
Compiler Support for Learning
Program Invariants

A Thesis Presented in Fulfillment
of the Requirements for the Degree of

Master of Research

Michael Lay

B.IT, Macquarie University, 2018

School of Computing
Faculty of Science & Engineering

Macquarie University, NSW 2109, Australia

Submitted February 2023

©Michael Lay 2023

Declaration

This work has not previously been submitted for a degree or diploma in any university.

To the best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made in the

thesis itself.

This research has received ethics approval (Project ID: 11915) from the Science

& Engineering Ethics Subcommittee and meets the requirements set out in the

National Statement on Ethical Conduct in Human Research. All steps have been

taken to ensure that the research adheres to these guidelines.

Signed: .

Date: .

iii

Dedication

To finishing this Masters.

v

Acknowledgements

My supervisors Matthew Roberts and Matt Bower for all the advice and support

they have given, without which this thesis would not have been completed. My

partner for supporting me in writing this thesis.

vii

Abstract

Formal methods are a skill in high demand for programmers in safety-critical indus-

tries. However, the teaching and learning of formal methods is not well understood.

We perform a controlled trial of two possible approaches to teaching one funda-

mental skill from formal methods, and analyse the differences in effectiveness. The

fundamental skill is the understanding and creation of program invariants. We

compare the traditional method of teaching invariants, which we determined by

extensive survey, to a compiler-supported technique. We find no conclusive evidence

of a difference in learning speed or depth, however, we do find indications that

compiler support is valuable for learners. We provide an in-depth analysis of our

data and all material required to build on it. The results indicate a need for larger

trials.

ix

x

Contents

Declaration iii

Dedication v

Acknowledgements vii

Abstract ix

List of Figures xvi

List of Tables xvii

1 Introduction 1

2 Literature Review 5

2.1 Invariant-Based Programming . 5

2.2 Tools supporting invariants and compiler feedback 6

2.3 Teaching Invariants . 8

2.4 Required Knowledge . 9

2.5 Experimental Design . 12

2.6 Financial Incentives . 15

3 Methods 17

4 Participant Recruitment 21

4.1 Recruitment Sources . 22

4.2 Calculating participants required . 24

xi

xii Contents

5 Workshop 27

5.1 Minimum requirements . 28

5.2 Pre/Post-Learning Test Design . 28

5.3 Dafny . 31

5.4 Workshop content . 32

5.5 Teaching technique . 34

6 Participant Analysis 35

7 Results 39

7.1 Workshop Results . 39

7.2 Post Questionnaire . 42

7.2.1 Likert-Scale Questions . 44

7.2.2 Short-Response Prompts . 47

8 Discussion 53

8.0.1 Post Questionnaire . 54

8.0.2 Short-Response Prompts . 54

8.0.3 Confounding Factors . 55

9 Conclusion 59

9.1 Future work . 61

A Data Tables 63

B Participant Consent Form 67

C Posters 73

D Learning Tests 75

D.1 Pre-Learning Test . 75

Contents xiii

D.2 Post-Learning Test . 82

E Workshop Questions 89

E.1 Traditional group . 89

E.2 Compiler group . 92

F Ethics Approval Letter 97

xiv Contents

List of Figures

2.1 An example Why3 proof using the built in GUI 7

2.2 An example OpenJML annotated program using eclipse 7

2.3 An example Dafny program using the VSCode IDE 8

4.1 Participant prize selection choices . 22

4.2 Sources of participant recruitment . 23

4.3 Participant registrations by poster version 24

5.1 Example of a pre-learning test question. This question fits into the

“Selecting a correct loop invariant" category. 30

5.2 An example of a Dafny function that reverses a given array 32

6.1 Number of registered and attended participants for each workshop

session. Weekday sessions in blue, weekend sessions in orange. . . . 36

6.2 Number of participants in each skill level 37

6.3 Participants’ self rating of their confidence in writing correct programs 38

6.4 Confidence in writing correct programs for each skill level 38

7.1 Average difference in participant scores across topics by experimental

group . 40

7.2 Number of participants in each skill level by experimental group . . . 43

7.3 Responses to "I am confident writing correct programs", asked before

and after the workshop . 44

7.4 Responses to "I am confident writing correct programs" split by ex-

perimental group . 45

xv

xvi LIST OF FIGURES

7.5 Graphed responses to the Post Questionnaire engagement questions

by experimental group . 47

7.6 Graphed responses to the Post Questionnaire understanding questions

by group . 48

List of Tables

2.1 Summary of several papers on teaching invariants and their evidence

for effectiveness . 9

2.2 Formal methods courses across Australia and their pre/co-requisites . 11

7.1 Average difference in participant scores, standard deviation and

Hedges G by topics and experimental group 40

7.2 Variance results by topics and experimental group 42

7.3 Average difference between experimental groups and variance results

grouped by skill level . 43

7.4 Responses to the Post Questionnaire engagement questions by exper-

imental group . 46

7.5 Responses to the Post Questionnaire understanding questions by group 46

7.6 Number of quotes per theme identified 49

A.1 Participants’ learning test averages grouped by total and skill levels . 64

A.2 Participant responses to Likert scale questions 65

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Formal verification is a powerful method that provides a strong guarantee of correct-

ness in the programs we write. Although there are many benefits to the technique,

widespread adoption has been lacking outside of safety critical projects such as

space flight or air travel. Several reasons can be attributed to its slow adoption

such as having a high barrier to entry [1], less usable tools, and greater overhead.

Different types of formal methods are taught at a tertiary level. Some examples

include pre and post conditions, invariants, theorem provers and model checking.

Each of these require varied amounts of requisite knowledge before being taught,

with theorem proving and model checking often requiring substantial background

knowledge.

Surveying the area of computer science education in formal verification reveals a

lack of rigorous methodology employed and quantifiable data that can be compared

across studies. The current landscape predominately involves studies that analyse

qualitative student feedback from course evaluations or analysing trends in course

results across multiple offerings. This is unsurprising due to factors such as students

unfavourable views towards formal verification, often viewing it as mathematically

focused [2], and the restrictive rules in place for human research on tertiary course

students in Australia.

In addition to this, tool support for formal verification is growing more sophisticated

1

2 Introduction

and user friendly. Where formally verifying software was once a specialist position

requiring years of experience, the tools might now be usable by a larger set of

programmers and IT professionals. Research into student use of these new tools is

ongoing but often lacks the rigorous methodology to definitively prove any broad

claims.

The hypothesis for this study is that adding compiler assisted support for formal

verification can improve student success when learning to generate and validate

invariants for the types of programs studied. Specifically, we focus on invariants

which have been shown to be a problem area in student understanding [3]. A

programming invariant is a set of assertions which must remain true during the

execution of a program for the given program to remain valid. This ensures that

the program meets its predefined constraints and goals. Providing compiler support

for generating invariants will be approached using a compiler tool that provide

automatic feedback about the validity of invariants specified. Our research will

utilise an accepted experimental design that can produce quantifiable data on

student learning of the topic. With this data we will perform statistical analysis to

determine the effects of compiler support on student learning of invariants. For this

research “Learning" of invariants is defined as the ability to generate and validate

invariants. This research could inform how invariants and formal verification is

taught, by supporting the use of modern tools for improving student learning.

Specifically we aim to address the following research questions:

• What effects does compiler assisted learning using Dafny have on student

learning of invariants compared to traditional methods?

• Does compiler assisted learning using Dafny promote further engagement

compared with traditional methods?

The main contributions of this thesis are:

3

• Performing a controlled trial to evaluate the effectiveness of two approaches

to teaching invariants, i.e. a fundamental skill in formal methods

• Surveying the current landscape for formal methods education at the tertiary

level in Australia

• Developing an assessment instrument to gauge student learning of invariants

• Providing the required material to build on the research

The thesis is organised into the following chapters:

• Chapter 1 - Presents an introduction to the problem, motivation for the

research, the research questions addressed and the contributions made.

• Chapter 2 - Provides a literature review of the current research into invariant-

based programming, the current tools, the landscape for formal methods

education in Australia, an overview of experimental design and, financial

incentives for motivating participants.

• Chapter 3 - Discusses the methods used in the research including the assess-

ment instrument and motivations behind the chosen experimental design.

• Chapter 4 - Presents an overview of the participant recruitment strategy,

sources of recruitment, and an analysis of the number of participants needed

for the study.

• Chapter 5 - Provides motivations and details about the research workshop

conducted including the minimum requirements to attend, an overview of the

assessment instrument, the tools used, and the workshop content.

4 Introduction

• Chapter 6 - Presents an analysis of the participants who registered and at-

tended the workshop. Details on how participants are divided and analysed

as subgroups are also provided.

• Chapter 7 - Presents the results from the learning assessment instrument and

qualitative feedback given by participants.

• Chapter 8 - Discussion of results.

• Chapter 9 - Conclusion, summary and future work.

Chapter 2

Literature Review

2.1 Invariant-Based Programming

Invariant-Based Programming is an approach where the programmer formulates

the specifications of the program and generating invariants for a program before

writing the program code. This method aims to produce software that is correct by

construction. Back [4] uses a nested invariant diagram starting with figures illus-

trating the data structures involved in a selection sort. The pre and post conditions

of the selection sort are considered to determine the initial and final program states.

The program flow is then represented by the nested invariant diagrams. The nested

invariant diagram is appended with additional blocks as intermediate situations are

encountered with their respective invariants. A number of studies have investigated

the effectiveness of the technique, several of which we summarise below.

Mannila [3] analyses the errors that novice programmers make in developing

invariant based programs, specifically presenting the general types of errors students

make when expressing invariants. They conclude that invariant-based programming

is a suitable approach to teaching programming from an early stage of computer

science study without being "too advanced". Kabbani et al. [5] take a similar

approach and use a self built web IDE to demonstrate the iterative process of

creating and refining loop invariants. They find that using an iterative approach

for developing and debugging a system from a specification, students can develop

5

6 Literature Review

provably correct software. In addition to generating a correct program through the

use of invariants, Back [6] proposes using a nested invariant diagram. An invariant

diagram describes invariants as sets and program code as transitions between sets.

Back argues the systematic use of these figures makes it straightforward to formulate

the invariants needed for a program. Back [7] extends the research done in [6] by

exploring student difficulties when constructing invariant based programs and the

benefits of the proposed figures as a tool for identifying situation constraints.

2.2 Tools supporting invariants and compiler feed-
back

Several tools exist supporting invariant specification and compiler feedback. Some

of these tools include Why3, OpenJML and Dafny.

Why3 is a platform used for deductive program verification, providing a rich lan-

guage for specifying requirements and programming. Why3 has been used in several

papers such as work by Blazy [8] as a tool to initiate students into formal methods.

Why3 relies on external theorem provers to provide both an automated, and when

not possible, interactive method for verifying conditions. An automated program

extraction tool also provides correct by construction OCaml programs. The language

is supported through a web IDE and a VSCode extension.

OpenJML is a tool for the verification of Java programs, allowing users to check

the correctness of specifications annotated using the Java Modelling Language.

OpenJML has been used in a number of courses teaching formal specification such

as work by Cataño and Rueda [9] and Poll [10]where JML is used as the tool to teach

a formal methods course, and work by Divasón and Romero [11] where Krakatoa

which supports OpenJML is used to complement theoretical lessons. OpenJML

works similarly to Why3 using deductive reasoning to verify a specification. The

§2.2 Tools supporting invariants and compiler feedback 7

Figure 2.1: An example Why3 proof using the built in GUI

primary differentiating factor of OpenJML is its focus on the Java language and

ease of use for practitioners and students. OpenJML is supported in Krakatoa [12]

which provides a front-end. An Eclipse plugin is available but is outdated and does

not currently work with the latest version of Eclipse.

Figure 2.2: An example OpenJML annotated program using eclipse

Dafny [13] is a programming language that is “verification ready". Its main feature is

its verifier, which reveals errors as a program is written, providing counterexamples

both inline within the code and in the output console. Dafny also offers code

generation, being able to compile Dafny code into a variety of languages such as C#,

8 Literature Review

Java and JavaScript. Dafny has been used in a number of papers related to formal

methods education such as work by Ettinger [14] where Dafny is used to teach

formal specification using “small steps of refinement" wherein a stepwise approach

for turning specifications into code is explored. Dafny is supported by both a web

IDE and a VSCode extension.

Figure 2.3: An example Dafny program using the VSCode IDE

All three tools utilise a variety of backend theorem provers which allow verification

of programs. Some of these backend theorem provers include z3 [15], and CVC4

[16]. Both OpenJML and Dafny use z3 by default with Why3 using CVC4. These

two provers provide the capability for the tools to generate counterexamples from

falsifiable assertions, providing a powerful source of information for learners.

2.3 Teaching Invariants

A number of methods are used to teach programming invariants ranging from

traditional methods, using worked board examples to computer aided tools used

to both help learn and generate invariants. Surveying the literature, we see that

these are the two primary categories that invariant education techniques fall into.

We summarise several papers in Table 2.1 listing their approach and evidence of

§2.4 Required Knowledge 9

its effectiveness. Where there are multiple sources of evidence for an approaches

claim of effectiveness, we have listed the most quantitative.

Paper Tool assistance Evidence Sample
Teaching loop invariants to beginners by example [17] No None -

Invariant based programming: basic approach and teaching experiences [7] No Student feedback Unknown
Teaching Programming to Liberal Arts Students: Using Loop Invariants [18] No None -

Inculcating invariants in introductory courses [19] Yes Assignment results 15
Tool-supported Invariant-based programming [20] Yes Assignment results 7

Table 2.1: Summary of several papers on teaching invariants and their evidence for
effectiveness

There is a lack of strong evidence that supports each approaches effectiveness, with

few offering any supporting quantitative data. Due to this lack of quantitative data,

it is difficult to compare the effectiveness of each approach across different teaching

techniques. In addition, the small sample of each work also leads to more skeptical

results.

2.4 Required Knowledge

Learning formal verification is often approached through several avenues such as

tertiary education, online courses or self learning. Each of these paths require some

previous knowledge often varying from institution to institution. In this section,

we provide an overview and analysis of the current knowledge required at various

Australian institutions before studying formal verification.

