptional

cohesion between the two primary genres of model/prediction evaluation methods: the

residual independence test and the prediction accuracy metrics. I showed that the new

proposed test, named the PD model sufficiency test, can overcome the limitations of the

mainstream model evaluation approaches. The test assesses a model’s performance in fulfilling

the point prediction task, which is the main objective for most forecasting practices.

Compared to the conventional model sufficiency test, my proposed test is not built on the

assumption that a sufficient model is expected to eliminate all structures initially present

in the observed data, thus resulting in independent and identically distributed residuals. I

demonstrated that a sufficient point predicting model can generate non-white residuals if there

exists higher than first-moment dependence relations in its underlying process. Therefore,

the inferences drawn from the conventional sufficiency test, such as the well-known BDS test,

can be misleading in evaluating a model’s point prediction performance. With empirical

evidence indicating the prevalence of higher-moment structures present in the financial return

series (Khademalomoom et al. 2019), my proposed test provides a more reliable approach in

establishing the point forecasting sufficiency of a given model in the area of financial time

series analysis.

In contrast to the prediction accuracy metrics, such as the very commonly used MSE which

aims to reflect the postulated predictors’ point prediction accuracy, the PD model sufficiency

test is more informative. It evaluates the performance of the considered model without the

need to compare it with a benchmark. It can particularly reveal a model’s point forecasting

performance relative to the maximum prediction potential of its underlying dynamic.

To the best of our knowledge, my proposed test is the first attempt to assess the point

forecasting sufficiency of the considered models . It is specially designed to remain valid for

time series with non-white innovation when cast into an additive form.

6.2 Main results in empirical analysis

Empirically, the most critical contribution of this thesis is providing detailed demonstrations

of how PE and the related ordinal pattern analysis reveal important information about the

dynamics underlying the real-world financial series. I chose 10-minute interval EUR/USD

exchange rate return series as the object of investigation. With the aid of PE and the newly

proposed measure PD, I answered a number of fundamental questions about the investigated

data.
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• Do intraday EUR/USD return and volatility follow a purely random process or have

temporal dependence structures?

• If temporal dependence structures are present in observed intraday return and volatilities,

what is the nature of the detected structures and what contributes to them?

• How predictable (point and density) are intraday return and volatility without using

any exogenous variables as inputs?

• Can conventional models, such as linear models and conditional heteroscedastic mod-

els, fully replicate the underlying dynamics in the intraday EUR/USD returns and

volatilities?

• How well do mainstream models such as ARMA, GARCH, GPR and SVR models point

predict EUR/USD intraday returns and volatilities? What are the primary reasons

behind their sufficient/insufficient point forecasting performances?

The main empirical findings on intraday EUR/USD return series are as follows. The statistics

PE and PD are shown to be significant only at delays less than 3, indicating the temporal

dependence structure in the EUR/USD 10-minute returns mainly exhibits over the short-

term. In other words, for high-frequency returns, their temporal dependence relations

deteriorate rapidly and the impact from historical returns on future returns immediately

vanishes after only two consecutive intervals. Moreover, with the aid of simulation studies,

I was able to decompose the detected temporal dependence structures and identify their

contributory sources. I found that the non-linear temporal dependent structure caused by

the price rounding discretization convention is the dominant contributor to the temporal

dependence structures within intraday returns. Further, the switching tendency in the sign

of consecutive returns and the certain likely and unlikely price movement patterns that

result in bivariate dependence relations between return sign and return magnitude constitute

the remaining temporal dependence structures. However, compared to the discretization

effect, which provides minimal prediction exploitation potential, the strength of the remaining

temporal dependence structure caused by other factors is almost negligible, indicating marginal

predictability of EUR/USD intraday returns.

In addition, I found that the simplest MA(1) model can exploit most of the prediction

potential in predicting conditional mean of future returns, even though it can only increase

the prediction accuracy by around 1% compared to using the current value. This implies

that innovations constitute around 99% of the return dynamics. My results are consistent

with previous literature that assesses the efficiency of foreign exchange markets using high-

frequency returns and found that despite EUR/USD intraday returns exhibit significant
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temporal dependence structures, the temporal dependence structures in returns are not able

to be exploited for prediction purposes, especially in obtaining an accurate point prediction

of future returns.