To produce a consistent analysis of required knowledge, we categorise the various

pre-requisites and co-requisites into groups based on the ACM Computer Science

Curricula 2013 [21]. The ACM Curricula groups content into well defined subject

areas such as placing “Basic Analysis", “Algorithmic Strategies", “Fundamental Data

Structures and Algorithms" and “Advanced Computational Complexity" into the

“Algorithms and Complexity" group. As each pre-requisite and co-requisite course

contains topics from a large number of categories, we categorise using the overall

groupings as opposed to finely categorising all the required knowledge. This means

10 Literature Review

that instead of specifying “Object Oriented Programming", “Syntax Analysis" or

“Functional Programming" for each unit, we group all of these under the larger

group of “Programming Languages".

§2.4 Required Knowledge 11

Fo
rm

al
Ve

ri
fic

at
io

n
C

ou
rs

e
R

eq
ui

re
d

K
no

w
le

dg
e

In
st

it
ut

io
n

U
ni

t
C

od
e

U
ni

t
N

am
e

Le
ve

l
U

ni
t

C
od

e
U

ni
t

N
am

e
Ty

pe
M

ap
pi

ng
A

C
M

M
ap

pi
ng

U
N

SW
C

O
M

P3
15

3
[2

2]
A

lg
or

it
hm

ic
Ve

ri
fic

at
io

n
U

nd
er

gr
ad

ua
te

C
O

M
P1

92
7

C
om

pu
ti

ng
2

Pr
er

eq
ui

si
te

A
D

T,
PL

D
S,

PL
,S

D
F,

A
L

C
O

M
P2

52
1

D
at

a
St

ru
ct

ur
es

an
d

A
lg

or
it

hm
s

Pr
er

eq
ui

si
te

A
D

TL
D

S,
SD

F,
A

L
U

N
SW

C
O

M
P6

72
1
[2

3]
(I

n-
)F

or
m

al
M

et
ho

ds
:

Th
e

Lo
st

A
rt

U
nd

er
gr

ad
ua

te
M

AT
H

10
81

D
is

cr
et

e
M

at
he

m
at

ic
s

Pr
er

eq
ui

si
te

D
M

TH
D

S
C

O
M

P2
52

1
D

at
a

St
ru

ct
ur

es
an

d
A

lg
or

it
hm

s
Pr

er
eq

ui
si

te
A

D
TL

D
S,

SD
F,

A
L

M
Q

C
O

M
P4

00
0
[2

4]
Fo

rm
al

M
et

ho
ds

U
nd

er
gr

ad
ua

te
C

O
M

P3
00

0
Pr

og
ra

m
m

in
g

La
ng

ua
ge

s
Pr

er
eq

ui
si

te
A

D
T,

PL
PL

,D
S,

SD
F,

A
L

C
O

M
P3

01
0

A
lg

or
it

hm
Th

eo
ry

an
d

D
es

ig
n

Pr
er

eq
ui

si
te

A
LG

D
S,

SD
F,

A
L

M
Q

C
O

M
P7

01
0
[2

5]
A

dv
an

ce
d

To
pi

cs
in

Th
eo

ry
an

d
Pr

ac
ti

ce
of

So
ft

w
ar

e
Po

st
gr

ad
ua

te
M

at
ur

it
y

A
N

U
C

O
M

P2
60

0
[2

6]
Fo

rm
al

M
et

ho
ds

in
So

ft
w

ar
e

En
gi

ne
er

in
g

U
nd

er
gr

ad
ua

te
C

O
M

P1
11

0
In

tr
od

uc
ti

on
to

So
ft

w
ar

e
Sy

st
em

s
Pr

er
eq

ui
si

te
FP

SD
F

C
O

M
P1

51
0

In
tr

od
uc

ti
on

to
So

ft
w

ar
e

En
gi

ne
er

in
g

Pr
er

eq
ui

si
te

D
M

TH
D

S,
PL

,S
E

M
AT

H
10

05
D

is
cr

et
e

M
at

he
m

at
ic

al
M

od
el

s
Pr

er
eq

ui
si

te
D

M
TH

D
S

M
AT

H
10

14
M

at
he

m
at

ic
s

an
d

A
pp

lic
at

io
ns

2
Pr

er
eq

ui
si

te
D

M
TH

D
S

U
O

W
C

SC
I4

10
[2

7]
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
,S

pe
ci

fic
at

io
ns

an
d

Fo
rm

al
M

et
ho

ds
U

nd
er

gr
ad

ua
te

24
cp

@
30

0
le

ve
l

U
O

W
C

SC
91

0
[2

8]
So

ft
w

ar
e

R
eq

ui
re

m
en

ts
,S

pe
ci

fic
at

io
ns

an
d

Fo
rm

al
M

et
ho

ds
Po

st
gr

ad
ua

te
12

cp
@

90
0

le
ve

l
U

O
N

SE
N

G
33

20
[2

9]
So

ft
w

ar
e

Ve
ri

fic
at

io
n

an
d

Va
lid

at
io

n
U

nd
er

gr
ad

ua
te

SE
N

G
21

30
Sy

st
em

s
A

na
ly

si
s

an
d

D
es

ig
n

Pr
er

eq
ui

si
te

SE
SE

U
O

N
SE

N
G

63
20
[3

0]
So

ft
w

ar
e

Ve
ri

fic
at

io
n

an
d

Va
lid

at
io

n
Po

st
gr

ad
ua

te
SE

N
G

63
50

Sy
st

em
s

A
na

ly
si

s
an

d
D

es
ig

n
Pr

er
eq

ui
si

te
SE

SE
U

SY
D

SO
FT

32
02
[3

1]
So

ft
w

ar
e

C
on

st
ru

ct
io

n
an

d
D

es
ig

n
2

U
nd

er
gr

ad
ua

te
SO

FT
22

01
So

ft
w

ar
e

C
on

st
ru

ct
io

n
an

d
D

es
ig

n
1

Pr
er

eq
ui

si
te

SE
,P

L
SE

,P
L

U
Q

C
SS

E4
60

3
[3

2]
M

od
el

s
of

So
ft

w
ar

e
Sy

st
em

s
U

nd
er

gr
ad

ua
te

M
AT

H
10

61
D

is
cr

et
e

M
at

he
m

at
ic

s
Pr

er
eq

ui
si

te
D

M
TH

D
S

U
Q

C
SS

E7
03

2
[3

3]
M

od
el

s
of

So
ft

w
ar

e
Sy

st
em

s
Po

st
gr

ad
ua

te
M

AT
H

10
61

D
is

cr
et

e
M

at
he

m
at

ic
s

Pr
er

eq
ui

si
te

D
M

TH
D

S
U

Q
C

SS
E7

64
0
[3

4]
Fo

rm
al

M
od

el
lin

g
an

d
Ve

ri
fic

at
io

n
Po

st
gr

ad
ua

te
M

AT
H

10
61

D
is

cr
et

e
M

at
he

m
at

ic
s

Pr
er

eq
ui

si
te

D
M

TH
D

S
M

AT
H

78
61

D
is

cr
et

e
M

at
he

m
at

ic
s

Pr
er

eq
ui

si
te

D
M

TH
D

S
JC

U
C

P3
11

0
[3

5]
Fu

nd
am

en
ta

ls
of

So
ft

w
ar

e
En

gi
ne

er
in

g
U

nd
er

gr
ad

ua
te

C
P2

00
4

O
bj

ec
t

O
ri

en
te

d
Pr

og
ra

m
m

in
g

w
it

h
Ja

va
Pr

er
eq

ui
si

te
PL

PL
JC

U
C

P5
61

0
[3

6]
Fu

nd
am

en
ta

ls
of

So
ft

w
ar

e
En

gi
ne

er
in

g
Po

st
gr

ad
ua

te
C

P2
00

4
O

bj
ec

t
O

ri
en

te
d

Pr
og

ra
m

m
in

g
w

it
h

Ja
va

Pr
er

eq
ui

si
te

PL
PL

D
U

SI
T2

18
[3

7]
Se

cu
re

C
od

in
g

U
nd

er
gr

ad
ua

te
SI

T1
02

In
tr

od
uc

ti
on

to
Pr

og
ra

m
m

in
g

Pr
er

eq
ui

si
te

FP
SD

F
SI

T1
92

D
is

cr
et

e
M

at
he

m
at

ic
s

Pr
er

eq
ui

si
te

D
M

TH
D

S
M

U
C

SC
30

50
[3

8]
Fo

rm
al

M
et

ho
ds

II
U

nd
er

gr
ad

ua
te

C
SC

20
30

Fo
rm

al
M

et
ho

ds
I

Pr
er

eq
ui

si
te

A
D

T,
PL

D
S,

A
L,

PL
C

SC
20

40
A

lg
or

it
hm

s
an

d
da

ta
st

ru
ct

ur
es

Pr
er

eq
ui

si
te

A
D

T
SD

F,
A

L,
D

S
M

U
FI

T5
17

1
[3

9]
Sy

st
em

va
lid

at
io

n
an

d
ve

ri
fic

at
io

n,
qu

al
it

y
an

d
st

an
da

rd
s

Po
st

gr
ad

ua
te

FI
T9

13
2

In
tr

od
uc

ti
on

to
da

ta
ba

se
s

Pr
er

eq
ui

si
te

D
B

S
IM

FI
T9

13
1

Pr
og

ra
m

m
in

g
fo

un
da

ti
on

s
in

Ja
va

Pr
er

eq
ui

si
te

FP
,P

L
SD

F,
PL

M
AT

18
30

D
is

cr
et

e
M

at
he

m
at

ic
s

C
or

eq
ui

si
te

D
M

TH
D

S
FI

T2
00

4
A

lg
or

it
hm

s
an

d
D

at
a

St
ru

ct
ur

es
C

or
eq

ui
si

te
A

D
T

D
S,

A
L

M
ap

pi
ng

A
D

T
=

A
lg

or
it

hm
s

an
d

D
at

a
St

ru
ct

ur
es

D
B

S
=

D
at

ab
as

e
Sy

st
em

s

D
M

TH
=

D
is

cr
et

e
M

at
he

m
at

ic
s

FP
=

Fo
un

da
ti

on
s

of
Pr

og
ra

m
m

in
g

PL
=

Pr
og

ra
m

m
in

g
La

ng
ua

ge
s

SE
=

So
ft

w
ar

e
En

gi
ne

er
in

g

A
C

M
M

ap
pi

ng

A
L
=

A
lg

or
it

hm
s

an
d

C
om

pl
ex

it
y

D
S
=

D
is

cr
et

e
St

ru
ct

ur
es

IM
=

In
fo

rm
at

io
n

M
an

ag
em

en
t

PL
=

Pr
og

ra
m

m
in

g
La

ng
ua

ge
s

SD
F
=

So
ft

w
ar

e
D

ev
el

op
m

en
t

Fu
nd

am
en

ta
ls

SE
=

So
ft

w
ar

e
En

gi
ne

er
in

g

Ta
bl

e
2.

2:
Fo

rm
al

m
et

ho
ds

co
ur

se
s

ac
ro

ss
A

us
tr

al
ia

an
d

th
ei

r
pr

e/
co

-r
eq

ui
si

te
s

12 Literature Review

Across each institution, the formal methods courses required a variety of knowledge.

A large number of courses required a background in programming languages, with

several requiring a CS2 level of programming ability. Here we define CS1 as an

introductory level of programming knowledge with mastery of basic skills, such

as loops and conditionals, while a CS2 level implies further understanding of

data structures and other concepts. Often, a CS2 level of programming ability is

required before taking on an advanced data structures unit, meaning that some level

of programming aptitude is a precursor for a formal verification course. Discrete

mathematics was also a recurring pre-requisite for several formal verification courses.

Discrete mathematics has overlaps with a data structures course in addition to

teaching various logics such as predicate and propositional logic. The necessity

for some background in maths is unsurprising as formal methods employ rigorous

mathematical techniques. There are several outliers, such as Monash University

which only require CS1 as a prerequisite but requires CS2 as a co-requisite alongside

a course on discrete mathematics. Several courses did not have specific courses

as pre-requisites, but required a number of units to have been completed or to be

admitted to a specific program. We have listed these as ’Maturity’ as by the time

most students reach these units, the completion of a data structures or discrete

mathematics course is almost guaranteed.

Overall, from Table 2.2, it can be seen that a background in programming at a

CS2 level or higher was required, in addition to having taken a course in discrete

mathematics.

2.5 Experimental Design

Choosing an appropriate experimental design is pivotal for any study. The classic ex-

perimental design [40] involves the testing of a dependant or independent variable

through the use of pre-testing, post-testing and using a control and experimental

§2.5 Experimental Design 13

group. Several additions to this accepted methodology are used such as randomising

participants where the inclusion and exclusion criteria for participants group selec-

tion is ’random’ [41] or randomized encouragement designs where participants are

invited to one treatment group but may choose to receive a treatment or not [42].

Savović et al. [43] finds that specific study design characteristics of randomised

controlled trials may lead to exaggeration of intervention effect estimates. Of these

characteristics, subjectively assessed outcome measures held the greatest risks.

Within these study designs additional methodological features can also be added

to influence the validity of a trial such as ensuring appropriate sample sizes and

allocation concealment.

These experiment designs have been used in the computer science education field

in work such as Papastergiou [44] where the learning effectiveness and motiva-

tional appeal of computer games for learning memory concepts was used. In this

experiment students were randomly assigned into an experimental group where

games were used and a control group where no games were used with a computer

memory knowledge test used as a pre and post test. Burnette et al. [45] investigated

whether a growth mindset intervention could promote performance and interest

in computer science. In this study students were randomly assigned to a growth

mindset group or matched control with the intervention administered over four

modules across a semester. The pre-test and post-test used established mindset

measures where "intelligence" was replaced with the term ’computer science’ to

measure the intervention effect. Bockmon et al. [46] looks into the impacts of

spatial skills on introductory programming abilities. In the first year of the study

professors collected information on the cohort without the intervention. A pre test

and post test was used where students completed the same assessment instrument.

In the second year the spatial skills intervention was applied and measured using

the same pre and post test assessment instrument. All three studies are examples

14 Literature Review

of the classic experimental design (examples 1 and 2) and an interventional study

without concurrency control (example 3) [41].

Mixed methods research is a research approach that is seeing popular use. The goal

of mixed methods research is to collect both quantitative and qualitative data within

the same study to draw both their strengths and uncover relationships that exist

between the intricate layers of multifaceted research questions [47]. Several mixed

methods approaches exist. Almeida [48] synthesizes and describes several mixed

methods approaches, which are placed into four major groups. Sequential design

is described as the most popular mixed method technique characterised by two

steps, data collection and analysis of quantitative data, followed by data collection

and analysis of qualitative data or vice versa. Concurrent design establishes a main

methodology (quantitative or qualitative) which the study follows before proceeding

with collecting and analysing the other. Multiphase design involves using a chain of

quantitative, qualitative and further mixed method studies and building each new

study on what was learned previously. Finally multilevel design assumes a multi-

layer complex problem where the number of steps taken is equal to the number

of problem layers. Data collection and analysis is performed for each layer before

interpreting the overall results. Almeida [48] states that sequential design is the

most popular mixed methods techniques due to the greater ease of adoption but

suffers from an increase in development time of the study.

Mixed methods research has been used in the computer science education area

in work such as Zahedi et al. [49] where the influence of gamification and its

effects on genders are explored. Quantitative data in this study was collected to

determine if gamification had an effect on student performance while qualitative

data was collected to answer questions about the effect of gamification on identity

development and self-efficacy of women.

§2.6 Financial Incentives 15

2.6 Financial Incentives

Using the correct incentives, often financial, for motivating participants to engage

with research is an important aspect for the success of a research project. Research

conducted has confirmed that monetary incentives for participation is an effective

strategy [50] [51]. Although providing monetary compensation for research par-

ticipation is effective, there are issues around the integrity of the collected data

and its quality. Litman et al. [51] finds that the quality of data collected from

Amazons’ Mechanical Turk had a direct relationship with the compensation rates

offered.

Other alternatives to a set monetary reward such as a lottery system are also in

use. A lottery system offers participants a chance at winning a generally higher

value reward in exchange for not having a guaranteed monetary reward. The

ethical merit of lotteries has been heavily scrutinised. Issues include that lotteries

undermine the "equal treatment of all participants because they prevent equal

distribution of rewards" [52], they exploit those who are not competent enough to

calculate their chances at winning, and that they expose participants to gambling.

The effectiveness of a lottery system has seen mixed results. Ulrich et al. [53]

randomises the type of reward that participants received and found that when

offering no reward the response rate was 42.2%, using a lottery gave a 44.7%

response rate and an unconditional $5 cash incentive increased the response rate

to 64.2%. Halpern et al. [54] performs three trials comparing the effectiveness of

different probability and different value payouts compared to a monetary reward.

Halpern et al. finds that a lottery based incentive did not improve the response

rate compared to offering no incentive at all while an unconditional fixed reward

produced a larger response compared to an actuarially equivalent lottery. Porter and

Whitcomb [55] performs a controlled trial to test the effects of lottery incentives.

Porter and Whitcomb find that "more is not better... increasing the size of the prize

16 Literature Review

did not result in a linear increase in response rates" bringing about the issue that a

prize not valuable enough will not affect response rates at all but a prize too valuable

will also not affect response rates. Given the mixed reported effectiveness of using

a lottery reward, other factors also exist for choosing this incentive. Zangeneh et al.

[52] samples 50 graduate students performing research on human participants and

finds that the availability of funding is the main determinant for the use of a lottery

reward.

Chapter 3

Methods

We use a modified randomised controlled trial design, similar in approach to the

randomised controlled trial design discussed in section 2.5. This design type involves

splitting participants between two randomised groups, a control and experimental

group. Each group undergoes a controlled trial where all reasonable variables are

held constant with the exception of the independent variable being tested. The

’modified’ represents the experiment not being truly randomised in the classical

sense of a randomised trial as explained further below.

The control group for the experiment will be taken through a invariant learning

workshop using the ’traditional’ method wherein participants are taught about

invariants using lecture slides and are given workshop questions with feedback

provided by the instructor. The experimental/intervention group will undergo the

same workshop with the addition of compiler provided feedback given throughout

the workshop. The control and experimental groups will henceforth be referred to

as the ’traditional’ and ’compiler’ groups. Due to the intended way that participants

will register for individual workshop sessions, we cannot assign each individual

participant to the traditional or compiler group on an individual basis. Instead

groups of participants will be assigned to the traditional or compiler group based on

the workshop they have signed up for. As such participant group designation will

not be absolutely random due to this designation system. The reason for participant

17

18 Methods

designation in this manner is due to a lack personnel to operate both a traditional

group and compiler group for each intended session time. We believe that assigning

participants to the traditional or compiler group by chosen workshop session will

be sufficient to fulfill the random criteria as the research team have no influence on

the workshop sessions that participants select.

A pre-learning and post-learning assessment instrument was designed to assess

participants’ baseline knowledge before the workshop and the learning that occurred

over the session. A range of questions from Boolean logic to invariants will be asked

with a range of difficulties tested, helping to differentiate the various levels of student

understanding. This assessment instrument will form the core of the quantitative

data collected in the experiment. The differences in average improvement from the

pre and post-learning tests of the traditional and compiler groups will be compared.

A t-test will be used to determine if a statistically significant result is present with

various measures of variance used to determine the specific t-test used. Metrics on

effect size such as hedges g will also be computed.

In addition to the quantitative data collected from the assessment instrument, we will

also collect qualitative data to help answer research question 2. We use an approach

similar to the sequential mixed methods approach where additional qualitative data

is collected after the research workshop. The primary source of the qualitative data

will be from the post questionnaire sent after the workshop to collect participants’

thoughts and experiences on the workshop session. Observations taken during the

workshop will also be used to explain and enrich any trends seen in the resulting

data.

As with any study requiring participants, it is possible that we will have issues with

a lack of participants. To address this, several measures were taken to make the

research workshop more attractive. First, we accept participants with a minimum

understanding of CS1 concepts (variables, loops, functions, arrays) to ensure that

19

we have a larger population of participants. The research workshop will also

be advertised through Australian and New Zealand universities and other online

platforms. Finally, we opt to use a lottery system of rewards to attract participants.

A lottery system is used in favour of a set monetary amount for each participant

due to budget constraints.

This research has received ethics approval (Project ID: 11915) from the Science &

Engineering Ethics Subcommittee and meets the requirements set out in the National

Statement on Ethical Conduct in Human Research. All steps have been taken to

ensure that the research adheres to these guidelines. The full ethics approval letter

can be viewed in Appendix F.

20 Methods

Chapter 4

Participant Recruitment

Attracting enough participants to sign up and attend the workshops was pivotal to the

success of the research workshops. To facilitate this, materials used in advertising

the workshop were produced with consultation from marketing experts. From

these discussions it was clear that two points needed to be satisfied, 1) incentivising

participants to click on a link or scan a QR code and 2) providing an easy to complete

consent form that sets participants up with a workshop time.

To motivate participants to sign up, two options were considered. The first was

using the standard monetary reward. Using this option with a budget of $1500

AUD and an estimate of 62 participants needed, we would allocate $24 AUD to

each participant. We did not opt for this option as it was unlikely that $24 AUD was

substantial enough to motivate participants to attend a multiple hour workshop.

Instead we opted for a second option which involved offering 3 high value prizes that

participants could enter into a draw for. The three prizes offered were a PlayStation

5 Digital Edition, $400 AUD Gift Card and a Nintendo Switch. When completing the

participant consent form, each participant could choose to be entered into the draw

for one of the prizes or none at all. The distribution of participant prize choices can

be seen in Figure 4.1.

Although we are unable to compare the effectiveness of both approaches, from

the 103 participants that registered, we are satisfied that the second option was

21

22 Participant Recruitment

Figure 4.1: Participant prize selection choices

effective.

All forms of advertisement contained a direct link to the participant consent form.

The participant consent form was made up of two pages; the first page contained

summarised information about the research such as eligibility criteria, workshop

learning outcomes and format. The second page collected participant details,

consent and their chosen workshop time (see appendix B for the full participant

consent form). By streamlining the process into a short 2 page form, we aimed to

reduce the hurdles needed for participants to register.

4.1 Recruitment Sources

Participants were recruited from a wide range of sources including direct university

channels (e.g. unit announcement posts), university clubs and online social media

4.2. Overall 103 participants signed up for the research workshop. The recruitment

channel of participants was tracked using the embedded data feature of the Qualtrics

survey platform. This feature allowed the links provided in the advertisements to

have a version attached. Of these recruitment channels, direct university channels

§4.1 Recruitment Sources 23

drew in the most number of participants. Direct university channels included

announcement posts, emails from faculty staff and direct referrals to the workshop

by staff.

Figure 4.2: Sources of participant recruitment

The other categories made up roughly half of the total participant sign-ups. Ad-

vertisements from the university societies were made through the announcement

channels of their official discord servers, a popular communication program used

by computer science students. The poster category consisted of physical posters

plastered around the computing/IT buildings of different universities. These posters

were accompanied by a QR code and a catchy headline that directed interested

participants to the participant consent form. 4 different posters were used (see

Appendix C) each focusing on marketing a different aspect of the workshop:

• Poster 1 focused on the prize rewards that participants were entered for.

• Poster 2 provided information summarised information about the workshop.

• Poster 3 prominently displayed the workshop title.

• Poster 4 used a click bait headline targeting program correctness.

24 Participant Recruitment

All four posters featured a prominent QR code that directed viewers to the participant

consent form. Posters 1, 3 and 4 used colourful eye catching backgrounds while

Poster 2 used a white background due to the abundant information on display.

Poster 1 proved to be the only effective poster, recruiting 15 participants while the

other posters were much less effective.

Social media recruitment involved advertisement posts on several sites including

Red and Facebook. The ’Other’ recruitment source collates any registrations where

the unique version number used to track registrations in the URL was removed by

the participant.

Figure 4.3: Participant registrations by poster version

4.2 Calculating participants required

To determine if a statistically significant result exists for a given intervention, a min-

imum number of participants is required based on the effect size of the intervention.

To guide the study, we calculate the minimum sample size required using work done

by Chow et al. [56]. The formula given requires several parameters such as the

expected effect size of the intervention, the average means of the two groups, and

§4.2 Calculating participants required 25

the standard deviations of both groups. Given these parameters, the formula gives

us a minimum required sample size to determine if a statistically significant result

exists. We provide estimated values for the given formula and their justifications

below.

�

1+
1
κ

�

∗
�

σ ∗
z1−α/2 + z1−β

µA−µB

�2

(4.1)

We use the following motivations and listed values:

• The effect size of similar studies in the area: Scherer et al. [57] provides

a survey of the effect sizes of different types of studies in the computer

science education area. Specifically, the study provides an overall effect

size for instructional approaches of several categories. Providing compiler

support falls under the ‘feedback’ and ‘problem-solving’ categories which have

a weighted average hedges g of 0.5.

• The mean of the traditional group: this will be assumed to be 50.

• The standard deviation: assuming a normal distribution of test results we use

a standard deviation of 12.5.

• A sampling ratio of 1 as both groups will have an equal or near equal number

of participants.

• Although we cannot ensure a sampling ratio of 1, we attempted to evenly split

the groups as much as possible. It is otherwise unlikely to estimate another

value for the sampling ratio.

• The mean of the compiler group: using the effect size chosen above and the

estimated standard deviation, the compiler group will use a mean score of

56.25.

26 Participant Recruitment

• We used a standard α value of 0.05 and β value of 0.2.

Using the above values as inputs for the formula, we require a sample size of

62.79104 ≈ 63 to show if a statistically significant result exists when using com-

piler support through Dafny for learning invariants as compared to the traditional

approach of learning invariants.

Chapter 5

Workshop

The research workshop consisted of a pre-learning test, workshop content and a

post-learning test. These three activities were fit inside a 3 hour time window

divided as follows, not including breaks:

• Introductions - 10 minutes

• Pre-learning test - 20 minutes

• Workshop activities - 1 hour 30 minutes

– Discussion on program correctness

– Pre and post conditions

– Hoare Logic

– Examples for invariants on non array based problems

– Self guided questions on non array based problems

– Examples for invariants on array based problems

– Self guided questions on array based problems

• Post-learning test - 20 minutes

All workshop materials used can be found here 1

1https://github.com/MicAu/Workshop

27

28 Workshop

5.1 Minimum requirements

In order to register and attend the workshop we required a baseline amount of

knowledge in order to understand what was being taught. When deciding on this

baseline we did not want to make the requirements too high or we would risk having

too little of a population to draw participants from. In line with this we accepted

any participants who had completed at least a CS1 (introductory programming)

level of knowledge. The motivation for this was 1) having a larger population to

draw participants from and 2) being able to analyse whether compiler support

had a greater effect on more advanced programmers when compared to novice

programmers. To determine whether a participant met these minimum requirements,

we asked about participants skills in the participant consent form.

5.2 Pre/Post-Learning Test Design

The motivation of running both a pre-learning test and a post-learning test was to

measure the actual learning that was done during the duration of the workshop. By

having a baseline benchmark for the knowledge that each participant had before

each workshop, we could take their final results and subtract the two scores to find

the difference in learning.

The questions asked on the learning tests attempted to gauge student understanding

of several areas that we believed were important to understanding invariants. The

learning tests asked about the following topic areas:

• Boolean logic

1. Validity of a combined boolean expression, using non mixed boolean

operators

2. Validity of a combined boolean expression using a mix of boolean opera-

§5.2 Pre/Post-Learning Test Design 29

tiors

• Pre/post conditions

1. Choosing a pre condition that would allow the given function to produce

the correct result

2. Selecting the correct post condition for a given function with regards to

a given pre condition

• Hoare logic

1. Selecting the valid hoare triple

2. Choosing the correct final assertion of a hoare triple

3. Choosing the correct first assertion of a hoare triple

• Invariants

1. Determining the incorrect invariant

2. Selecting a correct loop invariant

3. Selecting a correct loop invariant to ensure the post condition

4. Selecting a correct array based loop invariant

5. Selecting a correct complicated array based loop invariant

Choosing the specific areas to test and gauge student understanding was a difficult

task as a complete validated concept inventory for learning invariants and formal

verification has not yet been studied. As such we opted to use common concepts

from concept inventories studied in the computer science area which relate to

correctness [58]. In particular, boolean logic, mathematical specification, modular

reasoning and correctness proofs were checked in the learning tests. Boolean logic

reasoning was tested directly in the first two questions. Mathematical specification

30 Workshop

was tested in the pre and post condition questions where mathematical inequalities

and ranges are used as well as in the invariant questions where inequalities and

existential quantifiers are tested. Modular reasoning is tested by focusing on the

correctness of specific functions. Finally, correctness proofs are checked in the

invariant questions where participants must choose the correct invariant that would

complete the proof.