In contrast, intraday volatilities are more predictable compared to the return itself. I

investigated 10-minute interval squared returns series and 1-hour realized volatility series

constructed by aggregating six consecutive 10-minutes squared returns within a 1-hour interval.

The most distinct feature detected in the dynamics of intraday volatilities is the seasonality

mainly caused by the differences in trading times in the global foreign exchange markets.

After removing the seasonality, gradually diminishing temporal dependence structures are

detected in the deseasonalized volatility series. Unlike intraday returns that mainly exhibit

short-term temporal dependence structures, the temporal dependence in intraday volatilities

diminish gradually with increasing delays and remain significant up to τ = 20 to 30. The

results are consistent the widely-documented perspective of many past studies that financial

return volatility displays long-range dependence.

As for the underlying dynamics of EUR/USD intraday volatility, I cannot confirm the exact

form of the governing process. However, a number of insights from our empirical analysis can

enhance the understanding of the dynamics of the intraday volatility process. First, other

than the deterministic positive correlation between lagged and current volatilities in their

conditional mean, EUR/USD intraday volatility also exhibit temporal dependence relation

in its second-moment. If the process is transformed into the form specified in (18), the

temporal dependence structure exhibited in the innovation are very similar to that specified

in the GARCH model where large lagged volatilities tend to lead to large dispersion of the

distribution of future volatility. Second, by investigating the performance of the ARMA,

GARCH, FIGARCH, GPR and SVR models in predicting squared returns and aggregated

volatilities, I found their performances vary significantly across different investigation periods.

Many of the employed models are able to improve prediction accuracy when compared to a

random guess thus confirming the predictability of intraday volatilities. But there is no single

model that outperforms the rest of its competitors across all considered periods. Almost all

of the constructed predictors are not sufficient to exploit the maximum prediction potential.

I found the inadequacy of the employed models was due to a number of reasons. First, the

underlying dynamics of EUR/USD intraday volatility series are proven to have dependent

innovations (or equivalently higher-order dependence structures). Our simulation study shows

that dependent innovations can undermine the prediction ability of the non-parametric GPR

and SVR models, especially when the observed series has a relatively low signal to noise ratio.

Even though the simpler ARMA and GARCH models are robust to dynamical noise, under
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non-stationarity, especially when the deterministic relations governing the process are time-

varying, the ARMA and GARCH models try to estimate the average level of the linear serial

relation underlying the investigated data, thereby overestimating the temporal structures in

the sub-periods of relatively weaker deterministic dependence structures, and underestimating

that in the sub-periods of stronger than average deterministic dependence structures. The

SVR and GPR models are also affected by non-stationarity, but they (especially SVR) tend

to construct a smoother function compared to the ARMA and GARCH models, thus are

more conservative in approximating temporal dependence structures.

There are several other interesting findings from the empirical analysis. In order to remove

the seasonality exhibited in the volatility dynamics, seasonal filters constructed by the FFF

method and ASR method are employed for comparison. They are both capable of removing

most of the periodicities, but neither performs perfectly. I found that discretization can be

the reason behind the imperfect performance of seasonal filters. A simulation study indicates

the discretization effect hampers the proper performance of the seasonal filters, especially

when the investigated time series have strong baseline deterministic structures. Therefore, by

eliminating the discreteness and converting the formerly discrete intraday squared return

series into a continuous one, there is a chance that the performance of the previously imperfect

seasonal filter can be further improved.

Additionally, by comparing the value of the newly proposed dependence measure PD and the

associated ordinal pattern distributions on volatility series over different intervals, I found

the underlying dynamics of the 1-hour aggregate volatilities are similar to that in 10-minutes

volatilities, except the former is more structural than the latter, and the discretitzation effect

is more influential in 10-minute squared return’ dynamics but negligible in longer interval

realized volatility series. Therefore, they can be characterized and predicted through similar

models. Furthermore, by exploring six separate periods’ data, I found that the strength of

the temporal dependence structure underlying the intraday volatility and realized volatility

varies across different selected periods, but their functional forms are similar in nature.

As for the empirical results on the SST index, monthly SSTs are highly predictable, and their

predictability is rather persistent. Even though the SST indexes in different Pacific regions

exhibit different levels of seasonality and determinism, their long-term trends are alike. Their

level of distinction in the short-term fluctuations is determined by the distance between the

regions in which they are recorded.
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