Figure 5.1: Example of a pre-learning test question. This question fits into the
“Selecting a correct loop invariant" category.

Both the traditional and compiler group received the same pre and post-learning test.

To ensure fairness between the two groups, the test used the Python language as a

basis for the programs specified. Python was chosen as the syntax would be familiar

for programmers even from different backgrounds without experience in python

specifically. As a language that is similar to pseudo-code, work by Tew and Guzdial

[59] suggests that pseudo-code can be used to achieve language independence when

measuring student learning. The usage of a pre and post-learning test to measure

learning also works well with participants of different background skill levels,

§5.3 Dafny 31

including those who may have already had experience with learning invariants. As

only the difference in results between the pre and post-learning tests are calculated,

a participant who had more knowledge before the workshop will not result in a

higher “learning" measured by the learning tests. This is because it is the relative

difference between the pre and post-learning test results that are measured.

Validating that both the pre-learning and post-learning test measured the same

outcomes at a similar difficulty was also needed. To ensure that the two versions

were of similar content, all questions in the post-learning test were based on the

same content as presented in the itemised list above. Ensuring a similar difficulty

was a more difficult task. To attempt this we created the post-learning test using

variations of the first tests questions. As an example, question 10 of the pre-learning

test asks participants to find the invariant for a given loop that increments its control

variable, while the post-learning test asks the same question but with a loop that

uses a decreasing control variable and modified post condition.

5.3 Dafny

As discussed in section 2.2, several usable tools exist for teaching formal verification.

We decided to use Dafny for several reasons — the language is still receiving frequent

updates meaning that it should be more usable on modern systems, there is tool

support in popular IDEs such as VSCode so that participants can develop code in a

familiar environment, and the language syntax is similar enough to other modern

languages such that the transition to understanding or using the language should

be easier even without direct instruction. Other tools such as JML featured some of

these advantages as well but lacked the full suite of usability features.

Dafny as a language provides a familiar syntax for specifying the core essentials

such as variables, loops and functions. In addition to this Dafny also allows users to

32 Workshop

specify pre conditions, post conditions, invariants and assertions. Figure 5.2 shows

an example of a Dafny program that defines a pre and post condition indicated

using the ’requires’ and ’ensures’ keyword respectively at the start of the method.

Invariants can be defined at the beginning of loops and are specified using boolean

expressions, universal quantifiers and implications.

Figure 5.2: An example of a Dafny function that reverses a given array

Setting up participants with the correct tooling was the next step to be considered.

To make the process as easy as possible we used the online service Gitpod. Gitpod

takes a GitHub repository with a special ’gitpod.yml’ file which sets up a VSCode

environment in the participants browser. We provided each participant with a

Gitpod link that setup a complete development environment with all the Dafny

dependencies and tooling pre installed. The environment also provides participants

with the slides used, workshop questions and pre generated Dafny files for each of

the examples and workshop questions.

5.4 Workshop content

The workshop section focused on teaching participants about program correctness

and invariants. First, participants discussed program correctness and its motivations

§5.4 Workshop content 33

accompanied by a real life example. The formal verification approach was then

compared against what participants may have seen before, namely unit testing. An

introduction on pre/post conditions and Hoare logic was then given with several

examples demonstrating their use. To transition to loop invariants, a program

example featuring a loop is given with participants asked to apply hoare logic. The

feasibility of the hoare logic approach when loops are concerned is discussed before

moving onto loop invariants for helping to prove the given program. Up to this point,

the experience of both the traditional group and compiler supported group is mostly

the same with the exception of the compiler group setting up their development

environment.

As participants completed the invariant examples the traditional groups resources

featured only the slides and written notes while the compiler group had examples

explained using the slides, written notes and Dafny. The compiler groups explana-

tions focused on the hints given by dafny such as ’cannot prove termination, try

supplying a decreases clause for the loop’. The first example asked participants

to prove the correctness of a program to calculate the power of a given number,

presented as a fully worked example. The second example calculated the triangle

number of a given value n. Participants were expected to use the same technique of

taking the post condition and using the loop counter to form the loop invariant. As a

similar example, participants were given less guidance in completing this task. After

working through these first two examples, participants were given four workshop

practical questions to work on by themselves. These questions focused on the basics

of invariants such as an invariant needing to be true when the loop terminated.

The traditional group received feedback and support by communicating with the

instructor while the compiler group had access to the instructor in addition to the

feedback given by the Dafny compiler. After completing the four questions, two

further invariant examples were explained featuring arrays. The third example

34 Workshop

was a sum array question with the invariant involving a helper function similar

to the first example. The fourth and final example asked participants to find the

invariant to an array max question. The fourth example differed from the others as

after developing an invariant using a similar approach to the previous examples, we

introduce universal and existential quantifiers (for all, there exists) to help formalise

the ’word based’ invariant that was produced into an invariant that Dafny could

help verify. After these two examples, participants were once again tasked with two

workshop practical questions with help provided in the same manner to the first

set of practical questions. The two questions focused on arrays and the existential

quantifiers introduced in the previous examples.

5.5 Teaching technique

As discussed in 2.3 several methods exist for teaching invariants. The method we are

using, as described above, is a cross between the traditional method but augmented

with compiler feedback at various stages of the teaching process. For example, the

“Examples for invariants on non array based problems" uses a traditional PowerPoint

slide style lesson, guiding students through the construction of invariants for several

non array based problems. This teaching method would fit into any traditional course

on invariants, however, for the compiler group, this workshop will additionally

be augmented with tool support by walking participants through the invariant

construction and proof using Dafny. This additional tool will be demonstrated to

the compiler group after being given the same explanation for each example as

given to the traditional group. As such the use of tool support can be seen as an

“extra" as opposed to a whole lesson change itself.

Chapter 6

Participant Analysis

Of the 103 participants who signed up, 47 participants attended the workshop from

which 42 completed both the required tasks (the pre and post-learning test). 5

participants attended the workshop but only completed one of the required tasks and

are excluded from the results analysis. 24 female and 79 male participants registered

with 11 female and 31 male participants attending and completing the workshop.

Participants were recruited primarily from universities across both Australia and

New Zealand.

Participants could sign up for one of the 9 workshops that were made available over

a 3 week period. The workshop dates were chosen to coincide partially with a mid

semester break at many of the Australian Universities. The workshop sessions were

also offered at different times and days including both the weekday and weekend.

The number of participants registered for each session varied as seen in Figure

6.1. No major difference in participant attendance was observed from offering

sessions on weekends as compared to weekdays. A large amount of admin work

was required with session scheduling. Although participants chose their initial

session without any further work needed by the research team, a large amount

of time was taken up by rescheduling individual participants. If a participant did

not make their chosen workshop session, we first sent an email asking if they

would like to reschedule which would then require several further emails. This

35

36 Participant Analysis

was exacerbated by many participants needing to reschedules multiple times. In an

attempt to retain participants and combat a large amount of rescheduling we sent

out a reminder about the workshop one week and one day prior to their chosen

workshop session.

(a) Registered (b) Attended

Figure 6.1: Number of registered and attended participants for each workshop
session. Weekday sessions in blue, weekend sessions in orange.

Based on participants answers to the ’select your completed/undergoing skills’

questions, we grouped participants into three levels. Level 1 represented novice

programmers who had only completed an introductory programming unit involving

learning variables, loops, conditionals, functions and arrays. Level 2 included

participants who had learnt about more involved data structures such as lists, objects

and problem solving techniques like recursion. Level 3 included any further skills

such as compiler theory, algorithm correctness and advanced structures. Figure 6.2

shows the makeup of participants by assigned skill level. The makeup of skill level

between participants who signed up compared against the makeup of participants

who attended and completed all tasks reveals a similar ratio. The workshop attracted

more participants from those who had studied programming extensively compared

to programmers who were considered novices. Several reasons can be attributed to

this, it may be less likely for novice programmers to partake in activities that are

37

considered extra curricular or the workshop may have appeared intimidating as the

words used to advertise the workshop may be unfamiliar. Experienced programmers

may also be more comfortable learning new content or are familiar with the concept

of invariants.

(a) All participants (b) Attended participants

Figure 6.2: Number of participants in each skill level

Participants were asked about their confidence in writing correct programs when

registering. The definition of what ’correct’ means was not elaborated on as well

as the size of programs being considered. This was an area that should have been

further clarified in the participant consent form. Of the 103 participants the majority

(45% all, 43% attended) responded with ’agree’ indicating that most participants

were confident in writing correct programs.

Breaking down the confidence ratings by level, we see a similar ratio is main-

tained.

38 Participant Analysis

(a) All participants (b) Attended participants

Figure 6.3: Participants’ self rating of their confidence in writing correct programs

Figure 6.4: Confidence in writing correct programs for each skill level

Chapter 7

Results

7.1 Workshop Results

We take each participants answers to the pre-learning test and post-learning test and

calculate the difference between each test. As an example if a participant scored

2/4 (50%) in the boolean logic section of Test A and scored 4/4 (100%) in the

Boolean logic section of test b Test B we say that this is a 50% improvement over

their result in Test A.

Figure 7.1 shows the differences between the traditional and compiler group broken

down by question categories and total. In total there were 42 participants with

19 in the traditional group and 23 in the compiler group. Across topic areas, the

results between the traditional and compiler group varied. The compiler group

performed worse in the post tests for boolean logic and pre/post conditions while

performing better on Hoare logic and invariants. When all topic groups were added

together, the compiler group out performed the traditional group. On the topic of

invariants, the traditional group performed worse in the post test as compared to

the pre test.

Several methods exist to measure the effect size of a given intervention. The effect

size is a quantitative measure of the relationship strength between two variables.

We opt to use Hedges g to measure effect size as the two groups have a varying

39

40 Results

Figure 7.1: Average difference in participant scores across topics by experimental
group

sample size which Cohens d does not take into account. The value of hedges g is

interpreted in the same way as Cohens d, a value around 0.2 indicates a small effect,

a value around 0.5 a medium effect and a value around 0.8 indicates a large effect.

As shown in Table 7.1, the effect of compiler intervention in pre/post conditions

and Hoare logic is below a small effect. A medium effect is seen for the other topic

areas with the greatest effect seen in the invariants topic.

Difference AVG Std Dev
Trad Compiler Difference Trad Compiler Hedges G

Boolean Logic 0.026 -0.043 -0.070 0.262 0.144 0.339
Pre/Post 0.026 -0.022 -0.048 0.424 0.412 0.115

Hoare Logic 0.351 0.391 0.040 0.392 0.343 0.110
Invariants -0.063 0.078 0.141 0.353 0.350 0.402

Total 0.070 0.120 0.049 0.183 0.196 0.260

Table 7.1: Average difference in participant scores, standard deviation and Hedges
G by topics and experimental group

We use a t-test to determine if a statistically significant difference exists between the

§7.1 Workshop Results 41

averages of the two groups. Several types of t-tests may be used based on whether

an equal or unequal variance exists between the results of each group. Variance

in this context refers to the spread of data points relative to the mean. A small

variance would imply that the data points are focused closely to the mean, while a

large variance implies data points spread further apart. An equal variance between

the two groups means that the data points from both groups are spread similarly

relative to the mean while an unequal variance implies the opposite. To determine

which t-test to use we calculate the f distribution between the two results. The f

distribution allows us to determine whether the variance between the means of two

populations significantly differ from each other.

Table 7.2 shows that the f distribution across all topics with the exception of boolean

logic sits above the 0.05 p value threshold. Given that boolean logic is an outlier, we

can assume the variance between both groups are equal. Using an equal variance

t-test we assume the null hypothesis h0 to be that compiler supported learning does

not produce a discernible difference as compared to the traditional approach i.e.

the average results of both groups should be similar.

We calculate the p-value to determine the chance of a type 1 error (rejecting a

correct null hypothesis). Using the standard acceptance value of 0.05, we find that

across all topic areas, the chance of a type 1 error is above the 0.05 threshold. This

result supports the null hypothesis i.e. there exists a possibility that even if the

results show a difference between the compiler and traditional approach, the null

hypothesis is actually still true.

Each of the t variance values also sit within the 95% region of acceptance, which

supports acceptance of the null hypothesis. The acceptance region is a metric that

partitions outcomes into two subsets based on a threshold value. The two subsets

represent either an acceptance region where the null hypothesis is accepted, or the

rejection region where the alternative hypothesis is accepted.

42 Results

Variance
Trad Compiler Variance Ratio F Distribution P-value T-Test

Boolean Logic 0.065 0.020 3.280 0.005 0.280 1.094
Pre/Post 0.170 0.163 1.048 0.453 0.713 0.371

Hoare Logic 0.146 0.113 1.296 0.279 0.724 -0.356
Invariants 0.118 0.117 1.007 0.488 0.202 -1.298

Total 0.032 0.037 1.161 0.365 0.404 -0.844

Table 7.2: Variance results by topics and experimental group

These calculations are repeated with each of the groups divided into their respective

skill levels. It is pertinent to note that by dividing the groups into further subgroups,

there are fewer participants within each group, so any trends shown should be

analysed skeptically at best. Figure 7.2 shows the distribution of participants into

each skill level by group. Of note is that there is only 2 participants in the compiler

group for level 1 while level 3 has a large imbalance of participants between the

traditional and compiler groups. As a result of low numbers in the level 1 group,

several table entries in Table 7.3 are missing due to insufficient data. Participants

in the skill 1 and 2 levels showed a strong improvement in results of ≈ 10 - 20%

in various topic areas. Participants in the group 3 skill level showed a decrease in

results of ≈ 5% on all topics. A subset of data is shown in Table 7.3, the complete

table can be found in Table A.1.

7.2 Post Questionnaire

Participants were emailed a post questionnaire after the completion of their work-

shop session. The aim of the post questionnaire was to gather further data about

participant experiences and confidence in the topics taught during the workshop.

The first set of questions used a Likert scale to measure participants attitudes to the

given questions. The Likert questions can be grouped into two categories, the first

about participants confidence in the material and second about their engagement

with the workshop. The last set of questions provided short-response prompts that

§7.2 Post Questionnaire 43

Figure 7.2: Number of participants in each skill level by experimental group

Level 1 Difference Hedges G Variance Ratio F Distribution P-value T-Test
Boolean Logic 0.00 - - - - -

Pre/Post Conditions -0.13 0.45 1.33 0.55 0.63 0.52
Hoare Logic 0.25 0.39 3.19 0.39 0.68 -0.45
Invariants 0.30 1.03 2.25 0.45 0.30 -1.19

Total 0.17 1.26 - - 0.22 -1.46
Level 2

Boolean Logic -0.13 0.50 3.73 0.05 0.35 0.97
Pre/Post Conditions 0.01 0.02 1.14 0.43 0.97 -0.04

Hoare Logic 0.13 0.37 1.04 0.47 0.48 -0.72
Invariants 0.34 0.82 1.20 0.40 0.14 -1.58

Total 0.15 0.78 1.31 0.36 0.15 -1.52
Level 3

Boolean Logic -0.04 0.20 3.52 0.03 0.67 0.44
Pre/Post Conditions -0.15 0.34 1.07 0.44 0.46 0.75

Hoare Logic -0.04 0.13 1.51 0.25 0.77 0.30
Invariants -0.01 0.02 1.32 0.32 0.97 0.04

Total -0.04 0.22 1.46 0.27 0.63 0.49

Table 7.3: Average difference between experimental groups and variance results
grouped by skill level

allowed participants to express their experiences in more detail.

15 participants responded to the post questionnaire with 7 from the traditional

group and 8 from the compiler group. The Likert scale question data showed a

positive trend in metrics related to engagement for participants from both groups,

backed by participant responses in the short-response section. Questions related to

44 Results

understanding showed some mixed results between the traditional and compiler

groups.

7.2.1 Likert-Scale Questions

The first question asked gauged participants confidence in writing correct programs.

This question was also asked in the participant consent form when registering for

the workshop sessions. As such we are able to give a comparison between the results

from before the workshop and after the workshop as seen in Figure 7.3. Overall,

participants tended towards selecting ’Agree’ more when the same question was

asked after the workshop session. Analysing the choices of individual participants,

out of 15 participants, only two participants made a less confident choice with

one choosing ’Agree’ before and ’Neutral’ after and another participant choosing

’Strongly Agree’ before and ’Agree’ after. 4 participants chose a more confident

answer while 9 participants made the same choice.

Figure 7.3: Responses to "I am confident writing correct programs", asked before
and after the workshop

Splitting the results by traditional and compiler groups (Figure 7.4) we see that the

same trends are observed as when the data is combined.

§7.2 Post Questionnaire 45

(a) Traditional (b) Experimental

Figure 7.4: Responses to "I am confident writing correct programs" split by experi-
mental group

Questions about workshop engagement were also asked as outlined in Table 7.4.

The first question asked if the methods used in the workshop helped participants

learn about invariants. Comparing the results between the traditional and compiler

groups, no discernible difference from adding compiler support can be observed.

The second question asked whether the way that invariants were taught made

the learning process more enjoyable, which saw stronger agreement from the

compiler supported group. Similarly, when asked whether the way invariants were

taught contributed to the participants overall engagement, the compiler group saw

strong agreement as compared to the traditional group. The last question asked

whether participants would be interested in learning about other forms of software

verification saw the largest effect from the addition of compiler support. Participants

from the compiler group were overwhelmingly interested in pursuing further study

into other forms of software verification. From this, it can be interpreted that

participants from the Compiler group saw a small increase in general engagement

metrics as compared to the traditional group.

Questions on understanding were asked next. The first two questions focused

on understanding of invariants while the last two focused on understanding as a

46 Results

Traditional S Agree Agree Neutral Disagree S Disagree
The methods used in this workshop helped me learn more about invariants 1 5 1 0 0

The way invariants were taught in this workshop made learning more enjoyable 0 3 4 0 0
The way invariants were taught increased my overall engagement 0 5 2 0 0

I would be interested in learning about other forms of software verification 2 5 0 0 0
Compiler

The methods used in this workshop helped me learn more about invariants 1 7 0 0 0
The way invariants were taught in this workshop made learning more enjoyable 3 3 2 0 0

The way invariants were taught increased my overall engagement 2 4 2 0 0
I would be interested in learning about other forms of software verification 5 3 0 0 0

Table 7.4: Responses to the Post Questionnaire engagement questions by experi-
mental group

programmer. The first question asked if participants felt that they understood the

concept of invariants. Responses from the traditional group centered around neutral

while participants in the compiler group responded more strongly, centering around

agreeing. A similar result is seen for the next question which asked if participants

were confident in formulating invariants. Participants from the traditional group

tended more towards disagreeing while those from the compiler group centered

more around a neutral response. The following two understanding questions about

programming showed mixed results. The traditional group when asked whether

learning about invariants has made reasoning about programs easier reported

stronger agreement as compared to the compiler group. When asked about whether

learning invariants had made participants better programmers, the compiler group

had a higher agree response. Overall, participants from the compiler group reported

a small increase in agreement as compared to the traditional group.

Traditional S Agree Agree Neutral Disagree S Disagree
I feel that I understand the general concept of invariants 0 3 1 3 0

I feel confident coming up with invariants 0 2 1 4 0
Learning about invariants has made reasoning about my programs easier 0 6 1 0 0

Learning about invariants has made me a better programmer 0 3 4 0 0
Compiler

I feel that I understand the general concept of invariants 2 6 0 0 0
I feel confident coming up with invariants 0 2 5 1 0

Learning about invariants has made reasoning about my programs easier 0 4 4 0 0
Learning about invariants has made me a better programmer 1 5 1 1 0

Table 7.5: Responses to the Post Questionnaire understanding questions by group

§7.2 Post Questionnaire 47

(a) Traditional

(b) Compiler

Figure 7.5: Graphed responses to the Post Questionnaire engagement questions by
experimental group

7.2.2 Short-Response Prompts

Several short-response prompts were asked to understand participants insights and

pain points in relation to invariants, with a final general catch all question asked.

Out of the 15 participants who responded to the questions using the Likert scale,

only 11 participants provided answers to the short-response questions. Analysis on

48 Results

(a) Traditional

(b) Compiler

Figure 7.6: Graphed responses to the Post Questionnaire understanding questions
by group

the short responses was performed with several themes emerging. These themes

are presented in Table 7.6 and analysed below. The analysed quotes are presented

verbatim.

The first prompt asked ’Describe an insight you had while learning about invariants’.

The responses largely focused around insights that invariants gave participants

about program correctness. Several responses centered around how invariants

helped participants break down problems.

§7.2 Post Questionnaire 49

Theme Responses
Insights 2

Confidence 4
Testing 3

Engagement 3
Timing 5

General issues 4
Logic issues 1

Syntax issues 2
Other 1

Table 7.6: Number of quotes per theme identified

• One insight was on the structure of complex code and how it can almost

always be broken down into simple and testable components. Learning about

invariants helped break down coding problems into smaller logical steps which

in itself helped with the correctness of my code.

• Thinking ahead and physically writing out what the expected results would

be really helped me become a better programmer

Other responses focused on the confidence that invariants provided participants in

the correctness of their programs.

• Invariants allow you to be confident that your algorithm will run without

errors from it’s structure

• By learning about invariants I got a deeper understanding about how my code

can work. I still am not 100% confident with them but it has helped.

• Invariants must always hold true for the program to be valid. If I master it, It

would allow me to test results in algorithms.

Several miscellaneous responses were also provided with common themes centered

around the importance of testing.

• While learning about invariants within this class, I kept thinking about my

50 Results

previous experience and how I would have been able to use it in that situation.

Furthermore, how can I change my programming style to use invariants.

• Realised they make debugging easier

• The importance of testing your code.

The next prompt asked participants to "Describe some trouble that you had coming

up with invariants". The responses to this prompt fit into roughly 4 categories,

namely, time based issues, difficulty with logic, difficulty with syntax and general

difficulty.

Timing issues included both comments on not having sufficient time in the work-

shop to fully understand the concept of invariants and insufficient time to develop

invariants for the given problems.

• Forming the simplest invariants for a given problem in a short time.

• Since they were so new wrapping my head around them was a bit difficult.

Need more time to practice to fully understand them

• The coding style I have mostly adopted is to test and find edge cases through

trial and error and through the debugging process which is a more reactive

approach. Invariants on the other hand were a more proactive and it felt

more necessary to fully understand a problem or code segment to be able to

come up with the invariants which can be hard without having gotten hands

on with the writing and testing of the code

Issues with the underlying logic used to specify invariants was also present. These

comments centered around being uncomfortable with specifying logical statements

and the required precision of the statements. These issues have also been observed

in the work by Mannila [3] who notes imprecise logical notation as a common error

type when students develop invariants.

§7.2 Post Questionnaire 51

• I’m not very good at coming up with logical statements so it was hard for me

to devise a fitting invariant.

• I had some trouble knowing how specific i needed to be.

One comment discussed difficulty with the syntax of Dafny.

• I found the more complicated invariants difficult because I struggled with the

syntax. I was not familiar with all of the operators.

Lastly, some miscellaneous responses were provided that expressed general frustra-

tion and difficulty with developing invariants.

• I struggled to find the invariants or to know where to start when dealing with

invariants.

• I wasn’t sure what rules applied to invariants and making them felt like

guessing and checking

• I had trouble coming up with invariants for the harder functions and trying to

figure out the longer functions.

• Struggled to understand it as I’ve never learnt it before.

The final prompt "List any additional comments" allowed participants to provide

any additional feedback that they had. The common themes from the feedback

centered around engagement/interest and workshop timing.

Feedback centered around engagement and interest was overall positive. It is

important to note however that bias would exist with this feedback as it is more

likely that participants who enjoyed or were interested in the content would give

feedback in this post questionnaire.

• The content was engaging and interesting!

52 Results

• I think there is more to learn about using invariants, but the workshop provided

a good foundation to start from.

• Invariants were a very inspiring tool to learn about when thinking of efficiency

and correctness when looking at testing. It is definitely a more challenging

approach than other testing methods, but it felt like a skill that if mastered

would make testing much more effortless and fool proof in the future

Several statements about the timing of the workshop were also given. All participants

who gave feedback about timing were intermediate programmers in the level 2 skill

group.

• Workshop was well organised and was paced well. I felt like i was given

sufficient time to absorb the concepts being taught before moving onto the

next thing. Thank you for teaching us about invariants!

• Was cool, but i prefer to learn a concept over the span of a few days

A final positive note for the instructor was provided :)

• I think you did great at teaching what is probably a challenging topic.

Chapter 8

Discussion

Although no statistically significant results were seen between the traditional and

compiler groups, the results still give some hope that a relationship exists between

compiler support and improved learning of invariants. With participants learning test

results viewed both as a whole and in separate skill levels, the results of the compiler

group tended towards an improvement in average score difference. An outlier to

this result existed within the level 3 skill group comprised of more experienced

programmers who performed comparatively worse when compared to the traditional

group. It is uncertain what caused the drop in results in the level 3 skill group. One

possible explanation is that as more experienced programmers, the extra information

provided by compiler support was overwhelming whereas participants with less

extensive experience may have not attempted to use or understand all the features

of the language. Overall, to draw a more conclusive result a larger sample size is

required.

An anomaly existed in the boolean logic results of the learning tests. It is uncertain

why the compiler group performed worse in the post test on boolean logic as

compared to the pre test as the questions administered were similar in both tests.

Furthermore, between the two groups, this topic was taught in the same manner

and both groups were given the same pre and post test. It is possible that due to

the small sample this anomaly was caused by coincidence, however, the addition of

compiler support may also be a factor albeit unlikely.

53

54 Discussion

8.0.1 Post Questionnaire

The engagement questions showed that the compiler group had stronger agreement

in overall enjoyment metrics. This indicates that compiler support may add to the

enjoyment of learning the topics covered. Observations from the workshop sessions

also support the trends shown in the data. Participants from the compiler session

asked more questions and were more engaged with the content, while those from

the traditional group asked fewer targeted questions and did not inquire past the

material presented.

Data from the understanding questions indicate some interesting results. From

the data of both groups, it is clear that learning about invariants, regardless of the

method used, produced more confident programmers. Although participants from

the compiler group agreed that invariants had made them better programmers, they

were less were less confident that it made reasoning about their programs easier

as compared to the traditional group. One possible reason for this is that by using

Dafny, the compiler group may have linked concepts about invariants more closely

to the Dafny language specifically as opposed to a general concept that could be

applied to any other language. This would have been emphasised by the unique

syntax and constructs specific to Dafny. By not using a language with special syntax,

the traditional group would not have associated invariants with a specific language

and thus be more receptive to invariants as a general program reasoning tool.

The results from the "confidence in writing correct programs" question gives some

confidence that learning about invariants has a small but visible effect on participants

confidence.

8.0.2 Short-Response Prompts

The responses to the post questionnaire and specifically the short-response prompts

will exhibit response bias as only motivated participants would attend the workshop,

55

and only the even more engaged participants would respond to the post question-

naire. From the themes identified it is clear that timing related issues were a primary

source of problems for participants. Given the resources and time, it would have

been preferable to run the workshop over multiple sessions to mitigate issues with

cognitive load. The response about difficulties with syntax highlights several key is-

sues. In the response the participant outlines that they "found the more complicated

invariants difficult" because they "struggled with" and were "not familiar with all of

the operators". If the participant was given more time to familiarise themselves with

the Dafny language this may not have been an issue. If participants were given more

time to familiarise themselves with the Dafny language, perhaps compiler support

would have a much larger effect on student learning. Given the short time frame

of the workshops however and participants being only given a quick overview of

Dafny, having only one comment focused on syntax is still promising for the general

adoption of Dafny. The participants comments about syntax issues could also be

interpreted to mean issues with general logic. The "more complicated" invariant

questions that they had troubles with focused on questions that utilised universal

and existential quantifiers (there exists, for all, etc.) which were specified using

Dafny specific syntax. Perhaps the combination of all of these factors overwhelmed

the participants and a more structured course or higher entry requirements would

alleviate this.

8.0.3 Confounding Factors

While administering the workshops, it became apparent that there were several

variables that could have been controlled more tightly. The first of these was simply

the balance of participants between the traditional and compiler group. With how

participants signed up for their designated workshops, each workshop had to be

designated as a traditional or compiler group at the start of the workshop. Future

workshops would then be designated as traditional or compiler to balance this. With

56 Discussion

enough budget, a solution to this issue would be to split each workshop group into

both a traditional and compiler group by hiring additional staff. This would resolve

any issues with unbalanced group as each workshop would be divided evenly.

Participant fatigue after a 3 hour workshop (inclusive of all tasks) was also an

apparent issue. The goal of the workshop format was to entice participants by

keeping the research session as short as possible and not requiring participants to

attend on multiple days. This however also had a negative effect on the post-learning

test as by the time each participant reached the end, it was clear that fatigue had

set in. This issue was apparent with several participants choosing to leave before

the final learning test due to fatigue. Although we tried to ease the effects of fatigue

by providing small breaks in between each section, this was clearly not enough to

overcome these issues.

Dedicating only 2 hours to learning the material before being tested may have not

been sufficient. Due to the workshop schedule the amount of time spent on each

topic before moving onto a new topic meant that participants may have not had

sufficient time to let a concept sink in before a new idea was introduced. Normally

one would expect to learn a concept and be given several days to understand,

however, the workshop design meant that participants did not have this down

time. This issue would have been exacerbated for the final more involved invariant

questions where the subtleties of invariant correctness was being tested.

Although the experiment attempts to simulate student learning using the traditional

"pen and paper" method, one advantage that participants in the traditional group

enjoyed was more access to the instructor. In the traditional setting, an instructor

would not be as free to answer all questions asked by students due to the number

of students assigned per class. In the research workshop, each workshop session

was composed of few participants meaning that each participant had quicker and

more available access to the instructor. This is a factor that directly combats the ad-

57

vantage that compiler support provides which is instantaneous feedback regardless

of instructor availability.

58 Discussion

Chapter 9

Conclusion

Formal verification is a powerful yet underused method of guaranteeing the correct-

ness of the programs we write. Unfortunately, widespread adoption has been lacking

due to the high barrier to entry [1], less usable tools as compared to mainstream

programming software and the required knowledge. Computer science education

research into formal verification has suffered from a lack of rigorous methodology

and quantifiable data that can be compared. In this thesis, we performed a con-

trolled trial to compare two approaches to teaching programming invariants, the

traditional method and a compiler-supported technique using a modern formal

verification language Dafny. The controlled trial was administered in the form of a 3

hour workshop, composed of the following activities (excluding short breaks):

• Introductions - 10 minutes

• Pre-learning test - 20 minutes

• Workshop activities - 1 hour 30 minutes

– Discussion on program correctness

– Pre and post conditions

– Hoare Logic

– Examples for invariants on non array based problems

59

60 Conclusion

– Self guided questions on non array based problems

– Examples for invariants on array based problems

– Self guided questions on array based problems

• Post-learning test - 20 minutes

Issues with participant attendance and an insufficient sample size was apparent

in the data. No conclusive evidence is found that supports a difference in student

learning speed or depth. Indications from the results, point towards compiler

support being a valuable resource for learners. Participant responses to the post

questionnaire and workshop observations support that compiler aided learning

promotes further engagement as compared to the traditional method.

§9.1 Future work 61

9.1 Future work

Given the self contained nature of each workshop session, future work for this re-

search includes running more workshop sessions and adding to the already collected

data. With all the workshop materials, slides and worksheets available it would

be simple for a new instructor to run further sessions in a consistent manner. By

adding further data and gathering a large enough sample size we could conclusively

determine the effect of compiler support on the learning of invariants.

A different selection criteria for participants could also produce interesting results.

Due to limitations in both time and available participants, this research used a low

bar for entry, requiring only introductory programming knowledge. This low bar

meant that the material was designed in such a way that it would be understood by

a larger audience. Perhaps restricting the recruitment criteria further by requiring

more programming experience and having suitable workshop material for that

level would produce different results. Another selection criteria could be to select

participants by abstract reasoning aptitude by using several short filter questions

on sign up. The motivation for this selection criteria is that abstract reasoning is a

general skill that is understood to be important for learning and understanding. By

reducing the number of participants that just “won’t get it" regardless of how the

material is taught (traditional, compiler support, or other means), we can focus on

participants where the intervention may possibly have an effect.

Modifying the structure of the workshop into a multipart workshop that is run over

several weeks or as part of a course would also be a meaningful path forward. The

lack of time available expressed by participants was clearly a strong confounding

variable for the results gathered. Several smaller modifications to the workshop such

as better analysis of participant backgrounds e.g. assessing their prior knowledge of

invariants and adding post workshop or course interviews would also be useful. The

62 Conclusion

addition of interviews as opposed to a ’static’ post questionnaire would be useful for

gathering information about specific participant pain points when generating invari-

ants. Through these interviews we could also aim to build a concept inventory to

catalog the fundamental skills needed for learning and generating invariants.

Several questions used across the pre and post-learning tests, workshop questions

and PowerPoint slide examples were inconsistent in syntax. This would be one

further area for improvement in future work.

Appendix A

Data Tables

63

64 Data Tables

D
if

fe
re

nc
e

AV
G

St
d

D
ev

Va
ri

an
ce

To
ta

l
Tr

ad
C

om
pi

le
r

D
if

fe
re

nc
e

Tr
ad

C
om

pi
le

r
H

ed
ge

s
G

Tr
ad

C
om

pi
le

r
Va

ri
an

ce
R

at
io

F
D

is
tr

ib
ut

io
n

P-
va

lu
e

T-
Te

st
B

oo
le

an
Lo

gi
c

0.
03

-0
.0

4
-0

.0
7

0.
26

0.
14

0.
34

0.
07

0.
02

3.
28

0.
00

0.
28

1.
09

Pr
e/

Po
st

C
on

di
ti

on
s

0.
03

-0
.0

2
-0

.0
5

0.
42

0.
41

0.
12

0.
17

0.
16

1.
05

0.
45

0.
71

0.
37

H
oa

re
Lo

gi
c

0.
35

0.
39

0.
04

0.
39

0.
34

0.
11

0.
15

0.
11

1.
30

0.
28

0.
72

-0
.3

6
In

va
ri

an
ts

-0
.0

6
0.

08
0.

14
0.

35
0.

35
0.

40
0.

12
0.

12
1.

01
0.

49
0.

20
-1

.3
0

To
ta

l
0.

07
0.

12
0.

05
0.

18
0.

20
0.

26
0.

03
0.

04
1.

16
0.

37
0.

40
-0

.8
4

Le
ve

l1
B

oo
le

an
Lo

gi
c

0.
00

0.
00

0.
00

0.
00

0.
00

-
0.

00
0.

00
-

-
-

-
Pr

e/
Po

st
C

on
di

ti
on

s
-0

.1
3

-0
.2

5
-0

.1
3

0.
25

0.
35

0.
45

0.
05

0.
06

1.
33

0.
55

0.
63

0.
52

H
oa

re
Lo

gi
c

0.
42

0.
67

0.
25

0.
69

0.
47

0.
39

0.
35

0.
11

3.
19

0.
39

0.
68

-0
.4

5
In

va
ri

an
ts

0.
00

0.
30

0.
30

0.
23

0.
42

1.
03

0.
04

0.
09

2.
25

0.
45

0.
30

-1
.1

9
To

ta
l

0.
08

0.
25

0.
17

0.
15

0.
00

1.
26

0.
02

0.
00

-
-

0.
22

-1
.4

6
Le

ve
l2

B
oo

le
an

Lo
gi

c
0.

07
-0

.0
6

-0
.1

3
0.

35
0.

18
0.

50
0.

10
0.

03
3.

73
0.

05
0.

35
0.

97
Pr

e/
Po

st
C

on
di

ti
on

s
-0

.0
7

-0
.0

6
0.

01
0.

45
0.

42
0.

02
0.

17
0.

15
1.

14
0.

43
0.

97
-0

.0
4

H
oa

re
Lo

gi
c

0.
29

0.
42

0.
13

0.
36

0.
35

0.
37

0.
11

0.
10

1.
04

0.
47

0.
48

-0
.7

2
In

va
ri

an
ts

-0
.1

4
0.

20
0.

34
0.

44
0.

40
0.

82
0.

17
0.

14
1.

20
0.

40
0.

14
-1

.5
8

To
ta

l
0.

01
0.

17
0.

15
0.

21
0.

18
0.

78
0.

04
0.

03
1.

31
0.

36
0.

15
-1

.5
2

Le
ve

l3
B

oo
le

an
Lo

gi
c

0.
00

-0
.0

4
-0

.0
4

0.
27

0.
14

0.
20

0.
06

0.
02

3.
52

0.
03

0.
67

0.
44

Pr
e/

Po
st

C
on

di
ti

on
s

0.
19

0.
04

-0
.1

5
0.

46
0.

43
0.

34
0.

18
0.

17
1.

07
0.

44
0.

46
0.

75
H

oa
re

Lo
gi

c
0.

38
0.

33
-0

.0
4

0.
28

0.
33

0.
13

0.
07

0.
10

1.
51

0.
25

0.
77

0.
30

In
va

ri
an

ts
-0

.0
3

-0
.0

3
-0

.0
1

0.
35

0.
29

0.
02

0.
10

0.
08

1.
32

0.
32

0.
97

0.
04

To
ta

l
0.

11
0.

07
-0

.0
4

0.
18

0.
21

0.
22

0.
03

0.
04

1.
46

0.
27

0.
63

0.
49

Ta
bl

e
A

.1
:

Pa
rt

ic
ip

an
ts

’l
ea

rn
in

g
te

st
av

er
ag

es
gr

ou
pe

d
by

to
ta

la
nd

sk
ill

le
ve

ls

65

Q
ue

st
io

n
G

ro
up

S
A

gr
ee

A
gr

ee
N

eu
tr

al
D

is
ag

re
e

S
D

is
ag

re
e

B
ef

or
e

w
or

ks
ho

p
-I

am
co

nfi
de

nt
w

ri
ti

ng
co

rr
ec

t
pr

og
ra

m
s

Tr
ad

it
io

na
l

0
4

2
1

0
C

om
pi

le
r

0
7

1
0

0
A

ft
er

w
or

ks
ho

p
-I

am
co

nfi
de

nt
w

ri
ti

ng
co

rr
ec

t
pr

og
ra

m
s

Tr
ad

it
io

na
l

0
2

2
2

0
C

om
pi

le
r

0
6

1
1

0
En

ga
ge

m
en

t
Th

e
m

et
ho

ds
us

ed
in

th
is

w
or

ks
ho

p
he

lp
ed

m
e

le
ar

n
m

or
e

ab
ou

t
in

va
ri

an
ts

Tr
ad

it
io

na
l

0
5

1
0

0
C

om
pi

le
r

1
7

0
0

0
Th

e
w

ay
in

va
ri

an
ts

w
er

e
ta

ug
ht

in
th

is
w

or
ks

ho
p

m
ad

e
le

ar
ni

ng
m

or
e

en
jo

ya
bl

e
Tr

ad
it

io
na

l
0

3
4

0
0

C
om

pi
le

r
3

3
2

0
0

Th
e

w
ay

in
va

ri
an

ts
w

er
e

ta
ug

ht
in

cr
ea

se
d

m
y

ov
er

al
le

ng
ag

em
en

t
Tr

ad
it

io
na

l
0

5
2

0
0

C
om

pi
le

r
2

4
2

0
0

I
w

ou
ld

be
in

te
re

st
ed

in
le

ar
ni

ng
ab

ou
t

ot
he

r
fo

rm
s

of
so

ft
w

ar
e

ve
ri

fic
at

io
n

Tr
ad

it
io

na
l

0
5

0
0

0
C

om
pi

le
r

5
3

0
0

0
U

nd
er

st
an

di
ng

I
fe

el
th

at
I

un
de

rs
ta

nd
th

e
ge

ne
ra

lc
on

ce
pt

of
in

va
ri

an
ts

Tr
ad

it
io

na
l

0
3

1
3

0
C

om
pi

le
r

2
6

0
0

0
I

fe
el

co
nfi

de
nt

co
m

in
g

up
w

it
h

in
va

ri
an

ts
Tr

ad
it

io
na

l
0

2
1

4
0

C
om

pi
le

r
0

2
5

1
0

Le
ar

ni
ng

ab
ou

t
in

va
ri

an
ts

ha
s

m
ad

e
re

as
on

in
g

ab
ou

t
m

y
pr

og
ra

m
s

ea
si

er
Tr

ad
it

io
na

l
0

6
1

0
0

C
om

pi
le

r
0

4
4

0
0

Le
ar

ni
ng

ab
ou

t
in

va
ri

an
ts

ha
s

m
ad

e
m

e
a

be
tt

er
pr

og
ra

m
m

er
Tr

ad
it

io
na

l
0

3
4

0
0

C
om

pi
le

r
1

5
1

1
0

Ta
bl

e
A

.2
:

Pa
rt

ic
ip

an
t

re
sp

on
se

s
to

Li
ke

rt
sc

al
e

qu
es

ti
on

s

66 Data Tables

Appendix B

Participant Consent Form

67

68 Participant Consent Form

69

70 Participant Consent Form

71

72 Participant Consent Form

Appendix C

Posters

Poster 1

QR CODE URL: https://tinyurl.com/invariant1

IMAGE: freepik.com

Win a PS5, Nintendo Switch or
$400 Gift Card

INVARIANT LEARNING RESEARCH WORKSHOP

QR CODE URL: https://tinyurl.com/invariant2

IMAGE: freepik.com

Poster 2

FIND OUT MORE AND SIGNUP AT:

tinyurl.com/invariant3

Win a PS5, Nintendo Switch

or $400 Gift Card by
participating in research
INVARIANT LEARNING WORKSHOP

A useful skill in the Finance and Crypto industry!
Why should you come along? Invariants are a useful tool
that can be applied in any program to ensure that it is working
correctly. Unfortunately, too few students know about them,
and even less know how to use them properly!
What are invariants? Invariants are a set of assertions that
describe what must be true during the execution of a program.
What’s involved? A 3-hour online workshop including a
pre/post-test, optional interview as part of the research study
and a post workshop questionnaire.
Can I join? Anyone who has taken an introductory computer
science unit (variables, loops, etc) is eligible to attend.

Online via Zoom

Sign up by scanning the QR code above!

73

74 Posters

Poster 3

QR CODE URL: https://tinyurl.com/invariant1

IMAGE: freepik.com

INVARIANT LEARNING RESEARCH
WORKSHOP

QR CODE URL: https://tinyurl.com/invariant4

IMAGE: freepik.com

Poster 4

QR CODE URL: https://tinyurl.com/invariant1

IMAGE: freepik.com

Are you writing correct programs?

Invariant Learning Research Workshop

QR CODE URL: https://tinyurl.com/invariant5

IMAGE: freepik.com

Appendix D

Learning Tests

D.1 Pre-Learning Test

75

76 Learning Tests

§D.1 Pre-Learning Test 77

78 Learning Tests

§D.1 Pre-Learning Test 79

80 Learning Tests

§D.1 Pre-Learning Test 81

82 Learning Tests

D.2 Post-Learning Test

§D.2 Post-Learning Test 83

84 Learning Tests

§D.2 Post-Learning Test 85

86 Learning Tests

§D.2 Post-Learning Test 87

88 Learning Tests

Appendix E

Workshop Questions

Several of these questions have been taken and repurposed from Nipkow [60].

E.1 Traditional group

Question 1
The below code attempts to loop from 0 up to n using the variable i

i = 0
while i < n:

invariant 0 <= i
i = i + 1

assert: i == n

The invariant provided is not sufficient to prove loop correctness.
Why is it not sufficient? Give one example where the invariant

would not hold.

Question 2
Using the same program from Question 1, the invariant has been

modified but is still not sufficient. Why is the invariant
specified not sufficient? Can you suggest a fix?

i = 0
while i < n:

invariant 0 <= i < n
i = i + 1

assert: i == n

Question 3
Using the solution for Question 2, if the loop condition was

changed from i < n to i != n, would the assertion after the loop

89

90 Workshop Questions

still verify? Why or why not?

Question 4
The below program is an extension from the solution of Question 2/3.

def fib(n: int):
if n == 0:

return 0
elif n == 1:

return 1
else:
return fib(n - 1) + fib(n - 2)

def computeFib(n : int):
if n == 0:

return 0
i = 1
a = 0
b = 1
while i < n:

invariant 0 < i <= n
Missing invariant
Missing Invariant
a, b = b, a + b
i = i + 1

This program attempts to compute the fibonacci number of n into the
variable b by keeping track of the previous number in a.

Fib(n) = Fib(n - 1) + Fib(n - 2)

Two invariants are missing which relate to the postcondition and
variables a and b. Add these two invariants.

HINT: Each invariant will relate to the individual variables a and
b, and may use the fib(n) function defined above.

Question 5
The following code attempts to reverse a list of integers. The

achieve this, the program swaps the first value with the last
value and continues in this fashion until it reaches the middle

e.g.
[1, 2, 3, 4, 5, 6] - i = 0, swaps 1 and 6
[6, 5, 3, 4, 2, 1] - i = 1, swaps 2 and 5
[6, 5, 4, 3, 2, 1] - i = 2, swaps 3 and 4

§E.1 Traditional group 91

def rev(a : List[int])
i = 0
while i < a.length - 1 - i:

invariant 0 <= i <= a.Length/2;
//Invariant here
//Invariant here

a[i], a[a.Length - 1 - i] = a[a.Length - 1 - i], a[i];
i = i + 1

post condition: forall k :: 0 <= k < a.Length ==> a[k] == old(a
[(a.Length - 1) - k]); //old represents accessing the old/
original array before it was modified

Two invariants are missing related to the values that have been
swapped and the values that have yet to be swapped. Find the
appropriate invariants to prove the loop is correct.

Question 6
The following code returns an array of size n containing the values

0 up to and excluding n
e.g. arrayUpToN(3) returns [0, 1, 2]

def arrayUpToN(n: int):
i = 0;
a = new int[n];
while i < n

invariant 0 <= i <= n
invariant forall k :: 0 <= k < i ==> a[k] >= 0
invariant forall k :: 0 <= k < i ==> a[k] == k
invariant forall j, k :: 0 <= j <= k < i ==> a[j] <= a[k]

a[i] = i;
i = i + 1;

post conditions: 0 <= i <= n
forall j :: 0 < j < n ==> a[j] >= 0
forall j, k : int :: 0 <= j <= k < n ==> a[j] <=

a[k]

4 invariants are provided in the loop.
Give a short explanation of what each of the three invariants

attempt to show.

92 Workshop Questions

1.
2.
3.
4.

Which invariants are not needed?

E.2 Compiler group

Question 1
The below code attempts to loop from 0 up to n using the variable i

var i: int := 0;
while i < n

invariant 0 <= i
{

i := i + 1;
}
assert i == n;

The invariant provided is not sufficient to prove loop correctness.
Why is it not sufficient? Give one example where the invariant

would not hold. (Test out the program in a dafny file!)

Question 2
Using the same program from Question 1, the invariant has been

modified but is still not sufficient. Why is the invariant
specified not sufficient? Can you suggest a fix?

var i := 0;
while i < n

invariant 0 <= i < n
{

i := i + 1;
}
assert i == n;

Question 3
Using the solution for Question 2, if the loop condition was

changed from i < n to i != n, would the assertion after the loop
still verify? Why or why not?

§E.2 Compiler group 93

Question 4
The below program is an extension from the solution of Question 2/3.

function fib(n: nat): nat
{

if n == 0 then 0 else
if n == 1 then 1 else
fib(n - 1) + fib(n - 2)

}

method ComputeFib(n: nat) returns (b: nat)
ensures b == fib(n);

{
if (n == 0) { return 0; }
var i := 1;
var a := 0;
b := 1;
while (i < n)

invariant 0 < i <= n;
//Missing invariant
//Missing Invariant

{
a, b := b, a + b;
i := i + 1;

}
}

This program attempts to compute the fibonacci number of n into the
variable b by keeping track of the previous number in a.

Fib(n) = Fib(n - 1) + Fib(n - 2)

Two invariants are missing which relate to the postcondition and
variables a and b. Add these two invariants.

HINT: Each invariant will relate to the individual variables a and
b, and may use the fib(n) function defined above.

Question 5
The following code attempts to reverse a list of integers. The

achieve this, the program swaps the first value with the last
value and continues in this fashion until it reaches the middle

e.g.
[1, 2, 3, 4, 5, 6] - i = 0, swaps 1 and 6
[6, 5, 3, 4, 2, 1] - i = 1, swaps 2 and 5

94 Workshop Questions

[6, 5, 4, 3, 2, 1] - i = 2, swaps 3 and 4

method rev(a : array<int>)
requires a != null;
modifies a;
ensures forall k :: 0 <= k < a.Length ==> a[k] == old(a[(a.

Length - 1) - k]);
{

var i := 0;
while (i < a.Length - 1 - i)

invariant 0 <= i <= a.Length/2;
//Invariant here
//Invariant here

{
a[i], a[a.Length - 1 - i] := a[a.Length - 1 - i], a[i];
i := i + 1;

}
}

Two invariants are missing related to the values that have been
swapped and the values that have yet to be swapped. Find the
appropriate invariants to prove the loop is correct.

Question 6
The following code returns an array of size n containing the values

0 up to and excluding n
e.g. arrayUpToN(3) returns [0, 1, 2]

method arrayUpToN(n: int) returns (a: array<int>)
requires n >= 0
ensures a.Length == n
ensures forall j :: 0 < j < n ==> a[j] >= 0
ensures forall j, k : int :: 0 <= j <= k < n ==> a[j] <= a[k]

{
var i := 0;
a := new int[n];
while i < n

invariant 0 <= i <= n
invariant forall k :: 0 <= k < i ==> a[k] >= 0
invariant forall k :: 0 <= k < i ==> a[k] == k
invariant forall j, k :: 0 <= j <= k < i ==> a[j] <= a[k]

{
a[i] := i;
i := i + 1;

§E.2 Compiler group 95

}
}

4 invariants are provided in the loop.
Give a short explanation of what each of the three invariants

attempt to show.
1.
2.
3.
4.

Which invariants are not needed?

96 Workshop Questions

Appendix F

Ethics Approval Letter

97

98 Ethics Approval Letter

Bibliography

[1] M. Khazeev, M. Mazzara, D. De Carvalho, and H. Aslam, “Towards A

Broader Acceptance Of Formal Verification Tools: The Role Of Education,”

arXiv:1906.01430 [cs], Jun. 2019, arXiv: 1906.01430. [Online]. Available:

http://arxiv.org/abs/1906.01430

[2] “Motivating Study of Formal Methods in the Classroom | SpringerLink.”

[Online]. Available: https://link-springer-com.simsrad.net.ocs.mq.edu.au/

chapter/10.1007/978-3-540-30472-2_3

[3] L. Mannila, “Invariant Based Programming in Education - An Analysis of

Student Difficulties,” Informatics in Education, vol. 9, no. 1, pp. 115–132, Apr.

2010. [Online]. Available: https://infedu.vu.lt/doi/10.15388/infedu.2010.07

[4] R.-J. Back, “Teaching the Construction of Correct Programs Using Invariant

Based Programming,” in Petri Nets and Other Models of Concurrency - ICATPN

2006, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,

D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, S. Donatelli, and P. S.

Thiagarajan, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, vol.

4024, pp. 1–18, series Title: Lecture Notes in Computer Science. [Online].

Available: http://link.springer.com/10.1007/11767589_1

[5] N. M. Kabbani, D. Welch, C. Priester, S. Schaub, B. Durkee, Y.-S. Sun, and

M. Sitaraman, “Formal Reasoning Using an Iterative Approach with an

Integrated Web IDE,” Electronic Proceedings in Theoretical Computer Science,

99

http://arxiv.org/abs/1906.01430
https://link-springer-com.simsrad.net.ocs.mq.edu.au/chapter/10.1007/978-3-540-30472-2_3
https://link-springer-com.simsrad.net.ocs.mq.edu.au/chapter/10.1007/978-3-540-30472-2_3
https://infedu.vu.lt/doi/10.15388/infedu.2010.07
http://link.springer.com/10.1007/11767589_1

100 BIBLIOGRAPHY

vol. 187, pp. 56–71, Aug. 2015, arXiv: 1508.03896. [Online]. Available:

http://arxiv.org/abs/1508.03896

[6] R.-J. Back, “Invariant Based Programming Revisited,” Jul. 2008.

[7] ——, “Invariant based programming: basic approach and teaching

experiences,” Formal Aspects of Computing, vol. 21, no. 3, pp. 227–244, May

2009. [Online]. Available: https://doi.org/10.1007/s00165-008-0070-y

[8] S. Blazy, “Teaching Deductive Verification in Why3 to Undergraduate Students,”

in Formal Methods Teaching, ser. Lecture Notes in Computer Science, B. Dongol,

L. Petre, and G. Smith, Eds. Cham: Springer International Publishing, 2019,

pp. 52–66.

[9] N. Cataño and C. Rueda, “Teaching Formal Methods for the Unconquered

Territory,” vol. 5846, Nov. 2009, pp. 2–19.

[10] E. Poll, “Teaching Program Specification and Verification Using JML and ESC/-

Java2,” in TFM, 2009.

[11] J. Divasón and A. Romero, “Using Krakatoa for Teaching Formal Verification of

Java Programs,” in Formal Methods Teaching, ser. Lecture Notes in Computer

Science, B. Dongol, L. Petre, and G. Smith, Eds. Cham: Springer International

Publishing, 2019, pp. 37–51.

[12] “Krakatoa and Jessie: verification tools for Java and C programs.” [Online].

Available: http://krakatoa.lri.fr/

[13] “Community,” Jul. 2022, original-date: 2016-04-16T20:05:38Z. [Online].

Available: https://github.com/dafny-lang/dafny

[14] R. Ettinger, “Lessons of Formal Program Design in Dafny,” in Formal Methods

Teaching, ser. Lecture Notes in Computer Science, J. F. Ferreira, A. Mendes,

http://arxiv.org/abs/1508.03896
https://doi.org/10.1007/s00165-008-0070-y
http://krakatoa.lri.fr/
https://github.com/dafny-lang/dafny

BIBLIOGRAPHY 101

and C. Menghi, Eds. Cham: Springer International Publishing, 2021, pp.

84–100.

[15] “Z3,” Jul. 2022, original-date: 2015-03-26T18:16:07Z. [Online]. Available:

https://github.com/Z3Prover/z3

[16] “About CVC4.” [Online]. Available: https://cvc4.github.io/

[17] W. C. Tam, “Teaching loop invariants to beginners by examples,” in

Proceedings of the twenty-third SIGCSE technical symposium on Computer

science education, ser. SIGCSE ’92. New York, NY, USA: Association

for Computing Machinery, Mar. 1992, pp. 92–96. [Online]. Available:

https://doi.org/10.1145/134510.134530

[18] D. Arnow, “Teaching programming to liberal arts students.”

[19] D. Evans and M. Peck, “Inculcating invariants in introductory courses,” in

Proceedings of the 28th international conference on Software engineering, ser.

ICSE ’06. New York, NY, USA: Association for Computing Machinery, May

2006, pp. 673–678. [Online]. Available: https://doi.org/10.1145/1134285.

1134388

[20] J. Eriksson, “Tool-Supported Invariant-Based Programming.”

[21] ACM Computing Curricula Task Force, Ed., Computer Science Curricula

2013: Curriculum Guidelines for Undergraduate Degree Programs in

Computer Science. ACM, Inc, Jan. 2013. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=2534860

[22] “Handbook - Algorithmic Verification.” [Online]. Available: https://www.

handbook.unsw.edu.au/undergraduate/courses/2019/COMP3153

[23] “Handbook - comp6721 (in-)formal methods: The lost art.” [Online].

https://github.com/Z3Prover/z3
https://cvc4.github.io/
https://doi.org/10.1145/134510.134530
https://doi.org/10.1145/1134285.1134388
https://doi.org/10.1145/1134285.1134388
http://dl.acm.org/citation.cfm?id=2534860
http://dl.acm.org/citation.cfm?id=2534860
https://www.handbook.unsw.edu.au/undergraduate/courses/2019/COMP3153
https://www.handbook.unsw.edu.au/undergraduate/courses/2019/COMP3153

102 BIBLIOGRAPHY

Available: https://www.handbook.unsw.edu.au/undergraduate/courses/

2023/COMP6721

[24] M. University, “Formal Methods,” publisher: Macquarie University. [Online].

Available: https://coursehandbook.mq.edu.au/2020/units/COMP4000/

[25] ——, “Advanced Topics in Theory and Practice of Software,” publisher:

Macquarie University. [Online]. Available: https://coursehandbook.mq.edu.

au/2020/units/COMP7010/

[26] “Formal Methods in Software Engineering - ANU.” [Online]. Available:

https://programsandcourses.anu.edu.au/2016/course/comp2600

[27] “UOW Course Handbook 2021: Subject CSCI410.” [Online]. Available:

https://courses.uow.edu.au/subjects/2021/CSCI410

[28] “Subject Descriptions - Subject Information.” [Online]. Avail-

able: https://solss.uow.edu.au/apir/public_subjectview.subject_info_view?

p_subject_id=179447

[29] “Software Verification and Validation (SENG3320),” Jul. 2013, last Modified:

2017-10-16 23:44:15. [Online]. Available: https://www.newcastle.edu.au/

course/details

[30] “Software Verification and Validation (SENG6320) / Course / The University

of Newcastle, Australia.” [Online]. Available: https://www.newcastle.edu.au/

course/SENG6320

[31] “SOFT3202: Software Construction and Design 2.” [Online]. Available:

https://www.sydney.edu.au/units/SOFT3202

[32] “Models of Software Systems - my.UQ - The University of Queensland,

Australia.” [Online]. Available: https://my.uq.edu.au/programs-courses/

course.html?course_code=CSSE4603

https://www.handbook.unsw.edu.au/undergraduate/courses/2023/COMP6721
https://www.handbook.unsw.edu.au/undergraduate/courses/2023/COMP6721
https://coursehandbook.mq.edu.au/2020/units/COMP4000/
https://coursehandbook.mq.edu.au/2020/units/COMP7010/
https://coursehandbook.mq.edu.au/2020/units/COMP7010/
https://programsandcourses.anu.edu.au/2016/course/comp2600
https://courses.uow.edu.au/subjects/2021/CSCI410
https://solss.uow.edu.au/apir/public_subjectview.subject_info_view?p_subject_id=179447
https://solss.uow.edu.au/apir/public_subjectview.subject_info_view?p_subject_id=179447
https://www.newcastle.edu.au/course/details
https://www.newcastle.edu.au/course/details
https://www.newcastle.edu.au/course/SENG6320
https://www.newcastle.edu.au/course/SENG6320
https://www.sydney.edu.au/units/SOFT3202
https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE4603
https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE4603

BIBLIOGRAPHY 103

[33] “Models of Software Systems - my.UQ - The University of Queensland,

Australia.” [Online]. Available: https://my.uq.edu.au/programs-courses/

course.html?course_code=CSSE7032

[34] “Formal Modelling and Verification - my.UQ - The University of Queensland,

Australia.” [Online]. Available: https://my.uq.edu.au/programs-courses/

course.html?course_code=CSSE7640

[35] “CP3110 Fundamentals of Software Engineering - Subject Search - JCU

Australia.” [Online]. Available: https://secure.jcu.edu.au/app/studyfinder/

index.cfm?subject=CP3110&year=2009&transform=subjectwebview.xslt

[36] “CP5610 Fundamentals of Software Engineering - Subject Search - JCU

Australia.” [Online]. Available: https://secure.jcu.edu.au/app/studyfinder/

?subject=CP5610&year=2008&transform=subjectwebview.xslt

[37] D. University, “Unit.” [Online]. Available: https://www.deakin.edu.au/

courses/unit

[38] “CSC3050: Formal methods II.” [Online]. Available: https://www3.monash.

edu/pubs/98handbooks/it/CSC3050.html

[39] M. University, “System validation and verification, quality and standards,”

publisher: Monash University. [Online]. Available: https://handbook.monash.

edu/2020/units/FIT5171

[40] P. J. Brink, Advanced Design in Nursing Research. SAGE, 1998, google-Books-ID:

D5E5DQAAQBAJ.

[41] R. Aggarwal and P. Ranganathan, “Study designs: Part 4 – Interventional

studies,” Perspectives in Clinical Research, vol. 10, no. 3, pp. 137–139,

2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC6647894/

https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE7032
https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE7032
https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE7640
https://my.uq.edu.au/programs-courses/course.html?course_code=CSSE7640
https://secure.jcu.edu.au/app/studyfinder/index.cfm?subject=CP3110&year=2009&transform=subjectwebview.xslt
https://secure.jcu.edu.au/app/studyfinder/index.cfm?subject=CP3110&year=2009&transform=subjectwebview.xslt
https://secure.jcu.edu.au/app/studyfinder/?subject=CP5610&year=2008&transform=subjectwebview.xslt
https://secure.jcu.edu.au/app/studyfinder/?subject=CP5610&year=2008&transform=subjectwebview.xslt
https://www.deakin.edu.au/courses/unit
https://www.deakin.edu.au/courses/unit
https://www3.monash.edu/pubs/98handbooks/it/CSC3050.html
https://www3.monash.edu/pubs/98handbooks/it/CSC3050.html
https://handbook.monash.edu/2020/units/FIT5171
https://handbook.monash.edu/2020/units/FIT5171
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647894/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647894/

104 BIBLIOGRAPHY

[42] S. G. West, N. Duan, W. Pequegnat, P. Gaist, D. C. Des Jarlais,

D. Holtgrave, J. Szapocznik, M. Fishbein, B. Rapkin, M. Clatts, and

P. D. Mullen, “Alternatives to the Randomized Controlled Trial,” American

Journal of Public Health, vol. 98, no. 8, pp. 1359–1366, Aug. 2008,

publisher: American Public Health Association. [Online]. Available:

https://ajph.aphapublications.org/doi/full/10.2105/AJPH.2007.124446

[43] J. Savović, H. Jones, D. Altman, R. Harris, P. Jűni, J. Pildal, B. Als-Nielsen,

E. Balk, C. Gluud, L. Gluud, J. Ioannidis, K. Schulz, R. Beynon, N. Welton,

L. Wood, D. Moher, J. Deeks, and J. Sterne, “Influence of reported study

design characteristics on intervention effect estimates from randomised

controlled trials: combined analysis of meta-epidemiological studies.” Health

Technology Assessment, vol. 16, no. 35, Sep. 2012. [Online]. Available:

https://www.journalslibrary.nihr.ac.uk/hta/hta16350/

[44] M. Papastergiou, “Digital Game-Based Learning in high school Computer

Science education: Impact on educational effectiveness and student

motivation,” Computers & Education, vol. 52, no. 1, pp. 1–12, Jan.

2009. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0360131508000845

[45] J. L. Burnette, C. L. Hoyt, V. M. Russell, B. Lawson, C. S. Dweck,

and E. Finkel, “A Growth Mind-Set Intervention Improves Interest

but Not Academic Performance in the Field of Computer Science,”

Social Psychological and Personality Science, vol. 11, no. 1, pp. 107–

116, Jan. 2020, publisher: SAGE Publications Inc. [Online]. Available:

https://doi.org/10.1177/1948550619841631

[46] R. Bockmon, S. Cooper, W. Koperski, J. Gratch, S. Sorby, and M. Dorodchi, “A

CS1 Spatial Skills Intervention and the Impact on Introductory Programming

https://ajph.aphapublications.org/doi/full/10.2105/AJPH.2007.124446
https://www.journalslibrary.nihr.ac.uk/hta/hta16350/
https://www.sciencedirect.com/science/article/pii/S0360131508000845
https://www.sciencedirect.com/science/article/pii/S0360131508000845
https://doi.org/10.1177/1948550619841631

BIBLIOGRAPHY 105

Abilities,” in Proceedings of the 51st ACM Technical Symposium on Computer

Science Education. Portland OR USA: ACM, Feb. 2020, pp. 766–772. [Online].

Available: https://dl.acm.org/doi/10.1145/3328778.3366829

[47] A. Shorten and J. Smith, “Mixed methods research: expanding the evidence

base,” Evidence-Based Nursing, vol. 20, no. 3, pp. 74–75, Jul. 2017, publisher:

Royal College of Nursing Section: Research made simple. [Online]. Available:

https://ebn.bmj.com/content/20/3/74

[48] F. Almeida, “STRATEGIES TO PERFORM A MIXED METHODS STUDY,”

European Journal of Education Studies, no. 0, Aug. 2018, number: 0. [Online].

Available: https://www.oapub.org/edu/index.php/ejes/article/view/1902

[49] L. Zahedi, J. Batten, M. Ross, G. Potvin, S. Damas, P. Clarke, and D. Davis,

“Gamification in education: a mixed-methods study of gender on computer

science students’ academic performance and identity development,” Journal

of Computing in Higher Education, vol. 33, no. 2, pp. 441–474, Aug. 2021.

[Online]. Available: https://link.springer.com/10.1007/s12528-021-09271-5

[50] J. P. Bentley and P. G. Thacker, “The influence of risk and monetary

payment on the research participation decision making process,” Journal

of Medical Ethics, vol. 30, no. 3, pp. 293–298, Jun. 2004, publisher:

Institute of Medical Ethics Section: Research ethics. [Online]. Available:

https://jme.bmj.com/content/30/3/293

[51] L. Litman, J. Robinson, and C. Rosenzweig, “The relationship between

motivation, monetary compensation, and data quality among US- and

India-based workers on Mechanical Turk,” Behavior Research Methods,

vol. 47, no. 2, pp. 519–528, Jun. 2015. [Online]. Available: https:

//doi.org/10.3758/s13428-014-0483-x

[52] M. Zangeneh, R. Barmaki, H. Gibson-Wood, M.-J. Levitan, R. Romeo,

https://dl.acm.org/doi/10.1145/3328778.3366829
https://ebn.bmj.com/content/20/3/74
https://www.oapub.org/edu/index.php/ejes/article/view/1902
https://link.springer.com/10.1007/s12528-021-09271-5
https://jme.bmj.com/content/30/3/293
https://doi.org/10.3758/s13428-014-0483-x
https://doi.org/10.3758/s13428-014-0483-x

106 BIBLIOGRAPHY

and J. Bottoms, “Research Compensation and Lottery: An Online

Empirical Pilot Study,” International Journal of Mental Health and

Addiction, vol. 6, no. 4, pp. 517–521, Oct. 2008. [Online]. Available:

https://doi.org/10.1007/s11469-008-9177-x

[53] C. M. Ulrich, M. Danis, D. Koziol, E. Garrett-Mayer, R. Hubbard, and C. Grady,

“Does It Pay to Pay?: A Randomized Trial of Prepaid Financial Incentives

and Lottery Incentives in Surveys of Nonphysician Healthcare Professionals,”

Nursing Research, vol. 54, no. 3, pp. 178–183, Jun. 2005. [Online].

Available: https://journals.lww.com/nursingresearchonline/Abstract/2005/

05000/Does_It_Pay_to_Pay___A_Randomized_Trial_of_Prepaid.5.aspx

[54] S. D. Halpern, R. Kohn, A. Dornbrand-Lo, T. Metkus, D. A. Asch, and

K. G. Volpp, “Lottery-Based versus Fixed Incentives to Increase Clinicians’

Response to Surveys,” Health Services Research, vol. 46, no. 5, pp. 1663–1674,

Oct. 2011. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3207198/

[55] S. R. Porter and M. E. Whitcomb, “The Impact of Lottery Incentives on Student

Survey Response Rates,” p. 19.

[56] S.-C. Chow, J. Shao, and H. Wang, Sample size calculations in clinical research,

2nd ed., ser. Chapman & Hall/CRC biostatistics series. Boca Raton, Fla. ;:

Chapman & Hall/CRC, 2008, no. 20.

[57] R. Scherer, F. Siddiq, and B. Sánchez Viveros, “A meta-analysis of teaching

and learning computer programming: Effective instructional approaches

and conditions,” Computers in Human Behavior, vol. 109, p. 106349, Aug.

2020. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0747563220301023

https://doi.org/10.1007/s11469-008-9177-x
https://journals.lww.com/nursingresearchonline/Abstract/2005/05000/Does_It_Pay_to_Pay___A_Randomized_Trial_of_Prepaid.5.aspx
https://journals.lww.com/nursingresearchonline/Abstract/2005/05000/Does_It_Pay_to_Pay___A_Randomized_Trial_of_Prepaid.5.aspx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207198/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207198/
https://www.sciencedirect.com/science/article/pii/S0747563220301023
https://www.sciencedirect.com/science/article/pii/S0747563220301023

BIBLIOGRAPHY 107

[58] J. Krone, J. E. Hollingsworth, M. Sitaraman, and J. O. Hallstrom, “A Reasoning

Concept Inventory for Computer Science,” p. 7.

[59] A. E. Tew and M. Guzdial, “The FCS1: a language independent assessment

of CS1 knowledge,” in Proceedings of the 42nd ACM technical symposium

on Computer science education - SIGCSE ’11. Dallas, TX, USA: ACM Press,

2011, p. 111. [Online]. Available: http://portal.acm.org/citation.cfm?doid=

1953163.1953200

[60] T. Nipkow, “Getting started with Dafny: A guide,” Software Safety and Security:

Tools for Analysis and Verification, vol. 33, p. 152, 2012, publisher: IOS Press.

http://portal.acm.org/citation.cfm?doid=1953163.1953200
http://portal.acm.org/citation.cfm?doid=1953163.1953200

	Declaration
	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Invariant-Based Programming
	Tools supporting invariants and compiler feedback
	Teaching Invariants
	Required Knowledge
	Experimental Design
	Financial Incentives

	Methods
	Participant Recruitment
	Recruitment Sources
	Calculating participants required

	Workshop
	Minimum requirements
	Pre/Post-Learning Test Design
	Dafny
	Workshop content
	Teaching technique

	Participant Analysis
	Results
	Workshop Results
	Post Questionnaire
	Likert-Scale Questions
	Short-Response Prompts

	Discussion
	Post Questionnaire
	Short-Response Prompts
	Confounding Factors

	Conclusion
	Future work

	Data Tables
	Participant Consent Form
	Posters
	Learning Tests
	Pre-Learning Test
	Post-Learning Test

	Workshop Questions
	Traditional group
	Compiler group

	Ethics Approval Letter

